1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <vm/seg_vn.h> 53 #include <vm/anon.h> 54 #include <vm/as.h> 55 #include <vm/seg_map.h> 56 #include <sys/dditypes.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/sysconf.h> 60 #include <sys/task.h> 61 #include <sys/project.h> 62 #include <sys/taskq.h> 63 #include <sys/taskq_impl.h> 64 #include <sys/errorq_impl.h> 65 #include <sys/cred_impl.h> 66 #include <sys/zone.h> 67 #include <sys/panic.h> 68 #include <regex.h> 69 #include <sys/port_impl.h> 70 71 #include "avl.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "pg.h" 78 #include "group.h" 79 #include "list.h" 80 #include "log.h" 81 #include "kgrep.h" 82 #include "kmem.h" 83 #include "bio.h" 84 #include "streams.h" 85 #include "cyclic.h" 86 #include "findstack.h" 87 #include "ndievents.h" 88 #include "mmd.h" 89 #include "net.h" 90 #include "netstack.h" 91 #include "nvpair.h" 92 #include "ctxop.h" 93 #include "tsd.h" 94 #include "thread.h" 95 #include "memory.h" 96 #include "sobj.h" 97 #include "sysevent.h" 98 #include "rctl.h" 99 #include "tsol.h" 100 #include "typegraph.h" 101 #include "ldi.h" 102 #include "vfs.h" 103 #include "zone.h" 104 #include "modhash.h" 105 #include "mdi.h" 106 #include "fm.h" 107 108 /* 109 * Surely this is defined somewhere... 110 */ 111 #define NINTR 16 112 113 #define KILOS 10 114 #define MEGS 20 115 #define GIGS 30 116 117 #ifndef STACK_BIAS 118 #define STACK_BIAS 0 119 #endif 120 121 static char 122 pstat2ch(uchar_t state) 123 { 124 switch (state) { 125 case SSLEEP: return ('S'); 126 case SRUN: return ('R'); 127 case SZOMB: return ('Z'); 128 case SIDL: return ('I'); 129 case SONPROC: return ('O'); 130 case SSTOP: return ('T'); 131 case SWAIT: return ('W'); 132 default: return ('?'); 133 } 134 } 135 136 #define PS_PRTTHREADS 0x1 137 #define PS_PRTLWPS 0x2 138 #define PS_PSARGS 0x4 139 #define PS_TASKS 0x8 140 #define PS_PROJECTS 0x10 141 #define PS_ZONES 0x20 142 143 static int 144 ps_threadprint(uintptr_t addr, const void *data, void *private) 145 { 146 const kthread_t *t = (const kthread_t *)data; 147 uint_t prt_flags = *((uint_t *)private); 148 149 static const mdb_bitmask_t t_state_bits[] = { 150 { "TS_FREE", UINT_MAX, TS_FREE }, 151 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 152 { "TS_RUN", TS_RUN, TS_RUN }, 153 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 154 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 155 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 156 { "TS_WAIT", TS_WAIT, TS_WAIT }, 157 { NULL, 0, 0 } 158 }; 159 160 if (prt_flags & PS_PRTTHREADS) 161 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 162 163 if (prt_flags & PS_PRTLWPS) 164 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 165 166 return (WALK_NEXT); 167 } 168 169 int 170 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 171 { 172 uint_t prt_flags = 0; 173 proc_t pr; 174 struct pid pid, pgid, sid; 175 sess_t session; 176 cred_t cred; 177 task_t tk; 178 kproject_t pj; 179 zone_t zn; 180 181 if (!(flags & DCMD_ADDRSPEC)) { 182 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 183 mdb_warn("can't walk 'proc'"); 184 return (DCMD_ERR); 185 } 186 return (DCMD_OK); 187 } 188 189 if (mdb_getopts(argc, argv, 190 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 191 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 192 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 193 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 194 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 195 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 196 return (DCMD_USAGE); 197 198 if (DCMD_HDRSPEC(flags)) { 199 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 200 "S", "PID", "PPID", "PGID", "SID"); 201 if (prt_flags & PS_TASKS) 202 mdb_printf("%5s ", "TASK"); 203 if (prt_flags & PS_PROJECTS) 204 mdb_printf("%5s ", "PROJ"); 205 if (prt_flags & PS_ZONES) 206 mdb_printf("%5s ", "ZONE"); 207 mdb_printf("%6s %10s %?s %s%</u>\n", 208 "UID", "FLAGS", "ADDR", "NAME"); 209 } 210 211 mdb_vread(&pr, sizeof (pr), addr); 212 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 213 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 214 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 215 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 216 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 217 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 218 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 219 if (prt_flags & PS_PROJECTS) 220 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 221 if (prt_flags & PS_ZONES) 222 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 223 224 mdb_printf("%c %6d %6d %6d %6d ", 225 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 226 sid.pid_id); 227 if (prt_flags & PS_TASKS) 228 mdb_printf("%5d ", tk.tk_tkid); 229 if (prt_flags & PS_PROJECTS) 230 mdb_printf("%5d ", pj.kpj_id); 231 if (prt_flags & PS_ZONES) 232 mdb_printf("%5d ", zn.zone_id); 233 mdb_printf("%6d 0x%08x %0?p %s\n", 234 cred.cr_uid, pr.p_flag, addr, 235 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 236 237 if (prt_flags & ~PS_PSARGS) 238 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 239 240 return (DCMD_OK); 241 } 242 243 #define PG_NEWEST 0x0001 244 #define PG_OLDEST 0x0002 245 #define PG_PIPE_OUT 0x0004 246 #define PG_EXACT_MATCH 0x0008 247 248 typedef struct pgrep_data { 249 uint_t pg_flags; 250 uint_t pg_psflags; 251 uintptr_t pg_xaddr; 252 hrtime_t pg_xstart; 253 const char *pg_pat; 254 #ifndef _KMDB 255 regex_t pg_reg; 256 #endif 257 } pgrep_data_t; 258 259 /*ARGSUSED*/ 260 static int 261 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 262 { 263 const proc_t *prp = pdata; 264 pgrep_data_t *pgp = data; 265 #ifndef _KMDB 266 regmatch_t pmatch; 267 #endif 268 269 /* 270 * kmdb doesn't have access to the reg* functions, so we fall back 271 * to strstr/strcmp. 272 */ 273 #ifdef _KMDB 274 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 275 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 276 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 277 return (WALK_NEXT); 278 #else 279 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 280 return (WALK_NEXT); 281 282 if ((pgp->pg_flags & PG_EXACT_MATCH) && 283 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 284 return (WALK_NEXT); 285 #endif 286 287 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 288 hrtime_t start; 289 290 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 291 prp->p_user.u_start.tv_nsec; 292 293 if (pgp->pg_flags & PG_NEWEST) { 294 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 295 pgp->pg_xaddr = addr; 296 pgp->pg_xstart = start; 297 } 298 } else { 299 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 300 pgp->pg_xaddr = addr; 301 pgp->pg_xstart = start; 302 } 303 } 304 305 } else if (pgp->pg_flags & PG_PIPE_OUT) { 306 mdb_printf("%p\n", addr); 307 308 } else { 309 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 310 mdb_warn("can't invoke 'ps'"); 311 return (WALK_DONE); 312 } 313 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 314 } 315 316 return (WALK_NEXT); 317 } 318 319 /*ARGSUSED*/ 320 int 321 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 322 { 323 pgrep_data_t pg; 324 int i; 325 #ifndef _KMDB 326 int err; 327 #endif 328 329 if (flags & DCMD_ADDRSPEC) 330 return (DCMD_USAGE); 331 332 pg.pg_flags = 0; 333 pg.pg_xaddr = 0; 334 335 i = mdb_getopts(argc, argv, 336 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 337 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 338 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 339 NULL); 340 341 argc -= i; 342 argv += i; 343 344 if (argc != 1) 345 return (DCMD_USAGE); 346 347 /* 348 * -n and -o are mutually exclusive. 349 */ 350 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 351 return (DCMD_USAGE); 352 353 if (argv->a_type != MDB_TYPE_STRING) 354 return (DCMD_USAGE); 355 356 if (flags & DCMD_PIPE_OUT) 357 pg.pg_flags |= PG_PIPE_OUT; 358 359 pg.pg_pat = argv->a_un.a_str; 360 if (DCMD_HDRSPEC(flags)) 361 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 362 else 363 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 364 365 #ifndef _KMDB 366 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 367 size_t nbytes; 368 char *buf; 369 370 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 371 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 372 (void) regerror(err, &pg.pg_reg, buf, nbytes); 373 mdb_warn("%s\n", buf); 374 375 return (DCMD_ERR); 376 } 377 #endif 378 379 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 380 mdb_warn("can't walk 'proc'"); 381 return (DCMD_ERR); 382 } 383 384 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 385 if (pg.pg_flags & PG_PIPE_OUT) { 386 mdb_printf("%p\n", pg.pg_xaddr); 387 } else { 388 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 389 0, NULL) != 0) { 390 mdb_warn("can't invoke 'ps'"); 391 return (DCMD_ERR); 392 } 393 } 394 } 395 396 return (DCMD_OK); 397 } 398 399 int 400 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 401 { 402 task_t tk; 403 kproject_t pj; 404 405 if (!(flags & DCMD_ADDRSPEC)) { 406 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 407 mdb_warn("can't walk task_cache"); 408 return (DCMD_ERR); 409 } 410 return (DCMD_OK); 411 } 412 if (DCMD_HDRSPEC(flags)) { 413 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 414 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 415 } 416 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 417 mdb_warn("can't read task_t structure at %p", addr); 418 return (DCMD_ERR); 419 } 420 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 421 mdb_warn("can't read project_t structure at %p", addr); 422 return (DCMD_ERR); 423 } 424 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 425 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 426 tk.tk_flags); 427 return (DCMD_OK); 428 } 429 430 int 431 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 432 { 433 kproject_t pj; 434 435 if (!(flags & DCMD_ADDRSPEC)) { 436 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 437 mdb_warn("can't walk projects"); 438 return (DCMD_ERR); 439 } 440 return (DCMD_OK); 441 } 442 if (DCMD_HDRSPEC(flags)) { 443 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 444 "ADDR", "PROJID", "ZONEID", "REFCNT"); 445 } 446 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 447 mdb_warn("can't read kproject_t structure at %p", addr); 448 return (DCMD_ERR); 449 } 450 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 451 pj.kpj_count); 452 return (DCMD_OK); 453 } 454 455 /*ARGSUSED*/ 456 int 457 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 458 { 459 callout_table_t *co_ktable[CALLOUT_TABLES]; 460 int co_kfanout; 461 callout_table_t co_table; 462 callout_t co_callout; 463 callout_t *co_ptr; 464 int co_id; 465 clock_t lbolt; 466 int i, j, k; 467 const char *lbolt_sym; 468 469 if ((flags & DCMD_ADDRSPEC) || argc != 0) 470 return (DCMD_USAGE); 471 472 if (mdb_prop_postmortem) 473 lbolt_sym = "panic_lbolt"; 474 else 475 lbolt_sym = "lbolt"; 476 477 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 478 mdb_warn("failed to read '%s'", lbolt_sym); 479 return (DCMD_ERR); 480 } 481 482 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 483 mdb_warn("failed to read callout_fanout"); 484 return (DCMD_ERR); 485 } 486 487 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 488 mdb_warn("failed to read callout_table"); 489 return (DCMD_ERR); 490 } 491 492 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 493 "FUNCTION", "ARGUMENT", "ID", "TIME"); 494 495 for (i = 0; i < CALLOUT_NTYPES; i++) { 496 for (j = 0; j < co_kfanout; j++) { 497 498 co_id = CALLOUT_TABLE(i, j); 499 500 if (mdb_vread(&co_table, sizeof (co_table), 501 (uintptr_t)co_ktable[co_id]) == -1) { 502 mdb_warn("failed to read table at %p", 503 (uintptr_t)co_ktable[co_id]); 504 continue; 505 } 506 507 for (k = 0; k < CALLOUT_BUCKETS; k++) { 508 co_ptr = co_table.ct_idhash[k]; 509 510 while (co_ptr != NULL) { 511 mdb_vread(&co_callout, 512 sizeof (co_callout), 513 (uintptr_t)co_ptr); 514 515 mdb_printf("%-24a %0?p %0?lx %?lx " 516 "(T%+ld)\n", co_callout.c_func, 517 co_callout.c_arg, co_callout.c_xid, 518 co_callout.c_runtime, 519 co_callout.c_runtime - lbolt); 520 521 co_ptr = co_callout.c_idnext; 522 } 523 } 524 } 525 } 526 527 return (DCMD_OK); 528 } 529 530 /*ARGSUSED*/ 531 int 532 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 533 { 534 long num_classes, i; 535 sclass_t *class_tbl; 536 GElf_Sym g_sclass; 537 char class_name[PC_CLNMSZ]; 538 size_t tbl_size; 539 540 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 541 mdb_warn("failed to find symbol sclass\n"); 542 return (DCMD_ERR); 543 } 544 545 tbl_size = (size_t)g_sclass.st_size; 546 num_classes = tbl_size / (sizeof (sclass_t)); 547 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 548 549 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 550 mdb_warn("failed to read sclass"); 551 return (DCMD_ERR); 552 } 553 554 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 555 "INIT FCN", "CLASS FCN"); 556 557 for (i = 0; i < num_classes; i++) { 558 if (mdb_vread(class_name, sizeof (class_name), 559 (uintptr_t)class_tbl[i].cl_name) == -1) 560 (void) strcpy(class_name, "???"); 561 562 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 563 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 564 } 565 566 return (DCMD_OK); 567 } 568 569 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 570 571 int 572 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 573 { 574 uintptr_t rootdir; 575 vnode_t vn; 576 char buf[MAXPATHLEN]; 577 578 uint_t opt_F = FALSE; 579 580 if (mdb_getopts(argc, argv, 581 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 582 return (DCMD_USAGE); 583 584 if (!