1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <mdb/mdb_param.h> 27 #include <mdb/mdb_modapi.h> 28 #include <mdb/mdb_ks.h> 29 #include <mdb/mdb_ctf.h> 30 31 #include <sys/types.h> 32 #include <sys/thread.h> 33 #include <sys/session.h> 34 #include <sys/user.h> 35 #include <sys/proc.h> 36 #include <sys/var.h> 37 #include <sys/t_lock.h> 38 #include <sys/systm.h> 39 #include <sys/callo.h> 40 #include <sys/priocntl.h> 41 #include <sys/class.h> 42 #include <sys/regset.h> 43 #include <sys/stack.h> 44 #include <sys/cpuvar.h> 45 #include <sys/vnode.h> 46 #include <sys/vfs.h> 47 #include <sys/flock_impl.h> 48 #include <sys/kmem_impl.h> 49 #include <sys/vmem_impl.h> 50 #include <sys/kstat.h> 51 #include <vm/seg_vn.h> 52 #include <vm/anon.h> 53 #include <vm/as.h> 54 #include <vm/seg_map.h> 55 #include <sys/dditypes.h> 56 #include <sys/ddi_impldefs.h> 57 #include <sys/sysmacros.h> 58 #include <sys/sysconf.h> 59 #include <sys/task.h> 60 #include <sys/project.h> 61 #include <sys/taskq.h> 62 #include <sys/taskq_impl.h> 63 #include <sys/errorq_impl.h> 64 #include <sys/cred_impl.h> 65 #include <sys/zone.h> 66 #include <sys/panic.h> 67 #include <regex.h> 68 #include <sys/port_impl.h> 69 70 #include "avl.h" 71 #include "combined.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "irm.h" 76 #include "leaky.h" 77 #include "lgrp.h" 78 #include "pg.h" 79 #include "group.h" 80 #include "list.h" 81 #include "log.h" 82 #include "kgrep.h" 83 #include "kmem.h" 84 #include "bio.h" 85 #include "streams.h" 86 #include "cyclic.h" 87 #include "findstack.h" 88 #include "ndievents.h" 89 #include "mmd.h" 90 #include "net.h" 91 #include "netstack.h" 92 #include "nvpair.h" 93 #include "ctxop.h" 94 #include "tsd.h" 95 #include "thread.h" 96 #include "memory.h" 97 #include "sobj.h" 98 #include "sysevent.h" 99 #include "rctl.h" 100 #include "tsol.h" 101 #include "typegraph.h" 102 #include "ldi.h" 103 #include "vfs.h" 104 #include "zone.h" 105 #include "modhash.h" 106 #include "mdi.h" 107 #include "fm.h" 108 109 /* 110 * Surely this is defined somewhere... 111 */ 112 #define NINTR 16 113 114 #define KILOS 10 115 #define MEGS 20 116 #define GIGS 30 117 118 #ifndef STACK_BIAS 119 #define STACK_BIAS 0 120 #endif 121 122 static char 123 pstat2ch(uchar_t state) 124 { 125 switch (state) { 126 case SSLEEP: return ('S'); 127 case SRUN: return ('R'); 128 case SZOMB: return ('Z'); 129 case SIDL: return ('I'); 130 case SONPROC: return ('O'); 131 case SSTOP: return ('T'); 132 case SWAIT: return ('W'); 133 default: return ('?'); 134 } 135 } 136 137 #define PS_PRTTHREADS 0x1 138 #define PS_PRTLWPS 0x2 139 #define PS_PSARGS 0x4 140 #define PS_TASKS 0x8 141 #define PS_PROJECTS 0x10 142 #define PS_ZONES 0x20 143 144 static int 145 ps_threadprint(uintptr_t addr, const void *data, void *private) 146 { 147 const kthread_t *t = (const kthread_t *)data; 148 uint_t prt_flags = *((uint_t *)private); 149 150 static const mdb_bitmask_t t_state_bits[] = { 151 { "TS_FREE", UINT_MAX, TS_FREE }, 152 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 153 { "TS_RUN", TS_RUN, TS_RUN }, 154 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 155 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 156 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 157 { "TS_WAIT", TS_WAIT, TS_WAIT }, 158 { NULL, 0, 0 } 159 }; 160 161 if (prt_flags & PS_PRTTHREADS) 162 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 163 164 if (prt_flags & PS_PRTLWPS) 165 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 166 167 return (WALK_NEXT); 168 } 169 170 int 171 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 172 { 173 uint_t prt_flags = 0; 174 proc_t pr; 175 struct pid pid, pgid, sid; 176 sess_t session; 177 cred_t cred; 178 task_t tk; 179 kproject_t pj; 180 zone_t zn; 181 182 if (!(flags & DCMD_ADDRSPEC)) { 183 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 184 mdb_warn("can't walk 'proc'"); 185 return (DCMD_ERR); 186 } 187 return (DCMD_OK); 188 } 189 190 if (mdb_getopts(argc, argv, 191 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 192 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 193 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 194 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 195 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 196 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 197 return (DCMD_USAGE); 198 199 if (DCMD_HDRSPEC(flags)) { 200 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 201 "S", "PID", "PPID", "PGID", "SID"); 202 if (prt_flags & PS_TASKS) 203 mdb_printf("%5s ", "TASK"); 204 if (prt_flags & PS_PROJECTS) 205 mdb_printf("%5s ", "PROJ"); 206 if (prt_flags & PS_ZONES) 207 mdb_printf("%5s ", "ZONE"); 208 mdb_printf("%6s %10s %?s %s%</u>\n", 209 "UID", "FLAGS", "ADDR", "NAME"); 210 } 211 212 mdb_vread(&pr, sizeof (pr), addr); 213 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 214 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 215 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 216 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 217 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 218 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 219 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 220 if (prt_flags & PS_PROJECTS) 221 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 222 if (prt_flags & PS_ZONES) 223 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 224 225 mdb_printf("%c %6d %6d %6d %6d ", 226 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 227 sid.pid_id); 228 if (prt_flags & PS_TASKS) 229 mdb_printf("%5d ", tk.tk_tkid); 230 if (prt_flags & PS_PROJECTS) 231 mdb_printf("%5d ", pj.kpj_id); 232 if (prt_flags & PS_ZONES) 233 mdb_printf("%5d ", zn.zone_id); 234 mdb_printf("%6d 0x%08x %0?p %s\n", 235 cred.cr_uid, pr.p_flag, addr, 236 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 237 238 if (prt_flags & ~PS_PSARGS) 239 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 240 241 return (DCMD_OK); 242 } 243 244 #define PG_NEWEST 0x0001 245 #define PG_OLDEST 0x0002 246 #define PG_PIPE_OUT 0x0004 247 #define PG_EXACT_MATCH 0x0008 248 249 typedef struct pgrep_data { 250 uint_t pg_flags; 251 uint_t pg_psflags; 252 uintptr_t pg_xaddr; 253 hrtime_t pg_xstart; 254 const char *pg_pat; 255 #ifndef _KMDB 256 regex_t pg_reg; 257 #endif 258 } pgrep_data_t; 259 260 /*ARGSUSED*/ 261 static int 262 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 263 { 264 const proc_t *prp = pdata; 265 pgrep_data_t *pgp = data; 266 #ifndef _KMDB 267 regmatch_t pmatch; 268 #endif 269 270 /* 271 * kmdb doesn't have access to the reg* functions, so we fall back 272 * to strstr/strcmp. 273 */ 274 #ifdef _KMDB 275 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 276 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 277 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 278 return (WALK_NEXT); 279 #else 280 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 281 return (WALK_NEXT); 282 283 if ((pgp->pg_flags & PG_EXACT_MATCH) && 284 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 285 return (WALK_NEXT); 286 #endif 287 288 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 289 hrtime_t start; 290 291 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 292 prp->p_user.u_start.tv_nsec; 293 294 if (pgp->pg_flags & PG_NEWEST) { 295 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 296 pgp->pg_xaddr = addr; 297 pgp->pg_xstart = start; 298 } 299 } else { 300 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 301 pgp->pg_xaddr = addr; 302 pgp->pg_xstart = start; 303 } 304 } 305 306 } else if (pgp->pg_flags & PG_PIPE_OUT) { 307 mdb_printf("%p\n", addr); 308 309 } else { 310 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 311 mdb_warn("can't invoke 'ps'"); 312 return (WALK_DONE); 313 } 314 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 315 } 316 317 return (WALK_NEXT); 318 } 319 320 /*ARGSUSED*/ 321 int 322 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 323 { 324 pgrep_data_t pg; 325 int i; 326 #ifndef _KMDB 327 int err; 328 #endif 329 330 if (flags & DCMD_ADDRSPEC) 331 return (DCMD_USAGE); 332 333 pg.pg_flags = 0; 334 pg.pg_xaddr = 0; 335 336 i = mdb_getopts(argc, argv, 337 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 338 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 339 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 340 NULL); 341 342 argc -= i; 343 argv += i; 344 345 if (argc != 1) 346 return (DCMD_USAGE); 347 348 /* 349 * -n and -o are mutually exclusive. 350 */ 351 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 352 return (DCMD_USAGE); 353 354 if (argv->a_type != MDB_TYPE_STRING) 355 return (DCMD_USAGE); 356 357 if (flags & DCMD_PIPE_OUT) 358 pg.pg_flags |= PG_PIPE_OUT; 359 360 pg.pg_pat = argv->a_un.a_str; 361 if (DCMD_HDRSPEC(flags)) 362 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 363 else 364 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 365 366 #ifndef _KMDB 367 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 368 size_t nbytes; 369 char *buf; 370 371 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 372 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 373 (void) regerror(err, &pg.pg_reg, buf, nbytes); 374 mdb_warn("%s\n", buf); 375 376 return (DCMD_ERR); 377 } 378 #endif 379 380 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 381 mdb_warn("can't walk 'proc'"); 382 return (DCMD_ERR); 383 } 384 385 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 386 if (pg.pg_flags & PG_PIPE_OUT) { 387 mdb_printf("%p\n", pg.pg_xaddr); 388 } else { 389 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 390 0, NULL) != 0) { 391 mdb_warn("can't invoke 'ps'"); 392 return (DCMD_ERR); 393 } 394 } 395 } 396 397 return (DCMD_OK); 398 } 399 400 int 401 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 402 { 403 task_t tk; 404 kproject_t pj; 405 406 if (!(flags & DCMD_ADDRSPEC)) { 407 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 408 mdb_warn("can't walk task_cache"); 409 return (DCMD_ERR); 410 } 411 return (DCMD_OK); 412 } 413 if (DCMD_HDRSPEC(flags)) { 414 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 415 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 416 } 417 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 418 mdb_warn("can't read task_t structure at %p", addr); 419 return (DCMD_ERR); 420 } 421 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 422 mdb_warn("can't read project_t structure at %p", addr); 423 return (DCMD_ERR); 424 } 425 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 426 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 427 tk.tk_flags); 428 return (DCMD_OK); 429 } 430 431 int 432 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 433 { 434 kproject_t pj; 435 436 if (!(flags & DCMD_ADDRSPEC)) { 437 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 438 mdb_warn("can't walk projects"); 439 return (DCMD_ERR); 440 } 441 return (DCMD_OK); 442 } 443 if (DCMD_HDRSPEC(flags)) { 444 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 445 "ADDR", "PROJID", "ZONEID", "REFCNT"); 446 } 447 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 448 mdb_warn("can't read kproject_t structure at %p", addr); 449 return (DCMD_ERR); 450 } 451 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 452 pj.kpj_count); 453 return (DCMD_OK); 454 } 455 456 /* walk callouts themselves, either by list or id hash. */ 457 int 458 callout_walk_init(mdb_walk_state_t *wsp) 459 { 460 if (wsp->walk_addr == NULL) { 461 mdb_warn("callout doesn't support global walk"); 462 return (WALK_ERR); 463 } 464 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 465 return (WALK_NEXT); 466 } 467 468 #define CALLOUT_WALK_BYLIST 0 469 #define CALLOUT_WALK_BYID 1 470 471 /* the walker arg switches between walking by list (0) and walking by id (1). */ 472 int 473 callout_walk_step(mdb_walk_state_t *wsp) 474 { 475 int retval; 476 477 if (wsp->walk_addr == NULL) { 478 return (WALK_DONE); 479 } 480 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 481 wsp->walk_addr) == -1) { 482 mdb_warn("failed to read callout at %p", wsp->walk_addr); 483 return (WALK_DONE); 484 } 485 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 486 wsp->walk_cbdata); 487 488 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 489 wsp->walk_addr = 490 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 491 } else { 492 wsp->walk_addr = 493 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 494 } 495 496 return (retval); 497 } 498 499 void 500 callout_walk_fini(mdb_walk_state_t *wsp) 501 { 502 mdb_free(wsp->walk_data, sizeof (callout_t)); 503 } 504 505 /* 506 * walker for callout lists. This is different from hashes and callouts. 507 * Thankfully, it's also simpler. 508 */ 509 int 510 callout_list_walk_init(mdb_walk_state_t *wsp) 511 { 512 if (wsp->walk_addr == NULL) { 513 mdb_warn("callout list doesn't support global walk"); 514 return (WALK_ERR); 515 } 516 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 517 return (WALK_NEXT); 518 } 519 520 int 521 callout_list_walk_step(mdb_walk_state_t *wsp) 522 { 523 int retval; 524 525 if (wsp->walk_addr == NULL) { 526 return (WALK_DONE); 527 } 528 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 529 wsp->walk_addr) != sizeof (callout_list_t)) { 530 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 531 return (WALK_ERR); 532 } 533 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 534 wsp->walk_cbdata); 535 536 wsp->walk_addr = (uintptr_t) 537 (((callout_list_t *)wsp->walk_data)->cl_next); 538 539 return (retval); 540 } 541 542 void 543 callout_list_walk_fini(mdb_walk_state_t *wsp) 544 { 545 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 546 } 547 548 /* routines/structs to walk callout table(s) */ 549 typedef struct cot_data { 550 callout_table_t *ct0; 551 callout_table_t ct; 552 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 553 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 554 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 555 int cotndx; 556 int cotsize; 557 } cot_data_t; 558 559 int 560 callout_table_walk_init(mdb_walk_state_t *wsp) 561 { 562 int max_ncpus; 563 cot_data_t *cot_walk_data; 564 565 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 566 567 if (wsp->walk_addr == NULL) { 568 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 569 mdb_warn("failed to read 'callout_table'"); 570 return (WALK_ERR); 571 } 572 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 573 mdb_warn("failed to get callout_table array size"); 574 return (WALK_ERR); 575 } 576 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 577 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 578 } else { 579 /* not a global walk */ 580 cot_walk_data->cotsize = 1; 581 } 582 583 cot_walk_data->cotndx = 0; 584 wsp->walk_data = cot_walk_data; 585 586 return (WALK_NEXT); 587 } 588 589 int 590 callout_table_walk_step(mdb_walk_state_t *wsp) 591 { 592 int retval; 593 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 594 size_t size; 595 596 if (cotwd->cotndx >= cotwd->cotsize) { 597 return (WALK_DONE); 598 } 599 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 600 wsp->walk_addr) != sizeof (callout_table_t)) { 601 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 602 return (WALK_ERR); 603 } 604 605 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 606 if (cotwd->ct.ct_idhash != NULL) { 607 if (mdb_vread(cotwd->cot_idhash, size, 608 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 609 mdb_warn("failed to read id_hash at %p", 610 cotwd->ct.ct_idhash); 611 return (WALK_ERR); 612 } 613 } 614 if (cotwd->ct.ct_clhash != NULL) { 615 if (mdb_vread(&(cotwd->cot_clhash), size, 616 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 617 mdb_warn("failed to read cl_hash at %p", 618 cotwd->ct.ct_clhash); 619 return (WALK_ERR); 620 } 621 } 622 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 623 if (cotwd->ct.ct_kstat_data != NULL) { 624 if (mdb_vread(&(cotwd->ct_kstat_data), size, 625 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 626 mdb_warn("failed to read kstats at %p", 627 cotwd->ct.ct_kstat_data); 628 return (WALK_ERR); 629 } 630 } 631 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 632 wsp->walk_cbdata); 633 634 cotwd->cotndx++; 635 if (cotwd->cotndx >= cotwd->cotsize) { 636 return (WALK_DONE); 637 } 638 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 639 sizeof (callout_table_t)); 640 641 return (retval); 642 } 643 644 void 645 callout_table_walk_fini(mdb_walk_state_t *wsp) 646 { 647 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 648 } 649 650 static const char *co_typenames[] = { "R", "N" }; 651 652 #define CO_PLAIN_ID(xid) ((xid) & ~CALLOUT_EXECUTING) 653 654 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 655 656 /* callout flags, in no particular order */ 657 #define COF_REAL 0x0000001 658 #define COF_NORM 0x0000002 659 #define COF_LONG 0x0000004 660 #define COF_SHORT 0x0000008 661 #define COF_EMPTY 0x0000010 662 #define COF_TIME 0x0000020 663 #define COF_BEFORE 0x0000040 664 #define COF_AFTER 0x0000080 665 #define COF_SEQID 0x0000100 666 #define COF_FUNC 0x0000200 667 #define COF_ADDR 0x0000400 668 #define COF_EXEC 0x0000800 669 #define COF_HIRES 0x0001000 670 /* 0x0002000 reserved for future flags */ 671 #define COF_TABLE 0x0004000 672 #define COF_BYIDH 0x0008000 673 #define COF_FREE 0x0010000 674 #define COF_LIST 0x0020000 675 #define COF_EXPREL 0x0040000 676 #define COF_HDR 0x0080000 677 #define COF_VERBOSE 0x0100000 678 #define COF_LONGLIST 0x0200000 679 #define COF_THDR 0x0400000 680 #define COF_LHDR 0x0800000 681 #define COF_CHDR 0x1000000 682 #define COF_PARAM 0x2000000 683 #define COF_DECODE 0x4000000 684 685 /* show real and normal, short and long, expired and unexpired. */ 686 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 687 688 /* private callout data for callback functions */ 689 typedef struct callout_data { 690 uint_t flags; /* COF_* */ 691 cpu_t *cpu; /* cpu pointer if given */ 692 int seqid; /* cpu seqid, or -1 */ 693 hrtime_t time; /* expiration time value */ 694 hrtime_t atime; /* expiration before value */ 695 hrtime_t btime; /* expiration after value */ 696 uintptr_t funcaddr; /* function address or NULL */ 697 uintptr_t param; /* parameter to function or NULL */ 698 hrtime_t now; /* current system time */ 699 int nsec_per_tick; /* for conversions */ 700 ulong_t ctbits; /* for decoding xid */ 701 callout_table_t *co_table; /* top of callout table array */ 702 int ndx; /* table index. */ 703 int bucket; /* which list/id bucket are we in */ 704 hrtime_t exp; /* expire time */ 705 } callout_data_t; 706 707 /* this callback does the actual callback itself (finally). */ 708 /*ARGSUSED*/ 709 static int 710 callouts_cb(uintptr_t addr, const void *data, void *priv) 711 { 712 callout_data_t *coargs = (callout_data_t *)priv; 713 callout_t *co = (callout_t *)data; 714 int tableid; 715 callout_id_t coid; 716 717 if ((coargs == NULL) || (co == NULL)) { 718 return (WALK_ERR); 719 } 720 721 if ((coargs->flags & COF_FUNC) && 722 (coargs->funcaddr != (uintptr_t)co->c_func)) { 723 return (WALK_NEXT); 724 } 725 if ((coargs->flags & COF_PARAM) && 726 (coargs->param != (uintptr_t)co->c_arg)) { 727 return (WALK_NEXT); 728 } 729 730 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 731 return (WALK_NEXT); 732 } 733 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 734 return (WALK_NEXT); 735 } 736 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 737 return (WALK_NEXT); 738 } 739 if ((coargs->flags & COF_HIRES) && !