1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2016 Joyent, Inc. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <sys/dditypes.h> 53 #include <sys/ddi_impldefs.h> 54 #include <sys/sysmacros.h> 55 #include <sys/sysconf.h> 56 #include <sys/task.h> 57 #include <sys/project.h> 58 #include <sys/errorq_impl.h> 59 #include <sys/cred_impl.h> 60 #include <sys/zone.h> 61 #include <sys/panic.h> 62 #include <regex.h> 63 #include <sys/port_impl.h> 64 65 #include "avl.h" 66 #include "bio.h" 67 #include "bitset.h" 68 #include "combined.h" 69 #include "contract.h" 70 #include "cpupart_mdb.h" 71 #include "cred.h" 72 #include "ctxop.h" 73 #include "cyclic.h" 74 #include "damap.h" 75 #include "ddi_periodic.h" 76 #include "devinfo.h" 77 #include "dnlc.h" 78 #include "findstack.h" 79 #include "fm.h" 80 #include "gcore.h" 81 #include "group.h" 82 #include "irm.h" 83 #include "kgrep.h" 84 #include "kmem.h" 85 #include "ldi.h" 86 #include "leaky.h" 87 #include "lgrp.h" 88 #include "list.h" 89 #include "log.h" 90 #include "mdi.h" 91 #include "memory.h" 92 #include "mmd.h" 93 #include "modhash.h" 94 #include "ndievents.h" 95 #include "net.h" 96 #include "netstack.h" 97 #include "nvpair.h" 98 #include "pg.h" 99 #include "rctl.h" 100 #include "sobj.h" 101 #include "streams.h" 102 #include "sysevent.h" 103 #include "taskq.h" 104 #include "thread.h" 105 #include "tsd.h" 106 #include "tsol.h" 107 #include "typegraph.h" 108 #include "vfs.h" 109 #include "zone.h" 110 #include "hotplug.h" 111 112 /* 113 * Surely this is defined somewhere... 114 */ 115 #define NINTR 16 116 117 #define KILOS 10 118 #define MEGS 20 119 #define GIGS 30 120 121 #ifndef STACK_BIAS 122 #define STACK_BIAS 0 123 #endif 124 125 static char 126 pstat2ch(uchar_t state) 127 { 128 switch (state) { 129 case SSLEEP: return ('S'); 130 case SRUN: return ('R'); 131 case SZOMB: return ('Z'); 132 case SIDL: return ('I'); 133 case SONPROC: return ('O'); 134 case SSTOP: return ('T'); 135 case SWAIT: return ('W'); 136 default: return ('?'); 137 } 138 } 139 140 #define PS_PRTTHREADS 0x1 141 #define PS_PRTLWPS 0x2 142 #define PS_PSARGS 0x4 143 #define PS_TASKS 0x8 144 #define PS_PROJECTS 0x10 145 #define PS_ZONES 0x20 146 147 static int 148 ps_threadprint(uintptr_t addr, const void *data, void *private) 149 { 150 const kthread_t *t = (const kthread_t *)data; 151 uint_t prt_flags = *((uint_t *)private); 152 153 static const mdb_bitmask_t t_state_bits[] = { 154 { "TS_FREE", UINT_MAX, TS_FREE }, 155 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 156 { "TS_RUN", TS_RUN, TS_RUN }, 157 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 158 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 159 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 160 { "TS_WAIT", TS_WAIT, TS_WAIT }, 161 { NULL, 0, 0 } 162 }; 163 164 if (prt_flags & PS_PRTTHREADS) 165 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 166 167 if (prt_flags & PS_PRTLWPS) 168 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 169 170 return (WALK_NEXT); 171 } 172 173 static int 174 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 175 { 176 proc_t pr; 177 struct pid pid; 178 179 static const mdb_bitmask_t p_flag_bits[] = { 180 { "SSYS", SSYS, SSYS }, 181 { "SEXITING", SEXITING, SEXITING }, 182 { "SITBUSY", SITBUSY, SITBUSY }, 183 { "SFORKING", SFORKING, SFORKING }, 184 { "SWATCHOK", SWATCHOK, SWATCHOK }, 185 { "SKILLED", SKILLED, SKILLED }, 186 { "SSCONT", SSCONT, SSCONT }, 187 { "SZONETOP", SZONETOP, SZONETOP }, 188 { "SEXTKILLED", SEXTKILLED, SEXTKILLED }, 189 { "SUGID", SUGID, SUGID }, 190 { "SEXECED", SEXECED, SEXECED }, 191 { "SJCTL", SJCTL, SJCTL }, 192 { "SNOWAIT", SNOWAIT, SNOWAIT }, 193 { "SVFORK", SVFORK, SVFORK }, 194 { "SVFWAIT", SVFWAIT, SVFWAIT }, 195 { "SEXITLWPS", SEXITLWPS, SEXITLWPS }, 196 { "SHOLDFORK", SHOLDFORK, SHOLDFORK }, 197 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 }, 198 { "SCOREDUMP", SCOREDUMP, SCOREDUMP }, 199 { "SMSACCT", SMSACCT, SMSACCT }, 200 { "SLWPWRAP", SLWPWRAP, SLWPWRAP }, 201 { "SAUTOLPG", SAUTOLPG, SAUTOLPG }, 202 { "SNOCD", SNOCD, SNOCD }, 203 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH }, 204 { "SMSFORK", SMSFORK, SMSFORK }, 205 { "SDOCORE", SDOCORE, SDOCORE }, 206 { NULL, 0, 0 } 207 }; 208 209 static const mdb_bitmask_t p_pidflag_bits[] = { 210 { "CLDPEND", CLDPEND, CLDPEND }, 211 { "CLDCONT", CLDCONT, CLDCONT }, 212 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD }, 213 { "CLDWAITPID", CLDWAITPID, CLDWAITPID }, 214 { NULL, 0, 0 } 215 }; 216 217 static const mdb_bitmask_t p_proc_flag_bits[] = { 218 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE }, 219 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE }, 220 { "P_PR_FORK", P_PR_FORK, P_PR_FORK }, 221 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK }, 222 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC }, 223 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC }, 224 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ }, 225 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL }, 226 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL }, 227 { NULL, 0, 0 } 228 }; 229 230 if (!(flags & DCMD_ADDRSPEC)) { 231 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) { 232 mdb_warn("can't walk 'proc'"); 233 return (DCMD_ERR); 234 } 235 return (DCMD_OK); 236 } 237 238 if (mdb_vread(&pr, sizeof (pr), addr) == -1 || 239 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) { 240 mdb_warn("cannot read proc_t or pid"); 241 return (DCMD_ERR); 242 } 243 244 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id); 245 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag, 246 p_flag_bits); 247 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag, 248 p_pidflag_bits); 249 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag, 250 p_proc_flag_bits); 251 252 return (DCMD_OK); 253 } 254 255 int 256 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 257 { 258 uint_t prt_flags = 0; 259 proc_t pr; 260 struct pid pid, pgid, sid; 261 sess_t session; 262 cred_t cred; 263 task_t tk; 264 kproject_t pj; 265 zone_t zn; 266 267 if (!(flags & DCMD_ADDRSPEC)) { 268 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 269 mdb_warn("can't walk 'proc'"); 270 return (DCMD_ERR); 271 } 272 return (DCMD_OK); 273 } 274 275 if (mdb_getopts(argc, argv, 276 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 277 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 278 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 279 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 280 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 281 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 282 return (DCMD_USAGE); 283 284 if (DCMD_HDRSPEC(flags)) { 285 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 286 "S", "PID", "PPID", "PGID", "SID"); 287 if (prt_flags & PS_TASKS) 288 mdb_printf("%5s ", "TASK"); 289 if (prt_flags & PS_PROJECTS) 290 mdb_printf("%5s ", "PROJ"); 291 if (prt_flags & PS_ZONES) 292 mdb_printf("%5s ", "ZONE"); 293 mdb_printf("%6s %10s %?s %s%</u>\n", 294 "UID", "FLAGS", "ADDR", "NAME"); 295 } 296 297 mdb_vread(&pr, sizeof (pr), addr); 298 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 299 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 300 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 301 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 302 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 303 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 304 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 305 if (prt_flags & PS_PROJECTS) 306 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 307 if (prt_flags & PS_ZONES) 308 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 309 310 mdb_printf("%c %6d %6d %6d %6d ", 311 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 312 sid.pid_id); 313 if (prt_flags & PS_TASKS) 314 mdb_printf("%5d ", tk.tk_tkid); 315 if (prt_flags & PS_PROJECTS) 316 mdb_printf("%5d ", pj.kpj_id); 317 if (prt_flags & PS_ZONES) 318 mdb_printf("%5d ", zn.zone_id); 319 mdb_printf("%6d 0x%08x %0?p %s\n", 320 cred.cr_uid, pr.p_flag, addr, 321 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 322 323 if (prt_flags & ~PS_PSARGS) 324 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 325 326 return (DCMD_OK); 327 } 328 329 #define PG_NEWEST 0x0001 330 #define PG_OLDEST 0x0002 331 #define PG_PIPE_OUT 0x0004 332 #define PG_EXACT_MATCH 0x0008 333 334 typedef struct pgrep_data { 335 uint_t pg_flags; 336 uint_t pg_psflags; 337 uintptr_t pg_xaddr; 338 hrtime_t pg_xstart; 339 const char *pg_pat; 340 #ifndef _KMDB 341 regex_t pg_reg; 342 #endif 343 } pgrep_data_t; 344 345 /*ARGSUSED*/ 346 static int 347 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 348 { 349 const proc_t *prp = pdata; 350 pgrep_data_t *pgp = data; 351 #ifndef _KMDB 352 regmatch_t pmatch; 353 #endif 354 355 /* 356 * kmdb doesn't have access to the reg* functions, so we fall back 357 * to strstr/strcmp. 358 */ 359 #ifdef _KMDB 360 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 361 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 362 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 363 return (WALK_NEXT); 364 #else 365 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 366 return (WALK_NEXT); 367 368 if ((pgp->pg_flags & PG_EXACT_MATCH) && 369 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 370 return (WALK_NEXT); 371 #endif 372 373 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 374 hrtime_t start; 375 376 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 377 prp->p_user.u_start.tv_nsec; 378 379 if (pgp->pg_flags & PG_NEWEST) { 380 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 381 pgp->pg_xaddr = addr; 382 pgp->pg_xstart = start; 383 } 384 } else { 385 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 386 pgp->pg_xaddr = addr; 387 pgp->pg_xstart = start; 388 } 389 } 390 391 } else if (pgp->pg_flags & PG_PIPE_OUT) { 392 mdb_printf("%p\n", addr); 393 394 } else { 395 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 396 mdb_warn("can't invoke 'ps'"); 397 return (WALK_DONE); 398 } 399 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 400 } 401 402 return (WALK_NEXT); 403 } 404 405 /*ARGSUSED*/ 406 int 407 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 408 { 409 pgrep_data_t pg; 410 int i; 411 #ifndef _KMDB 412 int err; 413 #endif 414 415 if (flags & DCMD_ADDRSPEC) 416 return (DCMD_USAGE); 417 418 pg.pg_flags = 0; 419 pg.pg_xaddr = 0; 420 421 i = mdb_getopts(argc, argv, 422 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 423 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 424 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 425 NULL); 426 427 argc -= i; 428 argv += i; 429 430 if (argc != 1) 431 return (DCMD_USAGE); 432 433 /* 434 * -n and -o are mutually exclusive. 435 */ 436 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 437 return (DCMD_USAGE); 438 439 if (argv->a_type != MDB_TYPE_STRING) 440 return (DCMD_USAGE); 441 442 if (flags & DCMD_PIPE_OUT) 443 pg.pg_flags |= PG_PIPE_OUT; 444 445 pg.pg_pat = argv->a_un.a_str; 446 if (DCMD_HDRSPEC(flags)) 447 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 448 else 449 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 450 451 #ifndef _KMDB 452 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 453 size_t nbytes; 454 char *buf; 455 456 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 457 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 458 (void) regerror(err, &pg.pg_reg, buf, nbytes); 459 mdb_warn("%s\n", buf); 460 461 return (DCMD_ERR); 462 } 463 #endif 464 465 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 466 mdb_warn("can't walk 'proc'"); 467 return (DCMD_ERR); 468 } 469 470 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 471 if (pg.pg_flags & PG_PIPE_OUT) { 472 mdb_printf("%p\n", pg.pg_xaddr); 473 } else { 474 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 475 0, NULL) != 0) { 476 mdb_warn("can't invoke 'ps'"); 477 return (DCMD_ERR); 478 } 479 } 480 } 481 482 return (DCMD_OK); 483 } 484 485 int 486 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 487 { 488 task_t tk; 489 kproject_t pj; 490 491 if (!(flags & DCMD_ADDRSPEC)) { 492 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 493 mdb_warn("can't walk task_cache"); 494 return (DCMD_ERR); 495 } 496 return (DCMD_OK); 497 } 498 if (DCMD_HDRSPEC(flags)) { 499 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 500 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 501 } 502 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 503 mdb_warn("can't read task_t structure at %p", addr); 504 return (DCMD_ERR); 505 } 506 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 507 mdb_warn("can't read project_t structure at %p", addr); 508 return (DCMD_ERR); 509 } 510 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 511 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 512 tk.tk_flags); 513 return (DCMD_OK); 514 } 515 516 int 517 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 518 { 519 kproject_t pj; 520 521 if (!(flags & DCMD_ADDRSPEC)) { 522 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 523 mdb_warn("can't walk projects"); 524 return (DCMD_ERR); 525 } 526 return (DCMD_OK); 527 } 528 if (DCMD_HDRSPEC(flags)) { 529 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 530 "ADDR", "PROJID", "ZONEID", "REFCNT"); 531 } 532 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 533 mdb_warn("can't read kproject_t structure at %p", addr); 534 return (DCMD_ERR); 535 } 536 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 537 pj.kpj_count); 538 return (DCMD_OK); 539 } 540 541 /* walk callouts themselves, either by list or id hash. */ 542 int 543 callout_walk_init(mdb_walk_state_t *wsp) 544 { 545 if (wsp->walk_addr == NULL) { 546 mdb_warn("callout doesn't support global walk"); 547 return (WALK_ERR); 548 } 549 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 550 return (WALK_NEXT); 551 } 552 553 #define CALLOUT_WALK_BYLIST 0 554 #define CALLOUT_WALK_BYID 1 555 556 /* the walker arg switches between walking by list (0) and walking by id (1). */ 557 int 558 callout_walk_step(mdb_walk_state_t *wsp) 559 { 560 int retval; 561 562 if (wsp->walk_addr == NULL) { 563 return (WALK_DONE); 564 } 565 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 566 wsp->walk_addr) == -1) { 567 mdb_warn("failed to read callout at %p", wsp->walk_addr); 568 return (WALK_DONE); 569 } 570 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 571 wsp->walk_cbdata); 572 573 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 574 wsp->walk_addr = 575 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 576 } else { 577 wsp->walk_addr = 578 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 579 } 580 581 return (retval); 582 } 583 584 void 585 callout_walk_fini(mdb_walk_state_t *wsp) 586 { 587 mdb_free(wsp->walk_data, sizeof (callout_t)); 588 } 589 590 /* 591 * walker for callout lists. This is different from hashes and callouts. 592 * Thankfully, it's also simpler. 593 */ 594 int 595 callout_list_walk_init(mdb_walk_state_t *wsp) 596 { 597 if (wsp->walk_addr == NULL) { 598 mdb_warn("callout list doesn't support global walk"); 599 return (WALK_ERR); 600 } 601 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 602 return (WALK_NEXT); 603 } 604 605 int 606 callout_list_walk_step(mdb_walk_state_t *wsp) 607 { 608 int retval; 609 610 if (wsp->walk_addr == NULL) { 611 return (WALK_DONE); 612 } 613 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 614 wsp->walk_addr) != sizeof (callout_list_t)) { 615 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 616 return (WALK_ERR); 617 } 618 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 619 wsp->walk_cbdata); 620 621 wsp->walk_addr = (uintptr_t) 622 (((callout_list_t *)wsp->walk_data)->cl_next); 623 624 return (retval); 625 } 626 627 void 628 callout_list_walk_fini(mdb_walk_state_t *wsp) 629 { 630 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 631 } 632 633 /* routines/structs to walk callout table(s) */ 634 typedef struct cot_data { 635 callout_table_t *ct0; 636 callout_table_t ct; 637 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 638 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 639 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 640 int cotndx; 641 int cotsize; 642 } cot_data_t; 643 644 int 645 callout_table_walk_init(mdb_walk_state_t *wsp) 646 { 647 int max_ncpus; 648 cot_data_t *cot_walk_data; 649 650 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 651 652 if (wsp->walk_addr == NULL) { 653 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 654 mdb_warn("failed to read 'callout_table'"); 655 return (WALK_ERR); 656 } 657 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 658 mdb_warn("failed to get callout_table array size"); 659 return (WALK_ERR); 660 } 661 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 662 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 663 } else { 664 /* not a global walk */ 665 cot_walk_data->cotsize = 1; 666 } 667 668 cot_walk_data->cotndx = 0; 669 wsp->walk_data = cot_walk_data; 670 671 return (WALK_NEXT); 672 } 673 674 int 675 callout_table_walk_step(mdb_walk_state_t *wsp) 676 { 677 int retval; 678 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 679 size_t size; 680 681 if (cotwd->cotndx >= cotwd->cotsize) { 682 return (WALK_DONE); 683 } 684 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 685 wsp->walk_addr) != sizeof (callout_table_t)) { 686 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 687 return (WALK_ERR); 688 } 689 690 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 691 if (cotwd->ct.ct_idhash != NULL) { 692 if (mdb_vread(cotwd->cot_idhash, size, 693 