(flags & DCMD_ADDRSPEC)) { 585 mdb_warn("expected explicit vnode_t address before ::\n"); 586 return (DCMD_USAGE); 587 } 588 589 if (mdb_readvar(&rootdir, "rootdir") == -1) { 590 mdb_warn("failed to read rootdir"); 591 return (DCMD_ERR); 592 } 593 594 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 595 return (DCMD_ERR); 596 597 if (*buf == '\0') { 598 mdb_printf("??\n"); 599 return (DCMD_OK); 600 } 601 602 mdb_printf("%s", buf); 603 if (opt_F && buf[strlen(buf)-1] != '/' && 604 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 605 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 606 mdb_printf("\n"); 607 608 return (DCMD_OK); 609 } 610 611 int 612 ld_walk_init(mdb_walk_state_t *wsp) 613 { 614 wsp->walk_data = (void *)wsp->walk_addr; 615 return (WALK_NEXT); 616 } 617 618 int 619 ld_walk_step(mdb_walk_state_t *wsp) 620 { 621 int status; 622 lock_descriptor_t ld; 623 624 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 625 mdb_warn("couldn't read lock_descriptor_t at %p\n", 626 wsp->walk_addr); 627 return (WALK_ERR); 628 } 629 630 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 631 if (status == WALK_ERR) 632 return (WALK_ERR); 633 634 wsp->walk_addr = (uintptr_t)ld.l_next; 635 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 636 return (WALK_DONE); 637 638 return (status); 639 } 640 641 int 642 lg_walk_init(mdb_walk_state_t *wsp) 643 { 644 GElf_Sym sym; 645 646 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 647 mdb_warn("failed to find symbol 'lock_graph'\n"); 648 return (WALK_ERR); 649 } 650 651 wsp->walk_addr = (uintptr_t)sym.st_value; 652 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 653 654 return (WALK_NEXT); 655 } 656 657 typedef struct lg_walk_data { 658 uintptr_t startaddr; 659 mdb_walk_cb_t callback; 660 void *data; 661 } lg_walk_data_t; 662 663 /* 664 * We can't use ::walk lock_descriptor directly, because the head of each graph 665 * is really a dummy lock. Rather than trying to dynamically determine if this 666 * is a dummy node or not, we just filter out the initial element of the 667 * list. 668 */ 669 static int 670 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 671 { 672 lg_walk_data_t *lw = priv; 673 674 if (addr != lw->startaddr) 675 return (lw->callback(addr, data, lw->data)); 676 677 return (WALK_NEXT); 678 } 679 680 int 681 lg_walk_step(mdb_walk_state_t *wsp) 682 { 683 graph_t *graph; 684 lg_walk_data_t lw; 685 686 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 687 return (WALK_DONE); 688 689 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 690 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 691 return (WALK_ERR); 692 } 693 694 wsp->walk_addr += sizeof (graph); 695 696 if (graph == NULL) 697 return (WALK_NEXT); 698 699 lw.callback = wsp->walk_callback; 700 lw.data = wsp->walk_cbdata; 701 702 lw.startaddr = (uintptr_t)&(graph->active_locks); 703 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 704 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 705 return (WALK_ERR); 706 } 707 708 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 709 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 710 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 711 return (WALK_ERR); 712 } 713 714 return (WALK_NEXT); 715 } 716 717 /* 718 * The space available for the path corresponding to the locked vnode depends 719 * on whether we are printing 32- or 64-bit addresses. 720 */ 721 #ifdef _LP64 722 #define LM_VNPATHLEN 20 723 #else 724 #define LM_VNPATHLEN 30 725 #endif 726 727 /*ARGSUSED*/ 728 static int 729 lminfo_cb(uintptr_t addr, const void *data, void *priv) 730 { 731 const lock_descriptor_t *ld = data; 732 char buf[LM_VNPATHLEN]; 733 proc_t p; 734 735 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 736 addr, ld->l_type == F_RDLCK ? "RD" : 737 ld->l_type == F_WRLCK ? "WR" : "??", 738 ld->l_state, ld->l_flock.l_pid, 739 ld->l_flock.l_pid == 0 ? "<kernel>" : 740 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 741 "<defunct>" : p.p_user.u_comm, 742 ld->l_vnode); 743 744 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 745 sizeof (buf)); 746 mdb_printf("%s\n", buf); 747 748 return (WALK_NEXT); 749 } 750 751 /*ARGSUSED*/ 752 int 753 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 754 { 755 if (DCMD_HDRSPEC(flags)) 756 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 757 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 758 759 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 760 } 761 762 /*ARGSUSED*/ 763 int 764 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 765 { 766 struct seg s; 767 768 if (argc != 0) 769 return (DCMD_USAGE); 770 771 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 772 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 773 "SEG", "BASE", "SIZE", "DATA", "OPS"); 774 } 775 776 if (mdb_vread(&s, sizeof (s), addr) == -1) { 777 mdb_warn("failed to read seg at %p", addr); 778 return (DCMD_ERR); 779 } 780 781 mdb_printf("%?p %?p %?lx %?p %a\n", 782 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 783 784 return (DCMD_OK); 785 } 786 787 /*ARGSUSED*/ 788 static int 789 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 790 { 791 uintptr_t pp = 792 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 793 794 if (pp != NULL) 795 (*nres)++; 796 797 return (WALK_NEXT); 798 } 799 800 static int 801 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 802 { 803 804 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 805 806 if (segvn == (uintptr_t)seg->s_ops) { 807 struct segvn_data svn; 808 int nres = 0; 809 810 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 811 812 if (svn.amp == NULL) { 813 mdb_printf(" %8s", ""); 814 goto drive_on; 815 } 816 817 /* 818 * We've got an amp for this segment; walk through 819 * the amp, and determine mappings. 820 */ 821 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 822 &nres, (uintptr_t)svn.amp) == -1) 823 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 824 825 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 826 drive_on: 827 828 if (svn.vp != NULL) { 829 char buf[29]; 830 831 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 832 mdb_printf(" %s", buf); 833 } else 834 mdb_printf(" [ anon ]"); 835 } 836 837 mdb_printf("\n"); 838 return (WALK_NEXT); 839 } 840 841 static int 842 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 843 { 844 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 845 846 if (segvn == (uintptr_t)seg->s_ops) { 847 struct segvn_data svn; 848 849 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 850 851 if (svn.vp != NULL) { 852 mdb_printf(" %0?p", svn.vp); 853 } else { 854 mdb_printf(" [ anon ]"); 855 } 856 } 857 858 mdb_printf("\n"); 859 return (WALK_NEXT); 860 } 861 862 /*ARGSUSED*/ 863 int 864 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 865 { 866 uintptr_t segvn; 867 proc_t proc; 868 uint_t quick = FALSE; 869 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 870 871 GElf_Sym sym; 872 873 if (!(flags & DCMD_ADDRSPEC)) 874 return (DCMD_USAGE); 875 876 if (mdb_getopts(argc, argv, 877 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 878 return (DCMD_USAGE); 879 880 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 881 mdb_warn("failed to read proc at %p", addr); 882 return (DCMD_ERR); 883 } 884 885 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 886 segvn = (uintptr_t)sym.st_value; 887 else 888 segvn = NULL; 889 890 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 891 892 if (quick) { 893 mdb_printf("VNODE\n"); 894 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 895 } else { 896 mdb_printf("%8s %s\n", "RES", "PATH"); 897 } 898 899 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 900 mdb_warn("failed to walk segments of as %p", proc.p_as); 901 return (DCMD_ERR); 902 } 903 904 return (DCMD_OK); 905 } 906 907 typedef struct anon_walk_data { 908 uintptr_t *aw_levone; 909 uintptr_t *aw_levtwo; 910 int aw_nlevone; 911 int aw_levone_ndx; 912 int aw_levtwo_ndx; 913 struct anon_map aw_amp; 914 struct anon_hdr aw_ahp; 915 } anon_walk_data_t; 916 917 int 918 anon_walk_init(mdb_walk_state_t *wsp) 919 { 920 anon_walk_data_t *aw; 921 922 if (wsp->walk_addr == NULL) { 923 mdb_warn("anon walk doesn't support global walks\n"); 924 return (WALK_ERR); 925 } 926 927 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 928 929 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 930 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 931 mdb_free(aw, sizeof (anon_walk_data_t)); 932 return (WALK_ERR); 933 } 934 935 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 936 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 937 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 938 mdb_free(aw, sizeof (anon_walk_data_t)); 939 return (WALK_ERR); 940 } 941 942 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 943 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 944 aw->aw_nlevone = aw->aw_ahp.size; 945 aw->aw_levtwo = NULL; 946 } else { 947 aw->aw_nlevone = 948 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 949 aw->aw_levtwo = 950 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 951 } 952 953 aw->aw_levone = 954 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 955 956 aw->aw_levone_ndx = 0; 957 aw->aw_levtwo_ndx = 0; 958 959 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 960 (uintptr_t)aw->aw_ahp.array_chunk); 961 962 if (aw->aw_levtwo != NULL) { 963 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 964 aw->aw_levone_ndx++; 965 if (aw->aw_levone_ndx == aw->aw_nlevone) { 966 mdb_warn("corrupt anon; couldn't" 967 "find ptr to lev two map"); 968 goto out; 969 } 970 } 971 972 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 973 aw->aw_levone[aw->aw_levone_ndx]); 974 } 975 976 out: 977 wsp->walk_data = aw; 978 return (0); 979 } 980 981 int 982 anon_walk_step(mdb_walk_state_t *wsp) 983 { 984 int status; 985 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 986 struct anon anon; 987 uintptr_t anonptr; 988 989 again: 990 /* 991 * Once we've walked through level one, we're done. 992 */ 993 if (aw->aw_levone_ndx == aw->aw_nlevone) 994 return (WALK_DONE); 995 996 if (aw->aw_levtwo == NULL) { 997 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 998 aw->aw_levone_ndx++; 999 } else { 1000 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 1001 aw->aw_levtwo_ndx++; 1002 1003 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 1004 aw->aw_levtwo_ndx = 0; 1005 1006 do { 1007 aw->aw_levone_ndx++; 1008 1009 if (aw->aw_levone_ndx == aw->aw_nlevone) 1010 return (WALK_DONE); 1011 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1012 1013 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1014 sizeof (uintptr_t), 1015 aw->aw_levone[aw->aw_levone_ndx]); 1016 } 1017 } 1018 1019 if (anonptr != NULL) { 1020 mdb_vread(&anon, sizeof (anon), anonptr); 1021 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1022 } else 1023 goto again; 1024 1025 return (status); 1026 } 1027 1028 void 1029 anon_walk_fini(mdb_walk_state_t *wsp) 1030 { 1031 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1032 1033 if (aw->aw_levtwo != NULL) 1034 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1035 1036 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1037 mdb_free(aw, sizeof (anon_walk_data_t)); 1038 } 1039 1040 /*ARGSUSED*/ 1041 int 1042 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1043 { 1044 if ((uintptr_t)f->f_vnode == *target) { 1045 mdb_printf("file %p\n", addr); 1046 *target = NULL; 1047 } 1048 1049 return (WALK_NEXT); 1050 } 1051 1052 /*ARGSUSED*/ 1053 int 1054 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1055 { 1056 uintptr_t t = *target; 1057 1058 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1059 mdb_warn("couldn't file walk proc %p", addr); 1060 return (WALK_ERR); 1061 } 1062 1063 if (t == NULL) 1064 mdb_printf("%p\n", addr); 1065 1066 return (WALK_NEXT); 1067 } 1068 1069 /*ARGSUSED*/ 1070 int 1071 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1072 { 1073 uintptr_t target = addr; 1074 1075 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1076 return (DCMD_USAGE); 1077 1078 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1079 mdb_warn("can't proc walk"); 1080 return (DCMD_ERR); 1081 } 1082 1083 return (DCMD_OK); 1084 } 1085 1086 typedef struct datafmt { 1087 char *hdr1; 1088 char *hdr2; 1089 char *dashes; 1090 char *fmt; 1091 } datafmt_t; 1092 1093 static datafmt_t kmemfmt[] = { 1094 { "cache ", "name ", 1095 "-------------------------", "%-25s " }, 1096 { " buf", " size", "------", "%6u " }, 1097 { " buf", "in use", "------", "%6u " }, 1098 { " buf", " total", "------", "%6u " }, 1099 { " memory", " in use", "----------", "%9u%c " }, 1100 { " alloc", " succeed", "---------", "%9u " }, 1101 { "alloc", " fail", "-----", "%5u " }, 1102 { NULL, NULL, NULL, NULL } 1103 }; 1104 1105 static datafmt_t vmemfmt[] = { 1106 { "vmem ", "name ", 1107 "-------------------------", "%-*s " }, 1108 { " memory", " in use", "----------", "%9llu%c " }, 1109 { " memory", " total", "-----------", "%10llu%c " }, 1110 { " memory", " import", "----------", "%9llu%c " }, 1111 { " alloc", " succeed", "---------", "%9llu " }, 1112 { "alloc", " fail", "-----", "%5llu " }, 1113 { NULL, NULL, NULL, NULL } 1114 }; 1115 1116 /*ARGSUSED*/ 1117 static int 1118 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1119 { 1120 if (ccp->cc_rounds > 0) 1121 *avail += ccp->cc_rounds; 1122 if (ccp->cc_prounds > 0) 1123 *avail += ccp->cc_prounds; 