(co->c_xid & CALLOUT_HRESTIME)) { 740 return (WALK_NEXT); 741 } 742 743 /* it is possible we don't have the exp time */ 744 if (coargs->flags & COF_BYIDH) { 745 if (!(coargs->flags & COF_FREE)) { 746 /* we have to fetch the expire time ourselves. */ 747 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 748 (uintptr_t)co->c_list + offsetof(callout_list_t, 749 cl_expiration)) == -1) { 750 mdb_warn("failed to read expiration " 751 "time from %p", co->c_list); 752 coargs->exp = 0; 753 } 754 } else { 755 /* free callouts can't use list pointer. */ 756 coargs->exp = 0; 757 } 758 } 759 760 #define callout_table_mask ((1 << coargs->ctbits) - 1) 761 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 762 #undef callout_table_mask 763 coid = CO_PLAIN_ID(co->c_xid); 764 765 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 766 /* 767 * We need to print the headers. If walking by id, then 768 * the list header isn't printed, so we must include 769 * that info here. 770 */ 771 if (!(coargs->flags & COF_VERBOSE)) { 772 mdb_printf("%<u>%3s %-1s %-14s %</u>", 773 "SEQ", "T", "EXP"); 774 } else if (coargs->flags & COF_BYIDH) { 775 mdb_printf("%<u>%-14s %</u>", "EXP"); 776 } 777 mdb_printf("%<u>%-3s %-?s %-20s%</u>", 778 "XHL", "XID", "FUNC(ARG)"); 779 if (coargs->flags & COF_LONGLIST) { 780 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 781 "PREVID", "NEXTID", "PREVL", "NEXTL"); 782 } 783 mdb_printf("\n"); 784 coargs->flags &= ~COF_CHDR; 785 coargs->flags |= (COF_THDR | COF_LHDR); 786 } 787 788 if (!(coargs->flags & COF_ADDR)) { 789 if (!(coargs->flags & COF_VERBOSE)) { 790 mdb_printf("%-3d %1s %-14llx ", 791 TABLE_TO_SEQID(tableid), 792 co_typenames[tableid & CALLOUT_TYPE_MASK], 793 (coargs->flags & COF_EXPREL) ? 794 coargs->exp - coargs->now : coargs->exp); 795 } else if (coargs->flags & COF_BYIDH) { 796 mdb_printf("%-14x ", 797 (coargs->flags & COF_EXPREL) ? 798 coargs->exp - coargs->now : coargs->exp); 799 } 800 mdb_printf("%1s%1s%1s %-?llx %a(%p)", 801 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 802 (co->c_xid & CALLOUT_HRESTIME) ? "H" : " ", 803 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 804 (long long)coid, co->c_func, co->c_arg); 805 if (coargs->flags & COF_LONGLIST) { 806 mdb_printf(" %-?p %-?p %-?p %-?p", 807 co->c_idprev, co->c_idnext, co->c_clprev, 808 co->c_clnext); 809 } 810 } else { 811 /* address only */ 812 mdb_printf("%-0p", addr); 813 } 814 mdb_printf("\n"); 815 return (WALK_NEXT); 816 } 817 818 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 819 /*ARGSUSED*/ 820 static int 821 callout_list_cb(uintptr_t addr, const void *data, void *priv) 822 { 823 callout_data_t *coargs = (callout_data_t *)priv; 824 callout_list_t *cl = (callout_list_t *)data; 825 callout_t *coptr; 826 827 if ((coargs == NULL) || (cl == NULL)) { 828 return (WALK_ERR); 829 } 830 831 coargs->exp = cl->cl_expiration; 832 if ((coargs->flags & COF_TIME) && 833 (cl->cl_expiration != coargs->time)) { 834 return (WALK_NEXT); 835 } 836 if ((coargs->flags & COF_BEFORE) && 837 (cl->cl_expiration > coargs->btime)) { 838 return (WALK_NEXT); 839 } 840 if ((coargs->flags & COF_AFTER) && 841 (cl->cl_expiration < coargs->atime)) { 842 return (WALK_NEXT); 843 } 844 if (!(coargs->flags & COF_EMPTY) && 845 (cl->cl_callouts.ch_head == NULL)) { 846 return (WALK_NEXT); 847 } 848 849 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 850 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 851 if (!(coargs->flags & COF_VERBOSE)) { 852 /* don't be redundant again */ 853 mdb_printf("%<u>SEQ T %</u>"); 854 } 855 mdb_printf("%<u>EXP BUCKET " 856 "CALLOUTS UTOS THREAD %</u>"); 857 858 if (coargs->flags & COF_LONGLIST) { 859 mdb_printf("%<u> %-?s %-?s %-?s%</u>", 860 "DONE", "PREV", "NEXT"); 861 } 862 mdb_printf("\n"); 863 coargs->flags &= ~COF_LHDR; 864 coargs->flags |= (COF_THDR | COF_CHDR); 865 } 866 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 867 if (!(coargs->flags & COF_ADDR)) { 868 if (!(coargs->flags & COF_VERBOSE)) { 869 mdb_printf("%3d %1s ", 870 TABLE_TO_SEQID(coargs->ndx), 871 co_typenames[coargs->ndx & 872 CALLOUT_TYPE_MASK]); 873 } 874 875 mdb_printf("%-14llx %-6d %-0?p %-4d %-0?p", 876 (coargs->flags & COF_EXPREL) ? 877 coargs->exp - coargs->now : coargs->exp, 878 coargs->bucket, cl->cl_callouts.ch_head, 879 cl->cl_waiting, cl->cl_executor); 880 881 if (coargs->flags & COF_LONGLIST) { 882 mdb_printf(" %-?p %-?p %-?p", 883 cl->cl_done, cl->cl_prev, cl->cl_next); 884 } 885 } else { 886 /* address only */ 887 mdb_printf("%-0p", addr); 888 } 889 mdb_printf("\n"); 890 if (coargs->flags & COF_LIST) { 891 return (WALK_NEXT); 892 } 893 } 894 /* yet another layer as we walk the actual callouts via list. */ 895 if (cl->cl_callouts.ch_head == NULL) { 896 return (WALK_NEXT); 897 } 898 /* free list structures do not have valid callouts off of them. */ 899 if (coargs->flags & COF_FREE) { 900 return (WALK_NEXT); 901 } 902 coptr = (callout_t *)cl->cl_callouts.ch_head; 903 904 if (coargs->flags & COF_VERBOSE) { 905 mdb_inc_indent(4); 906 } 907 /* 908 * walk callouts using yet another callback routine. 909 * we use callouts_bytime because id hash is handled via 910 * the callout_t_cb callback. 911 */ 912 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 913 (uintptr_t)coptr) == -1) { 914 mdb_warn("cannot walk callouts at %p", coptr); 915 return (WALK_ERR); 916 } 917 if (coargs->flags & COF_VERBOSE) { 918 mdb_dec_indent(4); 919 } 920 921 return (WALK_NEXT); 922 } 923 924 /* this callback handles the details of callout table walking. */ 925 static int 926 callout_t_cb(uintptr_t addr, const void *data, void *priv) 927 { 928 callout_data_t *coargs = (callout_data_t *)priv; 929 cot_data_t *cotwd = (cot_data_t *)data; 930 callout_table_t *ct = &(cotwd->ct); 931 int index, seqid, cotype; 932 int i; 933 callout_list_t *clptr; 934 callout_t *coptr; 935 936 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 937 return (WALK_ERR); 938 } 939 940 index = ((char *)addr - (char *)coargs->co_table) / 941 sizeof (callout_table_t); 942 cotype = index & CALLOUT_TYPE_MASK; 943 seqid = TABLE_TO_SEQID(index); 944 945 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 946 return (WALK_NEXT); 947 } 948 949 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 950 return (WALK_NEXT); 951 } 952 953 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 954 return (WALK_NEXT); 955 } 956 957 if (!(coargs->flags & COF_EMPTY) && ( 958 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 959 return (WALK_NEXT); 960 } 961 962 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 963 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 964 /* print table hdr */ 965 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 966 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 967 coargs->flags &= ~COF_THDR; 968 coargs->flags |= (COF_LHDR | COF_CHDR); 969 if (coargs->flags & COF_LONGLIST) { 970 /* more info! */ 971 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s" 972 " %-?s %-?s %-?s%</u>", 973 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", 974 "PEND", "FREE", "LOCK"); 975 } 976 mdb_printf("\n"); 977 } 978 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 979 if (!(coargs->flags & COF_ADDR)) { 980 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 981 seqid, co_typenames[cotype], 982 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 983 ct->ct_heap); 984 if (coargs->flags & COF_LONGLIST) { 985 /* more info! */ 986 mdb_printf(" %-7d %-7d %-?p %-?p" 987 " %-?lld %-?lld %-?p", 988 ct->ct_heap_num, ct->ct_heap_max, 989 ct->ct_taskq, ct->ct_expired.ch_head, 990 cotwd->ct_timeouts_pending, 991 cotwd->ct_allocations - 992 cotwd->ct_timeouts_pending, 993 ct->ct_mutex); 994 } 995 } else { 996 /* address only */ 997 mdb_printf("%-0?p", addr); 998 } 999 mdb_printf("\n"); 1000 if (coargs->flags & COF_TABLE) { 1001 return (WALK_NEXT); 1002 } 1003 } 1004 1005 coargs->ndx = index; 1006 if (coargs->flags & COF_VERBOSE) { 1007 mdb_inc_indent(4); 1008 } 1009 /* keep digging. */ 1010 if (!(coargs->flags & COF_BYIDH)) { 1011 /* walk the list hash table */ 1012 if (coargs->flags & COF_FREE) { 1013 clptr = ct->ct_lfree; 1014 coargs->bucket = 0; 1015 if (clptr == NULL) { 1016 return (WALK_NEXT); 1017 } 1018 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1019 (uintptr_t)clptr) == -1) { 1020 mdb_warn("cannot walk callout free list at %p", 1021 clptr); 1022 return (WALK_ERR); 1023 } 1024 } else { 1025 /* first print the expired list. */ 1026 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1027 if (clptr != NULL) { 1028 coargs->bucket = -1; 1029 if (mdb_pwalk("callout_list", callout_list_cb, 1030 coargs, (uintptr_t)clptr) == -1) { 1031 mdb_warn("cannot walk callout_list" 1032 " at %p", clptr); 1033 return (WALK_ERR); 1034 } 1035 } 1036 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1037 if (ct->ct_clhash == NULL) { 1038 /* nothing to do */ 1039 break; 1040 } 1041 if (cotwd->cot_clhash[i].ch_head == NULL) { 1042 continue; 1043 } 1044 clptr = (callout_list_t *) 1045 cotwd->cot_clhash[i].ch_head; 1046 coargs->bucket = i; 1047 /* walk list with callback routine. */ 1048 if (mdb_pwalk("callout_list", callout_list_cb, 1049 coargs, (uintptr_t)clptr) == -1) { 1050 mdb_warn("cannot walk callout_list" 1051 " at %p", clptr); 1052 return (WALK_ERR); 1053 } 1054 } 1055 } 1056 } else { 1057 /* walk the id hash table. */ 1058 if (coargs->flags & COF_FREE) { 1059 coptr = ct->ct_free; 1060 coargs->bucket = 0; 1061 if (coptr == NULL) { 1062 return (WALK_NEXT); 1063 } 1064 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1065 (uintptr_t)coptr) == -1) { 1066 mdb_warn("cannot walk callout id free list" 1067 " at %p", coptr); 1068 return (WALK_ERR); 1069 } 1070 } else { 1071 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1072 if (ct->ct_idhash == NULL) { 1073 break; 1074 } 1075 coptr = (callout_t *) 1076 cotwd->cot_idhash[i].ch_head; 1077 if (coptr == NULL) { 1078 continue; 1079 } 1080 coargs->bucket = i; 1081 1082 /* 1083 * walk callouts directly by id. For id 1084 * chain, the callout list is just a header, 1085 * so there's no need to walk it. 1086 */ 1087 if (mdb_pwalk("callouts_byid", callouts_cb, 1088 coargs, (uintptr_t)coptr) == -1) { 1089 mdb_warn("cannot walk callouts at %p", 1090 coptr); 1091 return (WALK_ERR); 1092 } 1093 } 1094 } 1095 } 1096 if (coargs->flags & COF_VERBOSE) { 1097 mdb_dec_indent(4); 1098 } 1099 return (WALK_NEXT); 1100 } 1101 1102 /* 1103 * initialize some common info for both callout dcmds. 1104 */ 1105 int 1106 callout_common_init(callout_data_t *coargs) 1107 { 1108 /* we need a couple of things */ 1109 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1110 mdb_warn("failed to read 'callout_table'"); 1111 return (DCMD_ERR); 1112 } 1113 /* need to get now in nsecs. Approximate with hrtime vars */ 1114 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1115 sizeof (hrtime_t)) { 1116 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1117 "hrtime_base") != sizeof (hrtime_t)) { 1118 mdb_warn("Could not determine current system time"); 1119 return (DCMD_ERR); 1120 } 1121 } 1122 1123 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1124 mdb_warn("failed to read 'callout_table_bits'"); 1125 return (DCMD_ERR); 1126 } 1127 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1128 mdb_warn("failed to read 'nsec_per_tick'"); 1129 return (DCMD_ERR); 1130 } 1131 return (DCMD_OK); 1132 } 1133 1134 /* 1135 * dcmd to print callouts. Optional addr limits to specific table. 1136 * Parses lots of options that get passed to callbacks for walkers. 1137 * Has it's own help function. 1138 */ 1139 /*ARGSUSED*/ 1140 int 1141 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1142 { 1143 callout_data_t coargs; 1144 /* getopts doesn't help much with stuff like this */ 1145 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1146 char *funcname = NULL; 1147 char *paramstr = NULL; 1148 uintptr_t Stmp, Ctmp; /* for getopt. */ 1149 int retval; 1150 1151 coargs.flags = COF_DEFAULT; 1152 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1153 coargs.seqid = -1; 1154 1155 if (mdb_getopts(argc, argv, 1156 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1157 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1158 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1159 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1160 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1161 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1162 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1163 'd', MDB_OPT_SETBITS, 1, &dflag, 1164 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1165 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1166 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1167 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1168 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1169 'k', MDB_OPT_SETBITS, 1, &kflag, 1170 'f', MDB_OPT_STR, &funcname, 1171 'p', MDB_OPT_STR, ¶mstr, 1172 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1173 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1174 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1175 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1176 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1177 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1178 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1179 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1180 NULL) != argc) { 1181 return (DCMD_USAGE); 1182 } 1183 1184 /* initialize from kernel variables */ 1185 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1186 return (retval); 1187 } 1188 1189 /* do some option post-processing */ 1190 if (kflag) { 1191 coargs.time *= coargs.nsec_per_tick; 1192 coargs.atime *= coargs.nsec_per_tick; 1193 coargs.btime *= coargs.nsec_per_tick; 1194 } 1195 1196 if (dflag) { 1197 coargs.time += coargs.now; 1198 coargs.atime += coargs.now; 1199 coargs.btime += coargs.now; 1200 } 1201 if (Sflag) { 1202 if (flags & DCMD_ADDRSPEC) { 1203 mdb_printf("-S option conflicts with explicit" 1204 " address\n"); 1205 return (DCMD_USAGE); 1206 } 1207 coargs.flags |= COF_SEQID; 1208 coargs.seqid = (int)Stmp; 1209 } 1210 if (Cflag) { 1211 if (flags & DCMD_ADDRSPEC) { 1212 mdb_printf("-C option conflicts with explicit" 1213 " address\n"); 1214 return (DCMD_USAGE); 1215 } 1216 if (coargs.flags & COF_SEQID) { 1217 mdb_printf("-C and -S are mutually exclusive\n"); 1218 return (DCMD_USAGE); 1219 } 1220 coargs.cpu = (cpu_t *)Ctmp; 1221 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1222 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1223 mdb_warn("failed to read cpu_t at %p", Ctmp); 1224 return (DCMD_ERR); 1225 } 1226 coargs.flags |= COF_SEQID; 1227 } 1228 /* avoid null outputs. */ 1229 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1230 coargs.flags |= COF_REAL | COF_NORM; 1231 } 1232 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1233 coargs.flags |= COF_LONG | COF_SHORT; 1234 } 1235 if (tflag) { 1236 if (aflag || bflag) { 1237 mdb_printf("-t and -a|b are mutually exclusive\n"); 1238 return (DCMD_USAGE); 1239 } 1240 coargs.flags |= COF_TIME; 1241 } 1242 if (aflag) { 1243 coargs.flags |= COF_AFTER; 1244 } 1245 if (bflag) { 1246 coargs.flags |= COF_BEFORE; 1247 } 1248 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1249 mdb_printf("value for -a must be earlier than the value" 1250 " for -b.\n"); 1251 return (DCMD_USAGE); 1252 } 1253 1254 if (funcname != NULL) { 1255 GElf_Sym sym; 1256 1257 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1258 coargs.funcaddr = mdb_strtoull(funcname); 1259 } else { 1260 coargs.funcaddr = sym.st_value; 1261 } 1262 coargs.flags |= COF_FUNC; 1263 } 1264 1265 if (paramstr != NULL) { 1266 GElf_Sym sym; 1267 1268 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1269 coargs.param = mdb_strtoull(paramstr); 1270 } else { 1271 coargs.param = sym.st_value; 1272 } 1273 coargs.flags |= COF_PARAM; 1274 } 1275 1276 if (!(flags & DCMD_ADDRSPEC)) { 1277 /* don't pass "dot" if no addr. */ 1278 addr = NULL; 1279 } 1280 if (addr != NULL) { 1281 /* 1282 * a callout table was specified. Ignore -r|n option 1283 * to avoid null output. 1284 */ 1285 coargs.flags |= (COF_REAL | COF_NORM); 1286 } 1287 1288 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1289 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1290 } 1291 if (coargs.flags & COF_FREE) { 1292 coargs.flags |= COF_EMPTY; 1293 /* -F = free callouts, -FL = free lists */ 1294 if (!