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 694 mdb_warn("failed to read id_hash at %p", 695 cotwd->ct.ct_idhash); 696 return (WALK_ERR); 697 } 698 } 699 if (cotwd->ct.ct_clhash != NULL) { 700 if (mdb_vread(&(cotwd->cot_clhash), size, 701 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 702 mdb_warn("failed to read cl_hash at %p", 703 cotwd->ct.ct_clhash); 704 return (WALK_ERR); 705 } 706 } 707 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 708 if (cotwd->ct.ct_kstat_data != NULL) { 709 if (mdb_vread(&(cotwd->ct_kstat_data), size, 710 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 711 mdb_warn("failed to read kstats at %p", 712 cotwd->ct.ct_kstat_data); 713 return (WALK_ERR); 714 } 715 } 716 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 717 wsp->walk_cbdata); 718 719 cotwd->cotndx++; 720 if (cotwd->cotndx >= cotwd->cotsize) { 721 return (WALK_DONE); 722 } 723 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 724 sizeof (callout_table_t)); 725 726 return (retval); 727 } 728 729 void 730 callout_table_walk_fini(mdb_walk_state_t *wsp) 731 { 732 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 733 } 734 735 static const char *co_typenames[] = { "R", "N" }; 736 737 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 738 739 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 740 741 /* callout flags, in no particular order */ 742 #define COF_REAL 0x00000001 743 #define COF_NORM 0x00000002 744 #define COF_LONG 0x00000004 745 #define COF_SHORT 0x00000008 746 #define COF_EMPTY 0x00000010 747 #define COF_TIME 0x00000020 748 #define COF_BEFORE 0x00000040 749 #define COF_AFTER 0x00000080 750 #define COF_SEQID 0x00000100 751 #define COF_FUNC 0x00000200 752 #define COF_ADDR 0x00000400 753 #define COF_EXEC 0x00000800 754 #define COF_HIRES 0x00001000 755 #define COF_ABS 0x00002000 756 #define COF_TABLE 0x00004000 757 #define COF_BYIDH 0x00008000 758 #define COF_FREE 0x00010000 759 #define COF_LIST 0x00020000 760 #define COF_EXPREL 0x00040000 761 #define COF_HDR 0x00080000 762 #define COF_VERBOSE 0x00100000 763 #define COF_LONGLIST 0x00200000 764 #define COF_THDR 0x00400000 765 #define COF_LHDR 0x00800000 766 #define COF_CHDR 0x01000000 767 #define COF_PARAM 0x02000000 768 #define COF_DECODE 0x04000000 769 #define COF_HEAP 0x08000000 770 #define COF_QUEUE 0x10000000 771 772 /* show real and normal, short and long, expired and unexpired. */ 773 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 774 775 #define COF_LIST_FLAGS \ 776 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 777 778 /* private callout data for callback functions */ 779 typedef struct callout_data { 780 uint_t flags; /* COF_* */ 781 cpu_t *cpu; /* cpu pointer if given */ 782 int seqid; /* cpu seqid, or -1 */ 783 hrtime_t time; /* expiration time value */ 784 hrtime_t atime; /* expiration before value */ 785 hrtime_t btime; /* expiration after value */ 786 uintptr_t funcaddr; /* function address or NULL */ 787 uintptr_t param; /* parameter to function or NULL */ 788 hrtime_t now; /* current system time */ 789 int nsec_per_tick; /* for conversions */ 790 ulong_t ctbits; /* for decoding xid */ 791 callout_table_t *co_table; /* top of callout table array */ 792 int ndx; /* table index. */ 793 int bucket; /* which list/id bucket are we in */ 794 hrtime_t exp; /* expire time */ 795 int list_flags; /* copy of cl_flags */ 796 } callout_data_t; 797 798 /* this callback does the actual callback itself (finally). */ 799 /*ARGSUSED*/ 800 static int 801 callouts_cb(uintptr_t addr, const void *data, void *priv) 802 { 803 callout_data_t *coargs = (callout_data_t *)priv; 804 callout_t *co = (callout_t *)data; 805 int tableid, list_flags; 806 callout_id_t coid; 807 808 if ((coargs == NULL) || (co == NULL)) { 809 return (WALK_ERR); 810 } 811 812 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 813 /* 814 * The callout must have been reallocated. No point in 815 * walking any more. 816 */ 817 return (WALK_DONE); 818 } 819 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 820 /* 821 * The callout must have been freed. No point in 822 * walking any more. 823 */ 824 return (WALK_DONE); 825 } 826 if ((coargs->flags & COF_FUNC) && 827 (coargs->funcaddr != (uintptr_t)co->c_func)) { 828 return (WALK_NEXT); 829 } 830 if ((coargs->flags & COF_PARAM) && 831 (coargs->param != (uintptr_t)co->c_arg)) { 832 return (WALK_NEXT); 833 } 834 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 835 return (WALK_NEXT); 836 } 837 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 838 return (WALK_NEXT); 839 } 840 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 841 return (WALK_NEXT); 842 } 843 /* it is possible we don't have the exp time or flags */ 844 if (coargs->flags & COF_BYIDH) { 845 if (!(coargs->flags & COF_FREE)) { 846 /* we have to fetch the expire time ourselves. */ 847 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 848 (uintptr_t)co->c_list + offsetof(callout_list_t, 849 cl_expiration)) == -1) { 850 mdb_warn("failed to read expiration " 851 "time from %p", co->c_list); 852 coargs->exp = 0; 853 } 854 /* and flags. */ 855 if (mdb_vread(&coargs->list_flags, sizeof (int), 856 (uintptr_t)co->c_list + offsetof(callout_list_t, 857 cl_flags)) == -1) { 858 mdb_warn("failed to read list flags" 859 "from %p", co->c_list); 860 coargs->list_flags = 0; 861 } 862 } else { 863 /* free callouts can't use list pointer. */ 864 coargs->exp = 0; 865 coargs->list_flags = 0; 866 } 867 if (coargs->exp != 0) { 868 if ((coargs->flags & COF_TIME) && 869 (coargs->exp != coargs->time)) { 870 return (WALK_NEXT); 871 } 872 if ((coargs->flags & COF_BEFORE) && 873 (coargs->exp > coargs->btime)) { 874 return (WALK_NEXT); 875 } 876 if ((coargs->flags & COF_AFTER) && 877 (coargs->exp < coargs->atime)) { 878 return (WALK_NEXT); 879 } 880 } 881 /* tricky part, since both HIRES and ABS can be set */ 882 list_flags = coargs->list_flags; 883 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 884 /* both flags are set, only skip "regular" ones */ 885 if (! (list_flags & COF_LIST_FLAGS)) { 886 return (WALK_NEXT); 887 } 888 } else { 889 /* individual flags, or no flags */ 890 if ((coargs->flags & COF_HIRES) && 891 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 892 return (WALK_NEXT); 893 } 894 if ((coargs->flags & COF_ABS) && 895 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 896 return (WALK_NEXT); 897 } 898 } 899 /* 900 * We do the checks for COF_HEAP and COF_QUEUE here only if we 901 * are traversing BYIDH. If the traversal is by callout list, 902 * we do this check in callout_list_cb() to be more 903 * efficient. 904 */ 905 if ((coargs->flags & COF_HEAP) && 906 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 907 return (WALK_NEXT); 908 } 909 910 if ((coargs->flags & COF_QUEUE) && 911 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 912 return (WALK_NEXT); 913 } 914 } 915 916 #define callout_table_mask ((1 << coargs->ctbits) - 1) 917 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 918 #undef callout_table_mask 919 coid = CO_PLAIN_ID(co->c_xid); 920 921 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 922 /* 923 * We need to print the headers. If walking by id, then 924 * the list header isn't printed, so we must include 925 * that info here. 926 */ 927 if (!(coargs->flags & COF_VERBOSE)) { 928 mdb_printf("%<u>%3s %-1s %-14s %</u>", 929 "SEQ", "T", "EXP"); 930 } else if (coargs->flags & COF_BYIDH) { 931 mdb_printf("%<u>%-14s %</u>", "EXP"); 932 } 933 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 934 "XHAL", "XID", "FUNC(ARG)"); 935 if (coargs->flags & COF_LONGLIST) { 936 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 937 "PREVID", "NEXTID", "PREVL", "NEXTL"); 938 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 939 "DONE", "UTOS", "THREAD"); 940 } 941 mdb_printf("\n"); 942 coargs->flags &= ~COF_CHDR; 943 coargs->flags |= (COF_THDR | COF_LHDR); 944 } 945 946 if (!(coargs->flags & COF_ADDR)) { 947 if (!(coargs->flags & COF_VERBOSE)) { 948 mdb_printf("%-3d %1s %-14llx ", 949 TABLE_TO_SEQID(tableid), 950 co_typenames[tableid & CALLOUT_TYPE_MASK], 951 (coargs->flags & COF_EXPREL) ? 952 coargs->exp - coargs->now : coargs->exp); 953 } else if (coargs->flags & COF_BYIDH) { 954 mdb_printf("%-14x ", 955 (coargs->flags & COF_EXPREL) ? 956 coargs->exp - coargs->now : coargs->exp); 957 } 958 list_flags = coargs->list_flags; 959 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 960 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 961 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 962 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 963 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 964 (long long)coid, co->c_func, co->c_arg); 965 if (coargs->flags & COF_LONGLIST) { 966 mdb_printf(" %-?p %-?p %-?p %-?p", 967 co->c_idprev, co->c_idnext, co->c_clprev, 968 co->c_clnext); 969 mdb_printf(" %-?p %-4d %-0?p", 970 co->c_done, co->c_waiting, co->c_executor); 971 } 972 } else { 973 /* address only */ 974 mdb_printf("%-0p", addr); 975 } 976 mdb_printf("\n"); 977 return (WALK_NEXT); 978 } 979 980 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 981 /*ARGSUSED*/ 982 static int 983 callout_list_cb(uintptr_t addr, const void *data, void *priv) 984 { 985 callout_data_t *coargs = (callout_data_t *)priv; 986 callout_list_t *cl = (callout_list_t *)data; 987 callout_t *coptr; 988 int list_flags; 989 990 if ((coargs == NULL) || (cl == NULL)) { 991 return (WALK_ERR); 992 } 993 994 coargs->exp = cl->cl_expiration; 995 coargs->list_flags = cl->cl_flags; 996 if ((coargs->flags & COF_FREE) && 997 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 998 /* 999 * The callout list must have been reallocated. No point in 1000 * walking any more. 1001 */ 1002 return (WALK_DONE); 1003 } 1004 if (!(coargs->flags & COF_FREE) && 1005 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1006 /* 1007 * The callout list must have been freed. No point in 1008 * walking any more. 1009 */ 1010 return (WALK_DONE); 1011 } 1012 if ((coargs->flags & COF_TIME) && 1013 (cl->cl_expiration != coargs->time)) { 1014 return (WALK_NEXT); 1015 } 1016 if ((coargs->flags & COF_BEFORE) && 1017 (cl->cl_expiration > coargs->btime)) { 1018 return (WALK_NEXT); 1019 } 1020 if ((coargs->flags & COF_AFTER) && 1021 (cl->cl_expiration < coargs->atime)) { 1022 return (WALK_NEXT); 1023 } 1024 if (!(coargs->flags & COF_EMPTY) && 1025 (cl->cl_callouts.ch_head == NULL)) { 1026 return (WALK_NEXT); 1027 } 1028 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 1029 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1030 /* both flags are set, only skip "regular" ones */ 1031 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 1032 return (WALK_NEXT); 1033 } 1034 } else { 1035 if ((coargs->flags & COF_HIRES) && 1036 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1037 return (WALK_NEXT); 1038 } 1039 if ((coargs->flags & COF_ABS) && 1040 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1041 return (WALK_NEXT); 1042 } 1043 } 1044 1045 if ((coargs->flags & COF_HEAP) && 1046 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1047 return (WALK_NEXT); 1048 } 1049 1050 if ((coargs->flags & COF_QUEUE) && 1051 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1052 return (WALK_NEXT); 1053 } 1054 1055 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 1056 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 1057 if (!(coargs->flags & COF_VERBOSE)) { 1058 /* don't be redundant again */ 1059 mdb_printf("%<u>SEQ T %</u>"); 1060 } 1061 mdb_printf("%<u>EXP HA BUCKET " 1062 "CALLOUTS %</u>"); 1063 1064 if (coargs->flags & COF_LONGLIST) { 1065 mdb_printf("%<u> %-?s %-?s%</u>", 1066 "PREV", "NEXT"); 1067 } 1068 mdb_printf("\n"); 1069 coargs->flags &= ~COF_LHDR; 1070 coargs->flags |= (COF_THDR | COF_CHDR); 1071 } 1072 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 1073 if (!(coargs->flags & COF_ADDR)) { 1074 if (!(coargs->flags & COF_VERBOSE)) { 1075 mdb_printf("%3d %1s ", 1076 TABLE_TO_SEQID(coargs->ndx), 1077 co_typenames[coargs->ndx & 1078 CALLOUT_TYPE_MASK]); 1079 } 1080 1081 list_flags = coargs->list_flags; 1082 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 1083 (coargs->flags & COF_EXPREL) ? 1084 coargs->exp - coargs->now : coargs->exp, 1085 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1086 "H" : " ", 1087 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1088 "A" : " ", 1089 coargs->bucket, cl->cl_callouts.ch_head); 1090 1091 if (coargs->flags & COF_LONGLIST) { 1092 mdb_printf(" %-?p %-?p", 1093 cl->cl_prev, cl->cl_next); 1094 } 1095 } else { 1096 /* address only */ 1097 mdb_printf("%-0p", addr); 1098 } 1099 mdb_printf("\n"); 1100 if (coargs->flags & COF_LIST) { 1101 return (WALK_NEXT); 1102 } 1103 } 1104 /* yet another layer as we walk the actual callouts via list. */ 1105 if (cl->cl_callouts.ch_head == NULL) { 1106 return (WALK_NEXT); 1107 } 1108 /* free list structures do not have valid callouts off of them. */ 1109 if (coargs->flags & COF_FREE) { 1110 return (WALK_NEXT); 1111 } 1112 coptr = (callout_t *)cl->cl_callouts.ch_head; 1113 1114 if (coargs->flags & COF_VERBOSE) { 1115 mdb_inc_indent(4); 1116 } 1117 /* 1118 * walk callouts using yet another callback routine. 1119 * we use callouts_bytime because id hash is handled via 1120 * the callout_t_cb callback. 1121 */ 1122 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1123 (uintptr_t)coptr) == -1) { 1124 mdb_warn("cannot walk callouts at %p", coptr); 1125 return (WALK_ERR); 1126 } 1127 if (coargs->flags & COF_VERBOSE) { 1128 mdb_dec_indent(4); 1129 } 1130 1131 return (WALK_NEXT); 1132 } 1133 1134 /* this callback handles the details of callout table walking. */ 1135 static int 1136 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1137 { 1138 callout_data_t *coargs = (callout_data_t *)priv; 1139 cot_data_t *cotwd = (cot_data_t *)data; 1140 callout_table_t *ct = &(cotwd->ct); 1141 int index, seqid, cotype; 1142 int i; 1143 callout_list_t *clptr; 1144 callout_t *coptr; 1145 1146 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1147 return (WALK_ERR); 1148 } 1149 1150 index = ((char *)addr - (char *)coargs->co_table) / 1151 sizeof (callout_table_t); 1152 cotype = index & CALLOUT_TYPE_MASK; 1153 seqid = TABLE_TO_SEQID(index); 1154 1155 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1156 return (WALK_NEXT); 1157 } 1158 1159 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1160 return (WALK_NEXT); 1161 } 1162 1163 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1164 return (WALK_NEXT); 1165 } 1166 1167 if (!(coargs->flags & COF_EMPTY) && ( 1168 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 1169 return (WALK_NEXT); 1170 } 1171 1172 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1173 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1174 /* print table hdr */ 1175 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1176 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1177 coargs->flags &= ~COF_THDR; 1178 coargs->flags |= (COF_LHDR | COF_CHDR); 1179 if (coargs->flags & COF_LONGLIST) { 1180 /* more info! */ 1181 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1182 " %-?s %-?s %-?s%</u>", 1183 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1184 "PEND", "FREE", "LOCK"); 1185 } 1186 mdb_printf("\n"); 1187 } 1188 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1189 if (!(coargs->flags & COF_ADDR)) { 1190 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1191 seqid, co_typenames[cotype], 1192 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1193 ct->ct_heap); 1194 if (coargs->flags & COF_LONGLIST) { 1195 /* more info! */ 1196 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1197 " %-?lld %-?lld %-?p", 1198 ct->ct_heap_num, ct->ct_heap_max, 1199 ct->ct_taskq, ct->ct_expired.ch_head, 1200 ct->ct_queue.ch_head, 1201 cotwd->ct_timeouts_pending, 1202 cotwd->ct_allocations - 1203 cotwd->ct_timeouts_pending, 1204 ct->ct_mutex); 1205 } 1206 } else { 1207 /* address only */ 1208 mdb_printf("%-0?p", addr); 1209 } 1210 mdb_printf("\n"); 1211 if (coargs->flags & COF_TABLE) { 1212 return (WALK_NEXT); 1213 } 1214 } 1215 1216 coargs->ndx = index; 1217 if (coargs->flags & COF_VERBOSE) { 1218 mdb_inc_indent(4); 1219 } 1220 /* keep digging. */ 1221 if (!(coargs->flags & COF_BYIDH)) { 1222 /* walk the list hash table */ 1223 if (coargs->flags & COF_FREE) { 1224 clptr = ct->ct_lfree; 1225 coargs->bucket = 0; 1226 if (clptr == NULL) { 1227 return (WALK_NEXT); 1228 } 1229 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1230 (uintptr_t)clptr) == -1) { 1231 mdb_warn("cannot walk callout free list at %p", 1232 clptr); 1233 return (WALK_ERR); 1234 } 1235 } else { 1236 /* first print the expired list. */ 1237 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1238 if (clptr != NULL) { 1239 coargs->bucket = -1; 1240 if (mdb_pwalk("callout_list", callout_list_cb, 1241 coargs, (uintptr_t)clptr) == -1) { 1242 mdb_warn("cannot walk callout_list" 1243 " at %p", clptr); 1244 return (WALK_ERR); 1245 } 1246 } 1247 /* then, print the callout queue */ 1248 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1249 if (clptr != NULL) { 1250 coargs->bucket = -1; 1251 if (mdb_pwalk("callout_list", callout_list_cb, 1252 coargs, (uintptr_t)clptr) == -1) { 1253 mdb_warn("cannot walk callout_list" 1254 " at %p", clptr); 1255 return (WALK_ERR); 1256 } 1257 } 1258 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1259 if (ct->ct_clhash == NULL) { 1260 /* nothing to do */ 1261 break; 1262 } 1263 if (cotwd->cot_clhash[i].ch_head == NULL) { 1264 continue; 1265 } 1266 clptr = (callout_list_t *) 1267 cotwd->cot_clhash[i].ch_head; 1268 coargs->bucket = i; 1269 /* walk list with callback routine. */ 1270 if (mdb_pwalk("callout_list", callout_list_cb, 1271 coargs, (uintptr_t)clptr) == -1) { 1272 mdb_warn("cannot walk callout_list" 1273 " at %p", clptr); 1274 return (WALK_ERR); 1275 } 1276 } 1277 } 1278 } else { 1279 /* walk the id hash table. */ 1280 if (coargs->flags & COF_FREE) { 1281 coptr = ct->ct_free; 1282 coargs->bucket = 0; 1283 if (coptr == NULL) { 1284 return (WALK_NEXT); 1285 } 1286 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1287 (uintptr_t)coptr) == -1) { 1288 mdb_warn("cannot walk callout id free list" 1289 " at %p", coptr); 1290 return (WALK_ERR); 1291 } 1292 } else { 1293 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1294 if (ct->ct_idhash == NULL) { 1295 break; 1296 } 1297 coptr = (callout_t *) 1298 cotwd->cot_idhash[i].ch_head; 1299 if (coptr == NULL) { 1300 continue; 1301 } 1302 coargs->bucket = i; 1303 1304 /* 1305 * walk callouts directly by id. For id 1306 * chain, the callout list is just a header, 1307 * so there's no need to walk it. 1308 */ 1309 if (mdb_pwalk("callouts_byid", callouts_cb, 1310 coargs, (uintptr_t)coptr) == -1) { 1311 mdb_warn("cannot walk callouts at %p", 1312 coptr); 1313 return (WALK_ERR); 1314 } 1315 } 1316 } 1317 } 1318 if (coargs->flags & COF_VERBOSE) { 1319 mdb_dec_indent(4); 1320 } 1321 return (WALK_NEXT); 1322 } 1323 1324 /* 1325 * initialize some common info for both callout dcmds. 