1124 1125 return (WALK_NEXT); 1126 } 1127 1128 /*ARGSUSED*/ 1129 static int 1130 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1131 { 1132 *alloc += ccp->cc_alloc; 1133 1134 return (WALK_NEXT); 1135 } 1136 1137 /*ARGSUSED*/ 1138 static int 1139 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1140 { 1141 *avail += sp->slab_chunks - sp->slab_refcnt; 1142 1143 return (WALK_NEXT); 1144 } 1145 1146 typedef struct kmastat_vmem { 1147 uintptr_t kv_addr; 1148 struct kmastat_vmem *kv_next; 1149 int kv_meminuse; 1150 int kv_alloc; 1151 int kv_fail; 1152 } kmastat_vmem_t; 1153 1154 typedef struct kmastat_args { 1155 kmastat_vmem_t **ka_kvpp; 1156 uint_t ka_shift; 1157 } kmastat_args_t; 1158 1159 static int 1160 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1161 { 1162 kmastat_vmem_t **kvp = kap->ka_kvpp; 1163 kmastat_vmem_t *kv; 1164 datafmt_t *dfp = kmemfmt; 1165 int magsize; 1166 1167 int avail, alloc, total; 1168 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1169 cp->cache_slabsize; 1170 1171 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1172 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1173 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1174 1175 magsize = kmem_get_magsize(cp); 1176 1177 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1178 avail = cp->cache_full.ml_total * magsize; 1179 total = cp->cache_buftotal; 1180 1181 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1182 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1183 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1184 1185 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1186 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1187 goto out; 1188 } 1189 1190 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1191 kv->kv_next = *kvp; 1192 kv->kv_addr = (uintptr_t)cp->cache_arena; 1193 *kvp = kv; 1194 out: 1195 kv->kv_meminuse += meminuse; 1196 kv->kv_alloc += alloc; 1197 kv->kv_fail += cp->cache_alloc_fail; 1198 1199 mdb_printf((dfp++)->fmt, cp->cache_name); 1200 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1201 mdb_printf((dfp++)->fmt, total - avail); 1202 mdb_printf((dfp++)->fmt, total); 1203 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 1204 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 1205 kap->ka_shift == KILOS ? 'K' : 'B'); 1206 mdb_printf((dfp++)->fmt, alloc); 1207 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1208 mdb_printf("\n"); 1209 1210 return (WALK_NEXT); 1211 } 1212 1213 static int 1214 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 1215 { 1216 kmastat_vmem_t *kv = *kap->ka_kvpp; 1217 size_t len; 1218 1219 while (kv != NULL && kv->kv_addr != addr) 1220 kv = kv->kv_next; 1221 1222 if (kv == NULL || kv->kv_alloc == 0) 1223 return (WALK_NEXT); 1224 1225 len = MIN(17, strlen(v->vm_name)); 1226 1227 mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name, 1228 17 - len, "", "", "", "", 1229 kv->kv_meminuse >> kap->ka_shift, 1230 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 1231 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 1232 1233 return (WALK_NEXT); 1234 } 1235 1236 /*ARGSUSED*/ 1237 static int 1238 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 1239 { 1240 datafmt_t *dfp = vmemfmt; 1241 const vmem_kstat_t *vkp = &v->vm_kstat; 1242 uintptr_t paddr; 1243 vmem_t parent; 1244 int ident = 0; 1245 1246 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1247 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1248 mdb_warn("couldn't trace %p's ancestry", addr); 1249 ident = 0; 1250 break; 1251 } 1252 paddr = (uintptr_t)parent.vm_source; 1253 } 1254 1255 mdb_printf("%*s", ident, ""); 1256 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1257 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 1258 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 1259 *shiftp == KILOS ? 'K' : 'B'); 1260 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 1261 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 1262 *shiftp == KILOS ? 'K' : 'B'); 1263 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 1264 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 1265 *shiftp == KILOS ? 'K' : 'B'); 1266 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1267 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1268 1269 mdb_printf("\n"); 1270 1271 return (WALK_NEXT); 1272 } 1273 1274 /*ARGSUSED*/ 1275 int 1276 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1277 { 1278 kmastat_vmem_t *kv = NULL; 1279 datafmt_t *dfp; 1280 kmastat_args_t ka; 1281 1282 ka.ka_shift = 0; 1283 if (mdb_getopts(argc, argv, 1284 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 1285 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 1286 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 1287 return (DCMD_USAGE); 1288 1289 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1290 mdb_printf("%s ", dfp->hdr1); 1291 mdb_printf("\n"); 1292 1293 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1294 mdb_printf("%s ", dfp->hdr2); 1295 mdb_printf("\n"); 1296 1297 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1298 mdb_printf("%s ", dfp->dashes); 1299 mdb_printf("\n"); 1300 1301 ka.ka_kvpp = &kv; 1302 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 1303 mdb_warn("can't walk 'kmem_cache'"); 1304 return (DCMD_ERR); 1305 } 1306 1307 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1308 mdb_printf("%s ", dfp->dashes); 1309 mdb_printf("\n"); 1310 1311 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 1312 mdb_warn("can't walk 'vmem'"); 1313 return (DCMD_ERR); 1314 } 1315 1316 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1317 mdb_printf("%s ", dfp->dashes); 1318 mdb_printf("\n"); 1319 1320 mdb_printf("\n"); 1321 1322 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1323 mdb_printf("%s ", dfp->hdr1); 1324 mdb_printf("\n"); 1325 1326 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1327 mdb_printf("%s ", dfp->hdr2); 1328 mdb_printf("\n"); 1329 1330 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1331 mdb_printf("%s ", dfp->dashes); 1332 mdb_printf("\n"); 1333 1334 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 1335 mdb_warn("can't walk 'vmem'"); 1336 return (DCMD_ERR); 1337 } 1338 1339 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1340 mdb_printf("%s ", dfp->dashes); 1341 mdb_printf("\n"); 1342 return (DCMD_OK); 1343 } 1344 1345 /* 1346 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1347 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1348 * unfortunately, a few of the segs are both large and sparse, so we could 1349 * spend quite a bit of time scanning VAs which have no backing pages. 1350 * 1351 * So for the few very sparse segs, we skip the segment itself, and scan 1352 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1353 * Currently, we do this for: 1354 * 1355 * SEG VMEM ARENA 1356 * kvseg heap_arena 1357 * kvseg32 heap32_arena 1358 * kvseg_core heap_core_arena 1359 * 1360 * In addition, we skip the segkpm segment in its entirety, since it is very 1361 * sparse, and contains no new kernel data. 1362 */ 1363 typedef struct kgrep_walk_data { 1364 kgrep_cb_func *kg_cb; 1365 void *kg_cbdata; 1366 uintptr_t kg_kvseg; 1367 uintptr_t kg_kvseg32; 1368 uintptr_t kg_kvseg_core; 1369 uintptr_t kg_segkpm; 1370 uintptr_t kg_heap_lp_base; 1371 uintptr_t kg_heap_lp_end; 1372 } kgrep_walk_data_t; 1373 1374 static int 1375 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1376 { 1377 uintptr_t base = (uintptr_t)seg->s_base; 1378 1379 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1380 addr == kg->kg_kvseg_core) 1381 return (WALK_NEXT); 1382 1383 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1384 return (WALK_NEXT); 1385 1386 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1387 } 1388 1389 /*ARGSUSED*/ 1390 static int 1391 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1392 { 1393 /* 1394 * skip large page heap address range - it is scanned by walking 1395 * allocated vmem_segs in the heap_lp_arena 1396 */ 1397 if (seg->vs_start == kg->kg_heap_lp_base && 1398 seg->vs_end == kg->kg_heap_lp_end) 1399 return (WALK_NEXT); 1400 1401 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1402 } 1403 1404 /*ARGSUSED*/ 1405 static int 1406 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1407 { 1408 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1409 } 1410 1411 static int 1412 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1413 { 1414 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1415 1416 if (strcmp(vmem->vm_name, "heap") != 0 && 1417 strcmp(vmem->vm_name, "heap32") != 0 && 1418 strcmp(vmem->vm_name, "heap_core") != 0 && 1419 strcmp(vmem->vm_name, "heap_lp") != 0) 1420 return (WALK_NEXT); 1421 1422 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1423 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1424 1425 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1426 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1427 return (WALK_ERR); 1428 } 1429 1430 return (WALK_NEXT); 1431 } 1432 1433 int 1434 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1435 { 1436 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1437 kgrep_walk_data_t kg; 1438 1439 if (mdb_get_state() == MDB_STATE_RUNNING) { 1440 mdb_warn("kgrep can only be run on a system " 1441 "dump or under kmdb; see dumpadm(1M)\n"); 1442 return (DCMD_ERR); 1443 } 1444 1445 if (mdb_lookup_by_name("kas", &kas) == -1) { 1446 mdb_warn("failed to locate 'kas' symbol\n"); 1447 return (DCMD_ERR); 1448 } 1449 1450 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1451 mdb_warn("failed to locate 'kvseg' symbol\n"); 1452 return (DCMD_ERR); 1453 } 1454 1455 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1456 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1457 return (DCMD_ERR); 1458 } 1459 1460 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1461 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1462 return (DCMD_ERR); 1463 } 1464 1465 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1466 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1467 return (DCMD_ERR); 1468 } 1469 1470 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1471 mdb_warn("failed to read 'heap_lp_base'\n"); 1472 return (DCMD_ERR); 1473 } 1474 1475 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1476 mdb_warn("failed to read 'heap_lp_end'\n"); 1477 return (DCMD_ERR); 1478 } 1479 1480 kg.kg_cb = cb; 1481 kg.kg_cbdata = cbdata; 1482 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1483 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1484 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1485 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1486 1487 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1488 &kg, kas.st_value) == -1) { 1489 mdb_warn("failed to walk kas segments"); 1490 return (DCMD_ERR); 1491 } 1492 1493 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1494 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1495 return (DCMD_ERR); 1496 } 1497 1498 return (DCMD_OK); 1499 } 1500 1501 size_t 1502 kgrep_subr_pagesize(void) 1503 { 1504 return (PAGESIZE); 1505 } 1506 1507 typedef struct file_walk_data { 1508 struct uf_entry *fw_flist; 1509 int fw_flistsz; 1510 int fw_ndx; 1511 int fw_nofiles; 1512 } file_walk_data_t; 1513 1514 int 1515 file_walk_init(mdb_walk_state_t *wsp) 1516 { 1517 file_walk_data_t *fw; 1518 proc_t p; 1519 1520 if (wsp->walk_addr == NULL) { 1521 mdb_warn("file walk doesn't support global walks\n"); 1522 return (WALK_ERR); 1523 } 1524 1525 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1526 1527 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1528 mdb_free(fw, sizeof (file_walk_data_t)); 1529 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1530 return (WALK_ERR); 1531 } 1532 1533 if (p.p_user.u_finfo.fi_nfiles == 0) { 1534 mdb_free(fw, sizeof (file_walk_data_t)); 1535 return (WALK_DONE); 1536 } 1537 1538 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1539 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1540 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1541 1542 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1543 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1544 mdb_warn("failed to read file array at %p", 1545 p.p_user.u_finfo.fi_list); 1546 mdb_free(fw->fw_flist, fw->fw_flistsz); 1547 mdb_free(fw, sizeof (file_walk_data_t)); 1548 return (WALK_ERR); 1549 } 1550 1551 fw->fw_ndx = 0; 1552 wsp->walk_data = fw; 1553 1554 return (WALK_NEXT); 1555 } 1556 1557 int 1558 file_walk_step(mdb_walk_state_t *wsp) 1559 { 1560 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1561 struct file file; 1562 uintptr_t fp; 1563 1564 again: 1565 if (fw->fw_ndx == fw->fw_nofiles) 1566 return (WALK_DONE); 1567 1568 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1569 goto again; 1570 1571 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1572 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1573 } 1574 1575 int 1576 allfile_walk_step(mdb_walk_state_t *wsp) 1577 { 1578 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1579 struct file file; 1580 uintptr_t fp; 1581 1582 if (fw->fw_ndx == fw->fw_nofiles) 1583 return (WALK_DONE); 1584 1585 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1586 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1587 else 1588 bzero(&file, sizeof (file)); 1589 1590 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1591 } 1592 1593 void 1594 file_walk_fini(mdb_walk_state_t *wsp) 1595 { 1596 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1597 1598 mdb_free(fw->fw_flist, fw->fw_flistsz); 1599 mdb_free(fw, sizeof (file_walk_data_t)); 