(coargs.flags & COF_LIST)) { 1295 coargs.flags |= COF_BYIDH; 1296 } 1297 } 1298 1299 /* walk table, using specialized callback routine. */ 1300 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1301 mdb_warn("cannot walk callout_table"); 1302 return (DCMD_ERR); 1303 } 1304 return (DCMD_OK); 1305 } 1306 1307 1308 /* 1309 * Given an extended callout id, dump its information. 1310 */ 1311 /*ARGSUSED*/ 1312 int 1313 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1314 { 1315 callout_data_t coargs; 1316 callout_table_t *ctptr; 1317 callout_table_t ct; 1318 callout_id_t coid; 1319 callout_t *coptr; 1320 int tableid; 1321 callout_id_t xid; 1322 ulong_t idhash; 1323 int i, retval; 1324 const mdb_arg_t *arg; 1325 size_t size; 1326 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1327 1328 coargs.flags = COF_DEFAULT | COF_BYIDH; 1329 i = mdb_getopts(argc, argv, 1330 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1331 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1332 NULL); 1333 argc -= i; 1334 argv += i; 1335 1336 if (argc != 1) { 1337 return (DCMD_USAGE); 1338 } 1339 arg = &argv[0]; 1340 1341 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1342 xid = arg->a_un.a_val; 1343 } else { 1344 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1345 } 1346 1347 if (DCMD_HDRSPEC(flags)) { 1348 coargs.flags |= COF_CHDR; 1349 } 1350 1351 1352 /* initialize from kernel variables */ 1353 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1354 return (retval); 1355 } 1356 1357 /* we must massage the environment so that the macros will play nice */ 1358 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1359 #define callout_table_bits coargs.ctbits 1360 #define nsec_per_tick coargs.nsec_per_tick 1361 tableid = CALLOUT_ID_TO_TABLE(xid); 1362 idhash = CALLOUT_IDHASH(xid); 1363 #undef callouts_table_bits 1364 #undef callout_table_mask 1365 #undef nsec_per_tick 1366 coid = CO_PLAIN_ID(xid); 1367 1368 if (flags & DCMD_ADDRSPEC) { 1369 mdb_printf("calloutid does not accept explicit address.\n"); 1370 return (DCMD_USAGE); 1371 } 1372 1373 if (coargs.flags & COF_DECODE) { 1374 if (DCMD_HDRSPEC(flags)) { 1375 mdb_printf("%<u>%3s %1s %3s %-?s %-6s %</u>\n", 1376 "SEQ", "T", "XHL", "XID", "IDHASH"); 1377 } 1378 mdb_printf("%-3d %1s %1s%1s%1s %-?llx %-6d\n", 1379 TABLE_TO_SEQID(tableid), 1380 co_typenames[tableid & CALLOUT_TYPE_MASK], 1381 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1382 (xid & CALLOUT_HRESTIME) ? "H" : " ", 1383 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1384 (long long)coid, idhash); 1385 return (DCMD_OK); 1386 } 1387 1388 /* get our table. Note this relies on the types being correct */ 1389 ctptr = coargs.co_table + tableid; 1390 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1391 mdb_warn("failed to read callout_table at %p", ctptr); 1392 return (DCMD_ERR); 1393 } 1394 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1395 if (ct.ct_idhash != NULL) { 1396 if (mdb_vread(&(cot_idhash), size, 1397 (uintptr_t)ct.ct_idhash) == -1) { 1398 mdb_warn("failed to read id_hash at %p", 1399 ct.ct_idhash); 1400 return (WALK_ERR); 1401 } 1402 } 1403 1404 /* callout at beginning of hash chain */ 1405 if (ct.ct_idhash == NULL) { 1406 mdb_printf("id hash chain for this xid is empty\n"); 1407 return (DCMD_ERR); 1408 } 1409 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1410 if (coptr == NULL) { 1411 mdb_printf("id hash chain for this xid is empty\n"); 1412 return (DCMD_ERR); 1413 } 1414 1415 coargs.ndx = tableid; 1416 coargs.bucket = idhash; 1417 1418 /* use the walker, luke */ 1419 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1420 (uintptr_t)coptr) == -1) { 1421 mdb_warn("cannot walk callouts at %p", coptr); 1422 return (WALK_ERR); 1423 } 1424 1425 return (DCMD_OK); 1426 } 1427 1428 void 1429 callout_help(void) 1430 { 1431 mdb_printf("callout: display callouts.\n" 1432 "Given a callout table address, display callouts from table.\n" 1433 "Without an address, display callouts from all tables.\n" 1434 "options:\n" 1435 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1436 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1437 " -x : limit display to callouts which are executing\n" 1438 " -h : limit display to callouts based on hrestime\n" 1439 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1440 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1441 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1442 " -d : interpret time option to -t|a|b as delta from current time\n" 1443 " -k : use ticks instead of nanoseconds as arguments to" 1444 " -t|a|b. Note that\n ticks are less accurate and may not" 1445 " match other tick times (ie: lbolt).\n" 1446 " -D : display exiration time as delta from current time\n" 1447 " -S seqid : limit display to callouts for this cpu sequence id\n" 1448 " -C addr : limit display to callouts for this cpu pointer\n" 1449 " -f name|addr : limit display to callouts with this function\n" 1450 " -p name|addr : limit display to callouts functions with this" 1451 " parameter\n" 1452 " -T : display the callout table itself, instead of callouts\n" 1453 " -L : display callout lists instead of callouts\n" 1454 " -E : with -T or L, display empty data structures.\n" 1455 " -i : traverse callouts by id hash instead of list hash\n" 1456 " -F : walk free callout list (free list with -i) instead\n" 1457 " -v : display more info for each item\n" 1458 " -V : show details of each level of info as it is traversed\n" 1459 " -A : show only addresses. Useful for pipelines.\n"); 1460 } 1461 1462 void 1463 calloutid_help(void) 1464 { 1465 mdb_printf("calloutid: display callout by id.\n" 1466 "Given an extended callout id, display the callout infomation.\n" 1467 "options:\n" 1468 " -d : do not dereference callout, just decode the id.\n" 1469 " -v : verbose display more info about the callout\n"); 1470 } 1471 1472 /*ARGSUSED*/ 1473 int 1474 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1475 { 1476 long num_classes, i; 1477 sclass_t *class_tbl; 1478 GElf_Sym g_sclass; 1479 char class_name[PC_CLNMSZ]; 1480 size_t tbl_size; 1481 1482 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1483 mdb_warn("failed to find symbol sclass\n"); 1484 return (DCMD_ERR); 1485 } 1486 1487 tbl_size = (size_t)g_sclass.st_size; 1488 num_classes = tbl_size / (sizeof (sclass_t)); 1489 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1490 1491 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1492 mdb_warn("failed to read sclass"); 1493 return (DCMD_ERR); 1494 } 1495 1496 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1497 "INIT FCN", "CLASS FCN"); 1498 1499 for (i = 0; i < num_classes; i++) { 1500 if (mdb_vread(class_name, sizeof (class_name), 1501 (uintptr_t)class_tbl[i].cl_name) == -1) 1502 (void) strcpy(class_name, "???"); 1503 1504 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1505 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1506 } 1507 1508 return (DCMD_OK); 1509 } 1510 1511 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1512 1513 int 1514 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1515 { 1516 uintptr_t rootdir; 1517 vnode_t vn; 1518 char buf[MAXPATHLEN]; 1519 1520 uint_t opt_F = FALSE; 1521 1522 if (mdb_getopts(argc, argv, 1523 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1524 return (DCMD_USAGE); 1525 1526 if (!(flags & DCMD_ADDRSPEC)) { 1527 mdb_warn("expected explicit vnode_t address before ::\n"); 1528 return (DCMD_USAGE); 1529 } 1530 1531 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1532 mdb_warn("failed to read rootdir"); 1533 return (DCMD_ERR); 1534 } 1535 1536 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1537 return (DCMD_ERR); 1538 1539 if (*buf == '\0') { 1540 mdb_printf("??\n"); 1541 return (DCMD_OK); 1542 } 1543 1544 mdb_printf("%s", buf); 1545 if (opt_F && buf[strlen(buf)-1] != '/' && 1546 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1547 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1548 mdb_printf("\n"); 1549 1550 return (DCMD_OK); 1551 } 1552 1553 int 1554 ld_walk_init(mdb_walk_state_t *wsp) 1555 { 1556 wsp->walk_data = (void *)wsp->walk_addr; 1557 return (WALK_NEXT); 1558 } 1559 1560 int 1561 ld_walk_step(mdb_walk_state_t *wsp) 1562 { 1563 int status; 1564 lock_descriptor_t ld; 1565 1566 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1567 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1568 wsp->walk_addr); 1569 return (WALK_ERR); 1570 } 1571 1572 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1573 if (status == WALK_ERR) 1574 return (WALK_ERR); 1575 1576 wsp->walk_addr = (uintptr_t)ld.l_next; 1577 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1578 return (WALK_DONE); 1579 1580 return (status); 1581 } 1582 1583 int 1584 lg_walk_init(mdb_walk_state_t *wsp) 1585 { 1586 GElf_Sym sym; 1587 1588 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1589 mdb_warn("failed to find symbol 'lock_graph'\n"); 1590 return (WALK_ERR); 1591 } 1592 1593 wsp->walk_addr = (uintptr_t)sym.st_value; 1594 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1595 1596 return (WALK_NEXT); 1597 } 1598 1599 typedef struct lg_walk_data { 1600 uintptr_t startaddr; 1601 mdb_walk_cb_t callback; 1602 void *data; 1603 } lg_walk_data_t; 1604 1605 /* 1606 * We can't use ::walk lock_descriptor directly, because the head of each graph 1607 * is really a dummy lock. Rather than trying to dynamically determine if this 1608 * is a dummy node or not, we just filter out the initial element of the 1609 * list. 1610 */ 1611 static int 1612 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1613 { 1614 lg_walk_data_t *lw = priv; 1615 1616 if (addr != lw->startaddr) 1617 return (lw->callback(addr, data, lw->data)); 1618 1619 return (WALK_NEXT); 1620 } 1621 1622 int 1623 lg_walk_step(mdb_walk_state_t *wsp) 1624 { 1625 graph_t *graph; 1626 lg_walk_data_t lw; 1627 1628 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1629 return (WALK_DONE); 1630 1631 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1632 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1633 return (WALK_ERR); 1634 } 1635 1636 wsp->walk_addr += sizeof (graph); 1637 1638 if (graph == NULL) 1639 return (WALK_NEXT); 1640 1641 lw.callback = wsp->walk_callback; 1642 lw.data = wsp->walk_cbdata; 1643 1644 lw.startaddr = (uintptr_t)&(graph->active_locks); 1645 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1646 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1647 return (WALK_ERR); 1648 } 1649 1650 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1651 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1652 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1653 return (WALK_ERR); 1654 } 1655 1656 return (WALK_NEXT); 1657 } 1658 1659 /* 1660 * The space available for the path corresponding to the locked vnode depends 1661 * on whether we are printing 32- or 64-bit addresses. 1662 */ 1663 #ifdef _LP64 1664 #define LM_VNPATHLEN 20 1665 #else 1666 #define LM_VNPATHLEN 30 1667 #endif 1668 1669 /*ARGSUSED*/ 1670 static int 1671 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1672 { 1673 const lock_descriptor_t *ld = data; 1674 char buf[LM_VNPATHLEN]; 1675 proc_t p; 1676 1677 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1678 addr, ld->l_type == F_RDLCK ? "RD" : 1679 ld->l_type == F_WRLCK ? "WR" : "??", 1680 ld->l_state, ld->l_flock.l_pid, 1681 ld->l_flock.l_pid == 0 ? "<kernel>" : 1682 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1683 "<defunct>" : p.p_user.u_comm, 1684 ld->l_vnode); 1685 1686 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1687 sizeof (buf)); 1688 mdb_printf("%s\n", buf); 1689 1690 return (WALK_NEXT); 1691 } 1692 1693 /*ARGSUSED*/ 1694 int 1695 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1696 { 1697 if (DCMD_HDRSPEC(flags)) 1698 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1699 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1700 1701 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1702 } 1703 1704 /*ARGSUSED*/ 1705 int 1706 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1707 { 1708 struct seg s; 1709 1710 if (argc != 0) 1711 return (DCMD_USAGE); 1712 1713 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 1714 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 1715 "SEG", "BASE", "SIZE", "DATA", "OPS"); 1716 } 1717 1718 if (mdb_vread(&s, sizeof (s), addr) == -1) { 1719 mdb_warn("failed to read seg at %p", addr); 1720 return (DCMD_ERR); 1721 } 1722 1723 mdb_printf("%?p %?p %?lx %?p %a\n", 1724 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 1725 1726 return (DCMD_OK); 1727 } 1728 1729 /*ARGSUSED*/ 1730 static int 1731 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 1732 { 1733 uintptr_t pp = 1734 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 1735 1736 if (pp != NULL) 1737 (*nres)++; 1738 1739 return (WALK_NEXT); 1740 } 1741 1742 static int 1743 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 1744 { 1745 1746 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 1747 1748 if (segvn == (uintptr_t)seg->s_ops) { 1749 struct segvn_data svn; 1750 int nres = 0; 1751 1752 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 1753 1754 if (svn.amp == NULL) { 1755 mdb_printf(" %8s", ""); 1756 goto drive_on; 1757 } 1758 1759 /* 1760 * We've got an amp for this segment; walk through 1761 * the amp, and determine mappings. 1762 */ 1763 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 1764 &nres, (uintptr_t)svn.amp) == -1) 1765 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 1766 1767 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 1768 drive_on: 1769 1770 if (svn.vp != NULL) { 1771 char buf[29]; 1772 1773 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 1774 mdb_printf(" %s", buf); 1775 } else 1776 mdb_printf(" [ anon ]"); 1777 } 1778 1779 mdb_printf("\n"); 1780 return (WALK_NEXT); 1781 } 1782 1783 static int 1784 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 1785 { 1786 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 1787 1788 if (segvn == (uintptr_t)seg->s_ops) { 1789 struct segvn_data svn; 1790 1791 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 1792 1793 if (svn.vp != NULL) { 1794 mdb_printf(" %0?p", svn.vp); 1795 } else { 1796 mdb_printf(" [ anon ]"); 1797 } 1798 } 1799 1800 mdb_printf("\n"); 1801 return (WALK_NEXT); 1802 } 1803 1804 /*ARGSUSED*/ 1805 int 1806 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1807 { 1808 uintptr_t segvn; 1809 proc_t proc; 1810 uint_t quick = FALSE; 1811 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 1812 1813 GElf_Sym sym; 1814 1815 if (!(flags & DCMD_ADDRSPEC)) 1816 return (DCMD_USAGE); 1817 1818 if (mdb_getopts(argc, argv, 1819 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 1820 return (DCMD_USAGE); 1821 1822 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 1823 mdb_warn("failed to read proc at %p", addr); 1824 return (DCMD_ERR); 1825 } 1826 1827 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 1828 segvn = (uintptr_t)sym.st_value; 1829 else 1830 segvn = NULL; 1831 1832 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 1833 1834 if (quick) { 1835 mdb_printf("VNODE\n"); 1836 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 1837 } else { 1838 mdb_printf("%8s %s\n", "RES", "PATH"); 1839 } 1840 1841 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 1842 mdb_warn("failed to walk segments of as %p", proc.p_as); 1843 return (DCMD_ERR); 1844 } 1845 1846 return (DCMD_OK); 1847 } 1848 1849 typedef struct anon_walk_data { 1850 uintptr_t *aw_levone; 1851 uintptr_t *aw_levtwo; 1852 int aw_nlevone; 1853 int aw_levone_ndx; 1854 int aw_levtwo_ndx; 1855 struct anon_map aw_amp; 1856 struct anon_hdr aw_ahp; 1857 } anon_walk_data_t; 1858 1859 int 1860 anon_walk_init(mdb_walk_state_t *wsp) 1861 { 1862 anon_walk_data_t *aw; 1863 1864 if (wsp->walk_addr == NULL) { 1865 mdb_warn("anon walk doesn't support global walks\n"); 1866 return (WALK_ERR); 1867 } 1868 1869 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 1870 1871 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 1872 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 1873 mdb_free(aw, sizeof (anon_walk_data_t)); 1874 return (WALK_ERR); 1875 } 1876 1877 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 1878 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 1879 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 1880 mdb_free(aw, sizeof (anon_walk_data_t)); 1881 return (WALK_ERR); 1882 } 1883 1884 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 1885 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 1886 aw->aw_nlevone = aw->aw_ahp.size; 1887 aw->aw_levtwo = NULL; 1888 } else { 1889 aw->aw_nlevone = 1890 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 1891 aw->aw_levtwo = 1892 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 1893 } 1894 1895 aw->aw_levone = 1896 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 1897 1898 aw->aw_levone_ndx = 0; 1899 aw->aw_levtwo_ndx = 0; 1900 1901 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 1902 (uintptr_t)aw->aw_ahp.array_chunk); 1903 1904 if (aw->aw_levtwo != NULL) { 1905 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 1906 aw->aw_levone_ndx++; 1907 if (aw->aw_levone_ndx == aw->aw_nlevone) { 1908 mdb_warn("corrupt anon; couldn't" 1909 "find ptr to lev two map"); 1910 goto out; 1911 } 1912 } 1913 1914 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 1915 aw->aw_levone[aw->aw_levone_ndx]); 1916 } 1917 1918 out: 1919 wsp->walk_data = aw; 1920 return (0); 1921 } 1922 1923 int 1924 anon_walk_step(mdb_walk_state_t *wsp) 1925 { 1926 int status; 1927 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1928 struct anon anon; 1929 uintptr_t anonptr; 1930 1931 again: 1932 /* 1933 * Once we've walked through level one, we're done. 1934 */ 1935 if (aw->aw_levone_ndx == aw->aw_nlevone) 1936 return (WALK_DONE); 1937 1938 if (aw->aw_levtwo == NULL) { 1939 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 1940 aw->aw_levone_ndx++; 1941 } else { 1942 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 1943 aw->aw_levtwo_ndx++; 1944 1945 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 