1326 */ 1327 int 1328 callout_common_init(callout_data_t *coargs) 1329 { 1330 /* we need a couple of things */ 1331 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1332 mdb_warn("failed to read 'callout_table'"); 1333 return (DCMD_ERR); 1334 } 1335 /* need to get now in nsecs. Approximate with hrtime vars */ 1336 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1337 sizeof (hrtime_t)) { 1338 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1339 "hrtime_base") != sizeof (hrtime_t)) { 1340 mdb_warn("Could not determine current system time"); 1341 return (DCMD_ERR); 1342 } 1343 } 1344 1345 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1346 mdb_warn("failed to read 'callout_table_bits'"); 1347 return (DCMD_ERR); 1348 } 1349 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1350 mdb_warn("failed to read 'nsec_per_tick'"); 1351 return (DCMD_ERR); 1352 } 1353 return (DCMD_OK); 1354 } 1355 1356 /* 1357 * dcmd to print callouts. Optional addr limits to specific table. 1358 * Parses lots of options that get passed to callbacks for walkers. 1359 * Has it's own help function. 1360 */ 1361 /*ARGSUSED*/ 1362 int 1363 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1364 { 1365 callout_data_t coargs; 1366 /* getopts doesn't help much with stuff like this */ 1367 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1368 char *funcname = NULL; 1369 char *paramstr = NULL; 1370 uintptr_t Stmp, Ctmp; /* for getopt. */ 1371 int retval; 1372 1373 coargs.flags = COF_DEFAULT; 1374 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1375 coargs.seqid = -1; 1376 1377 if (mdb_getopts(argc, argv, 1378 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1379 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1380 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1381 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1382 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1383 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1384 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1385 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1386 'd', MDB_OPT_SETBITS, 1, &dflag, 1387 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1388 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1389 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1390 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1391 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1392 'k', MDB_OPT_SETBITS, 1, &kflag, 1393 'f', MDB_OPT_STR, &funcname, 1394 'p', MDB_OPT_STR, ¶mstr, 1395 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1396 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1397 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1398 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1399 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1400 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1401 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1402 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1403 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1404 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1405 NULL) != argc) { 1406 return (DCMD_USAGE); 1407 } 1408 1409 /* initialize from kernel variables */ 1410 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1411 return (retval); 1412 } 1413 1414 /* do some option post-processing */ 1415 if (kflag) { 1416 coargs.time *= coargs.nsec_per_tick; 1417 coargs.atime *= coargs.nsec_per_tick; 1418 coargs.btime *= coargs.nsec_per_tick; 1419 } 1420 1421 if (dflag) { 1422 coargs.time += coargs.now; 1423 coargs.atime += coargs.now; 1424 coargs.btime += coargs.now; 1425 } 1426 if (Sflag) { 1427 if (flags & DCMD_ADDRSPEC) { 1428 mdb_printf("-S option conflicts with explicit" 1429 " address\n"); 1430 return (DCMD_USAGE); 1431 } 1432 coargs.flags |= COF_SEQID; 1433 coargs.seqid = (int)Stmp; 1434 } 1435 if (Cflag) { 1436 if (flags & DCMD_ADDRSPEC) { 1437 mdb_printf("-C option conflicts with explicit" 1438 " address\n"); 1439 return (DCMD_USAGE); 1440 } 1441 if (coargs.flags & COF_SEQID) { 1442 mdb_printf("-C and -S are mutually exclusive\n"); 1443 return (DCMD_USAGE); 1444 } 1445 coargs.cpu = (cpu_t *)Ctmp; 1446 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1447 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1448 mdb_warn("failed to read cpu_t at %p", Ctmp); 1449 return (DCMD_ERR); 1450 } 1451 coargs.flags |= COF_SEQID; 1452 } 1453 /* avoid null outputs. */ 1454 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1455 coargs.flags |= COF_REAL | COF_NORM; 1456 } 1457 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1458 coargs.flags |= COF_LONG | COF_SHORT; 1459 } 1460 if (tflag) { 1461 if (aflag || bflag) { 1462 mdb_printf("-t and -a|b are mutually exclusive\n"); 1463 return (DCMD_USAGE); 1464 } 1465 coargs.flags |= COF_TIME; 1466 } 1467 if (aflag) { 1468 coargs.flags |= COF_AFTER; 1469 } 1470 if (bflag) { 1471 coargs.flags |= COF_BEFORE; 1472 } 1473 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1474 mdb_printf("value for -a must be earlier than the value" 1475 " for -b.\n"); 1476 return (DCMD_USAGE); 1477 } 1478 1479 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1480 mdb_printf("-H and -Q are mutually exclusive\n"); 1481 return (DCMD_USAGE); 1482 } 1483 1484 if (funcname != NULL) { 1485 GElf_Sym sym; 1486 1487 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1488 coargs.funcaddr = mdb_strtoull(funcname); 1489 } else { 1490 coargs.funcaddr = sym.st_value; 1491 } 1492 coargs.flags |= COF_FUNC; 1493 } 1494 1495 if (paramstr != NULL) { 1496 GElf_Sym sym; 1497 1498 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1499 coargs.param = mdb_strtoull(paramstr); 1500 } else { 1501 coargs.param = sym.st_value; 1502 } 1503 coargs.flags |= COF_PARAM; 1504 } 1505 1506 if (!(flags & DCMD_ADDRSPEC)) { 1507 /* don't pass "dot" if no addr. */ 1508 addr = NULL; 1509 } 1510 if (addr != NULL) { 1511 /* 1512 * a callout table was specified. Ignore -r|n option 1513 * to avoid null output. 1514 */ 1515 coargs.flags |= (COF_REAL | COF_NORM); 1516 } 1517 1518 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1519 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1520 } 1521 if (coargs.flags & COF_FREE) { 1522 coargs.flags |= COF_EMPTY; 1523 /* -F = free callouts, -FL = free lists */ 1524 if (!(coargs.flags & COF_LIST)) { 1525 coargs.flags |= COF_BYIDH; 1526 } 1527 } 1528 1529 /* walk table, using specialized callback routine. */ 1530 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1531 mdb_warn("cannot walk callout_table"); 1532 return (DCMD_ERR); 1533 } 1534 return (DCMD_OK); 1535 } 1536 1537 1538 /* 1539 * Given an extended callout id, dump its information. 1540 */ 1541 /*ARGSUSED*/ 1542 int 1543 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1544 { 1545 callout_data_t coargs; 1546 callout_table_t *ctptr; 1547 callout_table_t ct; 1548 callout_id_t coid; 1549 callout_t *coptr; 1550 int tableid; 1551 callout_id_t xid; 1552 ulong_t idhash; 1553 int i, retval; 1554 const mdb_arg_t *arg; 1555 size_t size; 1556 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1557 1558 coargs.flags = COF_DEFAULT | COF_BYIDH; 1559 i = mdb_getopts(argc, argv, 1560 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1561 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1562 NULL); 1563 argc -= i; 1564 argv += i; 1565 1566 if (argc != 1) { 1567 return (DCMD_USAGE); 1568 } 1569 arg = &argv[0]; 1570 1571 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1572 xid = arg->a_un.a_val; 1573 } else { 1574 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1575 } 1576 1577 if (DCMD_HDRSPEC(flags)) { 1578 coargs.flags |= COF_CHDR; 1579 } 1580 1581 1582 /* initialize from kernel variables */ 1583 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1584 return (retval); 1585 } 1586 1587 /* we must massage the environment so that the macros will play nice */ 1588 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1589 #define callout_table_bits coargs.ctbits 1590 #define nsec_per_tick coargs.nsec_per_tick 1591 tableid = CALLOUT_ID_TO_TABLE(xid); 1592 idhash = CALLOUT_IDHASH(xid); 1593 #undef callouts_table_bits 1594 #undef callout_table_mask 1595 #undef nsec_per_tick 1596 coid = CO_PLAIN_ID(xid); 1597 1598 if (flags & DCMD_ADDRSPEC) { 1599 mdb_printf("calloutid does not accept explicit address.\n"); 1600 return (DCMD_USAGE); 1601 } 1602 1603 if (coargs.flags & COF_DECODE) { 1604 if (DCMD_HDRSPEC(flags)) { 1605 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1606 "SEQ", "T", "XL", "XID", "IDHASH"); 1607 } 1608 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1609 TABLE_TO_SEQID(tableid), 1610 co_typenames[tableid & CALLOUT_TYPE_MASK], 1611 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1612 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1613 (long long)coid, idhash); 1614 return (DCMD_OK); 1615 } 1616 1617 /* get our table. Note this relies on the types being correct */ 1618 ctptr = coargs.co_table + tableid; 1619 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1620 mdb_warn("failed to read callout_table at %p", ctptr); 1621 return (DCMD_ERR); 1622 } 1623 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1624 if (ct.ct_idhash != NULL) { 1625 if (mdb_vread(&(cot_idhash), size, 1626 (uintptr_t)ct.ct_idhash) == -1) { 1627 mdb_warn("failed to read id_hash at %p", 1628 ct.ct_idhash); 1629 return (WALK_ERR); 1630 } 1631 } 1632 1633 /* callout at beginning of hash chain */ 1634 if (ct.ct_idhash == NULL) { 1635 mdb_printf("id hash chain for this xid is empty\n"); 1636 return (DCMD_ERR); 1637 } 1638 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1639 if (coptr == NULL) { 1640 mdb_printf("id hash chain for this xid is empty\n"); 1641 return (DCMD_ERR); 1642 } 1643 1644 coargs.ndx = tableid; 1645 coargs.bucket = idhash; 1646 1647 /* use the walker, luke */ 1648 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1649 (uintptr_t)coptr) == -1) { 1650 mdb_warn("cannot walk callouts at %p", coptr); 1651 return (WALK_ERR); 1652 } 1653 1654 return (DCMD_OK); 1655 } 1656 1657 void 1658 callout_help(void) 1659 { 1660 mdb_printf("callout: display callouts.\n" 1661 "Given a callout table address, display callouts from table.\n" 1662 "Without an address, display callouts from all tables.\n" 1663 "options:\n" 1664 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1665 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1666 " -x : limit display to callouts which are executing\n" 1667 " -h : limit display to callouts based on hrestime\n" 1668 " -B : limit display to callouts based on absolute time\n" 1669 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1670 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1671 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1672 " -d : interpret time option to -t|a|b as delta from current time\n" 1673 " -k : use ticks instead of nanoseconds as arguments to" 1674 " -t|a|b. Note that\n ticks are less accurate and may not" 1675 " match other tick times (ie: lbolt).\n" 1676 " -D : display exiration time as delta from current time\n" 1677 " -S seqid : limit display to callouts for this cpu sequence id\n" 1678 " -C addr : limit display to callouts for this cpu pointer\n" 1679 " -f name|addr : limit display to callouts with this function\n" 1680 " -p name|addr : limit display to callouts functions with this" 1681 " parameter\n" 1682 " -T : display the callout table itself, instead of callouts\n" 1683 " -L : display callout lists instead of callouts\n" 1684 " -E : with -T or L, display empty data structures.\n" 1685 " -i : traverse callouts by id hash instead of list hash\n" 1686 " -F : walk free callout list (free list with -i) instead\n" 1687 " -v : display more info for each item\n" 1688 " -V : show details of each level of info as it is traversed\n" 1689 " -H : limit display to callouts in the callout heap\n" 1690 " -Q : limit display to callouts in the callout queue\n" 1691 " -A : show only addresses. Useful for pipelines.\n"); 1692 } 1693 1694 void 1695 calloutid_help(void) 1696 { 1697 mdb_printf("calloutid: display callout by id.\n" 1698 "Given an extended callout id, display the callout infomation.\n" 1699 "options:\n" 1700 " -d : do not dereference callout, just decode the id.\n" 1701 " -v : verbose display more info about the callout\n"); 1702 } 1703 1704 /*ARGSUSED*/ 1705 int 1706 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1707 { 1708 long num_classes, i; 1709 sclass_t *class_tbl; 1710 GElf_Sym g_sclass; 1711 char class_name[PC_CLNMSZ]; 1712 size_t tbl_size; 1713 1714 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1715 mdb_warn("failed to find symbol sclass\n"); 1716 return (DCMD_ERR); 1717 } 1718 1719 tbl_size = (size_t)g_sclass.st_size; 1720 num_classes = tbl_size / (sizeof (sclass_t)); 1721 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1722 1723 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1724 mdb_warn("failed to read sclass"); 1725 return (DCMD_ERR); 1726 } 1727 1728 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1729 "INIT FCN", "CLASS FCN"); 1730 1731 for (i = 0; i < num_classes; i++) { 1732 if (mdb_vread(class_name, sizeof (class_name), 1733 (uintptr_t)class_tbl[i].cl_name) == -1) 1734 (void) strcpy(class_name, "???"); 1735 1736 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1737 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1738 } 1739 1740 return (DCMD_OK); 1741 } 1742 1743 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1744 1745 int 1746 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1747 { 1748 uintptr_t rootdir; 1749 vnode_t vn; 1750 char buf[MAXPATHLEN]; 1751 1752 uint_t opt_F = FALSE; 1753 1754 if (mdb_getopts(argc, argv, 1755 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1756 return (DCMD_USAGE); 1757 1758 if (!(flags & DCMD_ADDRSPEC)) { 1759 mdb_warn("expected explicit vnode_t address before ::\n"); 1760 return (DCMD_USAGE); 1761 } 1762 1763 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1764 mdb_warn("failed to read rootdir"); 1765 return (DCMD_ERR); 1766 } 1767 1768 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1769 return (DCMD_ERR); 1770 1771 if (*buf == '\0') { 1772 mdb_printf("??\n"); 1773 return (DCMD_OK); 1774 } 1775 1776 mdb_printf("%s", buf); 1777 if (opt_F && buf[strlen(buf)-1] != '/' && 1778 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1779 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1780 mdb_printf("\n"); 1781 1782 return (DCMD_OK); 1783 } 1784 1785 int 1786 ld_walk_init(mdb_walk_state_t *wsp) 1787 { 1788 wsp->walk_data = (void *)wsp->walk_addr; 1789 return (WALK_NEXT); 1790 } 1791 1792 int 1793 ld_walk_step(mdb_walk_state_t *wsp) 1794 { 1795 int status; 1796 lock_descriptor_t ld; 1797 1798 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1799 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1800 wsp->walk_addr); 1801 return (WALK_ERR); 1802 } 1803 1804 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1805 if (status == WALK_ERR) 1806 return (WALK_ERR); 1807 1808 wsp->walk_addr = (uintptr_t)ld.l_next; 1809 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1810 return (WALK_DONE); 1811 1812 return (status); 1813 } 1814 1815 int 1816 lg_walk_init(mdb_walk_state_t *wsp) 1817 { 1818 GElf_Sym sym; 1819 1820 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1821 mdb_warn("failed to find symbol 'lock_graph'\n"); 1822 return (WALK_ERR); 1823 } 1824 1825 wsp->walk_addr = (uintptr_t)sym.st_value; 1826 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1827 1828 return (WALK_NEXT); 1829 } 1830 1831 typedef struct lg_walk_data { 1832 uintptr_t startaddr; 1833 mdb_walk_cb_t callback; 1834 void *data; 1835 } lg_walk_data_t; 1836 1837 /* 1838 * We can't use ::walk lock_descriptor directly, because the head of each graph 1839 * is really a dummy lock. Rather than trying to dynamically determine if this 1840 * is a dummy node or not, we just filter out the initial element of the 1841 * list. 1842 */ 1843 static int 1844 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1845 { 1846 lg_walk_data_t *lw = priv; 1847 1848 if (addr != lw->startaddr) 1849 return (lw->callback(addr, data, lw->data)); 1850 1851 return (WALK_NEXT); 1852 } 1853 1854 int 1855 lg_walk_step(mdb_walk_state_t *wsp) 1856 { 1857 graph_t *graph; 1858 lg_walk_data_t lw; 1859 1860 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1861 return (WALK_DONE); 1862 1863 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1864 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1865 return (WALK_ERR); 1866 } 1867 1868 wsp->walk_addr += sizeof (graph); 1869 1870 if (graph == NULL) 1871 return (WALK_NEXT); 1872 1873 lw.callback = wsp->walk_callback; 1874 lw.data = wsp->walk_cbdata; 1875 1876 lw.startaddr = (uintptr_t)&(graph->active_locks); 1877 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1878 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1879 return (WALK_ERR); 1880 } 1881 1882 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1883 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1884 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1885 return (WALK_ERR); 1886 } 1887 1888 return (WALK_NEXT); 1889 } 1890 1891 /* 1892 * The space available for the path corresponding to the locked vnode depends 1893 * on whether we are printing 32- or 64-bit addresses. 