1600 } 1601 1602 int 1603 port_walk_init(mdb_walk_state_t *wsp) 1604 { 1605 if (wsp->walk_addr == NULL) { 1606 mdb_warn("port walk doesn't support global walks\n"); 1607 return (WALK_ERR); 1608 } 1609 1610 if (mdb_layered_walk("file", wsp) == -1) { 1611 mdb_warn("couldn't walk 'file'"); 1612 return (WALK_ERR); 1613 } 1614 return (WALK_NEXT); 1615 } 1616 1617 int 1618 port_walk_step(mdb_walk_state_t *wsp) 1619 { 1620 struct vnode vn; 1621 uintptr_t vp; 1622 uintptr_t pp; 1623 struct port port; 1624 1625 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1626 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1627 mdb_warn("failed to read vnode_t at %p", vp); 1628 return (WALK_ERR); 1629 } 1630 if (vn.v_type != VPORT) 1631 return (WALK_NEXT); 1632 1633 pp = (uintptr_t)vn.v_data; 1634 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1635 mdb_warn("failed to read port_t at %p", pp); 1636 return (WALK_ERR); 1637 } 1638 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1639 } 1640 1641 typedef struct portev_walk_data { 1642 list_node_t *pev_node; 1643 list_node_t *pev_last; 1644 size_t pev_offset; 1645 } portev_walk_data_t; 1646 1647 int 1648 portev_walk_init(mdb_walk_state_t *wsp) 1649 { 1650 portev_walk_data_t *pevd; 1651 struct port port; 1652 struct vnode vn; 1653 struct list *list; 1654 uintptr_t vp; 1655 1656 if (wsp->walk_addr == NULL) { 1657 mdb_warn("portev walk doesn't support global walks\n"); 1658 return (WALK_ERR); 1659 } 1660 1661 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1662 1663 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1664 mdb_free(pevd, sizeof (portev_walk_data_t)); 1665 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1666 return (WALK_ERR); 1667 } 1668 1669 vp = (uintptr_t)port.port_vnode; 1670 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1671 mdb_free(pevd, sizeof (portev_walk_data_t)); 1672 mdb_warn("failed to read vnode_t at %p", vp); 1673 return (WALK_ERR); 1674 } 1675 1676 if (vn.v_type != VPORT) { 1677 mdb_free(pevd, sizeof (portev_walk_data_t)); 1678 mdb_warn("input address (%p) does not point to an event port", 1679 wsp->walk_addr); 1680 return (WALK_ERR); 1681 } 1682 1683 if (port.port_queue.portq_nent == 0) { 1684 mdb_free(pevd, sizeof (portev_walk_data_t)); 1685 return (WALK_DONE); 1686 } 1687 list = &port.port_queue.portq_list; 1688 pevd->pev_offset = list->list_offset; 1689 pevd->pev_last = list->list_head.list_prev; 1690 pevd->pev_node = list->list_head.list_next; 1691 wsp->walk_data = pevd; 1692 return (WALK_NEXT); 1693 } 1694 1695 int 1696 portev_walk_step(mdb_walk_state_t *wsp) 1697 { 1698 portev_walk_data_t *pevd; 1699 struct port_kevent ev; 1700 uintptr_t evp; 1701 1702 pevd = (portev_walk_data_t *)wsp->walk_data; 1703 1704 if (pevd->pev_last == NULL) 1705 return (WALK_DONE); 1706 if (pevd->pev_node == pevd->pev_last) 1707 pevd->pev_last = NULL; /* last round */ 1708 1709 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1710 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1711 mdb_warn("failed to read port_kevent at %p", evp); 1712 return (WALK_DONE); 1713 } 1714 pevd->pev_node = ev.portkev_node.list_next; 1715 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1716 } 1717 1718 void 1719 portev_walk_fini(mdb_walk_state_t *wsp) 1720 { 1721 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1722 1723 if (pevd != NULL) 1724 mdb_free(pevd, sizeof (portev_walk_data_t)); 1725 } 1726 1727 typedef struct proc_walk_data { 1728 uintptr_t *pw_stack; 1729 int pw_depth; 1730 int pw_max; 1731 } proc_walk_data_t; 1732 1733 int 1734 proc_walk_init(mdb_walk_state_t *wsp) 1735 { 1736 GElf_Sym sym; 1737 proc_walk_data_t *pw; 1738 1739 if (wsp->walk_addr == NULL) { 1740 if (mdb_lookup_by_name("p0", &sym) == -1) { 1741 mdb_warn("failed to read 'practive'"); 1742 return (WALK_ERR); 1743 } 1744 wsp->walk_addr = (uintptr_t)sym.st_value; 1745 } 1746 1747 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1748 1749 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1750 mdb_warn("failed to read 'nproc'"); 1751 mdb_free(pw, sizeof (pw)); 1752 return (WALK_ERR); 1753 } 1754 1755 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1756 wsp->walk_data = pw; 1757 1758 return (WALK_NEXT); 1759 } 1760 1761 int 1762 proc_walk_step(mdb_walk_state_t *wsp) 1763 { 1764 proc_walk_data_t *pw = wsp->walk_data; 1765 uintptr_t addr = wsp->walk_addr; 1766 uintptr_t cld, sib; 1767 1768 int status; 1769 proc_t pr; 1770 1771 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1772 mdb_warn("failed to read proc at %p", addr); 1773 return (WALK_DONE); 1774 } 1775 1776 cld = (uintptr_t)pr.p_child; 1777 sib = (uintptr_t)pr.p_sibling; 1778 1779 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1780 pw->pw_depth--; 1781 goto sib; 1782 } 1783 1784 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1785 1786 if (status != WALK_NEXT) 1787 return (status); 1788 1789 if ((wsp->walk_addr = cld) != NULL) { 1790 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1791 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1792 addr, cld); 1793 goto sib; 1794 } 1795 1796 pw->pw_stack[pw->pw_depth++] = addr; 1797 1798 if (pw->pw_depth == pw->pw_max) { 1799 mdb_warn("depth %d exceeds max depth; try again\n", 1800 pw->pw_depth); 1801 return (WALK_DONE); 1802 } 1803 return (WALK_NEXT); 1804 } 1805 1806 sib: 1807 /* 1808 * We know that p0 has no siblings, and if another starting proc 1809 * was given, we don't want to walk its siblings anyway. 1810 */ 1811 if (pw->pw_depth == 0) 1812 return (WALK_DONE); 1813 1814 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1815 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1816 addr, sib); 1817 sib = NULL; 1818 } 1819 1820 if ((wsp->walk_addr = sib) == NULL) { 1821 if (pw->pw_depth > 0) { 1822 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1823 return (WALK_NEXT); 1824 } 1825 return (WALK_DONE); 1826 } 1827 1828 return (WALK_NEXT); 1829 } 1830 1831 void 1832 proc_walk_fini(mdb_walk_state_t *wsp) 1833 { 1834 proc_walk_data_t *pw = wsp->walk_data; 1835 1836 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1837 mdb_free(pw, sizeof (proc_walk_data_t)); 1838 } 1839 1840 int 1841 task_walk_init(mdb_walk_state_t *wsp) 1842 { 1843 task_t task; 1844 1845 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1846 mdb_warn("failed to read task at %p", wsp->walk_addr); 1847 return (WALK_ERR); 1848 } 1849 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1850 wsp->walk_data = task.tk_memb_list; 1851 return (WALK_NEXT); 1852 } 1853 1854 int 1855 task_walk_step(mdb_walk_state_t *wsp) 1856 { 1857 proc_t proc; 1858 int status; 1859 1860 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1861 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1862 return (WALK_DONE); 1863 } 1864 1865 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1866 1867 if (proc.p_tasknext == wsp->walk_data) 1868 return (WALK_DONE); 1869 1870 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1871 return (status); 1872 } 1873 1874 int 1875 project_walk_init(mdb_walk_state_t *wsp) 1876 { 1877 if (wsp->walk_addr == NULL) { 1878 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1879 mdb_warn("failed to read 'proj0p'"); 1880 return (WALK_ERR); 1881 } 1882 } 1883 wsp->walk_data = (void *)wsp->walk_addr; 1884 return (WALK_NEXT); 1885 } 1886 1887 int 1888 project_walk_step(mdb_walk_state_t *wsp) 1889 { 1890 uintptr_t addr = wsp->walk_addr; 1891 kproject_t pj; 1892 int status; 1893 1894 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1895 mdb_warn("failed to read project at %p", addr); 1896 return (WALK_DONE); 1897 } 1898 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1899 if (status != WALK_NEXT) 1900 return (status); 1901 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1902 if ((void *)wsp->walk_addr == wsp->walk_data) 1903 return (WALK_DONE); 1904 return (WALK_NEXT); 1905 } 1906 1907 static int 1908 generic_walk_step(mdb_walk_state_t *wsp) 1909 { 1910 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1911 wsp->walk_cbdata)); 1912 } 1913 1914 int 1915 seg_walk_init(mdb_walk_state_t *wsp) 1916 { 1917 if (wsp->walk_addr == NULL) { 1918 mdb_warn("seg walk must begin at struct as *\n"); 1919 return (WALK_ERR); 1920 } 1921 1922 /* 1923 * this is really just a wrapper to AVL tree walk 1924 */ 1925 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1926 return (avl_walk_init(wsp)); 1927 } 1928 1929 static int 1930 cpu_walk_cmp(const void *l, const void *r) 1931 { 1932 uintptr_t lhs = *((uintptr_t *)l); 1933 uintptr_t rhs = *((uintptr_t *)r); 1934 cpu_t lcpu, rcpu; 1935 1936 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1937 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1938 1939 if (lcpu.cpu_id < rcpu.cpu_id) 1940 return (-1); 1941 1942 if (lcpu.cpu_id > rcpu.cpu_id) 1943 return (1); 1944 1945 return (0); 1946 } 1947 1948 typedef struct cpu_walk { 1949 uintptr_t *cw_array; 1950 int cw_ndx; 1951 } cpu_walk_t; 1952 1953 int 1954 cpu_walk_init(mdb_walk_state_t *wsp) 1955 { 1956 cpu_walk_t *cw; 1957 int max_ncpus, i = 0; 1958 uintptr_t current, first; 1959 cpu_t cpu, panic_cpu; 1960 uintptr_t panicstr, addr; 1961 GElf_Sym sym; 1962 1963 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1964 1965 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1966 mdb_warn("failed to read 'max_ncpus'"); 1967 return (WALK_ERR); 1968 } 1969 1970 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1971 mdb_warn("failed to read 'panicstr'"); 1972 return (WALK_ERR); 1973 } 1974 1975 if (panicstr != NULL) { 1976 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1977 mdb_warn("failed to find 'panic_cpu'"); 1978 return (WALK_ERR); 1979 } 1980 1981 addr = (uintptr_t)sym.st_value; 1982 1983 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1984 mdb_warn("failed to read 'panic_cpu'"); 1985 return (WALK_ERR); 1986 } 1987 } 1988 1989 /* 1990 * Unfortunately, there is no platform-independent way to walk 1991 * CPUs in ID order. We therefore loop through in cpu_next order, 1992 * building an array of CPU pointers which will subsequently be 1993 * sorted. 1994 */ 1995 cw->cw_array = 1996 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1997 1998 if (mdb_readvar(&first, "cpu_list") == -1) { 1999 mdb_warn("failed to read 'cpu_list'"); 2000 return (WALK_ERR); 2001 } 2002 2003 current = first; 2004 do { 2005 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2006 mdb_warn("failed to read cpu at %p", current); 2007 return (WALK_ERR); 2008 } 2009 2010 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2011 cw->cw_array[i++] = addr; 2012 } else { 2013 cw->cw_array[i++] = current; 2014 } 2015 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2016 2017 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2018 wsp->walk_data = cw; 2019 2020 return (WALK_NEXT); 2021 } 2022 2023 int 2024 cpu_walk_step(mdb_walk_state_t *wsp) 2025 { 2026 cpu_walk_t *cw = wsp->walk_data; 2027 cpu_t cpu; 2028 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2029 2030 if (addr == NULL) 2031 return (WALK_DONE); 2032 2033 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2034 mdb_warn("failed to read cpu at %p", addr); 2035 return (WALK_DONE); 2036 } 2037 2038 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2039 } 2040 2041 typedef struct cpuinfo_data { 2042 intptr_t cid_cpu; 2043 uintptr_t cid_lbolt; 2044 uintptr_t **cid_ithr; 2045 char cid_print_head; 2046 char cid_print_thr; 2047 char cid_print_ithr; 2048 char cid_print_flags; 2049 } cpuinfo_data_t; 2050 2051 int 2052 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2053 { 2054 cpu_t c; 2055 int id; 2056 uint8_t pil; 2057 2058 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2059 return (WALK_NEXT); 2060 2061 if (thr->t_bound_cpu == NULL) { 2062 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2063 return (WALK_NEXT); 2064 } 2065 2066 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2067 2068 if ((id = c.cpu_id) >= NCPU) { 2069 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2070 thr->t_bound_cpu, id, NCPU); 2071 return (WALK_NEXT); 2072 } 2073 2074 if ((pil = thr->t_pil) >= NINTR) { 2075 mdb_warn("thread %p has pil (%d) greater than %d\n", 2076 addr, pil, NINTR); 2077 return (WALK_NEXT); 2078 } 2079 2080 if (cid->cid_ithr[id][pil] != NULL) { 2081 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2082 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2083 return (WALK_NEXT); 2084 } 2085 2086 cid->cid_ithr[id][pil] = addr; 2087 2088 return (WALK_NEXT); 2089 } 2090 2091 #define CPUINFO_IDWIDTH 3 2092 #define CPUINFO_FLAGWIDTH 9 2093 2094 #ifdef _LP64 2095 #if defined(__amd64) 2096 #define CPUINFO_TWIDTH 16 2097 #define CPUINFO_CPUWIDTH 16 2098 #else 2099 #define CPUINFO_CPUWIDTH 11 2100 #define CPUINFO_TWIDTH 11 2101 #endif 2102 #else 2103 #define CPUINFO_CPUWIDTH 8 2104 #define CPUINFO_TWIDTH 8 2105 #endif 2106 2107 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2108 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2109 #define CPUINFO_ITHRDELT 4 2110 2111 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2112 flagline < nflaglines ? flagbuf[flagline++] : "") 2113 2114 int 2115 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2116 { 2117 kthread_t t; 2118 disp_t disp; 2119 proc_t p; 2120 uintptr_t pinned; 2121 char **flagbuf; 2122 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2123 2124 const char *flags[] = { 2125 "RUNNING", "READY", "QUIESCED", "EXISTS", 2126 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2127 "SPARE", "FAULTED", NULL 2128 }; 2129 2130 if (cid->cid_cpu != -1) { 2131 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2132 return (WALK_NEXT); 2133 2134 /* 2135 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2136 */ 2137 cid->cid_cpu = -1; 2138 rval = WALK_DONE; 2139 } 2140 2141 if (cid->cid_print_head) { 2142 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2143 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2144 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2145 "PROC"); 2146 cid->cid_print_head = FALSE; 2147 } 2148 2149 bspl = cpu->cpu_base_spl; 2150 2151 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2152 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2153 return (WALK_ERR); 2154 } 2155 2156 mdb_printf("%3d %0*p %3x %4d %4d ", 2157 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2158 disp.disp_nrunnable, bspl); 2159 2160 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2161 mdb_printf("%3d ", t.t_pri); 2162 } else { 2163 mdb_printf("%3s ", "-"); 2164 } 2165 2166 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2167 cpu->cpu_kprunrun ? "yes" : "no"); 2168 2169 if (cpu->cpu_last_swtch) { 2170 clock_t lbolt; 2171 2172 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2173 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2174 return (WALK_ERR); 2175 } 2176 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2177 } else { 2178 mdb_printf("%-6s ", "-"); 2179 } 2180 2181 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2182 2183 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2184 mdb_printf(" (idle)\n"); 2185 else if (cpu->cpu_thread == NULL) 2186 mdb_printf(" -\n"); 2187 else { 2188 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2189 mdb_printf(" %s\n", p.p_user.u_comm); 2190 } else { 2191 mdb_printf(" ?