1946 aw->aw_levtwo_ndx = 0; 1947 1948 do { 1949 aw->aw_levone_ndx++; 1950 1951 if (aw->aw_levone_ndx == aw->aw_nlevone) 1952 return (WALK_DONE); 1953 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1954 1955 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1956 sizeof (uintptr_t), 1957 aw->aw_levone[aw->aw_levone_ndx]); 1958 } 1959 } 1960 1961 if (anonptr != NULL) { 1962 mdb_vread(&anon, sizeof (anon), anonptr); 1963 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1964 } else 1965 goto again; 1966 1967 return (status); 1968 } 1969 1970 void 1971 anon_walk_fini(mdb_walk_state_t *wsp) 1972 { 1973 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1974 1975 if (aw->aw_levtwo != NULL) 1976 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1977 1978 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1979 mdb_free(aw, sizeof (anon_walk_data_t)); 1980 } 1981 1982 /*ARGSUSED*/ 1983 int 1984 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1985 { 1986 if ((uintptr_t)f->f_vnode == *target) { 1987 mdb_printf("file %p\n", addr); 1988 *target = NULL; 1989 } 1990 1991 return (WALK_NEXT); 1992 } 1993 1994 /*ARGSUSED*/ 1995 int 1996 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1997 { 1998 uintptr_t t = *target; 1999 2000 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 2001 mdb_warn("couldn't file walk proc %p", addr); 2002 return (WALK_ERR); 2003 } 2004 2005 if (t == NULL) 2006 mdb_printf("%p\n", addr); 2007 2008 return (WALK_NEXT); 2009 } 2010 2011 /*ARGSUSED*/ 2012 int 2013 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2014 { 2015 uintptr_t target = addr; 2016 2017 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 2018 return (DCMD_USAGE); 2019 2020 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 2021 mdb_warn("can't proc walk"); 2022 return (DCMD_ERR); 2023 } 2024 2025 return (DCMD_OK); 2026 } 2027 2028 typedef struct datafmt { 2029 char *hdr1; 2030 char *hdr2; 2031 char *dashes; 2032 char *fmt; 2033 } datafmt_t; 2034 2035 static datafmt_t kmemfmt[] = { 2036 { "cache ", "name ", 2037 "-------------------------", "%-25s " }, 2038 { " buf", " size", "------", "%6u " }, 2039 { " buf", "in use", "------", "%6u " }, 2040 { " buf", " total", "------", "%6u " }, 2041 { " memory", " in use", "----------", "%9u%c " }, 2042 { " alloc", " succeed", "---------", "%9u " }, 2043 { "alloc", " fail", "-----", "%5u " }, 2044 { NULL, NULL, NULL, NULL } 2045 }; 2046 2047 static datafmt_t vmemfmt[] = { 2048 { "vmem ", "name ", 2049 "-------------------------", "%-*s " }, 2050 { " memory", " in use", "----------", "%9llu%c " }, 2051 { " memory", " total", "-----------", "%10llu%c " }, 2052 { " memory", " import", "----------", "%9llu%c " }, 2053 { " alloc", " succeed", "---------", "%9llu " }, 2054 { "alloc", " fail", "-----", "%5llu " }, 2055 { NULL, NULL, NULL, NULL } 2056 }; 2057 2058 /*ARGSUSED*/ 2059 static int 2060 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2061 { 2062 if (ccp->cc_rounds > 0) 2063 *avail += ccp->cc_rounds; 2064 if (ccp->cc_prounds > 0) 2065 *avail += ccp->cc_prounds; 2066 2067 return (WALK_NEXT); 2068 } 2069 2070 /*ARGSUSED*/ 2071 static int 2072 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2073 { 2074 *alloc += ccp->cc_alloc; 2075 2076 return (WALK_NEXT); 2077 } 2078 2079 /*ARGSUSED*/ 2080 static int 2081 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2082 { 2083 *avail += sp->slab_chunks - sp->slab_refcnt; 2084 2085 return (WALK_NEXT); 2086 } 2087 2088 typedef struct kmastat_vmem { 2089 uintptr_t kv_addr; 2090 struct kmastat_vmem *kv_next; 2091 int kv_meminuse; 2092 int kv_alloc; 2093 int kv_fail; 2094 } kmastat_vmem_t; 2095 2096 typedef struct kmastat_args { 2097 kmastat_vmem_t **ka_kvpp; 2098 uint_t ka_shift; 2099 } kmastat_args_t; 2100 2101 static int 2102 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2103 { 2104 kmastat_vmem_t **kvp = kap->ka_kvpp; 2105 kmastat_vmem_t *kv; 2106 datafmt_t *dfp = kmemfmt; 2107 int magsize; 2108 2109 int avail, alloc, total; 2110 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2111 cp->cache_slabsize; 2112 2113 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2114 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2115 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2116 2117 magsize = kmem_get_magsize(cp); 2118 2119 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2120 avail = cp->cache_full.ml_total * magsize; 2121 total = cp->cache_buftotal; 2122 2123 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2124 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2125 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2126 2127 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 2128 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2129 goto out; 2130 } 2131 2132 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2133 kv->kv_next = *kvp; 2134 kv->kv_addr = (uintptr_t)cp->cache_arena; 2135 *kvp = kv; 2136 out: 2137 kv->kv_meminuse += meminuse; 2138 kv->kv_alloc += alloc; 2139 kv->kv_fail += cp->cache_alloc_fail; 2140 2141 mdb_printf((dfp++)->fmt, cp->cache_name); 2142 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2143 mdb_printf((dfp++)->fmt, total - avail); 2144 mdb_printf((dfp++)->fmt, total); 2145 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2146 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2147 kap->ka_shift == KILOS ? 'K' : 'B'); 2148 mdb_printf((dfp++)->fmt, alloc); 2149 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2150 mdb_printf("\n"); 2151 2152 return (WALK_NEXT); 2153 } 2154 2155 static int 2156 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2157 { 2158 kmastat_vmem_t *kv = *kap->ka_kvpp; 2159 size_t len; 2160 2161 while (kv != NULL && kv->kv_addr != addr) 2162 kv = kv->kv_next; 2163 2164 if (kv == NULL || kv->kv_alloc == 0) 2165 return (WALK_NEXT); 2166 2167 len = MIN(17, strlen(v->vm_name)); 2168 2169 mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name, 2170 17 - len, "", "", "", "", 2171 kv->kv_meminuse >> kap->ka_shift, 2172 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2173 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2174 2175 return (WALK_NEXT); 2176 } 2177 2178 /*ARGSUSED*/ 2179 static int 2180 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2181 { 2182 datafmt_t *dfp = vmemfmt; 2183 const vmem_kstat_t *vkp = &v->vm_kstat; 2184 uintptr_t paddr; 2185 vmem_t parent; 2186 int ident = 0; 2187 2188 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2189 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2190 mdb_warn("couldn't trace %p's ancestry", addr); 2191 ident = 0; 2192 break; 2193 } 2194 paddr = (uintptr_t)parent.vm_source; 2195 } 2196 2197 mdb_printf("%*s", ident, ""); 2198 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2199 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2200 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2201 *shiftp == KILOS ? 'K' : 'B'); 2202 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2203 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2204 *shiftp == KILOS ? 'K' : 'B'); 2205 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2206 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2207 *shiftp == KILOS ? 'K' : 'B'); 2208 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2209 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2210 2211 mdb_printf("\n"); 2212 2213 return (WALK_NEXT); 2214 } 2215 2216 /*ARGSUSED*/ 2217 int 2218 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2219 { 2220 kmastat_vmem_t *kv = NULL; 2221 datafmt_t *dfp; 2222 kmastat_args_t ka; 2223 2224 ka.ka_shift = 0; 2225 if (mdb_getopts(argc, argv, 2226 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2227 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2228 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2229 return (DCMD_USAGE); 2230 2231 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2232 mdb_printf("%s ", dfp->hdr1); 2233 mdb_printf("\n"); 2234 2235 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2236 mdb_printf("%s ", dfp->hdr2); 2237 mdb_printf("\n"); 2238 2239 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2240 mdb_printf("%s ", dfp->dashes); 2241 mdb_printf("\n"); 2242 2243 ka.ka_kvpp = &kv; 2244 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2245 mdb_warn("can't walk 'kmem_cache'"); 2246 return (DCMD_ERR); 2247 } 2248 2249 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2250 mdb_printf("%s ", dfp->dashes); 2251 mdb_printf("\n"); 2252 2253 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2254 mdb_warn("can't walk 'vmem'"); 2255 return (DCMD_ERR); 2256 } 2257 2258 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2259 mdb_printf("%s ", dfp->dashes); 2260 mdb_printf("\n"); 2261 2262 mdb_printf("\n"); 2263 2264 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2265 mdb_printf("%s ", dfp->hdr1); 2266 mdb_printf("\n"); 2267 2268 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2269 mdb_printf("%s ", dfp->hdr2); 2270 mdb_printf("\n"); 2271 2272 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2273 mdb_printf("%s ", dfp->dashes); 2274 mdb_printf("\n"); 2275 2276 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2277 mdb_warn("can't walk 'vmem'"); 2278 return (DCMD_ERR); 2279 } 2280 2281 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2282 mdb_printf("%s ", dfp->dashes); 2283 mdb_printf("\n"); 2284 return (DCMD_OK); 2285 } 2286 2287 /* 2288 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2289 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2290 * unfortunately, a few of the segs are both large and sparse, so we could 2291 * spend quite a bit of time scanning VAs which have no backing pages. 2292 * 2293 * So for the few very sparse segs, we skip the segment itself, and scan 2294 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2295 * Currently, we do this for: 2296 * 2297 * SEG VMEM ARENA 2298 * kvseg heap_arena 2299 * kvseg32 heap32_arena 2300 * kvseg_core heap_core_arena 2301 * 2302 * In addition, we skip the segkpm segment in its entirety, since it is very 2303 * sparse, and contains no new kernel data. 2304 */ 2305 typedef struct kgrep_walk_data { 2306 kgrep_cb_func *kg_cb; 2307 void *kg_cbdata; 2308 uintptr_t kg_kvseg; 2309 uintptr_t kg_kvseg32; 2310 uintptr_t kg_kvseg_core; 2311 uintptr_t kg_segkpm; 2312 uintptr_t kg_heap_lp_base; 2313 uintptr_t kg_heap_lp_end; 2314 } kgrep_walk_data_t; 2315 2316 static int 2317 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2318 { 2319 uintptr_t base = (uintptr_t)seg->s_base; 2320 2321 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2322 addr == kg->kg_kvseg_core) 2323 return (WALK_NEXT); 2324 2325 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2326 return (WALK_NEXT); 2327 2328 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2329 } 2330 2331 /*ARGSUSED*/ 2332 static int 2333 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2334 { 2335 /* 2336 * skip large page heap address range - it is scanned by walking 2337 * allocated vmem_segs in the heap_lp_arena 2338 */ 2339 if (seg->vs_start == kg->kg_heap_lp_base && 2340 seg->vs_end == kg->kg_heap_lp_end) 2341 return (WALK_NEXT); 2342 2343 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2344 } 2345 2346 /*ARGSUSED*/ 2347 static int 2348 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2349 { 2350 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2351 } 2352 2353 static int 2354 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2355 { 2356 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2357 2358 if (strcmp(vmem->vm_name, "heap") != 0 && 2359 strcmp(vmem->vm_name, "heap32") != 0 && 2360 strcmp(vmem->vm_name, "heap_core") != 0 && 2361 strcmp(vmem->vm_name, "heap_lp") != 0) 2362 return (WALK_NEXT); 2363 2364 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2365 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2366 2367 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2368 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2369 return (WALK_ERR); 2370 } 2371 2372 return (WALK_NEXT); 2373 } 2374 2375 int 2376 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2377 { 2378 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2379 kgrep_walk_data_t kg; 2380 2381 if (mdb_get_state() == MDB_STATE_RUNNING) { 2382 mdb_warn("kgrep can only be run on a system " 2383 "dump or under kmdb; see dumpadm(1M)\n"); 2384 return (DCMD_ERR); 2385 } 2386 2387 if (mdb_lookup_by_name("kas", &kas) == -1) { 2388 mdb_warn("failed to locate 'kas' symbol\n"); 2389 return (DCMD_ERR); 2390 } 2391 2392 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2393 mdb_warn("failed to locate 'kvseg' symbol\n"); 2394 return (DCMD_ERR); 2395 } 2396 2397 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2398 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2399 return (DCMD_ERR); 2400 } 2401 2402 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2403 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2404 return (DCMD_ERR); 2405 } 2406 2407 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2408 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2409 return (DCMD_ERR); 2410 } 2411 2412 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2413 mdb_warn("failed to read 'heap_lp_base'\n"); 2414 return (DCMD_ERR); 2415 } 2416 2417 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2418 mdb_warn("failed to read 'heap_lp_end'\n"); 2419 return (DCMD_ERR); 2420 } 2421 2422 kg.kg_cb = cb; 2423 kg.kg_cbdata = cbdata; 2424 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2425 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2426 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2427 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2428 2429 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2430 &kg, kas.st_value) == -1) { 2431 mdb_warn("failed to walk kas segments"); 2432 return (DCMD_ERR); 2433 } 2434 2435 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2436 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2437 return (DCMD_ERR); 2438 } 2439 2440 return (DCMD_OK); 2441 } 2442 2443 size_t 2444 kgrep_subr_pagesize(void) 2445 { 2446 return (PAGESIZE); 2447 } 2448 2449 typedef struct file_walk_data { 2450 struct uf_entry *fw_flist; 2451 int fw_flistsz; 2452 int fw_ndx; 2453 int fw_nofiles; 2454 } file_walk_data_t; 2455 2456 int 2457 file_walk_init(mdb_walk_state_t *wsp) 2458 { 2459 file_walk_data_t *fw; 2460 proc_t p; 2461 2462 if (wsp->walk_addr == NULL) { 2463 mdb_warn("file walk doesn't support global walks\n"); 2464 return (WALK_ERR); 2465 } 2466 2467 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2468 2469 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2470 mdb_free(fw, sizeof (file_walk_data_t)); 2471 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2472 return (WALK_ERR); 2473 } 2474 2475 if (p.p_user.u_finfo.fi_nfiles == 0) { 2476 mdb_free(fw, sizeof (file_walk_data_t)); 2477 return (WALK_DONE); 2478 } 2479 2480 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2481 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2482 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2483 2484 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2485 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2486 mdb_warn("failed to read file array at %p", 2487 p.p_user.u_finfo.fi_list); 2488 mdb_free(fw->fw_flist, fw->fw_flistsz); 2489 mdb_free(fw, sizeof (file_walk_data_t)); 2490 return (WALK_ERR); 2491 } 2492 2493 fw->fw_ndx = 0; 2494 wsp->walk_data = fw; 2495 2496 return (WALK_NEXT); 2497 } 2498 2499 int 2500 file_walk_step(mdb_walk_state_t *wsp) 2501 { 2502 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2503 struct file file; 2504 uintptr_t fp; 2505 2506 again: 2507 if (fw->fw_ndx == fw->fw_nofiles) 2508 return (WALK_DONE); 2509 2510 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2511 goto again; 2512 2513 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2514 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2515 } 2516 2517 int 2518 allfile_walk_step(mdb_walk_state_t *wsp) 2519 { 2520 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2521 struct file file; 2522 uintptr_t fp; 2523 2524 if (fw->fw_ndx == fw->fw_nofiles) 2525 return (WALK_DONE); 2526 2527 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2528 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2529 else 2530 bzero(&file, sizeof (file)); 2531 2532 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2533 } 2534 2535 void 2536 file_walk_fini(mdb_walk_state_t *wsp) 2537 { 2538 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2539 2540 mdb_free(fw->fw_flist, fw->fw_flistsz); 2541 mdb_free(fw, sizeof (file_walk_data_t)); 2542 } 2543 2544 int 2545 port_walk_init(mdb_walk_state_t *wsp) 2546 { 2547 if (wsp->walk_addr == NULL) { 2548 mdb_warn("port walk doesn't support global walks\n"); 2549 return (WALK_ERR); 2550 } 2551 2552 if (mdb_layered_walk("file", wsp) == -1) { 2553 mdb_warn("couldn't walk 'file'"); 2554 return (WALK_ERR); 2555 } 2556 return (WALK_NEXT); 2557 } 2558 2559 int 2560 port_walk_step(mdb_walk_state_t *wsp) 2561 { 2562 struct vnode vn; 2563 uintptr_t vp; 2564 uintptr_t pp; 2565 struct port port; 2566 2567 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2568 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2569 mdb_warn("failed to read vnode_t at %p", vp); 2570 return (WALK_ERR); 2571 } 2572 if (vn.v_type != VPORT) 2573 return (WALK_NEXT); 2574 2575 pp = (uintptr_t)vn.v_data; 2576 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2577 mdb_warn("failed to read port_t at %p", pp); 2578 return (WALK_ERR); 2579 } 2580 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2581 } 2582 2583 typedef struct portev_walk_data { 2584 list_node_t *pev_node; 2585 list_node_t *pev_last; 2586 size_t pev_offset; 2587 } portev_walk_data_t; 2588 2589 int 2590 portev_walk_init(mdb_walk_state_t *wsp) 2591 { 2592 portev_walk_data_t *pevd; 2593 struct port port; 2594 struct vnode vn; 2595 struct list *list; 2596 uintptr_t vp; 2597 2598 if (wsp->walk_addr == NULL) { 2599 mdb_warn("portev walk doesn't support global walks\n"); 2600 return (WALK_ERR); 2601 } 2602 2603 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2604 2605 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2606 mdb_free(pevd, sizeof (portev_walk_data_t)); 2607 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2608 return (WALK_ERR); 2609 } 2610 2611 vp = (uintptr_t)port.port_vnode; 2612 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2613 mdb_free(pevd, sizeof (portev_walk_data_t)); 2614 mdb_warn("failed to read vnode_t at %p", vp); 2615 return (WALK_ERR); 2616 } 2617 2618 if (vn.v_type != VPORT) { 2619 mdb_free(pevd, sizeof (portev_walk_data_t)); 2620 mdb_warn("input address (%p) does not point to an event port", 2621 wsp->walk_addr); 2622 return (WALK_ERR); 2623 } 2624 2625 if (port.port_queue.portq_nent == 0) { 2626 mdb_free(pevd, sizeof (portev_walk_data_t)); 2627 return (WALK_DONE); 2628 } 2629 list = &port.port_queue.portq_list; 2630 pevd->pev_offset = list->list_offset; 2631 pevd->pev_last = list->list_head.list_prev; 2632 pevd->pev_node = list->list_head.list_next; 2633 wsp->walk_data = pevd; 2634 return (WALK_NEXT); 2635 } 2636 2637 int 2638 portev_walk_step(mdb_walk_state_t *wsp) 2639 { 2640 portev_walk_data_t *pevd; 2641 struct port_kevent ev; 2642 uintptr_t evp; 2643 2644 pevd = (portev_walk_data_t *)wsp->walk_data; 2645 2646 if (pevd->pev_last == NULL) 2647 return (WALK_DONE); 2648 if (pevd->pev_node == pevd->pev_last) 2649 pevd->pev_last = NULL; /* last round */ 2650 2651 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2652 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2653 mdb_warn("failed to read port_kevent at %p", evp); 2654 return (WALK_DONE); 2655 } 2656 pevd->pev_node = ev.portkev_node.list_next; 2657 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2658 } 2659 2660 void 2661 portev_walk_fini(mdb_walk_state_t *wsp) 2662 { 2663 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2664 2665 if (pevd != NULL) 2666 mdb_free(pevd, sizeof (portev_walk_data_t)); 2667 } 2668 2669 typedef struct proc_walk_data { 2670 uintptr_t *pw_stack; 2671 int pw_depth; 2672 int pw_max; 2673 } proc_walk_data_t; 2674 2675 int 2676 proc_walk_init(mdb_walk_state_t *wsp) 2677 { 2678 GElf_Sym sym; 2679 proc_walk_data_t *pw; 2680 2681 if (wsp->walk_addr == NULL) { 2682 if (mdb_lookup_by_name("p0", &sym) == -1) { 2683 mdb_warn("failed to read 'practive'"); 2684 return (WALK_ERR); 2685 } 2686 wsp->walk_addr = (uintptr_t)sym.st_value; 2687 } 2688 2689 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2690 2691 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2692 mdb_warn("failed to read 'nproc'"); 2693 mdb_free(pw, sizeof (pw)); 2694 return (WALK_ERR); 2695 } 2696 2697 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2698 wsp->walk_data = pw; 2699 2700 return (WALK_NEXT); 2701 } 2702 2703 int 2704 proc_walk_step(mdb_walk_state_t *wsp) 2705 { 2706 proc_walk_data_t *pw = wsp->walk_data; 2707 uintptr_t addr = wsp->walk_addr; 2708 uintptr_t cld, sib; 2709 2710 int status; 2711 proc_t pr; 2712 2713 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2714 mdb_warn("failed to read proc at %p", addr); 2715 return (WALK_DONE); 2716 } 2717 2718 cld = (uintptr_t)pr.p_child; 2719 sib = (uintptr_t)pr.p_sibling; 2720 2721 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2722 pw->pw_depth--; 2723 goto sib; 2724 } 2725 2726 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2727 2728 if (status != WALK_NEXT) 2729 return (status); 2730 2731 if ((wsp->walk_addr = cld) != NULL) { 2732 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2733 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2734 addr, cld); 2735 goto sib; 2736 } 2737 2738 pw->pw_stack[pw->pw_depth++] = addr; 2739 2740 if (pw->pw_depth == pw->pw_max) { 2741 mdb_warn("depth %d exceeds max depth; try again\n", 2742 pw->pw_depth); 2743 return (WALK_DONE); 2744 } 2745 return (WALK_NEXT); 2746 } 2747 2748 sib: 2749 /* 2750 * We know that p0 has no siblings, and if another starting proc 2751 * was given, we don't want to walk its siblings anyway. 2752 */ 2753 if (pw->pw_depth == 0) 2754 return (WALK_DONE); 2755 2756 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2757 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2758 addr, sib); 2759 sib = NULL; 2760 } 2761 2762 if ((wsp->walk_addr = sib) == NULL) { 2763 if (pw->pw_depth > 0) { 2764 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2765 return (WALK_NEXT); 2766 } 2767 return (WALK_DONE); 2768 } 2769 2770 return (WALK_NEXT); 2771 } 2772 2773 void 2774 proc_walk_fini(mdb_walk_state_t *wsp) 2775 { 2776 proc_walk_data_t *pw = wsp->walk_data; 2777 2778 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2779 mdb_free(pw, sizeof (proc_walk_data_t)); 2780 } 2781 2782 int 2783 task_walk_init(mdb_walk_state_t *wsp) 2784 { 2785 task_t task; 2786 2787 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2788 mdb_warn("failed to read task at %p", wsp->walk_addr); 2789 return (WALK_ERR); 2790 } 2791 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2792 wsp->walk_data = task.tk_memb_list; 2793 return (WALK_NEXT); 2794 } 2795 2796 int 2797 task_walk_step(mdb_walk_state_t *wsp) 2798 { 2799 proc_t proc; 2800 int status; 2801 2802 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2803 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2804 return (WALK_DONE); 2805 } 2806 2807 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2808 2809 if (proc.p_tasknext == wsp->walk_data) 2810 return (WALK_DONE); 2811 2812 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2813 return (status); 2814 } 2815 2816 int 2817 project_walk_init(mdb_walk_state_t *wsp) 2818 { 2819 if (wsp->walk_addr == NULL) { 2820 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2821 mdb_warn("failed to read 'proj0p'"); 2822 return (WALK_ERR); 2823 } 2824 } 2825 wsp->walk_data = (void *)wsp->walk_addr; 2826 return (WALK_NEXT); 2827 } 2828 2829 int 2830 project_walk_step(mdb_walk_state_t *wsp) 2831 { 2832 uintptr_t addr = wsp->walk_addr; 2833 kproject_t pj; 2834 int status; 2835 2836 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2837 mdb_warn("failed to read project at %p", addr); 2838 return (WALK_DONE); 2839 } 2840 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2841 if (status != WALK_NEXT) 2842 return (status); 2843 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2844 if ((void *)wsp->walk_addr == wsp->walk_data) 2845 return (WALK_DONE); 2846 return (WALK_NEXT); 2847 } 2848 2849 static int 2850 generic_walk_step(mdb_walk_state_t *wsp) 2851 { 2852 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2853 wsp->walk_cbdata)); 2854 } 2855 2856 int 2857 seg_walk_init(mdb_walk_state_t *wsp) 2858 { 2859 if (wsp->walk_addr == NULL) { 2860 mdb_warn("seg walk must begin at struct as *\n"); 2861 return (WALK_ERR); 2862 } 2863 2864 /* 2865 * this is really just a wrapper to AVL tree walk 2866 */ 2867 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 2868 return (avl_walk_init(wsp)); 2869 } 2870 2871 static int 2872 cpu_walk_cmp(const void *l, const void *r) 2873 { 2874 uintptr_t lhs = *((uintptr_t *)l); 2875 uintptr_t rhs = *((uintptr_t *)r); 2876 cpu_t lcpu, rcpu; 2877 2878 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2879 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2880 2881 if (lcpu.cpu_id < rcpu.cpu_id) 2882 return (-1); 2883 2884 if (lcpu.cpu_id > rcpu.cpu_id) 2885 return (1); 2886 2887 return (0); 2888 } 2889 2890 typedef struct cpu_walk { 2891 uintptr_t *cw_array; 2892 int cw_ndx; 2893 } cpu_walk_t; 2894 2895 int 2896 cpu_walk_init(mdb_walk_state_t *wsp) 2897 { 2898 cpu_walk_t *cw; 2899 int max_ncpus, i = 0; 2900 uintptr_t current, first; 2901 cpu_t cpu, panic_cpu; 2902 uintptr_t panicstr, addr; 2903 GElf_Sym sym; 2904 2905 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2906 2907 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2908 mdb_warn("failed to read 'max_ncpus'"); 2909 return (WALK_ERR); 2910 } 2911 2912 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2913 mdb_warn("failed to read 'panicstr'"); 2914 return (WALK_ERR); 2915 } 2916 2917 if (panicstr != NULL) { 2918 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2919 mdb_warn("failed to find 'panic_cpu'"); 2920 return (WALK_ERR); 2921 } 2922 2923 addr = (uintptr_t)sym.st_value; 2924 2925 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2926 mdb_warn("failed to read 'panic_cpu'"); 2927 return (WALK_ERR); 2928 } 2929 } 2930 2931 /* 2932 * Unfortunately, there is no platform-independent way to walk 2933 * CPUs in ID order. We therefore loop through in cpu_next order, 2934 * building an array of CPU pointers which will subsequently be 2935 * sorted. 2936 */ 2937 cw->cw_array = 2938 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2939 2940 if (mdb_readvar(&first, "cpu_list") == -1) { 2941 mdb_warn("failed to read 'cpu_list'"); 2942 return (WALK_ERR); 2943 } 2944 2945 current = first; 2946 do { 2947 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2948 mdb_warn("failed to read cpu at %p", current); 2949 return (WALK_ERR); 2950 } 2951 2952 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2953 cw->cw_array[i++] = addr; 2954 } else { 2955 cw->cw_array[i++] = current; 2956 } 2957 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2958 2959 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2960 wsp->walk_data = cw; 2961 2962 return (WALK_NEXT); 2963 } 2964 2965 int 2966 cpu_walk_step(mdb_walk_state_t *wsp) 2967 { 2968 cpu_walk_t *cw = wsp->walk_data; 2969 cpu_t cpu; 2970 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2971 2972 if (addr == NULL) 2973 return (WALK_DONE); 2974 2975 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2976 mdb_warn("failed to read cpu at %p", addr); 2977 return (WALK_DONE); 2978 } 2979 2980 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2981 } 2982 2983 typedef struct cpuinfo_data { 2984 intptr_t cid_cpu; 2985 uintptr_t cid_lbolt; 2986 uintptr_t **cid_ithr; 2987 char cid_print_head; 2988 char cid_print_thr; 2989 char cid_print_ithr; 2990 char cid_print_flags; 2991 } cpuinfo_data_t; 2992 2993 int 2994 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2995 { 2996 cpu_t c; 2997 int id; 2998 uint8_t pil; 2999 3000 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3001 return (WALK_NEXT); 3002 3003 if (thr->t_bound_cpu == NULL) { 3004 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3005 return (WALK_NEXT); 3006 } 3007 3008 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3009 3010 if ((id = c.cpu_id) >= NCPU) { 3011 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3012 thr->t_bound_cpu, id, NCPU); 3013 return (WALK_NEXT); 3014 } 3015 3016 if ((pil = thr->t_pil) >= NINTR) { 3017 mdb_warn("thread %p has pil (%d) greater than %d\n", 3018 addr, pil, NINTR); 3019 return (WALK_NEXT); 3020 } 3021 3022 if (cid->cid_ithr[id][pil] != NULL) { 3023 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3024 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3025 return (WALK_NEXT); 3026 } 3027 3028 cid->cid_ithr[id][pil] = addr; 3029 3030 return (WALK_NEXT); 3031 } 3032 3033 #define CPUINFO_IDWIDTH 3 3034 #define CPUINFO_FLAGWIDTH 9 3035 3036 #ifdef _LP64 3037 #if defined(__amd64) 3038 #define CPUINFO_TWIDTH 16 3039 #define CPUINFO_CPUWIDTH 16 3040 #else 3041 #define CPUINFO_CPUWIDTH 11 3042 #define CPUINFO_TWIDTH 11 3043 #endif 3044 #else 3045 #define CPUINFO_CPUWIDTH 8 3046 #define CPUINFO_TWIDTH 8 3047 #endif 3048 3049 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3050 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3051 #define CPUINFO_ITHRDELT 4 3052 3053 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3054 flagline < nflaglines ? flagbuf[flagline++] : "") 3055 3056 int 3057 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3058 { 3059 kthread_t t; 3060 disp_t disp; 3061 proc_t p; 3062 uintptr_t pinned; 3063 char **flagbuf; 3064 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3065 3066 const char *flags[] = { 3067 "RUNNING", "READY", "QUIESCED", "EXISTS", 3068 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3069 "SPARE", "FAULTED", NULL 3070 }; 3071 3072 if (cid->cid_cpu != -1) { 3073 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3074 return (WALK_NEXT); 3075 3076 /* 3077 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3078 */ 3079 cid->cid_cpu = -1; 3080 rval = WALK_DONE; 3081 } 3082 3083 if (cid->cid_print_head) { 3084 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3085 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3086 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3087 "PROC"); 3088 cid->cid_print_head = FALSE; 3089 } 3090 3091 bspl = cpu->cpu_base_spl; 3092 3093 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3094 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3095 return (WALK_ERR); 3096 } 3097 3098 mdb_printf("%3d %0*p %3x %4d %4d ", 3099 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3100 disp.disp_nrunnable, bspl); 3101 3102 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3103 mdb_printf("%3d ", t.t_pri); 3104 } else { 3105 mdb_printf("%3s ", "-"); 3106 } 3107 3108 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3109 cpu->cpu_kprunrun ? "yes" : "no"); 3110 3111 if (cpu->cpu_last_swtch) { 3112 clock_t lbolt; 3113 3114 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 3115 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 3116 return (WALK_ERR); 3117 } 3118 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 3119 } else { 3120 mdb_printf("%-6s ", "-"); 3121 } 3122 3123 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3124 3125 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3126 mdb_printf(" (idle)\n"); 3127 else if (cpu->cpu_thread == NULL) 3128 mdb_printf(" -\n"); 3129 else { 3130 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 3131 mdb_printf(" %s\n", p.p_user.u_comm); 3132 } else { 3133 mdb_printf(" ?\n"); 3134 } 3135 } 3136 3137 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3138 3139 if (cid->cid_print_flags) { 3140 int first = 1, i, j, k; 3141 char *s; 3142 3143 cid->cid_print_head = TRUE; 3144 3145 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3146 if (!(cpu->cpu_flags & i)) 3147 continue; 3148 3149 if (first) { 3150 s = mdb_alloc(CPUINFO_THRDELT + 1, 3151 UM_GC | UM_SLEEP); 3152 3153 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3154 "%*s|%*s", CPUINFO_FLAGDELT, "", 3155 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3156 flagbuf[nflaglines++] = s; 3157 } 3158 3159 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3160 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3161 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3162 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3163 first ? "<--+" : ""); 3164 3165 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3166 s[k] = ' '; 3167 s[k] = '\0'; 3168 3169 flagbuf[nflaglines++] = s; 3170 first = 0; 3171 } 3172 } 3173 3174 if (cid->cid_print_ithr) { 3175 int i, found_one = FALSE; 3176 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3177 3178 for (i = NINTR - 1; i >= 0; i--) { 3179 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3180 3181 if (iaddr == NULL) 3182 continue; 3183 3184 if (!found_one) { 3185 found_one = TRUE; 3186 3187 CPUINFO_INDENT; 3188 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3189 CPUINFO_ITHRDELT, ""); 3190 3191 CPUINFO_INDENT; 3192 mdb_printf("%c%*s+--> %3s %s\n", 3193 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3194 "", "PIL", "THREAD"); 3195 } 3196 3197 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3198 mdb_warn("failed to read kthread_t at %p", 3199 iaddr); 3200 return (WALK_ERR); 3201 } 3202 3203 CPUINFO_INDENT; 3204 mdb_printf("%c%*s %3d %0*p\n", 3205 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3206 t.t_pil, CPUINFO_TWIDTH, iaddr); 3207 3208 pinned = (uintptr_t)t.t_intr; 3209 } 3210 3211 if (found_one && pinned != NULL) { 3212 cid->cid_print_head = TRUE; 3213 (void) strcpy(p.p_user.u_comm, "?"); 3214 3215 if (mdb_vread(&t, sizeof (t), 3216 (uintptr_t)pinned) == -1) { 3217 mdb_warn("failed to read kthread_t at %p", 3218 pinned); 3219 return (WALK_ERR); 3220 } 3221 if (mdb_vread(&p, sizeof (p), 3222 (uintptr_t)t.t_procp) == -1) { 3223 mdb_warn("failed to read proc_t at %p", 3224 t.t_procp); 3225 return (WALK_ERR); 3226 } 3227 3228 CPUINFO_INDENT; 3229 mdb_printf("%c%*s %3s %0*p %s\n", 3230 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3231 CPUINFO_TWIDTH, pinned, 3232 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3233 "(idle)" : p.p_user.u_comm); 3234 } 3235 } 3236 3237 if (disp.disp_nrunnable && cid->cid_print_thr) { 3238 dispq_t *dq; 3239 3240 int i, npri = disp.disp_npri; 3241 3242 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3243 3244 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3245 (uintptr_t)disp.disp_q) == -1) { 3246 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3247 return (WALK_ERR); 3248 } 3249 3250 CPUINFO_INDENT; 3251 mdb_printf("|\n"); 3252 3253 CPUINFO_INDENT; 3254 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3255 CPUINFO_TWIDTH, "THREAD", "PROC"); 3256 3257 for (i = npri - 1; i >= 0; i--) { 3258 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3259 3260 while (taddr != NULL) { 3261 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3262 mdb_warn("failed to read kthread_t " 3263 "at %p", taddr); 3264 return (WALK_ERR); 3265 } 3266 if (mdb_vread(&p, sizeof (p), 3267 (uintptr_t)t.t_procp) == -1) { 3268 mdb_warn("failed to read proc_t at %p", 3269 t.t_procp); 3270 return (WALK_ERR); 3271 } 3272 3273 CPUINFO_INDENT; 3274 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3275 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3276 3277 taddr = (uintptr_t)t.t_link; 3278 } 3279 } 3280 cid->cid_print_head = TRUE; 3281 } 3282 3283 while (flagline < nflaglines) 3284 mdb_printf("%s\n", flagbuf[flagline++]); 3285 3286 if (cid->cid_print_head) 3287 mdb_printf("\n"); 3288 3289 return (rval); 3290 } 3291 3292 int 3293 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3294 { 3295 uint_t verbose = FALSE; 3296 cpuinfo_data_t cid; 3297 GElf_Sym sym; 3298 clock_t lbolt; 3299 3300 cid.cid_print_ithr = FALSE; 3301 cid.cid_print_thr = FALSE; 3302 cid.cid_print_flags = FALSE; 3303 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3304 cid.cid_cpu = -1; 3305 3306 if (flags & DCMD_ADDRSPEC) 3307 cid.cid_cpu = addr; 3308 3309 if (mdb_getopts(argc, argv, 3310 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3311 return (DCMD_USAGE); 3312 3313 if (verbose) { 3314 cid.cid_print_ithr = TRUE; 3315 cid.cid_print_thr = TRUE; 3316 cid.cid_print_flags = TRUE; 3317 cid.cid_print_head = TRUE; 3318 } 3319 3320 if (cid.cid_print_ithr) { 3321 int i; 3322 3323 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3324 * NCPU, UM_SLEEP | UM_GC); 3325 3326 for (i = 0; i < NCPU; i++) 3327 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3328 NINTR, UM_SLEEP | UM_GC); 3329 3330 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3331 &cid) == -1) { 3332 mdb_warn("couldn't walk thread"); 3333 return (DCMD_ERR); 3334 } 3335 } 3336 3337 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 3338 mdb_warn("failed to find panic_lbolt"); 3339 return (DCMD_ERR); 3340 } 3341 3342 cid.cid_lbolt = (uintptr_t)sym.st_value; 3343 3344 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 3345 mdb_warn("failed to read panic_lbolt"); 3346 return (DCMD_ERR); 3347 } 3348 3349 if (lbolt == 0) { 3350 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 3351 mdb_warn("failed to find lbolt"); 3352 return (DCMD_ERR); 3353 } 3354 cid.cid_lbolt = (uintptr_t)sym.st_value; 3355 } 3356 3357 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3358 mdb_warn("can't walk cpus"); 3359 return (DCMD_ERR); 3360 } 3361 3362 if (cid.cid_cpu != -1) { 3363 /* 3364 * We didn't find this CPU when we walked through the CPUs 3365 * (i.e. the address specified doesn't show up in the "cpu" 3366 * walk). However, the specified address may still correspond 3367 * to a valid cpu_t (for example, if the specified address is 3368 * the actual panicking cpu_t and not the cached panic_cpu). 