1894 */ 1895 #ifdef _LP64 1896 #define LM_VNPATHLEN 20 1897 #else 1898 #define LM_VNPATHLEN 30 1899 #endif 1900 1901 /*ARGSUSED*/ 1902 static int 1903 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1904 { 1905 const lock_descriptor_t *ld = data; 1906 char buf[LM_VNPATHLEN]; 1907 proc_t p; 1908 1909 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1910 addr, ld->l_type == F_RDLCK ? "RD" : 1911 ld->l_type == F_WRLCK ? "WR" : "??", 1912 ld->l_state, ld->l_flock.l_pid, 1913 ld->l_flock.l_pid == 0 ? "<kernel>" : 1914 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1915 "<defunct>" : p.p_user.u_comm, 1916 ld->l_vnode); 1917 1918 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1919 sizeof (buf)); 1920 mdb_printf("%s\n", buf); 1921 1922 return (WALK_NEXT); 1923 } 1924 1925 /*ARGSUSED*/ 1926 int 1927 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1928 { 1929 if (DCMD_HDRSPEC(flags)) 1930 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1931 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1932 1933 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1934 } 1935 1936 /*ARGSUSED*/ 1937 int 1938 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1939 { 1940 if ((uintptr_t)f->f_vnode == *target) { 1941 mdb_printf("file %p\n", addr); 1942 *target = NULL; 1943 } 1944 1945 return (WALK_NEXT); 1946 } 1947 1948 /*ARGSUSED*/ 1949 int 1950 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1951 { 1952 uintptr_t t = *target; 1953 1954 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1955 mdb_warn("couldn't file walk proc %p", addr); 1956 return (WALK_ERR); 1957 } 1958 1959 if (t == NULL) 1960 mdb_printf("%p\n", addr); 1961 1962 return (WALK_NEXT); 1963 } 1964 1965 /*ARGSUSED*/ 1966 int 1967 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1968 { 1969 uintptr_t target = addr; 1970 1971 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1972 return (DCMD_USAGE); 1973 1974 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1975 mdb_warn("can't proc walk"); 1976 return (DCMD_ERR); 1977 } 1978 1979 return (DCMD_OK); 1980 } 1981 1982 typedef struct datafmt { 1983 char *hdr1; 1984 char *hdr2; 1985 char *dashes; 1986 char *fmt; 1987 } datafmt_t; 1988 1989 static datafmt_t kmemfmt[] = { 1990 { "cache ", "name ", 1991 "-------------------------", "%-25s " }, 1992 { " buf", " size", "------", "%6u " }, 1993 { " buf", "in use", "------", "%6u " }, 1994 { " buf", " total", "------", "%6u " }, 1995 { " memory", " in use", "----------", "%10lu%c " }, 1996 { " alloc", " succeed", "---------", "%9u " }, 1997 { "alloc", " fail", "-----", "%5u " }, 1998 { NULL, NULL, NULL, NULL } 1999 }; 2000 2001 static datafmt_t vmemfmt[] = { 2002 { "vmem ", "name ", 2003 "-------------------------", "%-*s " }, 2004 { " memory", " in use", "----------", "%9llu%c " }, 2005 { " memory", " total", "-----------", "%10llu%c " }, 2006 { " memory", " import", "----------", "%9llu%c " }, 2007 { " alloc", " succeed", "---------", "%9llu " }, 2008 { "alloc", " fail", "-----", "%5llu " }, 2009 { NULL, NULL, NULL, NULL } 2010 }; 2011 2012 /*ARGSUSED*/ 2013 static int 2014 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2015 { 2016 short rounds, prounds; 2017 2018 if (KMEM_DUMPCC(ccp)) { 2019 rounds = ccp->cc_dump_rounds; 2020 prounds = ccp->cc_dump_prounds; 2021 } else { 2022 rounds = ccp->cc_rounds; 2023 prounds = ccp->cc_prounds; 2024 } 2025 if (rounds > 0) 2026 *avail += rounds; 2027 if (prounds > 0) 2028 *avail += prounds; 2029 2030 return (WALK_NEXT); 2031 } 2032 2033 /*ARGSUSED*/ 2034 static int 2035 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2036 { 2037 *alloc += ccp->cc_alloc; 2038 2039 return (WALK_NEXT); 2040 } 2041 2042 /*ARGSUSED*/ 2043 static int 2044 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2045 { 2046 *avail += sp->slab_chunks - sp->slab_refcnt; 2047 2048 return (WALK_NEXT); 2049 } 2050 2051 typedef struct kmastat_vmem { 2052 uintptr_t kv_addr; 2053 struct kmastat_vmem *kv_next; 2054 size_t kv_meminuse; 2055 int kv_alloc; 2056 int kv_fail; 2057 } kmastat_vmem_t; 2058 2059 typedef struct kmastat_args { 2060 kmastat_vmem_t **ka_kvpp; 2061 uint_t ka_shift; 2062 } kmastat_args_t; 2063 2064 static int 2065 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2066 { 2067 kmastat_vmem_t **kvpp = kap->ka_kvpp; 2068 kmastat_vmem_t *kv; 2069 datafmt_t *dfp = kmemfmt; 2070 int magsize; 2071 2072 int avail, alloc, total; 2073 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2074 cp->cache_slabsize; 2075 2076 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2077 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2078 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2079 2080 magsize = kmem_get_magsize(cp); 2081 2082 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2083 avail = cp->cache_full.ml_total * magsize; 2084 total = cp->cache_buftotal; 2085 2086 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2087 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2088 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2089 2090 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2091 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2092 goto out; 2093 } 2094 2095 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2096 kv->kv_next = *kvpp; 2097 kv->kv_addr = (uintptr_t)cp->cache_arena; 2098 *kvpp = kv; 2099 out: 2100 kv->kv_meminuse += meminuse; 2101 kv->kv_alloc += alloc; 2102 kv->kv_fail += cp->cache_alloc_fail; 2103 2104 mdb_printf((dfp++)->fmt, cp->cache_name); 2105 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2106 mdb_printf((dfp++)->fmt, total - avail); 2107 mdb_printf((dfp++)->fmt, total); 2108 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2109 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2110 kap->ka_shift == KILOS ? 'K' : 'B'); 2111 mdb_printf((dfp++)->fmt, alloc); 2112 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2113 mdb_printf("\n"); 2114 2115 return (WALK_NEXT); 2116 } 2117 2118 static int 2119 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2120 { 2121 kmastat_vmem_t *kv = *kap->ka_kvpp; 2122 size_t len; 2123 2124 while (kv != NULL && kv->kv_addr != addr) 2125 kv = kv->kv_next; 2126 2127 if (kv == NULL || kv->kv_alloc == 0) 2128 return (WALK_NEXT); 2129 2130 len = MIN(17, strlen(v->vm_name)); 2131 2132 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2133 17 - len, "", "", "", "", 2134 kv->kv_meminuse >> kap->ka_shift, 2135 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2136 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2137 2138 return (WALK_NEXT); 2139 } 2140 2141 /*ARGSUSED*/ 2142 static int 2143 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2144 { 2145 datafmt_t *dfp = vmemfmt; 2146 const vmem_kstat_t *vkp = &v->vm_kstat; 2147 uintptr_t paddr; 2148 vmem_t parent; 2149 int ident = 0; 2150 2151 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2152 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2153 mdb_warn("couldn't trace %p's ancestry", addr); 2154 ident = 0; 2155 break; 2156 } 2157 paddr = (uintptr_t)parent.vm_source; 2158 } 2159 2160 mdb_printf("%*s", ident, ""); 2161 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2162 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2163 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2164 *shiftp == KILOS ? 'K' : 'B'); 2165 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2166 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2167 *shiftp == KILOS ? 'K' : 'B'); 2168 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2169 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2170 *shiftp == KILOS ? 'K' : 'B'); 2171 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2172 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2173 2174 mdb_printf("\n"); 2175 2176 return (WALK_NEXT); 2177 } 2178 2179 /*ARGSUSED*/ 2180 int 2181 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2182 { 2183 kmastat_vmem_t *kv = NULL; 2184 datafmt_t *dfp; 2185 kmastat_args_t ka; 2186 2187 ka.ka_shift = 0; 2188 if (mdb_getopts(argc, argv, 2189 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2190 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2191 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2192 return (DCMD_USAGE); 2193 2194 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2195 mdb_printf("%s ", dfp->hdr1); 2196 mdb_printf("\n"); 2197 2198 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2199 mdb_printf("%s ", dfp->hdr2); 2200 mdb_printf("\n"); 2201 2202 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2203 mdb_printf("%s ", dfp->dashes); 2204 mdb_printf("\n"); 2205 2206 ka.ka_kvpp = &kv; 2207 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2208 mdb_warn("can't walk 'kmem_cache'"); 2209 return (DCMD_ERR); 2210 } 2211 2212 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2213 mdb_printf("%s ", dfp->dashes); 2214 mdb_printf("\n"); 2215 2216 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2217 mdb_warn("can't walk 'vmem'"); 2218 return (DCMD_ERR); 2219 } 2220 2221 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2222 mdb_printf("%s ", dfp->dashes); 2223 mdb_printf("\n"); 2224 2225 mdb_printf("\n"); 2226 2227 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2228 mdb_printf("%s ", dfp->hdr1); 2229 mdb_printf("\n"); 2230 2231 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2232 mdb_printf("%s ", dfp->hdr2); 2233 mdb_printf("\n"); 2234 2235 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2236 mdb_printf("%s ", dfp->dashes); 2237 mdb_printf("\n"); 2238 2239 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2240 mdb_warn("can't walk 'vmem'"); 2241 return (DCMD_ERR); 2242 } 2243 2244 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2245 mdb_printf("%s ", dfp->dashes); 2246 mdb_printf("\n"); 2247 return (DCMD_OK); 2248 } 2249 2250 /* 2251 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2252 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2253 * unfortunately, a few of the segs are both large and sparse, so we could 2254 * spend quite a bit of time scanning VAs which have no backing pages. 2255 * 2256 * So for the few very sparse segs, we skip the segment itself, and scan 2257 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2258 * Currently, we do this for: 2259 * 2260 * SEG VMEM ARENA 2261 * kvseg heap_arena 2262 * kvseg32 heap32_arena 2263 * kvseg_core heap_core_arena 2264 * 2265 * In addition, we skip the segkpm segment in its entirety, since it is very 2266 * sparse, and contains no new kernel data. 2267 */ 2268 typedef struct kgrep_walk_data { 2269 kgrep_cb_func *kg_cb; 2270 void *kg_cbdata; 2271 uintptr_t kg_kvseg; 2272 uintptr_t kg_kvseg32; 2273 uintptr_t kg_kvseg_core; 2274 uintptr_t kg_segkpm; 2275 uintptr_t kg_heap_lp_base; 2276 uintptr_t kg_heap_lp_end; 2277 } kgrep_walk_data_t; 2278 2279 static int 2280 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2281 { 2282 uintptr_t base = (uintptr_t)seg->s_base; 2283 2284 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2285 addr == kg->kg_kvseg_core) 2286 return (WALK_NEXT); 2287 2288 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2289 return (WALK_NEXT); 2290 2291 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2292 } 2293 2294 /*ARGSUSED*/ 2295 static int 2296 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2297 { 2298 /* 2299 * skip large page heap address range - it is scanned by walking 2300 * allocated vmem_segs in the heap_lp_arena 2301 */ 2302 if (seg->vs_start == kg->kg_heap_lp_base && 2303 seg->vs_end == kg->kg_heap_lp_end) 2304 return (WALK_NEXT); 2305 2306 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2307 } 2308 2309 /*ARGSUSED*/ 2310 static int 2311 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2312 { 2313 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2314 } 2315 2316 static int 2317 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2318 { 2319 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2320 2321 if (strcmp(vmem->vm_name, "heap") != 0 && 2322 strcmp(vmem->vm_name, "heap32") != 0 && 2323 strcmp(vmem->vm_name, "heap_core") != 0 && 2324 strcmp(vmem->vm_name, "heap_lp") != 0) 2325 return (WALK_NEXT); 2326 2327 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2328 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2329 2330 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2331 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2332 return (WALK_ERR); 2333 } 2334 2335 return (WALK_NEXT); 2336 } 2337 2338 int 2339 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2340 { 2341 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2342 kgrep_walk_data_t kg; 2343 2344 if (mdb_get_state() == MDB_STATE_RUNNING) { 2345 mdb_warn("kgrep can only be run on a system " 2346 "dump or under kmdb; see dumpadm(1M)\n"); 2347 return (DCMD_ERR); 2348 } 2349 2350 if (mdb_lookup_by_name("kas", &kas) == -1) { 2351 mdb_warn("failed to locate 'kas' symbol\n"); 2352 return (DCMD_ERR); 2353 } 2354 2355 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2356 mdb_warn("failed to locate 'kvseg' symbol\n"); 2357 return (DCMD_ERR); 2358 } 2359 2360 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2361 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2362 return (DCMD_ERR); 2363 } 2364 2365 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2366 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2367 return (DCMD_ERR); 2368 } 2369 2370 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2371 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2372 return (DCMD_ERR); 2373 } 2374 2375 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2376 mdb_warn("failed to read 'heap_lp_base'\n"); 2377 return (DCMD_ERR); 2378 } 2379 2380 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2381 mdb_warn("failed to read 'heap_lp_end'\n"); 2382 return (DCMD_ERR); 2383 } 2384 2385 kg.kg_cb = cb; 2386 kg.kg_cbdata = cbdata; 2387 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2388 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2389 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2390 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2391 2392 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2393 &kg, kas.st_value) == -1) { 2394 mdb_warn("failed to walk kas segments"); 2395 return (DCMD_ERR); 2396 } 2397 2398 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2399 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2400 return (DCMD_ERR); 2401 } 2402 2403 return (DCMD_OK); 2404 } 2405 2406 size_t 2407 kgrep_subr_pagesize(void) 2408 { 2409 return (PAGESIZE); 2410 } 2411 2412 typedef struct file_walk_data { 2413 struct uf_entry *fw_flist; 2414 int fw_flistsz; 2415 int fw_ndx; 2416 int fw_nofiles; 2417 } file_walk_data_t; 2418 2419 int 2420 file_walk_init(mdb_walk_state_t *wsp) 2421 { 2422 file_walk_data_t *fw; 2423 proc_t p; 2424 2425 if (wsp->walk_addr == NULL) { 2426 mdb_warn("file walk doesn't support global walks\n"); 2427 return (WALK_ERR); 2428 } 2429 2430 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2431 2432 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2433 mdb_free(fw, sizeof (file_walk_data_t)); 2434 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2435 return (WALK_ERR); 2436 } 2437 2438 if (p.p_user.u_finfo.fi_nfiles == 0) { 2439 mdb_free(fw, sizeof (file_walk_data_t)); 2440 return (WALK_DONE); 2441 } 2442 2443 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2444 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2445 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2446 2447 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2448 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2449 mdb_warn("failed to read file array at %p", 2450 p.p_user.u_finfo.fi_list); 2451 mdb_free(fw->fw_flist, fw->fw_flistsz); 2452 mdb_free(fw, sizeof (file_walk_data_t)); 2453 return (WALK_ERR); 2454 } 2455 2456 fw->fw_ndx = 0; 2457 wsp->walk_data = fw; 2458 2459 return (WALK_NEXT); 2460 } 2461 2462 int 2463 file_walk_step(mdb_walk_state_t *wsp) 2464 { 2465 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2466 struct file file; 2467 uintptr_t fp; 2468 2469 again: 2470 if (fw->fw_ndx == fw->fw_nofiles) 2471 return (WALK_DONE); 2472 2473 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2474 goto again; 2475 2476 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2477 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2478 } 2479 2480 int 2481 allfile_walk_step(mdb_walk_state_t *wsp) 2482 { 2483 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2484 struct file file; 2485 uintptr_t fp; 2486 2487 if (fw->fw_ndx == fw->fw_nofiles) 2488 return (WALK_DONE); 2489 2490 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2491 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2492 else 2493 bzero(&file, sizeof (file)); 2494 2495 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2496 } 2497 2498 void 2499 file_walk_fini(mdb_walk_state_t *wsp) 2500 { 2501 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2502 2503 mdb_free(fw->fw_flist, fw->fw_flistsz); 2504 mdb_free(fw, sizeof (file_walk_data_t)); 2505 } 2506 2507 int 2508 port_walk_init(mdb_walk_state_t *wsp) 2509 { 2510 if (wsp->walk_addr == NULL) { 2511 mdb_warn("port walk doesn't support global walks\n"); 2512 return (WALK_ERR); 2513 } 2514 2515 if (mdb_layered_walk("file", wsp) == -1) { 2516 mdb_warn("couldn't walk 'file'"); 2517 return (WALK_ERR); 2518 } 2519 return (WALK_NEXT); 2520 } 2521 2522 int 2523 port_walk_step(mdb_walk_state_t *wsp) 2524 { 2525 struct vnode vn; 2526 uintptr_t vp; 2527 uintptr_t pp; 2528 struct port port; 2529 2530 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2531 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2532 mdb_warn("failed to read vnode_t at %p", vp); 2533 return (WALK_ERR); 2534 } 2535 if (vn.v_type != VPORT) 2536 return (WALK_NEXT); 2537 2538 pp = (uintptr_t)vn.v_data; 2539 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2540 mdb_warn("failed to read port_t at %p", pp); 2541 return (WALK_ERR); 2542 } 2543 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2544 } 2545 2546 typedef struct portev_walk_data { 2547 list_node_t *pev_node; 2548 list_node_t *pev_last; 2549 size_t pev_offset; 2550 } portev_walk_data_t; 2551 2552 int 2553 portev_walk_init(mdb_walk_state_t *wsp) 2554 { 2555 portev_walk_data_t *pevd; 2556 struct port port; 2557 struct vnode vn; 2558 struct list *list; 2559 uintptr_t vp; 2560 2561 if (wsp->walk_addr == NULL) { 2562 mdb_warn("portev walk doesn't support global walks\n"); 2563 return (WALK_ERR); 2564 } 2565 2566 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2567 2568 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2569 mdb_free(pevd, sizeof (portev_walk_data_t)); 2570 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2571 return (WALK_ERR); 2572 } 2573 2574 vp = (uintptr_t)port.port_vnode; 2575 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2576 mdb_free(pevd, sizeof (portev_walk_data_t)); 2577 mdb_warn("failed to read vnode_t at %p", vp); 2578 return (WALK_ERR); 2579 } 2580 2581 if (vn.v_type != VPORT) { 2582 mdb_free(pevd, sizeof (portev_walk_data_t)); 2583 mdb_warn("input address (%p) does not point to an event port", 2584 wsp->walk_addr); 2585 return (WALK_ERR); 2586 } 2587 2588 if (port.port_queue.portq_nent == 0) { 2589 mdb_free(pevd, sizeof (portev_walk_data_t)); 2590 return (WALK_DONE); 2591 } 2592 list = &port.port_queue.portq_list; 2593 pevd->pev_offset = list->list_offset; 2594 pevd->pev_last = list->list_head.list_prev; 2595 pevd->pev_node = list->list_head.list_next; 2596 wsp->walk_data = pevd; 2597 return (WALK_NEXT); 2598 } 2599 2600 int 2601 portev_walk_step(mdb_walk_state_t *wsp) 2602 { 2603 portev_walk_data_t *pevd; 2604 struct port_kevent ev; 2605 uintptr_t evp; 2606 2607 pevd = (portev_walk_data_t *)wsp->walk_data; 2608 2609 if (pevd->pev_last == NULL) 2610 return (WALK_DONE); 2611 if (pevd->pev_node == pevd->pev_last) 2612 pevd->pev_last = NULL; /* last round */ 2613 2614 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2615 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2616 mdb_warn("failed to read port_kevent at %p", evp); 2617 return (WALK_DONE); 2618 } 2619 pevd->pev_node = ev.portkev_node.list_next; 2620 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2621 } 2622 2623 void 2624 portev_walk_fini(mdb_walk_state_t *wsp) 2625 { 2626 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2627 2628 if (pevd != NULL) 2629 mdb_free(pevd, sizeof (portev_walk_data_t)); 2630 } 2631 2632 typedef struct proc_walk_data { 2633 uintptr_t *pw_stack; 2634 int pw_depth; 2635 int pw_max; 2636 } proc_walk_data_t; 2637 2638 int 2639 proc_walk_init(mdb_walk_state_t *wsp) 2640 { 2641 GElf_Sym sym; 2642 proc_walk_data_t *pw; 2643 2644 if (wsp->walk_addr == NULL) { 2645 if (mdb_lookup_by_name("p0", &sym) == -1) { 2646 mdb_warn("failed to read 'practive'"); 2647 return (WALK_ERR); 2648 } 2649 wsp->walk_addr = (uintptr_t)sym.st_value; 2650 } 2651 2652 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2653 2654 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2655 mdb_warn("failed to read 'nproc'"); 2656 mdb_free(pw, sizeof (pw)); 2657 return (WALK_ERR); 2658 } 2659 2660 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2661 wsp->walk_data = pw; 2662 2663 return (WALK_NEXT); 2664 } 2665 2666 int 2667 proc_walk_step(mdb_walk_state_t *wsp) 2668 { 2669 proc_walk_data_t *pw = wsp->walk_data; 2670 uintptr_t addr = wsp->walk_addr; 2671 uintptr_t cld, sib; 2672 2673 int status; 2674 proc_t pr; 2675 2676 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2677 mdb_warn("failed to read proc at %p", addr); 2678 return (WALK_DONE); 2679 } 2680 2681 cld = (uintptr_t)pr.p_child; 2682 sib = (uintptr_t)pr.p_sibling; 2683 2684 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2685 pw->pw_depth--; 2686 goto sib; 2687 } 2688 2689 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2690 2691 if (status != WALK_NEXT) 2692 return (status); 2693 2694 if ((wsp->walk_addr = cld) != NULL) { 2695 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2696 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2697 addr, cld); 2698 goto sib; 2699 } 2700 2701 pw->pw_stack[pw->pw_depth++] = addr; 2702 2703 if (pw->pw_depth == pw->pw_max) { 2704 mdb_warn("depth %d exceeds max depth; try again\n", 2705 pw->pw_depth); 2706 return (WALK_DONE); 2707 } 2708 return (WALK_NEXT); 2709 } 2710 2711 sib: 2712 /* 2713 * We know that p0 has no siblings, and if another starting proc 2714 * was given, we don't want to walk its siblings anyway. 2715 */ 2716 if (pw->pw_depth == 0) 2717 return (WALK_DONE); 2718 2719 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2720 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2721 addr, sib); 2722 sib = NULL; 2723 } 2724 2725 if ((wsp->walk_addr = sib) == NULL) { 2726 if (pw->pw_depth > 0) { 2727 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2728 return (WALK_NEXT); 2729 } 2730 return (WALK_DONE); 2731 } 2732 2733 return (WALK_NEXT); 2734 } 2735 2736 void 2737 proc_walk_fini(mdb_walk_state_t *wsp) 2738 { 2739 proc_walk_data_t *pw = wsp->walk_data; 2740 2741 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2742 mdb_free(pw, sizeof (proc_walk_data_t)); 2743 } 2744 2745 int 2746 task_walk_init(mdb_walk_state_t *wsp) 2747 { 2748 task_t task; 2749 2750 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2751 mdb_warn("failed to read task at %p", wsp->walk_addr); 2752 return (WALK_ERR); 2753 } 2754 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2755 wsp->walk_data = task.tk_memb_list; 2756 return (WALK_NEXT); 2757 } 2758 2759 int 2760 task_walk_step(mdb_walk_state_t *wsp) 2761 { 2762 proc_t proc; 2763 int status; 2764 2765 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2766 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2767 return (WALK_DONE); 2768 } 2769 2770 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2771 2772 if (proc.p_tasknext == wsp->walk_data) 2773 return (WALK_DONE); 2774 2775 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2776 return (status); 2777 } 2778 2779 int 2780 project_walk_init(mdb_walk_state_t *wsp) 2781 { 2782 if (wsp->walk_addr == NULL) { 2783 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2784 mdb_warn("failed to read 'proj0p'"); 2785 return (WALK_ERR); 2786 } 2787 } 2788 wsp->walk_data = (void *)wsp->walk_addr; 2789 return (WALK_NEXT); 2790 } 2791 2792 int 2793 project_walk_step(mdb_walk_state_t *wsp) 2794 { 2795 uintptr_t addr = wsp->walk_addr; 2796 kproject_t pj; 2797 int status; 2798 2799 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2800 mdb_warn("failed to read project at %p", addr); 2801 return (WALK_DONE); 2802 } 2803 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2804 if (status != WALK_NEXT) 2805 return (status); 2806 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2807 if ((void *)wsp->walk_addr == wsp->walk_data) 2808 return (WALK_DONE); 2809 return (WALK_NEXT); 2810 } 2811 2812 static int 2813 generic_walk_step(mdb_walk_state_t *wsp) 2814 { 2815 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2816 wsp->walk_cbdata)); 2817 } 2818 2819 static int 2820 cpu_walk_cmp(const void *l, const void *r) 2821 { 2822 uintptr_t lhs = *((uintptr_t *)l); 2823 uintptr_t rhs = *((uintptr_t *)r); 2824 cpu_t lcpu, rcpu; 2825 2826 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2827 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2828 2829 if (lcpu.cpu_id < rcpu.cpu_id) 2830 return (-1); 2831 2832 if (lcpu.cpu_id > rcpu.cpu_id) 2833 return (1); 2834 2835 return (0); 2836 } 2837 2838 typedef struct cpu_walk { 2839 uintptr_t *cw_array; 2840 int cw_ndx; 2841 } cpu_walk_t; 2842 2843 int 2844 cpu_walk_init(mdb_walk_state_t *wsp) 2845 { 2846 cpu_walk_t *cw; 2847 int max_ncpus, i = 0; 2848 uintptr_t current, first; 2849 cpu_t cpu, panic_cpu; 2850 uintptr_t panicstr, addr; 2851 GElf_Sym sym; 2852 2853 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2854 2855 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2856 mdb_warn("failed to read 'max_ncpus'"); 2857 return (WALK_ERR); 2858 } 2859 2860 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2861 mdb_warn("failed to read 'panicstr'"); 2862 return (WALK_ERR); 2863 } 2864 2865 if (panicstr != NULL) { 2866 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2867 mdb_warn("failed to find 'panic_cpu'"); 2868 return (WALK_ERR); 2869 } 2870 2871 addr = (uintptr_t)sym.st_value; 2872 2873 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2874 mdb_warn("failed to read 'panic_cpu'"); 2875 return (WALK_ERR); 2876 } 2877 } 2878 2879 /* 2880 * Unfortunately, there is no platform-independent way to walk 2881 * CPUs in ID order. We therefore loop through in cpu_next order, 2882 * building an array of CPU pointers which will subsequently be 2883 * sorted. 2884 */ 2885 cw->cw_array = 2886 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2887 2888 if (mdb_readvar(&first, "cpu_list") == -1) { 2889 mdb_warn("failed to read 'cpu_list'"); 2890 return (WALK_ERR); 2891 } 2892 2893 current = first; 2894 do { 2895 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2896 mdb_warn("failed to read cpu at %p", current); 2897 return (WALK_ERR); 2898 } 2899 2900 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2901 cw->cw_array[i++] = addr; 2902 } else { 2903 cw->cw_array[i++] = current; 2904 } 2905 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2906 2907 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2908 wsp->walk_data = cw; 2909 2910 return (WALK_NEXT); 2911 } 2912 2913 int 2914 cpu_walk_step(mdb_walk_state_t *wsp) 2915 { 2916 cpu_walk_t *cw = wsp->walk_data; 2917 cpu_t cpu; 2918 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2919 2920 if (addr == NULL) 2921 return (WALK_DONE); 2922 2923 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2924 mdb_warn("failed to read cpu at %p", addr); 2925 return (WALK_DONE); 2926 } 2927 2928 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2929 } 2930 2931 typedef struct cpuinfo_data { 2932 intptr_t cid_cpu; 2933 uintptr_t **cid_ithr; 2934 char cid_print_head; 2935 char cid_print_thr; 2936 char cid_print_ithr; 2937 char cid_print_flags; 2938 } cpuinfo_data_t; 2939 2940 int 2941 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2942 { 2943 cpu_t c; 2944 int id; 2945 uint8_t pil; 2946 2947 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2948 return (WALK_NEXT); 2949 2950 if (thr->t_bound_cpu == NULL) { 2951 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2952 return (WALK_NEXT); 2953 } 2954 2955 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2956 2957 if ((id = c.cpu_id) >= NCPU) { 2958 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2959 thr->t_bound_cpu, id, NCPU); 2960 return (WALK_NEXT); 2961 } 2962 2963 if ((pil = thr->t_pil) >= NINTR) { 2964 mdb_warn("thread %p has pil (%d) greater than %d\n", 2965 addr, pil, NINTR); 2966 return (WALK_NEXT); 2967 } 2968 2969 if (cid->cid_ithr[id][pil] != NULL) { 2970 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2971 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2972 return (WALK_NEXT); 2973 } 2974 2975 cid->cid_ithr[id][pil] = addr; 2976 2977 return (WALK_NEXT); 2978 } 2979 2980 #define CPUINFO_IDWIDTH 3 2981 #define CPUINFO_FLAGWIDTH 9 2982 2983 #ifdef _LP64 2984 #if defined(__amd64) 2985 #define CPUINFO_TWIDTH 16 2986 #define CPUINFO_CPUWIDTH 16 2987 #else 2988 #define CPUINFO_CPUWIDTH 11 2989 #define CPUINFO_TWIDTH 11 2990 #endif 2991 #else 2992 #define CPUINFO_CPUWIDTH 8 2993 #define CPUINFO_TWIDTH 8 2994 #endif 2995 2996 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2997 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2998 #define CPUINFO_ITHRDELT 4 2999 3000 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3001 flagline < nflaglines ? flagbuf[flagline++] : "") 3002 3003 int 3004 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3005 { 3006 kthread_t t; 3007 disp_t disp; 3008 proc_t p; 3009 uintptr_t pinned; 3010 char **flagbuf; 3011 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3012 3013 const char *flags[] = { 3014 "RUNNING", "READY", "QUIESCED", "EXISTS", 3015 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3016 "SPARE", "FAULTED", NULL 3017 }; 3018 3019 if (cid->cid_cpu != -1) { 3020 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3021 return (WALK_NEXT); 3022 3023 /* 3024 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3025 */ 3026 cid->cid_cpu = -1; 3027 rval = WALK_DONE; 3028 } 3029 3030 if (cid->cid_print_head) { 3031 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3032 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3033 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3034 "PROC"); 3035 cid->cid_print_head = FALSE; 3036 } 3037 3038 bspl = cpu->cpu_base_spl; 3039 3040 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3041 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3042 return (WALK_ERR); 3043 } 3044 3045 mdb_printf("%3d %0*p %3x %4d %4d ", 3046 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3047 disp.disp_nrunnable, bspl); 3048 3049 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3050 mdb_printf("%3d ", t.t_pri); 3051 } else { 3052 mdb_printf("%3s ", "-"); 3053 } 3054 3055 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3056 cpu->cpu_kprunrun ? "yes" : "no"); 3057 3058 if (cpu->cpu_last_swtch) { 3059 mdb_printf("t-%-4d ", 3060 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 3061 } else { 3062 mdb_printf("%-6s ", "-"); 3063 } 3064 3065 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3066 3067 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3068 mdb_printf(" (idle)\n"); 3069 else if (cpu->cpu_thread == NULL) 3070 mdb_printf(" -\n"); 3071 else { 3072 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 3073 mdb_printf(" %s\n", p.p_user.u_comm); 3074 } else { 3075 mdb_printf(" ?\n"); 3076 } 3077 } 3078 3079 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3080 3081 if (cid->cid_print_flags) { 3082 int first = 1, i, j, k; 3083 char *s; 3084 3085 cid->cid_print_head = TRUE; 3086 3087 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3088 if (!