\n"); 2192 } 2193 } 2194 2195 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2196 2197 if (cid->cid_print_flags) { 2198 int first = 1, i, j, k; 2199 char *s; 2200 2201 cid->cid_print_head = TRUE; 2202 2203 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2204 if (!(cpu->cpu_flags & i)) 2205 continue; 2206 2207 if (first) { 2208 s = mdb_alloc(CPUINFO_THRDELT + 1, 2209 UM_GC | UM_SLEEP); 2210 2211 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2212 "%*s|%*s", CPUINFO_FLAGDELT, "", 2213 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2214 flagbuf[nflaglines++] = s; 2215 } 2216 2217 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2218 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2219 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2220 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2221 first ? "<--+" : ""); 2222 2223 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2224 s[k] = ' '; 2225 s[k] = '\0'; 2226 2227 flagbuf[nflaglines++] = s; 2228 first = 0; 2229 } 2230 } 2231 2232 if (cid->cid_print_ithr) { 2233 int i, found_one = FALSE; 2234 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2235 2236 for (i = NINTR - 1; i >= 0; i--) { 2237 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2238 2239 if (iaddr == NULL) 2240 continue; 2241 2242 if (!found_one) { 2243 found_one = TRUE; 2244 2245 CPUINFO_INDENT; 2246 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2247 CPUINFO_ITHRDELT, ""); 2248 2249 CPUINFO_INDENT; 2250 mdb_printf("%c%*s+--> %3s %s\n", 2251 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2252 "", "PIL", "THREAD"); 2253 } 2254 2255 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2256 mdb_warn("failed to read kthread_t at %p", 2257 iaddr); 2258 return (WALK_ERR); 2259 } 2260 2261 CPUINFO_INDENT; 2262 mdb_printf("%c%*s %3d %0*p\n", 2263 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2264 t.t_pil, CPUINFO_TWIDTH, iaddr); 2265 2266 pinned = (uintptr_t)t.t_intr; 2267 } 2268 2269 if (found_one && pinned != NULL) { 2270 cid->cid_print_head = TRUE; 2271 (void) strcpy(p.p_user.u_comm, "?"); 2272 2273 if (mdb_vread(&t, sizeof (t), 2274 (uintptr_t)pinned) == -1) { 2275 mdb_warn("failed to read kthread_t at %p", 2276 pinned); 2277 return (WALK_ERR); 2278 } 2279 if (mdb_vread(&p, sizeof (p), 2280 (uintptr_t)t.t_procp) == -1) { 2281 mdb_warn("failed to read proc_t at %p", 2282 t.t_procp); 2283 return (WALK_ERR); 2284 } 2285 2286 CPUINFO_INDENT; 2287 mdb_printf("%c%*s %3s %0*p %s\n", 2288 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2289 CPUINFO_TWIDTH, pinned, 2290 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2291 "(idle)" : p.p_user.u_comm); 2292 } 2293 } 2294 2295 if (disp.disp_nrunnable && cid->cid_print_thr) { 2296 dispq_t *dq; 2297 2298 int i, npri = disp.disp_npri; 2299 2300 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2301 2302 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2303 (uintptr_t)disp.disp_q) == -1) { 2304 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2305 return (WALK_ERR); 2306 } 2307 2308 CPUINFO_INDENT; 2309 mdb_printf("|\n"); 2310 2311 CPUINFO_INDENT; 2312 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2313 CPUINFO_TWIDTH, "THREAD", "PROC"); 2314 2315 for (i = npri - 1; i >= 0; i--) { 2316 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2317 2318 while (taddr != NULL) { 2319 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2320 mdb_warn("failed to read kthread_t " 2321 "at %p", taddr); 2322 return (WALK_ERR); 2323 } 2324 if (mdb_vread(&p, sizeof (p), 2325 (uintptr_t)t.t_procp) == -1) { 2326 mdb_warn("failed to read proc_t at %p", 2327 t.t_procp); 2328 return (WALK_ERR); 2329 } 2330 2331 CPUINFO_INDENT; 2332 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2333 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2334 2335 taddr = (uintptr_t)t.t_link; 2336 } 2337 } 2338 cid->cid_print_head = TRUE; 2339 } 2340 2341 while (flagline < nflaglines) 2342 mdb_printf("%s\n", flagbuf[flagline++]); 2343 2344 if (cid->cid_print_head) 2345 mdb_printf("\n"); 2346 2347 return (rval); 2348 } 2349 2350 int 2351 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2352 { 2353 uint_t verbose = FALSE; 2354 cpuinfo_data_t cid; 2355 GElf_Sym sym; 2356 clock_t lbolt; 2357 2358 cid.cid_print_ithr = FALSE; 2359 cid.cid_print_thr = FALSE; 2360 cid.cid_print_flags = FALSE; 2361 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2362 cid.cid_cpu = -1; 2363 2364 if (flags & DCMD_ADDRSPEC) 2365 cid.cid_cpu = addr; 2366 2367 if (mdb_getopts(argc, argv, 2368 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2369 return (DCMD_USAGE); 2370 2371 if (verbose) { 2372 cid.cid_print_ithr = TRUE; 2373 cid.cid_print_thr = TRUE; 2374 cid.cid_print_flags = TRUE; 2375 cid.cid_print_head = TRUE; 2376 } 2377 2378 if (cid.cid_print_ithr) { 2379 int i; 2380 2381 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2382 * NCPU, UM_SLEEP | UM_GC); 2383 2384 for (i = 0; i < NCPU; i++) 2385 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2386 NINTR, UM_SLEEP | UM_GC); 2387 2388 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2389 &cid) == -1) { 2390 mdb_warn("couldn't walk thread"); 2391 return (DCMD_ERR); 2392 } 2393 } 2394 2395 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2396 mdb_warn("failed to find panic_lbolt"); 2397 return (DCMD_ERR); 2398 } 2399 2400 cid.cid_lbolt = (uintptr_t)sym.st_value; 2401 2402 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2403 mdb_warn("failed to read panic_lbolt"); 2404 return (DCMD_ERR); 2405 } 2406 2407 if (lbolt == 0) { 2408 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2409 mdb_warn("failed to find lbolt"); 2410 return (DCMD_ERR); 2411 } 2412 cid.cid_lbolt = (uintptr_t)sym.st_value; 2413 } 2414 2415 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2416 mdb_warn("can't walk cpus"); 2417 return (DCMD_ERR); 2418 } 2419 2420 if (cid.cid_cpu != -1) { 2421 /* 2422 * We didn't find this CPU when we walked through the CPUs 2423 * (i.e. the address specified doesn't show up in the "cpu" 2424 * walk). However, the specified address may still correspond 2425 * to a valid cpu_t (for example, if the specified address is 2426 * the actual panicking cpu_t and not the cached panic_cpu). 2427 * Point is: even if we didn't find it, we still want to try 2428 * to print the specified address as a cpu_t. 2429 */ 2430 cpu_t cpu; 2431 2432 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2433 mdb_warn("%p is neither a valid CPU ID nor a " 2434 "valid cpu_t address\n", cid.cid_cpu); 2435 return (DCMD_ERR); 2436 } 2437 2438 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2439 } 2440 2441 return (DCMD_OK); 2442 } 2443 2444 /*ARGSUSED*/ 2445 int 2446 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2447 { 2448 int i; 2449 2450 if (!(flags & DCMD_ADDRSPEC)) 2451 return (DCMD_USAGE); 2452 2453 for (i = 0; i < sizeof (addr) * NBBY; i++) 2454 mdb_printf("%p\n", addr ^ (1UL << i)); 2455 2456 return (DCMD_OK); 2457 } 2458 2459 /* 2460 * Grumble, grumble. 2461 */ 2462 #define SMAP_HASHFUNC(vp, off) \ 2463 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2464 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2465 2466 int 2467 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2468 { 2469 long smd_hashmsk; 2470 int hash; 2471 uintptr_t offset = 0; 2472 struct smap smp; 2473 uintptr_t saddr, kaddr; 2474 uintptr_t smd_hash, smd_smap; 2475 struct seg seg; 2476 2477 if (!(flags & DCMD_ADDRSPEC)) 2478 return (DCMD_USAGE); 2479 2480 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2481 mdb_warn("failed to read smd_hashmsk"); 2482 return (DCMD_ERR); 2483 } 2484 2485 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2486 mdb_warn("failed to read smd_hash"); 2487 return (DCMD_ERR); 2488 } 2489 2490 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2491 mdb_warn("failed to read smd_hash"); 2492 return (DCMD_ERR); 2493 } 2494 2495 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2496 mdb_warn("failed to read segkmap"); 2497 return (DCMD_ERR); 2498 } 2499 2500 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2501 mdb_warn("failed to read segkmap at %p", kaddr); 2502 return (DCMD_ERR); 2503 } 2504 2505 if (argc != 0) { 2506 const mdb_arg_t *arg = &argv[0]; 2507 2508 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2509 offset = arg->a_un.a_val; 2510 else 2511 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2512 } 2513 2514 hash = SMAP_HASHFUNC(addr, offset); 2515 2516 if (mdb_vread(&saddr, sizeof (saddr), 2517 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2518 mdb_warn("couldn't read smap at %p", 2519 smd_hash + hash * sizeof (uintptr_t)); 2520 return (DCMD_ERR); 2521 } 2522 2523 do { 2524 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2525 mdb_warn("couldn't read smap at %p", saddr); 2526 return (DCMD_ERR); 2527 } 2528 2529 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2530 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2531 addr, offset, saddr, ((saddr - smd_smap) / 2532 sizeof (smp)) * MAXBSIZE + seg.s_base); 2533 return (DCMD_OK); 2534 } 2535 2536 saddr = (uintptr_t)smp.sm_hash; 2537 } while (saddr != NULL); 2538 2539 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2540 return (DCMD_OK); 2541 } 2542 2543 /*ARGSUSED*/ 2544 int 2545 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2546 { 2547 uintptr_t kaddr; 2548 struct seg seg; 2549 struct segmap_data sd; 2550 2551 if (!(flags & DCMD_ADDRSPEC)) 2552 return (DCMD_USAGE); 2553 2554 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2555 mdb_warn("failed to read segkmap"); 2556 return (DCMD_ERR); 2557 } 2558 2559 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2560 mdb_warn("failed to read segkmap at %p", kaddr); 2561 return (DCMD_ERR); 2562 } 2563 2564 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2565 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2566 return (DCMD_ERR); 2567 } 2568 2569 mdb_printf("%p is smap %p\n", addr, 2570 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2571 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2572 2573 return (DCMD_OK); 2574 } 2575 2576 int 2577 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2578 { 2579 if (p->p_as == *asp) 2580 mdb_printf("%p\n", addr); 2581 return (WALK_NEXT); 2582 } 2583 2584 /*ARGSUSED*/ 2585 int 2586 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2587 { 2588 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2589 return (DCMD_USAGE); 2590 2591 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2592 mdb_warn("failed to walk proc"); 2593 return (DCMD_ERR); 2594 } 2595 2596 return (DCMD_OK); 2597 } 2598 2599 /*ARGSUSED*/ 2600 int 2601 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2602 { 2603 proc_t parent; 2604 int ident = 0; 2605 uintptr_t paddr; 2606 2607 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2608 mdb_vread(&parent, sizeof (parent), paddr); 2609 paddr = (uintptr_t)parent.p_parent; 2610 } 2611 2612 mdb_inc_indent(ident); 2613 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2614 mdb_dec_indent(ident); 2615 2616 return (WALK_NEXT); 2617 } 2618 2619 void 2620 ptree_ancestors(uintptr_t addr, uintptr_t start) 2621 { 2622 proc_t p; 2623 2624 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2625 mdb_warn("couldn't read ancestor at %p", addr); 2626 return; 2627 } 2628 2629 if (p.p_parent != NULL) 2630 ptree_ancestors((uintptr_t)p.p_parent, start); 2631 2632 if (addr != start) 2633 (void) ptree_walk(addr, &p, NULL); 2634 } 2635 2636 /*ARGSUSED*/ 2637 int 2638 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2639 { 2640 if (!