3369 * Point is: even if we didn't find it, we still want to try 3370 * to print the specified address as a cpu_t. 3371 */ 3372 cpu_t cpu; 3373 3374 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3375 mdb_warn("%p is neither a valid CPU ID nor a " 3376 "valid cpu_t address\n", cid.cid_cpu); 3377 return (DCMD_ERR); 3378 } 3379 3380 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3381 } 3382 3383 return (DCMD_OK); 3384 } 3385 3386 /*ARGSUSED*/ 3387 int 3388 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3389 { 3390 int i; 3391 3392 if (!(flags & DCMD_ADDRSPEC)) 3393 return (DCMD_USAGE); 3394 3395 for (i = 0; i < sizeof (addr) * NBBY; i++) 3396 mdb_printf("%p\n", addr ^ (1UL << i)); 3397 3398 return (DCMD_OK); 3399 } 3400 3401 /* 3402 * Grumble, grumble. 3403 */ 3404 #define SMAP_HASHFUNC(vp, off) \ 3405 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 3406 ((off) >> MAXBSHIFT)) & smd_hashmsk) 3407 3408 int 3409 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3410 { 3411 long smd_hashmsk; 3412 int hash; 3413 uintptr_t offset = 0; 3414 struct smap smp; 3415 uintptr_t saddr, kaddr; 3416 uintptr_t smd_hash, smd_smap; 3417 struct seg seg; 3418 3419 if (!(flags & DCMD_ADDRSPEC)) 3420 return (DCMD_USAGE); 3421 3422 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 3423 mdb_warn("failed to read smd_hashmsk"); 3424 return (DCMD_ERR); 3425 } 3426 3427 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 3428 mdb_warn("failed to read smd_hash"); 3429 return (DCMD_ERR); 3430 } 3431 3432 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 3433 mdb_warn("failed to read smd_hash"); 3434 return (DCMD_ERR); 3435 } 3436 3437 if (mdb_readvar(&kaddr, "segkmap") == -1) { 3438 mdb_warn("failed to read segkmap"); 3439 return (DCMD_ERR); 3440 } 3441 3442 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 3443 mdb_warn("failed to read segkmap at %p", kaddr); 3444 return (DCMD_ERR); 3445 } 3446 3447 if (argc != 0) { 3448 const mdb_arg_t *arg = &argv[0]; 3449 3450 if (arg->a_type == MDB_TYPE_IMMEDIATE) 3451 offset = arg->a_un.a_val; 3452 else 3453 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 3454 } 3455 3456 hash = SMAP_HASHFUNC(addr, offset); 3457 3458 if (mdb_vread(&saddr, sizeof (saddr), 3459 smd_hash + hash * sizeof (uintptr_t)) == -1) { 3460 mdb_warn("couldn't read smap at %p", 3461 smd_hash + hash * sizeof (uintptr_t)); 3462 return (DCMD_ERR); 3463 } 3464 3465 do { 3466 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 3467 mdb_warn("couldn't read smap at %p", saddr); 3468 return (DCMD_ERR); 3469 } 3470 3471 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 3472 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 3473 addr, offset, saddr, ((saddr - smd_smap) / 3474 sizeof (smp)) * MAXBSIZE + seg.s_base); 3475 return (DCMD_OK); 3476 } 3477 3478 saddr = (uintptr_t)smp.sm_hash; 3479 } while (saddr != NULL); 3480 3481 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 3482 return (DCMD_OK); 3483 } 3484 3485 /*ARGSUSED*/ 3486 int 3487 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3488 { 3489 uintptr_t kaddr; 3490 struct seg seg; 3491 struct segmap_data sd; 3492 3493 if (!(flags & DCMD_ADDRSPEC)) 3494 return (DCMD_USAGE); 3495 3496 if (mdb_readvar(&kaddr, "segkmap") == -1) { 3497 mdb_warn("failed to read segkmap"); 3498 return (DCMD_ERR); 3499 } 3500 3501 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 3502 mdb_warn("failed to read segkmap at %p", kaddr); 3503 return (DCMD_ERR); 3504 } 3505 3506 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 3507 mdb_warn("failed to read segmap_data at %p", seg.s_data); 3508 return (DCMD_ERR); 3509 } 3510 3511 mdb_printf("%p is smap %p\n", addr, 3512 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 3513 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 3514 3515 return (DCMD_OK); 3516 } 3517 3518 int 3519 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3520 { 3521 if (p->p_as == *asp) 3522 mdb_printf("%p\n", addr); 3523 return (WALK_NEXT); 3524 } 3525 3526 /*ARGSUSED*/ 3527 int 3528 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3529 { 3530 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3531 return (DCMD_USAGE); 3532 3533 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3534 mdb_warn("failed to walk proc"); 3535 return (DCMD_ERR); 3536 } 3537 3538 return (DCMD_OK); 3539 } 3540 3541 /*ARGSUSED*/ 3542 int 3543 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3544 { 3545 proc_t parent; 3546 int ident = 0; 3547 uintptr_t paddr; 3548 3549 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3550 mdb_vread(&parent, sizeof (parent), paddr); 3551 paddr = (uintptr_t)parent.p_parent; 3552 } 3553 3554 mdb_inc_indent(ident); 3555 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3556 mdb_dec_indent(ident); 3557 3558 return (WALK_NEXT); 3559 } 3560 3561 void 3562 ptree_ancestors(uintptr_t addr, uintptr_t start) 3563 { 3564 proc_t p; 3565 3566 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3567 mdb_warn("couldn't read ancestor at %p", addr); 3568 return; 3569 } 3570 3571 if (p.p_parent != NULL) 3572 ptree_ancestors((uintptr_t)p.p_parent, start); 3573 3574 if (addr != start) 3575 (void) ptree_walk(addr, &p, NULL); 3576 } 3577 3578 /*ARGSUSED*/ 3579 int 3580 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3581 { 3582 if (!(flags & DCMD_ADDRSPEC)) 3583 addr = NULL; 3584 else 3585 ptree_ancestors(addr, addr); 3586 3587 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3588 mdb_warn("couldn't walk 'proc'"); 3589 return (DCMD_ERR); 3590 } 3591 3592 return (DCMD_OK); 3593 } 3594 3595 /*ARGSUSED*/ 3596 static int 3597 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3598 { 3599 int fdnum; 3600 const mdb_arg_t *argp = &argv[0]; 3601 proc_t p; 3602 uf_entry_t uf; 3603 3604 if ((flags & DCMD_ADDRSPEC) == 0) { 3605 mdb_warn("fd doesn't give global information\n"); 3606 return (DCMD_ERR); 3607 } 3608 if (argc != 1) 3609 return (DCMD_USAGE); 3610 3611 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3612 fdnum = argp->a_un.a_val; 3613 else 3614 fdnum = mdb_strtoull(argp->a_un.a_str); 3615 3616 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3617 mdb_warn("couldn't read proc_t at %p", addr); 3618 return (DCMD_ERR); 3619 } 3620 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3621 mdb_warn("process %p only has %d files open.\n", 3622 addr, p.p_user.u_finfo.fi_nfiles); 3623 return (DCMD_ERR); 3624 } 3625 if (mdb_vread(&uf, sizeof (uf_entry_t), 3626 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3627 mdb_warn("couldn't read uf_entry_t at %p", 3628 &p.p_user.u_finfo.fi_list[fdnum]); 3629 return (DCMD_ERR); 3630 } 3631 3632 mdb_printf("%p\n", uf.uf_file); 3633 return (DCMD_OK); 3634 } 3635 3636 /*ARGSUSED*/ 3637 static int 3638 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3639 { 3640 pid_t pid = (pid_t)addr; 3641 3642 if (argc != 0) 3643 return (DCMD_USAGE); 3644 3645 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3646 mdb_warn("PID 0t%d not found\n", pid); 3647 return (DCMD_ERR); 3648 } 3649 3650 mdb_printf("%p\n", addr); 3651 return (DCMD_OK); 3652 } 3653 3654 static char *sysfile_cmd[] = { 3655 "exclude:", 3656 "include:", 3657 "forceload:", 3658 "rootdev:", 3659 "rootfs:", 3660 "swapdev:", 3661 "swapfs:", 3662 "moddir:", 3663 "set", 3664 "unknown", 3665 }; 3666 3667 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3668 3669 /*ARGSUSED*/ 3670 static int 3671 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3672 { 3673 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3674 *target = NULL; 3675 return (WALK_DONE); 3676 } 3677 return (WALK_NEXT); 3678 } 3679 3680 /*ARGSUSED*/ 3681 static int 3682 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3683 { 3684 struct sysparam *sysp, sys; 3685 char var[256]; 3686 char modname[256]; 3687 char val[256]; 3688 char strval[256]; 3689 vmem_t *mod_sysfile_arena; 3690 void *straddr; 3691 3692 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3693 mdb_warn("failed to read sysparam_hd"); 3694 return (DCMD_ERR); 3695 } 3696 3697 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3698 mdb_warn("failed to read mod_sysfile_arena"); 3699 return (DCMD_ERR); 3700 } 3701 3702 while (sysp != NULL) { 3703 var[0] = '\0'; 3704 val[0] = '\0'; 3705 modname[0] = '\0'; 3706 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3707 mdb_warn("couldn't read sysparam %p", sysp); 3708 return (DCMD_ERR); 3709 } 3710 if (sys.sys_modnam != NULL && 3711 mdb_readstr(modname, 256, 3712 (uintptr_t)sys.sys_modnam) == -1) { 3713 mdb_warn("couldn't read modname in %p", sysp); 3714 return (DCMD_ERR); 3715 } 3716 if (sys.sys_ptr != NULL && 3717 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3718 mdb_warn("couldn't read ptr in %p", sysp); 3719 return (DCMD_ERR); 3720 } 3721 if (sys.sys_op != SETOP_NONE) { 3722 /* 3723 * Is this an int or a string? We determine this 3724 * by checking whether straddr is contained in 3725 * mod_sysfile_arena. If so, the walker will set 3726 * straddr to NULL. 3727 */ 3728 straddr = (void *)(uintptr_t)sys.sys_info; 3729 if (sys.sys_op == SETOP_ASSIGN && 3730 sys.sys_info != 0 && 3731 mdb_pwalk("vmem_seg", 3732 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3733 (uintptr_t)mod_sysfile_arena) == 0 && 3734 straddr == NULL && 3735 mdb_readstr(strval, 256, 3736 (uintptr_t)sys.sys_info) != -1) { 3737 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3738 strval); 3739 } else { 3740 (void) mdb_snprintf(val, sizeof (val), 3741 "0x%llx [0t%llu]", sys.sys_info, 3742 sys.sys_info); 3743 } 3744 } 3745 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3746 modname, modname[0] == '\0' ? "" : ":", 3747 var, sysfile_ops[sys.sys_op], val); 3748 3749 sysp = sys.sys_next; 3750 } 3751 3752 return (DCMD_OK); 3753 } 3754 3755 /* 3756 * Dump a taskq_ent_t given its address. 3757 */ 3758 /*ARGSUSED*/ 3759 int 3760 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3761 { 3762 taskq_ent_t taskq_ent; 3763 GElf_Sym sym; 3764 char buf[MDB_SYM_NAMLEN+1]; 3765 3766 3767 if (!(flags & DCMD_ADDRSPEC)) { 3768 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 3769 return (DCMD_USAGE); 3770 } 3771 3772 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 3773 mdb_warn("failed to read taskq_ent_t at %p", addr); 3774 return (DCMD_ERR); 3775 } 3776 3777 if (DCMD_HDRSPEC(flags)) { 3778 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 3779 "ENTRY", "ARG", "FUNCTION"); 3780 } 3781 3782 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 3783 buf, sizeof (buf), &sym) == -1) { 3784 (void) strcpy(buf, "????"); 3785 } 3786 3787 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 3788 3789 return (DCMD_OK); 3790 } 3791 3792 /* 3793 * Given the address of the (taskq_t) task queue head, walk the queue listing 3794 * the address of every taskq_ent_t. 3795 */ 3796 int 3797 taskq_walk_init(mdb_walk_state_t *wsp) 3798 { 3799 taskq_t tq_head; 3800 3801 3802 if (wsp->walk_addr == NULL) { 3803 mdb_warn("start address required\n"); 3804 return (WALK_ERR); 3805 } 3806 3807 3808 /* 3809 * Save the address of the list head entry. This terminates the list. 3810 */ 3811 wsp->walk_data = (void *) 3812 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 3813 3814 3815 /* 3816 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 3817 */ 3818 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 3819 -1) { 3820 mdb_warn("failed to read taskq list head at %p", 3821 wsp->walk_addr); 3822 } 3823 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 3824 3825 3826 /* 3827 * Check for null list (next=head) 3828 */ 3829 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 3830 return (WALK_DONE); 3831 } 3832 3833 return (WALK_NEXT); 3834 } 3835 3836 3837 int 3838 taskq_walk_step(mdb_walk_state_t *wsp) 3839 { 3840 taskq_ent_t tq_ent; 3841 int status; 3842 3843 3844 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 3845 -1) { 3846 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 3847 return (DCMD_ERR); 3848 } 3849 3850 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 3851 wsp->walk_cbdata); 3852 3853 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 3854 3855 3856 /* Check if we're at the last element (next=head) */ 3857 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 3858 return (WALK_DONE); 3859 } 3860 3861 return (status); 3862 } 3863 3864 int 3865 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3866 { 3867 3868 if (*didp == thr->t_did) { 3869 mdb_printf("%p\n", addr); 3870 return (WALK_DONE); 3871 } else 3872 return (WALK_NEXT); 3873 } 3874 3875 /*ARGSUSED*/ 3876 int 3877 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3878 { 3879 const mdb_arg_t *argp = &argv[0]; 3880 kt_did_t did; 3881 3882 if (argc != 1) 3883 return (DCMD_USAGE); 3884 3885 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3886 3887 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3888 mdb_warn("failed to walk thread"); 3889 return (DCMD_ERR); 3890 3891 } 3892 return (DCMD_OK); 3893 3894 } 3895 3896 static int 3897 errorq_walk_init(mdb_walk_state_t *wsp) 3898 { 3899 if (wsp->walk_addr == NULL && 3900 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3901 mdb_warn("failed to read errorq_list"); 3902 return (WALK_ERR); 3903 } 3904 3905 return (WALK_NEXT); 3906 } 3907 3908 static int 3909 errorq_walk_step(mdb_walk_state_t *wsp) 3910 { 3911 uintptr_t addr = wsp->walk_addr; 3912 errorq_t eq; 3913 3914 if (addr == NULL) 3915 return (WALK_DONE); 3916 3917 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3918 mdb_warn("failed to read errorq at %p", addr); 3919 return (WALK_ERR); 3920 } 3921 3922 wsp->walk_addr = (uintptr_t)eq.eq_next; 3923 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3924 } 3925 3926 typedef struct eqd_walk_data { 3927 uintptr_t *eqd_stack; 3928 void *eqd_buf; 3929 ulong_t eqd_qpos; 3930 ulong_t eqd_qlen; 3931 size_t eqd_size; 3932 } eqd_walk_data_t; 3933 3934 /* 3935 * In order to walk the list of pending error queue elements, we push the 3936 * addresses of the corresponding data buffers in to the eqd_stack array. 3937 * The error lists are in reverse chronological order when iterating using 3938 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3939 * walker client gets addresses in order from oldest error to newest error. 3940 */ 3941 static void 3942 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3943 { 3944 errorq_elem_t eqe; 3945 3946 while (addr != NULL) { 3947 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3948 mdb_warn("failed to read errorq element at %p", addr); 3949 break; 3950 } 3951 3952 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3953 mdb_warn("errorq is overfull -- more than %lu " 3954 "elems found\n", eqdp->eqd_qlen); 3955 break; 3956 } 3957 3958 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3959 addr = (uintptr_t)eqe.eqe_prev; 3960 } 3961 } 3962 3963 static int 3964 eqd_walk_init(mdb_walk_state_t *wsp) 3965 { 3966 eqd_walk_data_t *eqdp; 3967 errorq_elem_t eqe, *addr; 3968 errorq_t eq; 3969 ulong_t i; 3970 3971 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3972 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3973 return (WALK_ERR); 3974 } 3975 3976 if (eq.eq_ptail != NULL && 3977 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3978 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3979 return (WALK_ERR); 3980 } 3981 3982 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3983 wsp->walk_data = eqdp; 3984 3985 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3986 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3987 eqdp->eqd_qlen = eq.eq_qlen; 3988 eqdp->eqd_qpos = 0; 3989 eqdp->eqd_size = eq.eq_size; 3990 3991 /* 3992 * The newest elements in the queue are on the pending list, so we 3993 * push those on to our stack first. 