(cpu->cpu_flags & i)) 3089 continue; 3090 3091 if (first) { 3092 s = mdb_alloc(CPUINFO_THRDELT + 1, 3093 UM_GC | UM_SLEEP); 3094 3095 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3096 "%*s|%*s", CPUINFO_FLAGDELT, "", 3097 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3098 flagbuf[nflaglines++] = s; 3099 } 3100 3101 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3102 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3103 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3104 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3105 first ? "<--+" : ""); 3106 3107 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3108 s[k] = ' '; 3109 s[k] = '\0'; 3110 3111 flagbuf[nflaglines++] = s; 3112 first = 0; 3113 } 3114 } 3115 3116 if (cid->cid_print_ithr) { 3117 int i, found_one = FALSE; 3118 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3119 3120 for (i = NINTR - 1; i >= 0; i--) { 3121 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3122 3123 if (iaddr == NULL) 3124 continue; 3125 3126 if (!found_one) { 3127 found_one = TRUE; 3128 3129 CPUINFO_INDENT; 3130 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3131 CPUINFO_ITHRDELT, ""); 3132 3133 CPUINFO_INDENT; 3134 mdb_printf("%c%*s+--> %3s %s\n", 3135 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3136 "", "PIL", "THREAD"); 3137 } 3138 3139 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3140 mdb_warn("failed to read kthread_t at %p", 3141 iaddr); 3142 return (WALK_ERR); 3143 } 3144 3145 CPUINFO_INDENT; 3146 mdb_printf("%c%*s %3d %0*p\n", 3147 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3148 t.t_pil, CPUINFO_TWIDTH, iaddr); 3149 3150 pinned = (uintptr_t)t.t_intr; 3151 } 3152 3153 if (found_one && pinned != NULL) { 3154 cid->cid_print_head = TRUE; 3155 (void) strcpy(p.p_user.u_comm, "?"); 3156 3157 if (mdb_vread(&t, sizeof (t), 3158 (uintptr_t)pinned) == -1) { 3159 mdb_warn("failed to read kthread_t at %p", 3160 pinned); 3161 return (WALK_ERR); 3162 } 3163 if (mdb_vread(&p, sizeof (p), 3164 (uintptr_t)t.t_procp) == -1) { 3165 mdb_warn("failed to read proc_t at %p", 3166 t.t_procp); 3167 return (WALK_ERR); 3168 } 3169 3170 CPUINFO_INDENT; 3171 mdb_printf("%c%*s %3s %0*p %s\n", 3172 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3173 CPUINFO_TWIDTH, pinned, 3174 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3175 "(idle)" : p.p_user.u_comm); 3176 } 3177 } 3178 3179 if (disp.disp_nrunnable && cid->cid_print_thr) { 3180 dispq_t *dq; 3181 3182 int i, npri = disp.disp_npri; 3183 3184 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3185 3186 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3187 (uintptr_t)disp.disp_q) == -1) { 3188 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3189 return (WALK_ERR); 3190 } 3191 3192 CPUINFO_INDENT; 3193 mdb_printf("|\n"); 3194 3195 CPUINFO_INDENT; 3196 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3197 CPUINFO_TWIDTH, "THREAD", "PROC"); 3198 3199 for (i = npri - 1; i >= 0; i--) { 3200 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3201 3202 while (taddr != NULL) { 3203 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3204 mdb_warn("failed to read kthread_t " 3205 "at %p", taddr); 3206 return (WALK_ERR); 3207 } 3208 if (mdb_vread(&p, sizeof (p), 3209 (uintptr_t)t.t_procp) == -1) { 3210 mdb_warn("failed to read proc_t at %p", 3211 t.t_procp); 3212 return (WALK_ERR); 3213 } 3214 3215 CPUINFO_INDENT; 3216 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3217 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3218 3219 taddr = (uintptr_t)t.t_link; 3220 } 3221 } 3222 cid->cid_print_head = TRUE; 3223 } 3224 3225 while (flagline < nflaglines) 3226 mdb_printf("%s\n", flagbuf[flagline++]); 3227 3228 if (cid->cid_print_head) 3229 mdb_printf("\n"); 3230 3231 return (rval); 3232 } 3233 3234 int 3235 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3236 { 3237 uint_t verbose = FALSE; 3238 cpuinfo_data_t cid; 3239 3240 cid.cid_print_ithr = FALSE; 3241 cid.cid_print_thr = FALSE; 3242 cid.cid_print_flags = FALSE; 3243 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3244 cid.cid_cpu = -1; 3245 3246 if (flags & DCMD_ADDRSPEC) 3247 cid.cid_cpu = addr; 3248 3249 if (mdb_getopts(argc, argv, 3250 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3251 return (DCMD_USAGE); 3252 3253 if (verbose) { 3254 cid.cid_print_ithr = TRUE; 3255 cid.cid_print_thr = TRUE; 3256 cid.cid_print_flags = TRUE; 3257 cid.cid_print_head = TRUE; 3258 } 3259 3260 if (cid.cid_print_ithr) { 3261 int i; 3262 3263 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3264 * NCPU, UM_SLEEP | UM_GC); 3265 3266 for (i = 0; i < NCPU; i++) 3267 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3268 NINTR, UM_SLEEP | UM_GC); 3269 3270 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3271 &cid) == -1) { 3272 mdb_warn("couldn't walk thread"); 3273 return (DCMD_ERR); 3274 } 3275 } 3276 3277 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3278 mdb_warn("can't walk cpus"); 3279 return (DCMD_ERR); 3280 } 3281 3282 if (cid.cid_cpu != -1) { 3283 /* 3284 * We didn't find this CPU when we walked through the CPUs 3285 * (i.e. the address specified doesn't show up in the "cpu" 3286 * walk). However, the specified address may still correspond 3287 * to a valid cpu_t (for example, if the specified address is 3288 * the actual panicking cpu_t and not the cached panic_cpu). 3289 * Point is: even if we didn't find it, we still want to try 3290 * to print the specified address as a cpu_t. 3291 */ 3292 cpu_t cpu; 3293 3294 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3295 mdb_warn("%p is neither a valid CPU ID nor a " 3296 "valid cpu_t address\n", cid.cid_cpu); 3297 return (DCMD_ERR); 3298 } 3299 3300 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3301 } 3302 3303 return (DCMD_OK); 3304 } 3305 3306 /*ARGSUSED*/ 3307 int 3308 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3309 { 3310 int i; 3311 3312 if (!(flags & DCMD_ADDRSPEC)) 3313 return (DCMD_USAGE); 3314 3315 for (i = 0; i < sizeof (addr) * NBBY; i++) 3316 mdb_printf("%p\n", addr ^ (1UL << i)); 3317 3318 return (DCMD_OK); 3319 } 3320 3321 int 3322 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3323 { 3324 if (p->p_as == *asp) 3325 mdb_printf("%p\n", addr); 3326 return (WALK_NEXT); 3327 } 3328 3329 /*ARGSUSED*/ 3330 int 3331 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3332 { 3333 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3334 return (DCMD_USAGE); 3335 3336 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3337 mdb_warn("failed to walk proc"); 3338 return (DCMD_ERR); 3339 } 3340 3341 return (DCMD_OK); 3342 } 3343 3344 /*ARGSUSED*/ 3345 int 3346 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3347 { 3348 proc_t parent; 3349 int ident = 0; 3350 uintptr_t paddr; 3351 3352 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3353 mdb_vread(&parent, sizeof (parent), paddr); 3354 paddr = (uintptr_t)parent.p_parent; 3355 } 3356 3357 mdb_inc_indent(ident); 3358 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3359 mdb_dec_indent(ident); 3360 3361 return (WALK_NEXT); 3362 } 3363 3364 void 3365 ptree_ancestors(uintptr_t addr, uintptr_t start) 3366 { 3367 proc_t p; 3368 3369 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3370 mdb_warn("couldn't read ancestor at %p", addr); 3371 return; 3372 } 3373 3374 if (p.p_parent != NULL) 3375 ptree_ancestors((uintptr_t)p.p_parent, start); 3376 3377 if (addr != start) 3378 (void) ptree_walk(addr, &p, NULL); 3379 } 3380 3381 /*ARGSUSED*/ 3382 int 3383 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3384 { 3385 if (!(flags & DCMD_ADDRSPEC)) 3386 addr = NULL; 3387 else 3388 ptree_ancestors(addr, addr); 3389 3390 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3391 mdb_warn("couldn't walk 'proc'"); 3392 return (DCMD_ERR); 3393 } 3394 3395 return (DCMD_OK); 3396 } 3397 3398 /*ARGSUSED*/ 3399 static int 3400 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3401 { 3402 int fdnum; 3403 const mdb_arg_t *argp = &argv[0]; 3404 proc_t p; 3405 uf_entry_t uf; 3406 3407 if ((flags & DCMD_ADDRSPEC) == 0) { 3408 mdb_warn("fd doesn't give global information\n"); 3409 return (DCMD_ERR); 3410 } 3411 if (argc != 1) 3412 return (DCMD_USAGE); 3413 3414 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3415 fdnum = argp->a_un.a_val; 3416 else 3417 fdnum = mdb_strtoull(argp->a_un.a_str); 3418 3419 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3420 mdb_warn("couldn't read proc_t at %p", addr); 3421 return (DCMD_ERR); 3422 } 3423 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3424 mdb_warn("process %p only has %d files open.\n", 3425 addr, p.p_user.u_finfo.fi_nfiles); 3426 return (DCMD_ERR); 3427 } 3428 if (mdb_vread(&uf, sizeof (uf_entry_t), 3429 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3430 mdb_warn("couldn't read uf_entry_t at %p", 3431 &p.p_user.u_finfo.fi_list[fdnum]); 3432 return (DCMD_ERR); 3433 } 3434 3435 mdb_printf("%p\n", uf.uf_file); 3436 return (DCMD_OK); 3437 } 3438 3439 /*ARGSUSED*/ 3440 static int 3441 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3442 { 3443 pid_t pid = (pid_t)addr; 3444 3445 if (argc != 0) 3446 return (DCMD_USAGE); 3447 3448 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3449 mdb_warn("PID 0t%d not found\n", pid); 3450 return (DCMD_ERR); 3451 } 3452 3453 mdb_printf("%p\n", addr); 3454 return (DCMD_OK); 3455 } 3456 3457 static char *sysfile_cmd[] = { 3458 "exclude:", 3459 "include:", 3460 "forceload:", 3461 "rootdev:", 3462 "rootfs:", 3463 "swapdev:", 3464 "swapfs:", 3465 "moddir:", 3466 "set", 3467 "unknown", 3468 }; 3469 3470 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3471 3472 /*ARGSUSED*/ 3473 static int 3474 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3475 { 3476 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3477 *target = NULL; 3478 return (WALK_DONE); 3479 } 3480 return (WALK_NEXT); 3481 } 3482 3483 /*ARGSUSED*/ 3484 static int 3485 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3486 { 3487 struct sysparam *sysp, sys; 3488 char var[256]; 3489 char modname[256]; 3490 char val[256]; 3491 char strval[256]; 3492 vmem_t *mod_sysfile_arena; 3493 void *straddr; 3494 3495 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3496 mdb_warn("failed to read sysparam_hd"); 3497 return (DCMD_ERR); 3498 } 3499 3500 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3501 mdb_warn("failed to read mod_sysfile_arena"); 3502 return (DCMD_ERR); 3503 } 3504 3505 while (sysp != NULL) { 3506 var[0] = '\0'; 3507 val[0] = '\0'; 3508 modname[0] = '\0'; 3509 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3510 mdb_warn("couldn't read sysparam %p", sysp); 3511 return (DCMD_ERR); 3512 } 3513 if (sys.sys_modnam != NULL && 3514 mdb_readstr(modname, 256, 3515 (uintptr_t)sys.sys_modnam) == -1) { 3516 mdb_warn("couldn't read modname in %p", sysp); 3517 return (DCMD_ERR); 3518 } 3519 if (sys.sys_ptr != NULL && 3520 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3521 mdb_warn("couldn't read ptr in %p", sysp); 3522 return (DCMD_ERR); 3523 } 3524 if (sys.sys_op != SETOP_NONE) { 3525 /* 3526 * Is this an int or a string? We determine this 3527 * by checking whether straddr is contained in 3528 * mod_sysfile_arena. If so, the walker will set 3529 * straddr to NULL. 3530 */ 3531 straddr = (void *)(uintptr_t)sys.sys_info; 3532 if (sys.sys_op == SETOP_ASSIGN && 3533 sys.sys_info != 0 && 3534 mdb_pwalk("vmem_seg", 3535 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3536 (uintptr_t)mod_sysfile_arena) == 0 && 3537 straddr == NULL && 3538 mdb_readstr(strval, 256, 3539 (uintptr_t)sys.sys_info) != -1) { 3540 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3541 strval); 3542 } else { 3543 (void) mdb_snprintf(val, sizeof (val), 3544 "0x%llx [0t%llu]", sys.sys_info, 3545 sys.sys_info); 3546 } 3547 } 3548 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3549 modname, modname[0] == '\0' ? "" : ":", 3550 var, sysfile_ops[sys.sys_op], val); 3551 3552 sysp = sys.sys_next; 3553 } 3554 3555 return (DCMD_OK); 3556 } 3557 3558 int 3559 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3560 { 3561 3562 if (*didp == thr->t_did) { 3563 mdb_printf("%p\n", addr); 3564 return (WALK_DONE); 3565 } else 3566 return (WALK_NEXT); 3567 } 3568 3569 /*ARGSUSED*/ 3570 int 3571 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3572 { 3573 const mdb_arg_t *argp = &argv[0]; 3574 kt_did_t did; 3575 3576 if (argc != 1) 3577 return (DCMD_USAGE); 3578 3579 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3580 3581 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3582 mdb_warn("failed to walk thread"); 3583 return (DCMD_ERR); 3584 3585 } 3586 return (DCMD_OK); 3587 3588 } 3589 3590 static int 3591 errorq_walk_init(mdb_walk_state_t *wsp) 3592 { 3593 if (wsp->walk_addr == NULL && 3594 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3595 mdb_warn("failed to read errorq_list"); 3596 return (WALK_ERR); 3597 } 3598 3599 return (WALK_NEXT); 3600 } 3601 3602 static int 3603 errorq_walk_step(mdb_walk_state_t *wsp) 3604 { 3605 uintptr_t addr = wsp->walk_addr; 3606 errorq_t eq; 3607 3608 if (addr == NULL) 3609 return (WALK_DONE); 3610 3611 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3612 mdb_warn("failed to read errorq at %p", addr); 3613 return (WALK_ERR); 3614 } 3615 3616 wsp->walk_addr = (uintptr_t)eq.eq_next; 3617 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3618 } 3619 3620 typedef struct eqd_walk_data { 3621 uintptr_t *eqd_stack; 3622 void *eqd_buf; 3623 ulong_t eqd_qpos; 3624 ulong_t eqd_qlen; 3625 size_t eqd_size; 3626 } eqd_walk_data_t; 3627 3628 /* 3629 * In order to walk the list of pending error queue elements, we push the 3630 * addresses of the corresponding data buffers in to the eqd_stack array. 3631 * The error lists are in reverse chronological order when iterating using 3632 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3633 * walker client gets addresses in order from oldest error to newest error. 3634 */ 3635 static void 3636 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3637 { 3638 errorq_elem_t eqe; 3639 3640 while (addr != NULL) { 3641 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3642 mdb_warn("failed to read errorq element at %p", addr); 3643 break; 3644 } 3645 3646 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3647 mdb_warn("errorq is overfull -- more than %lu " 3648 "elems found\n", eqdp->eqd_qlen); 3649 break; 3650 } 3651 3652 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3653 addr = (uintptr_t)eqe.eqe_prev; 3654 } 3655 } 3656 3657 static int 3658 eqd_walk_init(mdb_walk_state_t *wsp) 3659 { 3660 eqd_walk_data_t *eqdp; 3661 errorq_elem_t eqe, *addr; 3662 errorq_t eq; 3663 ulong_t i; 3664 3665 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3666 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3667 return (WALK_ERR); 3668 } 3669 3670 if (eq.eq_ptail != NULL && 3671 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3672 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3673 return (WALK_ERR); 3674 } 3675 3676 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3677 wsp->walk_data = eqdp; 3678 3679 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3680 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3681 eqdp->eqd_qlen = eq.eq_qlen; 3682 eqdp->eqd_qpos = 0; 3683 eqdp->eqd_size = eq.eq_size; 3684 3685 /* 3686 * The newest elements in the queue are on the pending list, so we 3687 * push those on to our stack first. 3688 */ 3689 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3690 3691 /* 3692 * If eq_ptail is set, it may point to a subset of the errors on the 3693 * pending list in the event a atomic_cas_ptr() failed; if ptail's 3694 * data is already in our stack, NULL out eq_ptail and ignore it. 3695 */ 3696 if (eq.eq_ptail != NULL) { 3697 for (i = 0; i < eqdp->eqd_qpos; i++) { 3698 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3699 eq.eq_ptail = NULL; 3700 break; 3701 } 3702 } 3703 } 3704 3705 /* 3706 * If eq_phead is set, it has the processing list in order from oldest 3707 * to newest. Use this to recompute eq_ptail as best we can and then 3708 * we nicely fall into eqd_push_list() of eq_ptail below. 3709 */ 3710 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3711 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3712 eq.eq_ptail = addr; 3713 3714 /* 3715 * The oldest elements in the queue are on the processing list, subject 3716 * to machinations in the if-clauses above. Push any such elements. 3717 */ 3718 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3719 return (WALK_NEXT); 3720 } 3721 3722 static int 3723 eqd_walk_step(mdb_walk_state_t *wsp) 3724 { 3725 eqd_walk_data_t *eqdp = wsp->walk_data; 3726 uintptr_t addr; 3727 3728 if (eqdp->eqd_qpos == 0) 3729 return (WALK_DONE); 3730 3731 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3732 3733 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3734 mdb_warn("failed to read errorq data at %p", addr); 3735 return (WALK_ERR); 3736 } 3737 3738 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3739 } 3740 3741 static void 3742 eqd_walk_fini(mdb_walk_state_t *wsp) 3743 { 3744 eqd_walk_data_t *eqdp = wsp->walk_data; 3745 3746 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3747 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3748 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3749 } 3750 3751 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3752 3753 static int 3754 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3755 { 3756 int i; 3757 errorq_t eq; 3758 uint_t opt_v = FALSE; 3759 3760 if (!(flags & DCMD_ADDRSPEC)) { 3761 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3762 mdb_warn("can't walk 'errorq'"); 3763 return (DCMD_ERR); 3764 } 3765 return (DCMD_OK); 3766 } 3767 3768 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3769 argc -= i; 3770 argv += i; 3771 3772 if (argc != 0) 3773 return (DCMD_USAGE); 3774 3775 if (opt_v || DCMD_HDRSPEC(flags)) { 3776 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3777 "ADDR", "NAME", "S", "V", "N"); 3778 if (!opt_v) { 3779 mdb_printf("%7s %7s %7s%</u>\n", 3780 "ACCEPT", "DROP", "LOG"); 3781 } else { 3782 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3783 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3784 } 3785 } 3786 3787 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3788 mdb_warn("failed to read errorq at %p", addr); 3789 return (DCMD_ERR); 3790 } 3791 3792 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3793 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3794 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3795 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3796 3797 if (!opt_v) { 3798 mdb_printf("%7llu %7llu %7llu\n", 3799 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3800 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3801 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3802 } else { 3803 mdb_printf("%5s %6lu %6lu %3u %a\n", 3804 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3805 mdb_printf("%38s\n%41s" 3806 "%12s %llu\n" 3807 "%53s %llu\n" 3808 "%53s %llu\n" 3809 "%53s %llu\n" 3810 "%53s %llu\n" 3811 "%53s %llu\n" 3812 "%53s %llu\n" 3813 "%53s %llu\n\n", 3814 "|", "+-> ", 3815 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3816 "DROPPED", EQKSVAL(eq, eqk_dropped), 3817 "LOGGED", EQKSVAL(eq, eqk_logged), 3818 "RESERVED", EQKSVAL(eq, eqk_reserved), 3819 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3820 "COMMITTED", EQKSVAL(eq, eqk_committed), 3821 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3822 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3823 } 3824 3825 return (DCMD_OK); 3826 } 3827 3828 /*ARGSUSED*/ 3829 static int 3830 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3831 { 3832 cpu_t panic_cpu; 3833 kthread_t *panic_thread; 3834 void *buf; 3835 panic_data_t *pd; 3836 int i, n; 3837 3838 if (!mdb_prop_postmortem) { 3839 mdb_warn("panicinfo can only be run on a system " 3840 "dump; see dumpadm(1M)\n"); 3841 return (DCMD_ERR); 3842 } 3843 3844 if (flags & DCMD_ADDRSPEC || argc != 0) 3845 return (DCMD_USAGE); 3846 3847 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3848 mdb_warn("failed to read 'panic_cpu'"); 3849 else 3850 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3851 3852 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3853 mdb_warn("failed to read 'panic_thread'"); 3854 else 3855 mdb_printf("%16s %?p\n", "thread", panic_thread); 3856 3857 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3858 pd = (panic_data_t *)buf; 3859 3860 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3861 pd->pd_version != PANICBUFVERS) { 3862 mdb_warn("failed to read 'panicbuf'"); 3863 mdb_free(buf, PANICBUFSIZE); 3864 return (DCMD_ERR); 3865 } 3866 3867 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3868 3869 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3870 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3871 3872 for (i = 0; i < n; i++) 3873 mdb_printf("%16s %?llx\n", 3874 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3875 3876 mdb_free(buf, PANICBUFSIZE); 3877 return (DCMD_OK); 3878 } 3879 3880 /* 3881 * ::time dcmd, which will print a hires timestamp of when we entered the 3882 * debugger, or the lbolt value if used with the -l option. 