(flags & DCMD_ADDRSPEC)) 2641 addr = NULL; 2642 else 2643 ptree_ancestors(addr, addr); 2644 2645 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2646 mdb_warn("couldn't walk 'proc'"); 2647 return (DCMD_ERR); 2648 } 2649 2650 return (DCMD_OK); 2651 } 2652 2653 /*ARGSUSED*/ 2654 static int 2655 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2656 { 2657 int fdnum; 2658 const mdb_arg_t *argp = &argv[0]; 2659 proc_t p; 2660 uf_entry_t uf; 2661 2662 if ((flags & DCMD_ADDRSPEC) == 0) { 2663 mdb_warn("fd doesn't give global information\n"); 2664 return (DCMD_ERR); 2665 } 2666 if (argc != 1) 2667 return (DCMD_USAGE); 2668 2669 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2670 fdnum = argp->a_un.a_val; 2671 else 2672 fdnum = mdb_strtoull(argp->a_un.a_str); 2673 2674 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2675 mdb_warn("couldn't read proc_t at %p", addr); 2676 return (DCMD_ERR); 2677 } 2678 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2679 mdb_warn("process %p only has %d files open.\n", 2680 addr, p.p_user.u_finfo.fi_nfiles); 2681 return (DCMD_ERR); 2682 } 2683 if (mdb_vread(&uf, sizeof (uf_entry_t), 2684 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2685 mdb_warn("couldn't read uf_entry_t at %p", 2686 &p.p_user.u_finfo.fi_list[fdnum]); 2687 return (DCMD_ERR); 2688 } 2689 2690 mdb_printf("%p\n", uf.uf_file); 2691 return (DCMD_OK); 2692 } 2693 2694 /*ARGSUSED*/ 2695 static int 2696 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2697 { 2698 pid_t pid = (pid_t)addr; 2699 2700 if (argc != 0) 2701 return (DCMD_USAGE); 2702 2703 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2704 mdb_warn("PID 0t%d not found\n", pid); 2705 return (DCMD_ERR); 2706 } 2707 2708 mdb_printf("%p\n", addr); 2709 return (DCMD_OK); 2710 } 2711 2712 static char *sysfile_cmd[] = { 2713 "exclude:", 2714 "include:", 2715 "forceload:", 2716 "rootdev:", 2717 "rootfs:", 2718 "swapdev:", 2719 "swapfs:", 2720 "moddir:", 2721 "set", 2722 "unknown", 2723 }; 2724 2725 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2726 2727 /*ARGSUSED*/ 2728 static int 2729 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2730 { 2731 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2732 *target = NULL; 2733 return (WALK_DONE); 2734 } 2735 return (WALK_NEXT); 2736 } 2737 2738 /*ARGSUSED*/ 2739 static int 2740 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2741 { 2742 struct sysparam *sysp, sys; 2743 char var[256]; 2744 char modname[256]; 2745 char val[256]; 2746 char strval[256]; 2747 vmem_t *mod_sysfile_arena; 2748 void *straddr; 2749 2750 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2751 mdb_warn("failed to read sysparam_hd"); 2752 return (DCMD_ERR); 2753 } 2754 2755 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2756 mdb_warn("failed to read mod_sysfile_arena"); 2757 return (DCMD_ERR); 2758 } 2759 2760 while (sysp != NULL) { 2761 var[0] = '\0'; 2762 val[0] = '\0'; 2763 modname[0] = '\0'; 2764 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2765 mdb_warn("couldn't read sysparam %p", sysp); 2766 return (DCMD_ERR); 2767 } 2768 if (sys.sys_modnam != NULL && 2769 mdb_readstr(modname, 256, 2770 (uintptr_t)sys.sys_modnam) == -1) { 2771 mdb_warn("couldn't read modname in %p", sysp); 2772 return (DCMD_ERR); 2773 } 2774 if (sys.sys_ptr != NULL && 2775 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2776 mdb_warn("couldn't read ptr in %p", sysp); 2777 return (DCMD_ERR); 2778 } 2779 if (sys.sys_op != SETOP_NONE) { 2780 /* 2781 * Is this an int or a string? We determine this 2782 * by checking whether straddr is contained in 2783 * mod_sysfile_arena. If so, the walker will set 2784 * straddr to NULL. 2785 */ 2786 straddr = (void *)(uintptr_t)sys.sys_info; 2787 if (sys.sys_op == SETOP_ASSIGN && 2788 sys.sys_info != 0 && 2789 mdb_pwalk("vmem_seg", 2790 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2791 (uintptr_t)mod_sysfile_arena) == 0 && 2792 straddr == NULL && 2793 mdb_readstr(strval, 256, 2794 (uintptr_t)sys.sys_info) != -1) { 2795 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2796 strval); 2797 } else { 2798 (void) mdb_snprintf(val, sizeof (val), 2799 "0x%llx [0t%llu]", sys.sys_info, 2800 sys.sys_info); 2801 } 2802 } 2803 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2804 modname, modname[0] == '\0' ? "" : ":", 2805 var, sysfile_ops[sys.sys_op], val); 2806 2807 sysp = sys.sys_next; 2808 } 2809 2810 return (DCMD_OK); 2811 } 2812 2813 /* 2814 * Dump a taskq_ent_t given its address. 2815 */ 2816 /*ARGSUSED*/ 2817 int 2818 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2819 { 2820 taskq_ent_t taskq_ent; 2821 GElf_Sym sym; 2822 char buf[MDB_SYM_NAMLEN+1]; 2823 2824 2825 if (!(flags & DCMD_ADDRSPEC)) { 2826 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2827 return (DCMD_USAGE); 2828 } 2829 2830 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2831 mdb_warn("failed to read taskq_ent_t at %p", addr); 2832 return (DCMD_ERR); 2833 } 2834 2835 if (DCMD_HDRSPEC(flags)) { 2836 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2837 "ENTRY", "ARG", "FUNCTION"); 2838 } 2839 2840 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2841 buf, sizeof (buf), &sym) == -1) { 2842 (void) strcpy(buf, "????"); 2843 } 2844 2845 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2846 2847 return (DCMD_OK); 2848 } 2849 2850 /* 2851 * Given the address of the (taskq_t) task queue head, walk the queue listing 2852 * the address of every taskq_ent_t. 2853 */ 2854 int 2855 taskq_walk_init(mdb_walk_state_t *wsp) 2856 { 2857 taskq_t tq_head; 2858 2859 2860 if (wsp->walk_addr == NULL) { 2861 mdb_warn("start address required\n"); 2862 return (WALK_ERR); 2863 } 2864 2865 2866 /* 2867 * Save the address of the list head entry. This terminates the list. 2868 */ 2869 wsp->walk_data = (void *) 2870 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2871 2872 2873 /* 2874 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2875 */ 2876 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2877 -1) { 2878 mdb_warn("failed to read taskq list head at %p", 2879 wsp->walk_addr); 2880 } 2881 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2882 2883 2884 /* 2885 * Check for null list (next=head) 2886 */ 2887 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2888 return (WALK_DONE); 2889 } 2890 2891 return (WALK_NEXT); 2892 } 2893 2894 2895 int 2896 taskq_walk_step(mdb_walk_state_t *wsp) 2897 { 2898 taskq_ent_t tq_ent; 2899 int status; 2900 2901 2902 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2903 -1) { 2904 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2905 return (DCMD_ERR); 2906 } 2907 2908 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2909 wsp->walk_cbdata); 2910 2911 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2912 2913 2914 /* Check if we're at the last element (next=head) */ 2915 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2916 return (WALK_DONE); 2917 } 2918 2919 return (status); 2920 } 2921 2922 int 2923 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2924 { 2925 2926 if (*didp == thr->t_did) { 2927 mdb_printf("%p\n", addr); 2928 return (WALK_DONE); 2929 } else 2930 return (WALK_NEXT); 2931 } 2932 2933 /*ARGSUSED*/ 2934 int 2935 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2936 { 2937 const mdb_arg_t *argp = &argv[0]; 2938 kt_did_t did; 2939 2940 if (argc != 1) 2941 return (DCMD_USAGE); 2942 2943 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2944 2945 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2946 mdb_warn("failed to walk thread"); 2947 return (DCMD_ERR); 2948 2949 } 2950 return (DCMD_OK); 2951 2952 } 2953 2954 static int 2955 errorq_walk_init(mdb_walk_state_t *wsp) 2956 { 2957 if (wsp->walk_addr == NULL && 2958 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2959 mdb_warn("failed to read errorq_list"); 2960 return (WALK_ERR); 2961 } 2962 2963 return (WALK_NEXT); 2964 } 2965 2966 static int 2967 errorq_walk_step(mdb_walk_state_t *wsp) 2968 { 2969 uintptr_t addr = wsp->walk_addr; 2970 errorq_t eq; 2971 2972 if (addr == NULL) 2973 return (WALK_DONE); 2974 2975 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2976 mdb_warn("failed to read errorq at %p", addr); 2977 return (WALK_ERR); 2978 } 2979 2980 wsp->walk_addr = (uintptr_t)eq.eq_next; 2981 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2982 } 2983 2984 typedef struct eqd_walk_data { 2985 uintptr_t *eqd_stack; 2986 void *eqd_buf; 2987 ulong_t eqd_qpos; 2988 ulong_t eqd_qlen; 2989 size_t eqd_size; 2990 } eqd_walk_data_t; 2991 2992 /* 2993 * In order to walk the list of pending error queue elements, we push the 2994 * addresses of the corresponding data buffers in to the eqd_stack array. 2995 * The error lists are in reverse chronological order when iterating using 2996 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2997 * walker client gets addresses in order from oldest error to newest error. 2998 */ 2999 static void 3000 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3001 { 3002 errorq_elem_t eqe; 3003 3004 while (addr != NULL) { 3005 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3006 mdb_warn("failed to read errorq element at %p", addr); 3007 break; 3008 } 3009 3010 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3011 mdb_warn("errorq is overfull -- more than %lu " 3012 "elems found\n", eqdp->eqd_qlen); 3013 break; 3014 } 3015 3016 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3017 addr = (uintptr_t)eqe.eqe_prev; 3018 } 3019 } 3020 3021 static int 3022 eqd_walk_init(mdb_walk_state_t *wsp) 3023 { 3024 eqd_walk_data_t *eqdp; 3025 errorq_elem_t eqe, *addr; 3026 errorq_t eq; 3027 ulong_t i; 3028 3029 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3030 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3031 return (WALK_ERR); 3032 } 3033 3034 if (eq.eq_ptail != NULL && 3035 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3036 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3037 return (WALK_ERR); 3038 } 3039 3040 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3041 wsp->walk_data = eqdp; 3042 3043 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3044 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3045 eqdp->eqd_qlen = eq.eq_qlen; 3046 eqdp->eqd_qpos = 0; 3047 eqdp->eqd_size = eq.eq_size; 3048 3049 /* 3050 * The newest elements in the queue are on the pending list, so we 3051 * push those on to our stack first. 3052 */ 3053 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3054 3055 /* 3056 * If eq_ptail is set, it may point to a subset of the errors on the 3057 * pending list in the event a casptr() failed; if ptail's data is 3058 * already in our stack, NULL out eq_ptail and ignore it. 3059 */ 3060 if (eq.eq_ptail != NULL) { 3061 for (i = 0; i < eqdp->eqd_qpos; i++) { 3062 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3063 eq.eq_ptail = NULL; 3064 break; 3065 } 3066 } 3067 } 3068 3069 /* 3070 * If eq_phead is set, it has the processing list in order from oldest 3071 * to newest. Use this to recompute eq_ptail as best we can and then 3072 * we nicely fall into eqd_push_list() of eq_ptail below. 3073 */ 3074 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3075 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3076 eq.eq_ptail = addr; 3077 3078 /* 3079 * The oldest elements in the queue are on the processing list, subject 3080 * to machinations in the if-clauses above. Push any such elements. 3081 */ 3082 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3083 return (WALK_NEXT); 3084 } 3085 3086 static int 3087 eqd_walk_step(mdb_walk_state_t *wsp) 3088 { 3089 eqd_walk_data_t *eqdp = wsp->walk_data; 3090 uintptr_t addr; 3091 3092 if (eqdp->eqd_qpos == 0) 3093 return (WALK_DONE); 3094 3095 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3096 3097 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3098 mdb_warn("failed to read errorq data at %p", addr); 3099 return (WALK_ERR); 3100 } 3101 3102 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3103 } 3104 3105 static void 3106 eqd_walk_fini(mdb_walk_state_t *wsp) 3107 { 3108 eqd_walk_data_t *eqdp = wsp->walk_data; 3109 3110 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3111 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3112 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3113 } 3114 3115 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3116 3117 static int 3118 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3119 { 3120 int i; 3121 errorq_t eq; 3122 uint_t opt_v = FALSE; 3123 3124 if (!