3994 */ 3995 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3996 3997 /* 3998 * If eq_ptail is set, it may point to a subset of the errors on the 3999 * pending list in the event a casptr() failed; if ptail's data is 4000 * already in our stack, NULL out eq_ptail and ignore it. 4001 */ 4002 if (eq.eq_ptail != NULL) { 4003 for (i = 0; i < eqdp->eqd_qpos; i++) { 4004 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 4005 eq.eq_ptail = NULL; 4006 break; 4007 } 4008 } 4009 } 4010 4011 /* 4012 * If eq_phead is set, it has the processing list in order from oldest 4013 * to newest. Use this to recompute eq_ptail as best we can and then 4014 * we nicely fall into eqd_push_list() of eq_ptail below. 4015 */ 4016 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 4017 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 4018 eq.eq_ptail = addr; 4019 4020 /* 4021 * The oldest elements in the queue are on the processing list, subject 4022 * to machinations in the if-clauses above. Push any such elements. 4023 */ 4024 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 4025 return (WALK_NEXT); 4026 } 4027 4028 static int 4029 eqd_walk_step(mdb_walk_state_t *wsp) 4030 { 4031 eqd_walk_data_t *eqdp = wsp->walk_data; 4032 uintptr_t addr; 4033 4034 if (eqdp->eqd_qpos == 0) 4035 return (WALK_DONE); 4036 4037 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 4038 4039 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 4040 mdb_warn("failed to read errorq data at %p", addr); 4041 return (WALK_ERR); 4042 } 4043 4044 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 4045 } 4046 4047 static void 4048 eqd_walk_fini(mdb_walk_state_t *wsp) 4049 { 4050 eqd_walk_data_t *eqdp = wsp->walk_data; 4051 4052 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 4053 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 4054 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 4055 } 4056 4057 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 4058 4059 static int 4060 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4061 { 4062 int i; 4063 errorq_t eq; 4064 uint_t opt_v = FALSE; 4065 4066 if (!(flags & DCMD_ADDRSPEC)) { 4067 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 4068 mdb_warn("can't walk 'errorq'"); 4069 return (DCMD_ERR); 4070 } 4071 return (DCMD_OK); 4072 } 4073 4074 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 4075 argc -= i; 4076 argv += i; 4077 4078 if (argc != 0) 4079 return (DCMD_USAGE); 4080 4081 if (opt_v || DCMD_HDRSPEC(flags)) { 4082 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 4083 "ADDR", "NAME", "S", "V", "N"); 4084 if (!opt_v) { 4085 mdb_printf("%7s %7s %7s%</u>\n", 4086 "ACCEPT", "DROP", "LOG"); 4087 } else { 4088 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 4089 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 4090 } 4091 } 4092 4093 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 4094 mdb_warn("failed to read errorq at %p", addr); 4095 return (DCMD_ERR); 4096 } 4097 4098 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 4099 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 4100 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 4101 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 4102 4103 if (!opt_v) { 4104 mdb_printf("%7llu %7llu %7llu\n", 4105 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 4106 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 4107 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 4108 } else { 4109 mdb_printf("%5s %6lu %6lu %3u %a\n", 4110 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 4111 mdb_printf("%38s\n%41s" 4112 "%12s %llu\n" 4113 "%53s %llu\n" 4114 "%53s %llu\n" 4115 "%53s %llu\n" 4116 "%53s %llu\n" 4117 "%53s %llu\n" 4118 "%53s %llu\n" 4119 "%53s %llu\n\n", 4120 "|", "+-> ", 4121 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 4122 "DROPPED", EQKSVAL(eq, eqk_dropped), 4123 "LOGGED", EQKSVAL(eq, eqk_logged), 4124 "RESERVED", EQKSVAL(eq, eqk_reserved), 4125 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 4126 "COMMITTED", EQKSVAL(eq, eqk_committed), 4127 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 4128 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 4129 } 4130 4131 return (DCMD_OK); 4132 } 4133 4134 /*ARGSUSED*/ 4135 static int 4136 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4137 { 4138 cpu_t panic_cpu; 4139 kthread_t *panic_thread; 4140 void *buf; 4141 panic_data_t *pd; 4142 int i, n; 4143 4144 if (!mdb_prop_postmortem) { 4145 mdb_warn("panicinfo can only be run on a system " 4146 "dump; see dumpadm(1M)\n"); 4147 return (DCMD_ERR); 4148 } 4149 4150 if (flags & DCMD_ADDRSPEC || argc != 0) 4151 return (DCMD_USAGE); 4152 4153 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 4154 mdb_warn("failed to read 'panic_cpu'"); 4155 else 4156 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 4157 4158 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 4159 mdb_warn("failed to read 'panic_thread'"); 4160 else 4161 mdb_printf("%16s %?p\n", "thread", panic_thread); 4162 4163 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 4164 pd = (panic_data_t *)buf; 4165 4166 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 4167 pd->pd_version != PANICBUFVERS) { 4168 mdb_warn("failed to read 'panicbuf'"); 4169 mdb_free(buf, PANICBUFSIZE); 4170 return (DCMD_ERR); 4171 } 4172 4173 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 4174 4175 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 4176 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 4177 4178 for (i = 0; i < n; i++) 4179 mdb_printf("%16s %?llx\n", 4180 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 4181 4182 mdb_free(buf, PANICBUFSIZE); 4183 return (DCMD_OK); 4184 } 4185 4186 static const mdb_dcmd_t dcmds[] = { 4187 4188 /* from genunix.c */ 4189 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4190 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4191 { "binding_hash_entry", ":", "print driver names hash table entry", 4192 binding_hash_entry }, 4193 { "callout", "?[-r|n] [-s|l] [-xh] [-t | -ab nsec [-dkD]]" 4194 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4195 " [-FivVA]", 4196 "display callouts", callout, callout_help }, 4197 { "calloutid", "[-d|v] xid", "print callout by extended id", 4198 calloutid, calloutid_help }, 4199 { "class", NULL, "print process scheduler classes", class }, 4200 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4201 { "did2thread", "? kt_did", "find kernel thread for this id", 4202 did2thread }, 4203 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4204 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4205 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4206 { "lminfo", NULL, "print lock manager information", lminfo }, 4207 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4208 { "panicinfo", NULL, "print panic information", panicinfo }, 4209 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4210 { "pmap", ":[-q]", "print process memory map", pmap }, 4211 { "project", NULL, "display kernel project(s)", project }, 4212 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 4213 { "pgrep", "[-x] [-n | -o] pattern", 4214 "pattern match against all processes", pgrep }, 4215 { "ptree", NULL, "print process tree", ptree }, 4216 { "seg", ":", "print address space segment", seg }, 4217 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4218 sysevent}, 4219 { "sysevent_channel", "?", "print sysevent channel database", 4220 sysevent_channel}, 4221 { "sysevent_class_list", ":", "print sysevent class list", 4222 sysevent_class_list}, 4223 { "sysevent_subclass_list", ":", 4224 "print sysevent subclass list", sysevent_subclass_list}, 4225 { "system", NULL, "print contents of /etc/system file", sysfile }, 4226 { "task", NULL, "display kernel task(s)", task }, 4227 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4228 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4229 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4230 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4231 whereopen }, 4232 4233 /* from zone.c */ 4234 { "zone", "?", "display kernel zone(s)", zoneprt }, 4235 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4236 "selected zones", zsd }, 4237 4238 /* from bio.c */ 4239 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4240 4241 /* from contract.c */ 4242 { "contract", "?", "display a contract", cmd_contract }, 4243 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4244 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4245 4246 /* from cpupart.c */ 4247 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4248 4249 /* from cyclic.c */ 4250 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4251 { "cycid", "?", "dump a cyclic id", cycid }, 4252 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4253 { "cyclic", ":", "developer information", cyclic }, 4254 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4255 4256 /* from devinfo.c */ 4257 { "devbindings", "?[-qs] [device-name | major-num]", 4258 "print devinfo nodes bound to device-name or major-num", 4259 devbindings, devinfo_help }, 4260 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 4261 devinfo_help }, 4262 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4263 devinfo_audit }, 4264 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4265 devinfo_audit_log }, 4266 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4267 devinfo_audit_node }, 4268 { "devinfo2driver", ":", "find driver name for this devinfo node", 4269 devinfo2driver }, 4270 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4271 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4272 dev2major }, 4273 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4274 dev2minor }, 4275 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4276 devt }, 4277 { "major2name", "?<major-num>", "convert major number to dev name", 4278 major2name }, 4279 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4280 minornodes }, 4281 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4282 modctl2devinfo }, 4283 { "name2major", "<dev-name>", "convert dev name to major number", 4284 name2major }, 4285 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 4286 { "softstate", ":<instance>", "retrieve soft-state pointer", 4287 softstate }, 4288 { "devinfo_fm", ":", "devinfo fault managment configuration", 4289 devinfo_fm }, 4290 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4291 devinfo_fmce}, 4292 4293 /* from fm.c */ 4294 { "ereport", "[-v]", "print ereports logged in dump", 4295 ereport }, 4296 4297 /* from findstack.c */ 4298 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4299 { "findstack_debug", NULL, "toggle findstack debugging", 4300 findstack_debug }, 4301 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4302 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4303 "print unique kernel thread stacks", 4304 stacks, stacks_help }, 4305 4306 /* from irm.c */ 4307 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4308 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4309 irmreqs_dcmd }, 4310 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4311 4312 /* from kgrep.c + genunix.c */ 4313 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4314 kgrep_help }, 4315 4316 /* from kmem.c */ 4317 { "allocdby", ":", "given a thread, print its allocated buffers", 4318 allocdby }, 4319 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4320 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4321 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4322 { "kmalog", "?[ fail | slab ]", 4323 "display kmem transaction log and stack traces", kmalog }, 4324 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4325 kmastat }, 4326 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4327 "of the kmem allocator", kmausers, kmausers_help }, 4328 { "kmem_cache", "?[-n name]", 4329 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4330 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4331 "[-B minbinsize]", "display slab usage per kmem cache", 4332 kmem_slabs, kmem_slabs_help }, 4333 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4334 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4335 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4336 kmem_verify }, 4337 { "vmem", "?", "print a vmem_t", vmem }, 4338 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4339 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4340 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4341 { "whatis", ":[-abiv]", "given an address, return information", whatis, 4342 whatis_help }, 4343 { "whatthread", ":[-v]", "print threads whose stack contains the " 4344 "given address", whatthread }, 4345 4346 /* from ldi.c */ 4347 { "ldi_handle", "?[-i]", "display a layered driver handle", 4348 ldi_handle, ldi_handle_help }, 4349 { "ldi_ident", NULL, "display a layered driver identifier", 4350 ldi_ident, ldi_ident_help }, 4351 4352 /* from leaky.c + leaky_subr.c */ 4353 { "findleaks", FINDLEAKS_USAGE, 4354 "search for potential kernel memory leaks", findleaks, 4355 findleaks_help }, 4356 4357 /* from lgrp.c */ 4358 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4359 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4360 4361 /* from log.c */ 4362 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4363 4364 /* from memory.c */ 4365 { "page", "?", "display a summarized page_t", page }, 4366 { "memstat", NULL, "display memory usage summary", memstat }, 4367 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4368 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4369 4370 /* from mmd.c */ 4371 { "multidata", ":[-sv]", "display a summarized multidata_t", 4372 multidata }, 4373 { "pattbl", ":", "display a summarized multidata attribute table", 4374 pattbl }, 4375 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4376 pattr2multidata }, 4377 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4378 pdesc2slab }, 4379 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4380 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4381 slab2multidata }, 4382 4383 /* from modhash.c */ 4384 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4385 "display information about one or all mod_hash structures", 4386 modhash, modhash_help }, 4387 { "modent", ":[-k | -v | -t type]", 4388 "display information about a mod_hash_entry", modent, 4389 modent_help }, 4390 4391 /* from net.c */ 4392 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4393 mi }, 4394 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 4395 "show network statistics", netstat }, 4396 { "sonode", "?[-f inet | inet6 | unix | #] " 4397 "[-t stream | dgram | raw | #] [-p #]", 4398 "filter and display sonode", sonode }, 4399 4400 /* from netstack.c */ 4401 { "netstack", "", "show stack instances", netstack }, 4402 4403 /* from nvpair.c */ 4404 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4405 nvpair_print }, 4406 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4407 print_nvlist }, 4408 4409 /* from pg.c */ 4410 { "pg", "?[-q]", "display a pg", pg}, 4411 /* from group.c */ 4412 { "group", "?[-q]", "display a group", group}, 4413 4414 /* from log.c */ 4415 /* from rctl.c */ 4416 { "rctl_dict", "?", "print systemwide default rctl definitions", 4417 rctl_dict }, 4418 { "rctl_list", ":[handle]", "print rctls for the given proc", 4419 rctl_list }, 4420 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4421 rctl }, 4422 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4423 "sequence", rctl_validate }, 4424 4425 /* from sobj.c */ 4426 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4427 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4428 mutex_help }, 4429 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4430 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4431 { "turnstile", "?", "display a turnstile", turnstile }, 4432 4433 /* from stream.c */ 4434 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4435 "print an mblk", mblk_prt, mblk_help }, 4436 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4437 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4438 mblk2dblk }, 4439 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4440 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4441 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4442 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4443 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4444 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4445 "filter and display STREAM queue", queue, queue_help }, 4446 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4447 "filter and display STREAM head", stdata, stdata_help }, 4448 { "str2mate", ":", "print mate of this stream", str2mate }, 4449 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4450 { "stream", ":", "display STREAM", stream }, 4451 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4452 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4453 "filter and display STREAM sync queue", syncq, syncq_help }, 4454 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4455 4456 /* from thread.c */ 4457 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4458 thread_help }, 4459 { "threadlist", "?[-t] [-v [count]]", 4460 "display threads and associated C stack traces", threadlist, 4461 threadlist_help }, 4462 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4463 stackinfo_help }, 4464 4465 /* from tsd.c */ 4466 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4467 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4468 4469 /* 4470 * typegraph does not work under kmdb, as it requires too much memory 4471 * for its internal data structures. 