3883 * 3884 */ 3885 /*ARGSUSED*/ 3886 static int 3887 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3888 { 3889 uint_t opt_dec = FALSE; 3890 uint_t opt_lbolt = FALSE; 3891 uint_t opt_hex = FALSE; 3892 const char *fmt; 3893 hrtime_t result; 3894 3895 if (mdb_getopts(argc, argv, 3896 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 3897 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 3898 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 3899 NULL) != argc) 3900 return (DCMD_USAGE); 3901 3902 if (opt_dec && opt_hex) 3903 return (DCMD_USAGE); 3904 3905 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 3906 fmt = 3907 opt_hex ? "0x%llx\n" : 3908 opt_dec ? "0t%lld\n" : "%#llr\n"; 3909 3910 mdb_printf(fmt, result); 3911 return (DCMD_OK); 3912 } 3913 3914 void 3915 time_help(void) 3916 { 3917 mdb_printf("Prints the system time in nanoseconds.\n\n" 3918 "::time will return the timestamp at which we dropped into, \n" 3919 "if called from, kmdb(1); the core dump's high resolution \n" 3920 "time if inspecting one; or the running hires time if we're \n" 3921 "looking at a live system.\n\n" 3922 "Switches:\n" 3923 " -d report times in decimal\n" 3924 " -l prints the number of clock ticks since system boot\n" 3925 " -x report times in hexadecimal\n"); 3926 } 3927 3928 static const mdb_dcmd_t dcmds[] = { 3929 3930 /* from genunix.c */ 3931 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3932 { "binding_hash_entry", ":", "print driver names hash table entry", 3933 binding_hash_entry }, 3934 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 3935 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 3936 " [-FivVA]", 3937 "display callouts", callout, callout_help }, 3938 { "calloutid", "[-d|v] xid", "print callout by extended id", 3939 calloutid, calloutid_help }, 3940 { "class", NULL, "print process scheduler classes", class }, 3941 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3942 { "did2thread", "? kt_did", "find kernel thread for this id", 3943 did2thread }, 3944 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3945 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3946 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3947 { "lminfo", NULL, "print lock manager information", lminfo }, 3948 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3949 { "panicinfo", NULL, "print panic information", panicinfo }, 3950 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3951 { "project", NULL, "display kernel project(s)", project }, 3952 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3953 { "pflags", NULL, "display various proc_t flags", pflags }, 3954 { "pgrep", "[-x] [-n | -o] pattern", 3955 "pattern match against all processes", pgrep }, 3956 { "ptree", NULL, "print process tree", ptree }, 3957 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3958 sysevent}, 3959 { "sysevent_channel", "?", "print sysevent channel database", 3960 sysevent_channel}, 3961 { "sysevent_class_list", ":", "print sysevent class list", 3962 sysevent_class_list}, 3963 { "sysevent_subclass_list", ":", 3964 "print sysevent subclass list", sysevent_subclass_list}, 3965 { "system", NULL, "print contents of /etc/system file", sysfile }, 3966 { "task", NULL, "display kernel task(s)", task }, 3967 { "time", "[-dlx]", "display system time", time, time_help }, 3968 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3969 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3970 whereopen }, 3971 3972 /* from bio.c */ 3973 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3974 3975 /* from bitset.c */ 3976 { "bitset", ":", "display a bitset", bitset, bitset_help }, 3977 3978 /* from contract.c */ 3979 { "contract", "?", "display a contract", cmd_contract }, 3980 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3981 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3982 3983 /* from cpupart.c */ 3984 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3985 3986 /* from cred.c */ 3987 { "cred", ":[-v]", "display a credential", cmd_cred }, 3988 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 3989 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 3990 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 3991 3992 /* from cyclic.c */ 3993 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3994 { "cycid", "?", "dump a cyclic id", cycid }, 3995 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3996 { "cyclic", ":", "developer information", cyclic }, 3997 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3998 3999 /* from damap.c */ 4000 { "damap", ":", "display a damap_t", damap, damap_help }, 4001 4002 /* from ddi_periodic.c */ 4003 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 4004 4005 /* from devinfo.c */ 4006 { "devbindings", "?[-qs] [device-name | major-num]", 4007 "print devinfo nodes bound to device-name or major-num", 4008 devbindings, devinfo_help }, 4009 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 4010 devinfo_help }, 4011 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4012 devinfo_audit }, 4013 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4014 devinfo_audit_log }, 4015 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4016 devinfo_audit_node }, 4017 { "devinfo2driver", ":", "find driver name for this devinfo node", 4018 devinfo2driver }, 4019 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4020 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4021 dev2major }, 4022 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4023 dev2minor }, 4024 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4025 devt }, 4026 { "major2name", "?<major-num>", "convert major number to dev name", 4027 major2name }, 4028 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4029 minornodes }, 4030 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4031 modctl2devinfo }, 4032 { "name2major", "<dev-name>", "convert dev name to major number", 4033 name2major }, 4034 { "prtconf", "?[-vpc] [-d driver]", "print devinfo tree", prtconf, 4035 prtconf_help }, 4036 { "softstate", ":<instance>", "retrieve soft-state pointer", 4037 softstate }, 4038 { "devinfo_fm", ":", "devinfo fault managment configuration", 4039 devinfo_fm }, 4040 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4041 devinfo_fmce}, 4042 4043 /* from findstack.c */ 4044 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4045 { "findstack_debug", NULL, "toggle findstack debugging", 4046 findstack_debug }, 4047 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4048 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4049 "print unique kernel thread stacks", 4050 stacks, stacks_help }, 4051 4052 /* from fm.c */ 4053 { "ereport", "[-v]", "print ereports logged in dump", 4054 ereport }, 4055 4056 /* from group.c */ 4057 { "group", "?[-q]", "display a group", group}, 4058 4059 /* from hotplug.c */ 4060 { "hotplug", "?[-p]", "display a registered hotplug attachment", 4061 hotplug, hotplug_help }, 4062 4063 /* from irm.c */ 4064 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4065 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4066 irmreqs_dcmd }, 4067 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4068 4069 /* from kgrep.c + genunix.c */ 4070 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4071 kgrep_help }, 4072 4073 /* from kmem.c */ 4074 { "allocdby", ":", "given a thread, print its allocated buffers", 4075 allocdby }, 4076 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4077 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4078 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4079 { "kmalog", "?[ fail | slab ]", 4080 "display kmem transaction log and stack traces", kmalog }, 4081 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4082 kmastat }, 4083 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4084 "of the kmem allocator", kmausers, kmausers_help }, 4085 { "kmem_cache", "?[-n name]", 4086 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4087 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4088 "[-B minbinsize]", "display slab usage per kmem cache", 4089 kmem_slabs, kmem_slabs_help }, 4090 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4091 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4092 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4093 kmem_verify }, 4094 { "vmem", "?", "print a vmem_t", vmem }, 4095 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4096 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4097 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4098 { "whatthread", ":[-v]", "print threads whose stack contains the " 4099 "given address", whatthread }, 4100 4101 /* from ldi.c */ 4102 { "ldi_handle", "?[-i]", "display a layered driver handle", 4103 ldi_handle, ldi_handle_help }, 4104 { "ldi_ident", NULL, "display a layered driver identifier", 4105 ldi_ident, ldi_ident_help }, 4106 4107 /* from leaky.c + leaky_subr.c */ 4108 { "findleaks", FINDLEAKS_USAGE, 4109 "search for potential kernel memory leaks", findleaks, 4110 findleaks_help }, 4111 4112 /* from lgrp.c */ 4113 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4114 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4115 4116 /* from log.c */ 4117 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4118 4119 /* from mdi.c */ 4120 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4121 "and detailed pi_prop list", mdipi }, 4122 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4123 mdiprops }, 4124 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4125 "list all paths", mdiphci }, 4126 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4127 "all phcis", mdivhci }, 4128 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4129 "client links", mdiclient_paths }, 4130 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4131 "phci links", mdiphci_paths }, 4132 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4133 mdiphcis }, 4134 4135 /* from memory.c */ 4136 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4137 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4138 { "memstat", NULL, "display memory usage summary", memstat }, 4139 { "page", "?", "display a summarized page_t", page }, 4140 { "pagelookup", "?[-v vp] [-o offset]", 4141 "find the page_t with the name {vp, offset}", 4142 pagelookup, pagelookup_help }, 4143 { "page_num2pp", ":", "find the page_t for a given page frame number", 4144 page_num2pp }, 4145 { "pmap", ":[-q]", "print process memory map", pmap }, 4146 { "seg", ":", "print address space segment", seg }, 4147 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4148 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4149 4150 /* from mmd.c */ 4151 { "multidata", ":[-sv]", "display a summarized multidata_t", 4152 multidata }, 4153 { "pattbl", ":", "display a summarized multidata attribute table", 4154 pattbl }, 4155 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4156 pattr2multidata }, 4157 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4158 pdesc2slab }, 4159 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4160 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4161 slab2multidata }, 4162 4163 /* from modhash.c */ 4164 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4165 "display information about one or all mod_hash structures", 4166 modhash, modhash_help }, 4167 { "modent", ":[-k | -v | -t type]", 4168 "display information about a mod_hash_entry", modent, 4169 modent_help }, 4170 4171 /* from net.c */ 4172 { "dladm", "?<sub-command> [flags]", "show data link information", 4173 dladm, dladm_help }, 4174 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4175 mi }, 4176 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4177 "show network statistics", netstat }, 4178 { "sonode", "?[-f inet | inet6 | unix | #] " 4179 "[-t stream | dgram | raw | #] [-p #]", 4180 "filter and display sonode", sonode }, 4181 4182 /* from netstack.c */ 4183 { "netstack", "", "show stack instances", netstack }, 4184 { "netstackid2netstack", ":", 4185 "translate a netstack id to its netstack_t", 4186 netstackid2netstack }, 4187 4188 /* from nvpair.c */ 4189 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4190 nvpair_print }, 4191 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4192 print_nvlist }, 4193 4194 /* from pg.c */ 4195 { "pg", "?[-q]", "display a pg", pg}, 4196 4197 /* from rctl.c */ 4198 { "rctl_dict", "?", "print systemwide default rctl definitions", 4199 rctl_dict }, 4200 { "rctl_list", ":[handle]", "print rctls for the given proc", 4201 rctl_list }, 4202 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4203 rctl }, 4204 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4205 "sequence", rctl_validate }, 4206 4207 /* from sobj.c */ 4208 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4209 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4210 mutex_help }, 4211 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4212 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4213 { "turnstile", "?", "display a turnstile", turnstile }, 4214 4215 /* from stream.c */ 4216 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4217 "print an mblk", mblk_prt, mblk_help }, 4218 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4219 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4220 mblk2dblk }, 4221 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4222 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4223 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4224 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4225 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4226 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4227 "filter and display STREAM queue", queue, queue_help }, 4228 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4229 "filter and display STREAM head", stdata, stdata_help }, 4230 { "str2mate", ":", "print mate of this stream", str2mate }, 4231 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4232 { "stream", ":", "display STREAM", stream }, 4233 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4234 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4235 "filter and display STREAM sync queue", syncq, syncq_help }, 4236 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4237 4238 /* from taskq.c */ 4239 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4240 "display a taskq", taskq, taskq_help }, 4241 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4242 4243 /* from thread.c */ 4244 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4245 thread_help }, 4246 { "threadlist", "?[-t] [-v [count]]", 4247 "display threads and associated C stack traces", threadlist, 4248 threadlist_help }, 4249 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4250 stackinfo_help }, 4251 4252 /* from tsd.c */ 4253 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4254 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4255 4256 /* 4257 * typegraph does not work under kmdb, as it requires too much memory 4258 * for its internal data structures. 