(flags & DCMD_ADDRSPEC)) { 3125 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3126 mdb_warn("can't walk 'errorq'"); 3127 return (DCMD_ERR); 3128 } 3129 return (DCMD_OK); 3130 } 3131 3132 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3133 argc -= i; 3134 argv += i; 3135 3136 if (argc != 0) 3137 return (DCMD_USAGE); 3138 3139 if (opt_v || DCMD_HDRSPEC(flags)) { 3140 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3141 "ADDR", "NAME", "S", "V", "N"); 3142 if (!opt_v) { 3143 mdb_printf("%7s %7s %7s%</u>\n", 3144 "ACCEPT", "DROP", "LOG"); 3145 } else { 3146 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3147 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3148 } 3149 } 3150 3151 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3152 mdb_warn("failed to read errorq at %p", addr); 3153 return (DCMD_ERR); 3154 } 3155 3156 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3157 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3158 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3159 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3160 3161 if (!opt_v) { 3162 mdb_printf("%7llu %7llu %7llu\n", 3163 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3164 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3165 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3166 } else { 3167 mdb_printf("%5s %6lu %6lu %3u %a\n", 3168 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3169 mdb_printf("%38s\n%41s" 3170 "%12s %llu\n" 3171 "%53s %llu\n" 3172 "%53s %llu\n" 3173 "%53s %llu\n" 3174 "%53s %llu\n" 3175 "%53s %llu\n" 3176 "%53s %llu\n" 3177 "%53s %llu\n\n", 3178 "|", "+-> ", 3179 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3180 "DROPPED", EQKSVAL(eq, eqk_dropped), 3181 "LOGGED", EQKSVAL(eq, eqk_logged), 3182 "RESERVED", EQKSVAL(eq, eqk_reserved), 3183 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3184 "COMMITTED", EQKSVAL(eq, eqk_committed), 3185 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3186 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3187 } 3188 3189 return (DCMD_OK); 3190 } 3191 3192 /*ARGSUSED*/ 3193 static int 3194 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3195 { 3196 cpu_t panic_cpu; 3197 kthread_t *panic_thread; 3198 void *buf; 3199 panic_data_t *pd; 3200 int i, n; 3201 3202 if (!mdb_prop_postmortem) { 3203 mdb_warn("panicinfo can only be run on a system " 3204 "dump; see dumpadm(1M)\n"); 3205 return (DCMD_ERR); 3206 } 3207 3208 if (flags & DCMD_ADDRSPEC || argc != 0) 3209 return (DCMD_USAGE); 3210 3211 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3212 mdb_warn("failed to read 'panic_cpu'"); 3213 else 3214 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3215 3216 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3217 mdb_warn("failed to read 'panic_thread'"); 3218 else 3219 mdb_printf("%16s %?p\n", "thread", panic_thread); 3220 3221 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3222 pd = (panic_data_t *)buf; 3223 3224 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3225 pd->pd_version != PANICBUFVERS) { 3226 mdb_warn("failed to read 'panicbuf'"); 3227 mdb_free(buf, PANICBUFSIZE); 3228 return (DCMD_ERR); 3229 } 3230 3231 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3232 3233 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3234 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3235 3236 for (i = 0; i < n; i++) 3237 mdb_printf("%16s %?llx\n", 3238 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3239 3240 mdb_free(buf, PANICBUFSIZE); 3241 return (DCMD_OK); 3242 } 3243 3244 static const mdb_dcmd_t dcmds[] = { 3245 3246 /* from genunix.c */ 3247 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3248 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3249 { "binding_hash_entry", ":", "print driver names hash table entry", 3250 binding_hash_entry }, 3251 { "callout", NULL, "print callout table", callout }, 3252 { "class", NULL, "print process scheduler classes", class }, 3253 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3254 { "did2thread", "? kt_did", "find kernel thread for this id", 3255 did2thread }, 3256 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3257 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3258 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3259 { "lminfo", NULL, "print lock manager information", lminfo }, 3260 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3261 { "panicinfo", NULL, "print panic information", panicinfo }, 3262 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3263 { "pmap", ":[-q]", "print process memory map", pmap }, 3264 { "project", NULL, "display kernel project(s)", project }, 3265 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3266 { "pgrep", "[-x] [-n | -o] pattern", 3267 "pattern match against all processes", pgrep }, 3268 { "ptree", NULL, "print process tree", ptree }, 3269 { "seg", ":", "print address space segment", seg }, 3270 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3271 sysevent}, 3272 { "sysevent_channel", "?", "print sysevent channel database", 3273 sysevent_channel}, 3274 { "sysevent_class_list", ":", "print sysevent class list", 3275 sysevent_class_list}, 3276 { "sysevent_subclass_list", ":", 3277 "print sysevent subclass list", sysevent_subclass_list}, 3278 { "system", NULL, "print contents of /etc/system file", sysfile }, 3279 { "task", NULL, "display kernel task(s)", task }, 3280 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3281 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3282 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3283 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3284 whereopen }, 3285 3286 /* from zone.c */ 3287 { "zone", "?", "display kernel zone(s)", zoneprt }, 3288 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3289 3290 /* from bio.c */ 3291 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3292 3293 /* from contract.c */ 3294 { "contract", "?", "display a contract", cmd_contract }, 3295 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3296 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3297 3298 /* from cpupart.c */ 3299 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3300 3301 /* from cyclic.c */ 3302 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3303 { "cycid", "?", "dump a cyclic id", cycid }, 3304 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3305 { "cyclic", ":", "developer information", cyclic }, 3306 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3307 3308 /* from devinfo.c */ 3309 { "devbindings", "?[-qs] [device-name | major-num]", 3310 "print devinfo nodes bound to device-name or major-num", 3311 devbindings, devinfo_help }, 3312 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3313 devinfo_help }, 3314 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3315 devinfo_audit }, 3316 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3317 devinfo_audit_log }, 3318 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3319 devinfo_audit_node }, 3320 { "devinfo2driver", ":", "find driver name for this devinfo node", 3321 devinfo2driver }, 3322 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3323 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3324 dev2major }, 3325 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3326 dev2minor }, 3327 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3328 devt }, 3329 { "major2name", "?<major-num>", "convert major number to dev name", 3330 major2name }, 3331 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3332 minornodes }, 3333 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3334 modctl2devinfo }, 3335 { "name2major", "<dev-name>", "convert dev name to major number", 3336 name2major }, 3337 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3338 { "softstate", ":<instance>", "retrieve soft-state pointer", 3339 softstate }, 3340 { "devinfo_fm", ":", "devinfo fault managment configuration", 3341 devinfo_fm }, 3342 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3343 devinfo_fmce}, 3344 3345 /* from fm.c */ 3346 { "ereport", "[-v]", "print ereports logged in dump", 3347 ereport }, 3348 3349 /* from findstack.c */ 3350 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3351 { "findstack_debug", NULL, "toggle findstack debugging", 3352 findstack_debug }, 3353 3354 /* from kgrep.c + genunix.c */ 3355 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3356 kgrep_help }, 3357 3358 /* from kmem.c */ 3359 { "allocdby", ":", "given a thread, print its allocated buffers", 3360 allocdby }, 3361 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3362 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3363 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3364 { "kmalog", "?[ fail | slab ]", 3365 "display kmem transaction log and stack traces", kmalog }, 3366 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3367 kmastat }, 3368 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3369 "of the kmem allocator", kmausers, kmausers_help }, 3370 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3371 { "kmem_slabs", "?[-v] [-n cache] [-b maxbins] [-B minbinsize]", 3372 "display slab usage per kmem cache", 3373 kmem_slabs, kmem_slabs_help }, 3374 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3375 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3376 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3377 kmem_verify }, 3378 { "vmem", "?", "print a vmem_t", vmem }, 3379 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3380 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3381 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3382 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3383 whatis_help }, 3384 { "whatthread", ":[-v]", "print threads whose stack contains the " 3385 "given address", whatthread }, 3386 3387 /* from ldi.c */ 3388 { "ldi_handle", "?[-i]", "display a layered driver handle", 3389 ldi_handle, ldi_handle_help }, 3390 { "ldi_ident", NULL, "display a layered driver identifier", 3391 ldi_ident, ldi_ident_help }, 3392 3393 /* from leaky.c + leaky_subr.c */ 3394 { "findleaks", FINDLEAKS_USAGE, 3395 "search for potential kernel memory leaks", findleaks, 3396 findleaks_help }, 3397 3398 /* from lgrp.c */ 3399 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3400 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3401 3402 /* from log.c */ 3403 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3404 3405 /* from memory.c */ 3406 { "page", "?", "display a summarized page_t", page }, 3407 { "memstat", NULL, "display memory usage summary", memstat }, 3408 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3409 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3410 3411 /* from mmd.c */ 3412 { "multidata", ":[-sv]", "display a summarized multidata_t", 3413 multidata }, 3414 { "pattbl", ":", "display a summarized multidata attribute table", 3415 pattbl }, 3416 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3417 pattr2multidata }, 3418 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3419 pdesc2slab }, 3420 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3421 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3422 slab2multidata }, 3423 3424 /* from modhash.c */ 3425 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3426 "display information about one or all mod_hash structures", 3427 modhash, modhash_help }, 3428 { "modent", ":[-k | -v | -t type]", 3429 "display information about a mod_hash_entry", modent, 3430 modent_help }, 3431 3432 /* from net.c */ 3433 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3434 mi }, 3435 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 3436 "show network statistics", netstat }, 3437 { "sonode", "?[-f inet | inet6 | unix | #] " 3438 "[-t stream | dgram | raw | #] [-p #]", 3439 "filter and display sonode", sonode }, 3440 3441 /* from netstack.c */ 3442 { "netstack", "", "show stack instances", netstack }, 3443 3444 /* from nvpair.c */ 3445 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3446 nvpair_print }, 3447 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3448 print_nvlist }, 3449 3450 /* from pg.c */ 3451 { "pg", "?[-q]", "display a pg", pg}, 3452 /* from group.c */ 3453 { "group", "?[-q]", "display a group", group}, 3454 3455 /* from log.c */ 3456 /* from rctl.c */ 3457 { "rctl_dict", "?", "print systemwide default rctl definitions", 3458 rctl_dict }, 3459 { "rctl_list", ":[handle]", "print rctls for the given proc", 3460 rctl_list }, 3461 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3462 rctl }, 3463 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3464 "sequence", rctl_validate }, 3465 3466 /* from sobj.c */ 3467 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3468 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3469 mutex_help }, 3470 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3471 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3472 { "turnstile", "?", "display a turnstile", turnstile }, 3473 3474 /* from stream.c */ 3475 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3476 "print an mblk", mblk_prt, mblk_help }, 3477 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3478 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3479 mblk2dblk }, 3480 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3481 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3482 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3483 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3484 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3485 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3486 "filter and display STREAM queue", queue, queue_help }, 3487 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3488 "filter and display STREAM head", stdata, stdata_help }, 3489 { "str2mate", ":", "print mate of this stream", str2mate }, 3490 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3491 { "stream", ":", "display STREAM", stream }, 3492 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3493 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3494 "filter and display STREAM sync queue", syncq, syncq_help }, 3495 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3496 3497 /* from thread.c */ 3498 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3499 thread_help }, 3500 { "threadlist", "?[-v [count]]", 3501 "display threads and associated C stack traces", threadlist, 3502 threadlist_help }, 3503 3504 /* from tsd.c */ 3505 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3506 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3507 3508 /* 3509 * typegraph does not work under kmdb, as it requires too much memory 3510 * for its internal data structures. 