4472 */ 4473 #ifndef _KMDB 4474 /* from typegraph.c */ 4475 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4476 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4477 findfalse }, 4478 { "typegraph", NULL, "build type graph", typegraph }, 4479 { "istype", ":type", "manually set object type", istype }, 4480 { "notype", ":", "manually clear object type", notype }, 4481 { "whattype", ":", "determine object type", whattype }, 4482 #endif 4483 4484 /* from vfs.c */ 4485 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4486 { "pfiles", ":[-fp]", "print process file information", pfiles, 4487 pfiles_help }, 4488 4489 /* from mdi.c */ 4490 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4491 "and detailed pi_prop list", mdipi }, 4492 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4493 mdiprops }, 4494 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4495 "list all paths", mdiphci }, 4496 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4497 "all phcis", mdivhci }, 4498 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4499 "client links", mdiclient_paths }, 4500 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4501 "phci links", mdiphci_paths }, 4502 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4503 mdiphcis }, 4504 4505 { NULL } 4506 }; 4507 4508 static const mdb_walker_t walkers[] = { 4509 4510 /* from genunix.c */ 4511 { "anon", "given an amp, list of anon structures", 4512 anon_walk_init, anon_walk_step, anon_walk_fini }, 4513 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4514 callout_walk_init, callout_walk_step, callout_walk_fini, 4515 (void *)CALLOUT_WALK_BYLIST }, 4516 { "callouts_byid", "walk callouts by id hash chain", 4517 callout_walk_init, callout_walk_step, callout_walk_fini, 4518 (void *)CALLOUT_WALK_BYID }, 4519 { "callout_list", "walk a callout list", callout_list_walk_init, 4520 callout_list_walk_step, callout_list_walk_fini }, 4521 { "callout_table", "walk callout table array", callout_table_walk_init, 4522 callout_table_walk_step, callout_table_walk_fini }, 4523 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4524 { "ereportq_dump", "walk list of ereports in dump error queue", 4525 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4526 { "ereportq_pend", "walk list of ereports in pending error queue", 4527 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4528 { "errorq", "walk list of system error queues", 4529 errorq_walk_init, errorq_walk_step, NULL }, 4530 { "errorq_data", "walk pending error queue data buffers", 4531 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4532 { "allfile", "given a proc pointer, list all file pointers", 4533 file_walk_init, allfile_walk_step, file_walk_fini }, 4534 { "file", "given a proc pointer, list of open file pointers", 4535 file_walk_init, file_walk_step, file_walk_fini }, 4536 { "lock_descriptor", "walk lock_descriptor_t structures", 4537 ld_walk_init, ld_walk_step, NULL }, 4538 { "lock_graph", "walk lock graph", 4539 lg_walk_init, lg_walk_step, NULL }, 4540 { "port", "given a proc pointer, list of created event ports", 4541 port_walk_init, port_walk_step, NULL }, 4542 { "portev", "given a port pointer, list of events in the queue", 4543 portev_walk_init, portev_walk_step, portev_walk_fini }, 4544 { "proc", "list of active proc_t structures", 4545 proc_walk_init, proc_walk_step, proc_walk_fini }, 4546 { "projects", "walk a list of kernel projects", 4547 project_walk_init, project_walk_step, NULL }, 4548 { "seg", "given an as, list of segments", 4549 seg_walk_init, avl_walk_step, avl_walk_fini }, 4550 { "sysevent_pend", "walk sysevent pending queue", 4551 sysevent_pend_walk_init, sysevent_walk_step, 4552 sysevent_walk_fini}, 4553 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4554 sysevent_walk_step, sysevent_walk_fini}, 4555 { "sysevent_channel", "walk sysevent channel subscriptions", 4556 sysevent_channel_walk_init, sysevent_channel_walk_step, 4557 sysevent_channel_walk_fini}, 4558 { "sysevent_class_list", "walk sysevent subscription's class list", 4559 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4560 sysevent_class_list_walk_fini}, 4561 { "sysevent_subclass_list", 4562 "walk sysevent subscription's subclass list", 4563 sysevent_subclass_list_walk_init, 4564 sysevent_subclass_list_walk_step, 4565 sysevent_subclass_list_walk_fini}, 4566 { "task", "given a task pointer, walk its processes", 4567 task_walk_init, task_walk_step, NULL }, 4568 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4569 taskq_walk_init, taskq_walk_step, NULL, NULL }, 4570 4571 /* from avl.c */ 4572 { AVL_WALK_NAME, AVL_WALK_DESC, 4573 avl_walk_init, avl_walk_step, avl_walk_fini }, 4574 4575 /* from zone.c */ 4576 { "zone", "walk a list of kernel zones", 4577 zone_walk_init, zone_walk_step, NULL }, 4578 { "zsd", "walk list of zsd entries for a zone", 4579 zsd_walk_init, zsd_walk_step, NULL }, 4580 4581 /* from bio.c */ 4582 { "buf", "walk the bio buf hash", 4583 buf_walk_init, buf_walk_step, buf_walk_fini }, 4584 4585 /* from contract.c */ 4586 { "contract", "walk all contracts, or those of the specified type", 4587 ct_walk_init, generic_walk_step, NULL }, 4588 { "ct_event", "walk events on a contract event queue", 4589 ct_event_walk_init, generic_walk_step, NULL }, 4590 { "ct_listener", "walk contract event queue listeners", 4591 ct_listener_walk_init, generic_walk_step, NULL }, 4592 4593 /* from cpupart.c */ 4594 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4595 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4596 NULL }, 4597 { "cpupart_walk", "walk the set of cpu partitions", 4598 cpupart_walk_init, cpupart_walk_step, NULL }, 4599 4600 /* from ctxop.c */ 4601 { "ctxop", "walk list of context ops on a thread", 4602 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4603 4604 /* from cyclic.c */ 4605 { "cyccpu", "walk per-CPU cyc_cpu structures", 4606 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4607 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4608 cycomni_walk_init, cycomni_walk_step, NULL }, 4609 { "cyctrace", "walk cyclic trace buffer", 4610 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4611 4612 /* from devinfo.c */ 4613 { "binding_hash", "walk all entries in binding hash table", 4614 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4615 { "devinfo", "walk devinfo tree or subtree", 4616 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4617 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4618 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4619 devinfo_audit_log_walk_fini}, 4620 { "devinfo_audit_node", "walk per-devinfo audit history", 4621 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4622 devinfo_audit_node_walk_fini}, 4623 { "devinfo_children", "walk children of devinfo node", 4624 devinfo_children_walk_init, devinfo_children_walk_step, 4625 devinfo_children_walk_fini }, 4626 { "devinfo_parents", "walk ancestors of devinfo node", 4627 devinfo_parents_walk_init, devinfo_parents_walk_step, 4628 devinfo_parents_walk_fini }, 4629 { "devinfo_siblings", "walk siblings of devinfo node", 4630 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4631 { "devi_next", "walk devinfo list", 4632 NULL, devi_next_walk_step, NULL }, 4633 { "devnames", "walk devnames array", 4634 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4635 { "minornode", "given a devinfo node, walk minor nodes", 4636 minornode_walk_init, minornode_walk_step, NULL }, 4637 { "softstate", 4638 "given an i_ddi_soft_state*, list all in-use driver stateps", 4639 soft_state_walk_init, soft_state_walk_step, 4640 NULL, NULL }, 4641 { "softstate_all", 4642 "given an i_ddi_soft_state*, list all driver stateps", 4643 soft_state_walk_init, soft_state_all_walk_step, 4644 NULL, NULL }, 4645 { "devinfo_fmc", 4646 "walk a fault management handle cache active list", 4647 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4648 4649 /* from irm.c */ 4650 { "irmpools", "walk global list of interrupt pools", 4651 irmpools_walk_init, list_walk_step, list_walk_fini }, 4652 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4653 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4654 4655 /* from kmem.c */ 4656 { "allocdby", "given a thread, walk its allocated bufctls", 4657 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4658 { "bufctl", "walk a kmem cache's bufctls", 4659 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4660 { "bufctl_history", "walk the available history of a bufctl", 4661 bufctl_history_walk_init, bufctl_history_walk_step, 4662 bufctl_history_walk_fini }, 4663 { "freedby", "given a thread, walk its freed bufctls", 4664 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4665 { "freectl", "walk a kmem cache's free bufctls", 4666 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4667 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4668 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4669 { "freemem", "walk a kmem cache's free memory", 4670 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4671 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4672 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4673 { "kmem", "walk a kmem cache", 4674 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4675 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4676 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4677 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4678 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4679 { "kmem_log", "walk the kmem transaction log", 4680 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4681 { "kmem_slab", "given a kmem cache, walk its slabs", 4682 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4683 { "kmem_slab_partial", 4684 "given a kmem cache, walk its partially allocated slabs (min 1)", 4685 kmem_slab_walk_partial_init, combined_walk_step, 4686 combined_walk_fini }, 4687 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4688 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4689 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4690 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4691 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4692 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4693 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4694 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4695 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4696 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4697 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4698 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4699 4700 /* from ldi.c */ 4701 { "ldi_handle", "walk the layered driver handle hash", 4702 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4703 { "ldi_ident", "walk the layered driver identifier hash", 4704 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4705 4706 /* from leaky.c + leaky_subr.c */ 4707 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4708 "stack trace", 4709 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4710 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4711 "leaks w/ same stack trace", 4712 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4713 4714 /* from lgrp.c */ 4715 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4716 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4717 { "lgrptbl", "walk lgroup table", 4718 lgrp_walk_init, lgrp_walk_step, NULL }, 4719 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4720 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4721 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4722 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4723 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4724 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4725 4726 /* from group.c */ 4727 { "group", "walk all elements of a group", 4728 group_walk_init, group_walk_step, NULL }, 4729 4730 /* from list.c */ 4731 { LIST_WALK_NAME, LIST_WALK_DESC, 4732 list_walk_init, list_walk_step, list_walk_fini }, 4733 4734 /* from memory.c */ 4735 { "page", "walk all pages, or those from the specified vnode", 4736 page_walk_init, page_walk_step, page_walk_fini }, 4737 { "memlist", "walk specified memlist", 4738 NULL, memlist_walk_step, NULL }, 4739 { "swapinfo", "walk swapinfo structures", 4740 swap_walk_init, swap_walk_step, NULL }, 4741 4742 /* from mmd.c */ 4743 { "pattr", "walk pattr_t structures", pattr_walk_init, 4744 mmdq_walk_step, mmdq_walk_fini }, 4745 { "pdesc", "walk pdesc_t structures", 4746 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4747 { "pdesc_slab", "walk pdesc_slab_t structures", 4748 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4749 4750 /* from modhash.c */ 4751 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4752 modhash_walk_step, NULL }, 4753 { "modent", "walk list of entries in a given mod_hash", 4754 modent_walk_init, modent_walk_step, modent_walk_fini }, 4755 { "modchain", "walk list of entries in a given mod_hash_entry", 4756 NULL, modchain_walk_step, NULL }, 4757 4758 /* from net.c */ 4759 { "ar", "walk ar_t structures using MI for all stacks", 4760 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg }, 4761 { "icmp", "walk ICMP control structures using MI for all stacks", 4762 mi_payload_walk_init, mi_payload_walk_step, NULL, 4763 &mi_icmp_arg }, 4764 { "ill", "walk ill_t structures using MI for all stacks", 4765 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg }, 4766 4767 { "mi", "given a MI_O, walk the MI", 4768 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4769 { "sonode", "given a sonode, walk its children", 4770 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4771 4772 { "ar_stacks", "walk all the ar_stack_t", 4773 ar_stacks_walk_init, ar_stacks_walk_step, NULL }, 4774 { "icmp_stacks", "walk all the icmp_stack_t", 4775 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4776 { "tcp_stacks", "walk all the tcp_stack_t", 4777 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4778 { "udp_stacks", "walk all the udp_stack_t", 4779 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4780 4781 /* from nvpair.c */ 4782 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4783 nvpair_walk_init, nvpair_walk_step, NULL }, 4784 4785 /* from rctl.c */ 4786 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4787 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4788 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4789 rctl_set_walk_step, NULL }, 4790 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4791 rctl_val_walk_init, rctl_val_walk_step }, 4792 4793 /* from sobj.c */ 4794 { "blocked", "walk threads blocked on a given sobj", 4795 blocked_walk_init, blocked_walk_step, NULL }, 4796 { "wchan", "given a wchan, list of blocked threads", 4797 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4798 4799 /* from stream.c */ 4800 { "b_cont", "walk mblk_t list using b_cont", 4801 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4802 { "b_next", "walk mblk_t list using b_next", 4803 mblk_walk_init, b_next_step, mblk_walk_fini }, 4804 { "qlink", "walk queue_t list using q_link", 4805 queue_walk_init, queue_link_step, queue_walk_fini }, 4806 { "qnext", "walk queue_t list using q_next", 4807 queue_walk_init, queue_next_step, queue_walk_fini }, 4808 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4809 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4810 { "readq", "walk read queue side of stdata", 4811 str_walk_init, strr_walk_step, str_walk_fini }, 4812 { "writeq", "walk write queue side of stdata", 4813 str_walk_init, strw_walk_step, str_walk_fini }, 4814 4815 /* from thread.c */ 4816 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4817 deathrow_walk_init, deathrow_walk_step, NULL }, 4818 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4819 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4820 { "cpupart_dispq", 4821 "given a cpupart_t, walk threads in dispatcher queues", 4822 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4823 { "lwp_deathrow", "walk lwp_deathrow", 4824 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4825 { "thread", "global or per-process kthread_t structures", 4826 thread_walk_init, thread_walk_step, thread_walk_fini }, 4827 { "thread_deathrow", "walk threads on thread_deathrow", 4828 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4829 4830 /* from tsd.c */ 4831 { "tsd", "walk list of thread-specific data", 4832 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4833 4834 /* from tsol.c */ 4835 { "tnrh", "walk remote host cache structures", 4836 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4837 { "tnrhtp", "walk remote host template structures", 4838 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4839 4840 /* 4841 * typegraph does not work under kmdb, as it requires too much memory 4842 * for its internal data structures. 4843 */ 4844 #ifndef _KMDB 4845 /* from typegraph.c */ 4846 { "typeconflict", "walk buffers with conflicting type inferences", 4847 typegraph_walk_init, typeconflict_walk_step }, 4848 { "typeunknown", "walk buffers with unknown types", 4849 typegraph_walk_init, typeunknown_walk_step }, 4850 #endif 4851 4852 /* from vfs.c */ 4853 { "vfs", "walk file system list", 4854 vfs_walk_init, vfs_walk_step }, 4855 4856 /* from mdi.c */ 4857 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4858 mdi_pi_client_link_walk_init, 4859 mdi_pi_client_link_walk_step, 4860 mdi_pi_client_link_walk_fini }, 4861 4862 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4863 mdi_pi_phci_link_walk_init, 4864 mdi_pi_phci_link_walk_step, 4865 mdi_pi_phci_link_walk_fini }, 4866 4867 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4868 mdi_phci_ph_next_walk_init, 4869 mdi_phci_ph_next_walk_step, 4870 mdi_phci_ph_next_walk_fini }, 4871 4872 /* from netstack.c */ 4873 { "netstack", "walk a list of kernel netstacks", 4874 netstack_walk_init, netstack_walk_step, NULL }, 4875 4876 { NULL } 4877 }; 4878 4879 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4880 4881 /*ARGSUSED*/ 4882 static void 4883 genunix_statechange_cb(void *ignored) 4884 { 4885 /* 4886 * Force ::findleaks and ::stacks to let go any cached state. 4887 */ 4888 leaky_cleanup(1); 4889 stacks_cleanup(1); 4890 4891 kmem_statechange(); /* notify kmem */ 4892 } 4893 4894 const mdb_modinfo_t * 4895 _mdb_init(void) 4896 { 4897 kmem_init(); 4898 4899 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4900 genunix_statechange_cb, NULL); 4901 4902 return (&modinfo); 4903 } 4904 4905 void 4906 _mdb_fini(void) 4907 { 4908 leaky_cleanup(1); 4909 stacks_cleanup(1); 4910 } 4911