4259 */ 4260 #ifndef _KMDB 4261 /* from typegraph.c */ 4262 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4263 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4264 findfalse }, 4265 { "typegraph", NULL, "build type graph", typegraph }, 4266 { "istype", ":type", "manually set object type", istype }, 4267 { "notype", ":", "manually clear object type", notype }, 4268 { "whattype", ":", "determine object type", whattype }, 4269 #endif 4270 4271 /* from vfs.c */ 4272 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4273 { "pfiles", ":[-fp]", "print process file information", pfiles, 4274 pfiles_help }, 4275 4276 /* from zone.c */ 4277 { "zid2zone", ":", "find the zone_t with the given zone id", 4278 zid2zone }, 4279 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4280 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4281 "selected zones", zsd }, 4282 4283 #ifndef _KMDB 4284 { "gcore", NULL, "generate a user core for the given process", 4285 gcore_dcmd }, 4286 #endif 4287 4288 { NULL } 4289 }; 4290 4291 static const mdb_walker_t walkers[] = { 4292 4293 /* from genunix.c */ 4294 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4295 callout_walk_init, callout_walk_step, callout_walk_fini, 4296 (void *)CALLOUT_WALK_BYLIST }, 4297 { "callouts_byid", "walk callouts by id hash chain", 4298 callout_walk_init, callout_walk_step, callout_walk_fini, 4299 (void *)CALLOUT_WALK_BYID }, 4300 { "callout_list", "walk a callout list", callout_list_walk_init, 4301 callout_list_walk_step, callout_list_walk_fini }, 4302 { "callout_table", "walk callout table array", callout_table_walk_init, 4303 callout_table_walk_step, callout_table_walk_fini }, 4304 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4305 { "dnlc", "walk dnlc entries", 4306 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini }, 4307 { "ereportq_dump", "walk list of ereports in dump error queue", 4308 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4309 { "ereportq_pend", "walk list of ereports in pending error queue", 4310 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4311 { "errorq", "walk list of system error queues", 4312 errorq_walk_init, errorq_walk_step, NULL }, 4313 { "errorq_data", "walk pending error queue data buffers", 4314 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4315 { "allfile", "given a proc pointer, list all file pointers", 4316 file_walk_init, allfile_walk_step, file_walk_fini }, 4317 { "file", "given a proc pointer, list of open file pointers", 4318 file_walk_init, file_walk_step, file_walk_fini }, 4319 { "lock_descriptor", "walk lock_descriptor_t structures", 4320 ld_walk_init, ld_walk_step, NULL }, 4321 { "lock_graph", "walk lock graph", 4322 lg_walk_init, lg_walk_step, NULL }, 4323 { "port", "given a proc pointer, list of created event ports", 4324 port_walk_init, port_walk_step, NULL }, 4325 { "portev", "given a port pointer, list of events in the queue", 4326 portev_walk_init, portev_walk_step, portev_walk_fini }, 4327 { "proc", "list of active proc_t structures", 4328 proc_walk_init, proc_walk_step, proc_walk_fini }, 4329 { "projects", "walk a list of kernel projects", 4330 project_walk_init, project_walk_step, NULL }, 4331 { "sysevent_pend", "walk sysevent pending queue", 4332 sysevent_pend_walk_init, sysevent_walk_step, 4333 sysevent_walk_fini}, 4334 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4335 sysevent_walk_step, sysevent_walk_fini}, 4336 { "sysevent_channel", "walk sysevent channel subscriptions", 4337 sysevent_channel_walk_init, sysevent_channel_walk_step, 4338 sysevent_channel_walk_fini}, 4339 { "sysevent_class_list", "walk sysevent subscription's class list", 4340 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4341 sysevent_class_list_walk_fini}, 4342 { "sysevent_subclass_list", 4343 "walk sysevent subscription's subclass list", 4344 sysevent_subclass_list_walk_init, 4345 sysevent_subclass_list_walk_step, 4346 sysevent_subclass_list_walk_fini}, 4347 { "task", "given a task pointer, walk its processes", 4348 task_walk_init, task_walk_step, NULL }, 4349 4350 /* from avl.c */ 4351 { AVL_WALK_NAME, AVL_WALK_DESC, 4352 avl_walk_init, avl_walk_step, avl_walk_fini }, 4353 4354 /* from bio.c */ 4355 { "buf", "walk the bio buf hash", 4356 buf_walk_init, buf_walk_step, buf_walk_fini }, 4357 4358 /* from contract.c */ 4359 { "contract", "walk all contracts, or those of the specified type", 4360 ct_walk_init, generic_walk_step, NULL }, 4361 { "ct_event", "walk events on a contract event queue", 4362 ct_event_walk_init, generic_walk_step, NULL }, 4363 { "ct_listener", "walk contract event queue listeners", 4364 ct_listener_walk_init, generic_walk_step, NULL }, 4365 4366 /* from cpupart.c */ 4367 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4368 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4369 NULL }, 4370 { "cpupart_walk", "walk the set of cpu partitions", 4371 cpupart_walk_init, cpupart_walk_step, NULL }, 4372 4373 /* from ctxop.c */ 4374 { "ctxop", "walk list of context ops on a thread", 4375 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4376 4377 /* from cyclic.c */ 4378 { "cyccpu", "walk per-CPU cyc_cpu structures", 4379 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4380 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4381 cycomni_walk_init, cycomni_walk_step, NULL }, 4382 { "cyctrace", "walk cyclic trace buffer", 4383 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4384 4385 /* from devinfo.c */ 4386 { "binding_hash", "walk all entries in binding hash table", 4387 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4388 { "devinfo", "walk devinfo tree or subtree", 4389 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4390 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4391 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4392 devinfo_audit_log_walk_fini}, 4393 { "devinfo_audit_node", "walk per-devinfo audit history", 4394 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4395 devinfo_audit_node_walk_fini}, 4396 { "devinfo_children", "walk children of devinfo node", 4397 devinfo_children_walk_init, devinfo_children_walk_step, 4398 devinfo_children_walk_fini }, 4399 { "devinfo_parents", "walk ancestors of devinfo node", 4400 devinfo_parents_walk_init, devinfo_parents_walk_step, 4401 devinfo_parents_walk_fini }, 4402 { "devinfo_siblings", "walk siblings of devinfo node", 4403 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4404 { "devi_next", "walk devinfo list", 4405 NULL, devi_next_walk_step, NULL }, 4406 { "devnames", "walk devnames array", 4407 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4408 { "minornode", "given a devinfo node, walk minor nodes", 4409 minornode_walk_init, minornode_walk_step, NULL }, 4410 { "softstate", 4411 "given an i_ddi_soft_state*, list all in-use driver stateps", 4412 soft_state_walk_init, soft_state_walk_step, 4413 NULL, NULL }, 4414 { "softstate_all", 4415 "given an i_ddi_soft_state*, list all driver stateps", 4416 soft_state_walk_init, soft_state_all_walk_step, 4417 NULL, NULL }, 4418 { "devinfo_fmc", 4419 "walk a fault management handle cache active list", 4420 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4421 4422 /* from group.c */ 4423 { "group", "walk all elements of a group", 4424 group_walk_init, group_walk_step, NULL }, 4425 4426 /* from irm.c */ 4427 { "irmpools", "walk global list of interrupt pools", 4428 irmpools_walk_init, list_walk_step, list_walk_fini }, 4429 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4430 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4431 4432 /* from kmem.c */ 4433 { "allocdby", "given a thread, walk its allocated bufctls", 4434 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4435 { "bufctl", "walk a kmem cache's bufctls", 4436 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4437 { "bufctl_history", "walk the available history of a bufctl", 4438 bufctl_history_walk_init, bufctl_history_walk_step, 4439 bufctl_history_walk_fini }, 4440 { "freedby", "given a thread, walk its freed bufctls", 4441 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4442 { "freectl", "walk a kmem cache's free bufctls", 4443 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4444 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4445 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4446 { "freemem", "walk a kmem cache's free memory", 4447 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4448 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4449 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4450 { "kmem", "walk a kmem cache", 4451 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4452 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4453 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4454 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4455 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4456 { "kmem_log", "walk the kmem transaction log", 4457 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4458 { "kmem_slab", "given a kmem cache, walk its slabs", 4459 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4460 { "kmem_slab_partial", 4461 "given a kmem cache, walk its partially allocated slabs (min 1)", 4462 kmem_slab_walk_partial_init, combined_walk_step, 4463 combined_walk_fini }, 4464 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4465 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4466 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4467 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4468 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4469 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4470 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4471 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4472 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4473 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4474 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4475 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4476 4477 /* from ldi.c */ 4478 { "ldi_handle", "walk the layered driver handle hash", 4479 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4480 { "ldi_ident", "walk the layered driver identifier hash", 4481 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4482 4483 /* from leaky.c + leaky_subr.c */ 4484 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4485 "stack trace", 4486 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4487 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4488 "leaks w/ same stack trace", 4489 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4490 4491 /* from lgrp.c */ 4492 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4493 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4494 { "lgrptbl", "walk lgroup table", 4495 lgrp_walk_init, lgrp_walk_step, NULL }, 4496 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4497 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4498 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4499 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4500 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4501 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4502 4503 /* from list.c */ 4504 { LIST_WALK_NAME, LIST_WALK_DESC, 4505 list_walk_init, list_walk_step, list_walk_fini }, 4506 4507 /* from mdi.c */ 4508 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4509 mdi_pi_client_link_walk_init, 4510 mdi_pi_client_link_walk_step, 4511 mdi_pi_client_link_walk_fini }, 4512 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4513 mdi_pi_phci_link_walk_init, 4514 mdi_pi_phci_link_walk_step, 4515 mdi_pi_phci_link_walk_fini }, 4516 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4517 mdi_phci_ph_next_walk_init, 4518 mdi_phci_ph_next_walk_step, 4519 mdi_phci_ph_next_walk_fini }, 4520 4521 /* from memory.c */ 4522 { "allpages", "walk all pages, including free pages", 4523 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4524 { "anon", "given an amp, list allocated anon structures", 4525 anon_walk_init, anon_walk_step, anon_walk_fini, 4526 ANON_WALK_ALLOC }, 4527 { "anon_all", "given an amp, list contents of all anon slots", 4528 anon_walk_init, anon_walk_step, anon_walk_fini, 4529 ANON_WALK_ALL }, 4530 { "memlist", "walk specified memlist", 4531 NULL, memlist_walk_step, NULL }, 4532 { "page", "walk all pages, or those from the specified vnode", 4533 page_walk_init, page_walk_step, page_walk_fini }, 4534 { "seg", "given an as, list of segments", 4535 seg_walk_init, avl_walk_step, avl_walk_fini }, 4536 { "segvn_anon", 4537 "given a struct segvn_data, list allocated anon structures", 4538 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4539 ANON_WALK_ALLOC }, 4540 { "segvn_anon_all", 4541 "given a struct segvn_data, list contents of all anon slots", 4542 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4543 ANON_WALK_ALL }, 4544 { "segvn_pages", 4545 "given a struct segvn_data, list resident pages in " 4546 "offset order", 4547 segvn_pages_walk_init, segvn_pages_walk_step, 4548 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4549 { "segvn_pages_all", 4550 "for each offset in a struct segvn_data, give page_t pointer " 4551 "(if resident), or NULL.", 4552 segvn_pages_walk_init, segvn_pages_walk_step, 4553 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4554 { "swapinfo", "walk swapinfo structures", 4555 swap_walk_init, swap_walk_step, NULL }, 4556 4557 /* from mmd.c */ 4558 { "pattr", "walk pattr_t structures", pattr_walk_init, 4559 mmdq_walk_step, mmdq_walk_fini }, 4560 { "pdesc", "walk pdesc_t structures", 4561 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4562 { "pdesc_slab", "walk pdesc_slab_t structures", 4563 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4564 4565 /* from modhash.c */ 4566 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4567 modhash_walk_step, NULL }, 4568 { "modent", "walk list of entries in a given mod_hash", 4569 modent_walk_init, modent_walk_step, modent_walk_fini }, 4570 { "modchain", "walk list of entries in a given mod_hash_entry", 4571 NULL, modchain_walk_step, NULL }, 4572 4573 /* from net.c */ 4574 { "icmp", "walk ICMP control structures using MI for all stacks", 4575 mi_payload_walk_init, mi_payload_walk_step, NULL, 4576 &mi_icmp_arg }, 4577 { "mi", "given a MI_O, walk the MI", 4578 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4579 { "sonode", "given a sonode, walk its children", 4580 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4581 { "icmp_stacks", "walk all the icmp_stack_t", 4582 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4583 { "tcp_stacks", "walk all the tcp_stack_t", 4584 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4585 { "udp_stacks", "walk all the udp_stack_t", 4586 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4587 4588 /* from netstack.c */ 4589 { "netstack", "walk a list of kernel netstacks", 4590 netstack_walk_init, netstack_walk_step, NULL }, 4591 4592 /* from nvpair.c */ 4593 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4594 nvpair_walk_init, nvpair_walk_step, NULL }, 4595 4596 /* from rctl.c */ 4597 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4598 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4599 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4600 rctl_set_walk_step, NULL }, 4601 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4602 rctl_val_walk_init, rctl_val_walk_step }, 4603 4604 /* from sobj.c */ 4605 { "blocked", "walk threads blocked on a given sobj", 4606 blocked_walk_init, blocked_walk_step, NULL }, 4607 { "wchan", "given a wchan, list of blocked threads", 4608 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4609 4610 /* from stream.c */ 4611 { "b_cont", "walk mblk_t list using b_cont", 4612 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4613 { "b_next", "walk mblk_t list using b_next", 4614 mblk_walk_init, b_next_step, mblk_walk_fini }, 4615 { "qlink", "walk queue_t list using q_link", 4616 queue_walk_init, queue_link_step, queue_walk_fini }, 4617 { "qnext", "walk queue_t list using q_next", 4618 queue_walk_init, queue_next_step, queue_walk_fini }, 4619 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4620 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4621 { "readq", "walk read queue side of stdata", 4622 str_walk_init, strr_walk_step, str_walk_fini }, 4623 { "writeq", "walk write queue side of stdata", 4624 str_walk_init, strw_walk_step, str_walk_fini }, 4625 4626 /* from taskq.c */ 4627 { "taskq_thread", "given a taskq_t, list all of its threads", 4628 taskq_thread_walk_init, 4629 taskq_thread_walk_step, 4630 taskq_thread_walk_fini }, 4631 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4632 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4633 4634 /* from thread.c */ 4635 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4636 deathrow_walk_init, deathrow_walk_step, NULL }, 4637 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4638 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4639 { "cpupart_dispq", 4640 "given a cpupart_t, walk threads in dispatcher queues", 4641 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4642 { "lwp_deathrow", "walk lwp_deathrow", 4643 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4644 { "thread", "global or per-process kthread_t structures", 4645 thread_walk_init, thread_walk_step, thread_walk_fini }, 4646 { "thread_deathrow", "walk threads on thread_deathrow", 4647 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4648 4649 /* from tsd.c */ 4650 { "tsd", "walk list of thread-specific data", 4651 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4652 4653 /* from tsol.c */ 4654 { "tnrh", "walk remote host cache structures", 4655 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4656 { "tnrhtp", "walk remote host template structures", 4657 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4658 4659 /* 4660 * typegraph does not work under kmdb, as it requires too much memory 4661 * for its internal data structures. 4662 */ 4663 #ifndef _KMDB 4664 /* from typegraph.c */ 4665 { "typeconflict", "walk buffers with conflicting type inferences", 4666 typegraph_walk_init, typeconflict_walk_step }, 4667 { "typeunknown", "walk buffers with unknown types", 4668 typegraph_walk_init, typeunknown_walk_step }, 4669 #endif 4670 4671 /* from vfs.c */ 4672 { "vfs", "walk file system list", 4673 vfs_walk_init, vfs_walk_step }, 4674 4675 /* from zone.c */ 4676 { "zone", "walk a list of kernel zones", 4677 zone_walk_init, zone_walk_step, NULL }, 4678 { "zsd", "walk list of zsd entries for a zone", 4679 zsd_walk_init, zsd_walk_step, NULL }, 4680 4681 { NULL } 4682 }; 4683 4684 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4685 4686 /*ARGSUSED*/ 4687 static void 4688 genunix_statechange_cb(void *ignored) 4689 { 4690 /* 4691 * Force ::findleaks and ::stacks to let go any cached state. 4692 */ 4693 leaky_cleanup(1); 4694 stacks_cleanup(1); 4695 4696 kmem_statechange(); /* notify kmem */ 4697 } 4698 4699 const mdb_modinfo_t * 4700 _mdb_init(void) 4701 { 4702 kmem_init(); 4703 4704 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4705 genunix_statechange_cb, NULL); 4706 4707 #ifndef _KMDB 4708 gcore_init(); 4709 #endif 4710 4711 return (&modinfo); 4712 } 4713 4714 void 4715 _mdb_fini(void) 4716 { 4717 leaky_cleanup(1); 4718 stacks_cleanup(1); 4719 } 4720