3511 */ 3512 #ifndef _KMDB 3513 /* from typegraph.c */ 3514 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3515 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3516 findfalse }, 3517 { "typegraph", NULL, "build type graph", typegraph }, 3518 { "istype", ":type", "manually set object type", istype }, 3519 { "notype", ":", "manually clear object type", notype }, 3520 { "whattype", ":", "determine object type", whattype }, 3521 #endif 3522 3523 /* from vfs.c */ 3524 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3525 { "pfiles", ":[-fp]", "print process file information", pfiles, 3526 pfiles_help }, 3527 3528 /* from mdi.c */ 3529 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3530 "and detailed pi_prop list", mdipi }, 3531 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3532 mdiprops }, 3533 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3534 "list all paths", mdiphci }, 3535 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3536 "all phcis", mdivhci }, 3537 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3538 "client links", mdiclient_paths }, 3539 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3540 "phci links", mdiphci_paths }, 3541 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3542 mdiphcis }, 3543 3544 { NULL } 3545 }; 3546 3547 static const mdb_walker_t walkers[] = { 3548 3549 /* from genunix.c */ 3550 { "anon", "given an amp, list of anon structures", 3551 anon_walk_init, anon_walk_step, anon_walk_fini }, 3552 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3553 { "ereportq_dump", "walk list of ereports in dump error queue", 3554 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 3555 { "ereportq_pend", "walk list of ereports in pending error queue", 3556 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 3557 { "errorq", "walk list of system error queues", 3558 errorq_walk_init, errorq_walk_step, NULL }, 3559 { "errorq_data", "walk pending error queue data buffers", 3560 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3561 { "allfile", "given a proc pointer, list all file pointers", 3562 file_walk_init, allfile_walk_step, file_walk_fini }, 3563 { "file", "given a proc pointer, list of open file pointers", 3564 file_walk_init, file_walk_step, file_walk_fini }, 3565 { "lock_descriptor", "walk lock_descriptor_t structures", 3566 ld_walk_init, ld_walk_step, NULL }, 3567 { "lock_graph", "walk lock graph", 3568 lg_walk_init, lg_walk_step, NULL }, 3569 { "port", "given a proc pointer, list of created event ports", 3570 port_walk_init, port_walk_step, NULL }, 3571 { "portev", "given a port pointer, list of events in the queue", 3572 portev_walk_init, portev_walk_step, portev_walk_fini }, 3573 { "proc", "list of active proc_t structures", 3574 proc_walk_init, proc_walk_step, proc_walk_fini }, 3575 { "projects", "walk a list of kernel projects", 3576 project_walk_init, project_walk_step, NULL }, 3577 { "seg", "given an as, list of segments", 3578 seg_walk_init, avl_walk_step, avl_walk_fini }, 3579 { "sysevent_pend", "walk sysevent pending queue", 3580 sysevent_pend_walk_init, sysevent_walk_step, 3581 sysevent_walk_fini}, 3582 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3583 sysevent_walk_step, sysevent_walk_fini}, 3584 { "sysevent_channel", "walk sysevent channel subscriptions", 3585 sysevent_channel_walk_init, sysevent_channel_walk_step, 3586 sysevent_channel_walk_fini}, 3587 { "sysevent_class_list", "walk sysevent subscription's class list", 3588 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3589 sysevent_class_list_walk_fini}, 3590 { "sysevent_subclass_list", 3591 "walk sysevent subscription's subclass list", 3592 sysevent_subclass_list_walk_init, 3593 sysevent_subclass_list_walk_step, 3594 sysevent_subclass_list_walk_fini}, 3595 { "task", "given a task pointer, walk its processes", 3596 task_walk_init, task_walk_step, NULL }, 3597 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3598 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3599 3600 /* from avl.c */ 3601 { AVL_WALK_NAME, AVL_WALK_DESC, 3602 avl_walk_init, avl_walk_step, avl_walk_fini }, 3603 3604 /* from zone.c */ 3605 { "zone", "walk a list of kernel zones", 3606 zone_walk_init, zone_walk_step, NULL }, 3607 { "zsd", "walk list of zsd entries for a zone", 3608 zsd_walk_init, zsd_walk_step, NULL }, 3609 3610 /* from bio.c */ 3611 { "buf", "walk the bio buf hash", 3612 buf_walk_init, buf_walk_step, buf_walk_fini }, 3613 3614 /* from contract.c */ 3615 { "contract", "walk all contracts, or those of the specified type", 3616 ct_walk_init, generic_walk_step, NULL }, 3617 { "ct_event", "walk events on a contract event queue", 3618 ct_event_walk_init, generic_walk_step, NULL }, 3619 { "ct_listener", "walk contract event queue listeners", 3620 ct_listener_walk_init, generic_walk_step, NULL }, 3621 3622 /* from cpupart.c */ 3623 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3624 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3625 NULL }, 3626 { "cpupart_walk", "walk the set of cpu partitions", 3627 cpupart_walk_init, cpupart_walk_step, NULL }, 3628 3629 /* from ctxop.c */ 3630 { "ctxop", "walk list of context ops on a thread", 3631 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3632 3633 /* from cyclic.c */ 3634 { "cyccpu", "walk per-CPU cyc_cpu structures", 3635 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3636 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3637 cycomni_walk_init, cycomni_walk_step, NULL }, 3638 { "cyctrace", "walk cyclic trace buffer", 3639 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3640 3641 /* from devinfo.c */ 3642 { "binding_hash", "walk all entries in binding hash table", 3643 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3644 { "devinfo", "walk devinfo tree or subtree", 3645 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3646 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3647 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3648 devinfo_audit_log_walk_fini}, 3649 { "devinfo_audit_node", "walk per-devinfo audit history", 3650 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3651 devinfo_audit_node_walk_fini}, 3652 { "devinfo_children", "walk children of devinfo node", 3653 devinfo_children_walk_init, devinfo_children_walk_step, 3654 devinfo_children_walk_fini }, 3655 { "devinfo_parents", "walk ancestors of devinfo node", 3656 devinfo_parents_walk_init, devinfo_parents_walk_step, 3657 devinfo_parents_walk_fini }, 3658 { "devinfo_siblings", "walk siblings of devinfo node", 3659 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3660 { "devi_next", "walk devinfo list", 3661 NULL, devi_next_walk_step, NULL }, 3662 { "devnames", "walk devnames array", 3663 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3664 { "minornode", "given a devinfo node, walk minor nodes", 3665 minornode_walk_init, minornode_walk_step, NULL }, 3666 { "softstate", 3667 "given an i_ddi_soft_state*, list all in-use driver stateps", 3668 soft_state_walk_init, soft_state_walk_step, 3669 NULL, NULL }, 3670 { "softstate_all", 3671 "given an i_ddi_soft_state*, list all driver stateps", 3672 soft_state_walk_init, soft_state_all_walk_step, 3673 NULL, NULL }, 3674 { "devinfo_fmc", 3675 "walk a fault management handle cache active list", 3676 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3677 3678 /* from kmem.c */ 3679 { "allocdby", "given a thread, walk its allocated bufctls", 3680 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3681 { "bufctl", "walk a kmem cache's bufctls", 3682 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3683 { "bufctl_history", "walk the available history of a bufctl", 3684 bufctl_history_walk_init, bufctl_history_walk_step, 3685 bufctl_history_walk_fini }, 3686 { "freedby", "given a thread, walk its freed bufctls", 3687 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3688 { "freectl", "walk a kmem cache's free bufctls", 3689 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3690 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3691 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3692 { "freemem", "walk a kmem cache's free memory", 3693 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3694 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3695 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3696 { "kmem", "walk a kmem cache", 3697 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3698 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3699 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3700 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3701 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3702 { "kmem_log", "walk the kmem transaction log", 3703 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3704 { "kmem_slab", "given a kmem cache, walk its slabs", 3705 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3706 { "kmem_slab_partial", 3707 "given a kmem cache, walk its partially allocated slabs (min 1)", 3708 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3709 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3710 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3711 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3712 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3713 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3714 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3715 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3716 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3717 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3718 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3719 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3720 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3721 3722 /* from ldi.c */ 3723 { "ldi_handle", "walk the layered driver handle hash", 3724 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3725 { "ldi_ident", "walk the layered driver identifier hash", 3726 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3727 3728 /* from leaky.c + leaky_subr.c */ 3729 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3730 "stack trace", 3731 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3732 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3733 "leaks w/ same stack trace", 3734 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3735 3736 /* from lgrp.c */ 3737 { "lgrp_cpulist", "walk CPUs in a given lgroup", 3738 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 3739 { "lgrptbl", "walk lgroup table", 3740 lgrp_walk_init, lgrp_walk_step, NULL }, 3741 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 3742 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 3743 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 3744 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 3745 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 3746 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 3747 3748 /* from group.c */ 3749 { "group", "walk all elements of a group", 3750 group_walk_init, group_walk_step, NULL }, 3751 3752 /* from list.c */ 3753 { LIST_WALK_NAME, LIST_WALK_DESC, 3754 list_walk_init, list_walk_step, list_walk_fini }, 3755 3756 /* from memory.c */ 3757 { "page", "walk all pages, or those from the specified vnode", 3758 page_walk_init, page_walk_step, page_walk_fini }, 3759 { "memlist", "walk specified memlist", 3760 NULL, memlist_walk_step, NULL }, 3761 { "swapinfo", "walk swapinfo structures", 3762 swap_walk_init, swap_walk_step, NULL }, 3763 3764 /* from mmd.c */ 3765 { "pattr", "walk pattr_t structures", pattr_walk_init, 3766 mmdq_walk_step, mmdq_walk_fini }, 3767 { "pdesc", "walk pdesc_t structures", 3768 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3769 { "pdesc_slab", "walk pdesc_slab_t structures", 3770 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3771 3772 /* from modhash.c */ 3773 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3774 modhash_walk_step, NULL }, 3775 { "modent", "walk list of entries in a given mod_hash", 3776 modent_walk_init, modent_walk_step, modent_walk_fini }, 3777 { "modchain", "walk list of entries in a given mod_hash_entry", 3778 NULL, modchain_walk_step, NULL }, 3779 3780 /* from net.c */ 3781 { "ar", "walk ar_t structures using MI for all stacks", 3782 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg }, 3783 { "icmp", "walk ICMP control structures using MI for all stacks", 3784 mi_payload_walk_init, mi_payload_walk_step, NULL, 3785 &mi_icmp_arg }, 3786 { "ill", "walk ill_t structures using MI for all stacks", 3787 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg }, 3788 3789 { "mi", "given a MI_O, walk the MI", 3790 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3791 { "sonode", "given a sonode, walk its children", 3792 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3793 3794 { "ar_stacks", "walk all the ar_stack_t", 3795 ar_stacks_walk_init, ar_stacks_walk_step, NULL }, 3796 { "icmp_stacks", "walk all the icmp_stack_t", 3797 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 3798 { "tcp_stacks", "walk all the tcp_stack_t", 3799 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 3800 { "udp_stacks", "walk all the udp_stack_t", 3801 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 3802 3803 /* from nvpair.c */ 3804 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3805 nvpair_walk_init, nvpair_walk_step, NULL }, 3806 3807 /* from rctl.c */ 3808 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3809 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3810 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3811 rctl_set_walk_step, NULL }, 3812 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3813 rctl_val_walk_init, rctl_val_walk_step }, 3814 3815 /* from sobj.c */ 3816 { "blocked", "walk threads blocked on a given sobj", 3817 blocked_walk_init, blocked_walk_step, NULL }, 3818 { "wchan", "given a wchan, list of blocked threads", 3819 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3820 3821 /* from stream.c */ 3822 { "b_cont", "walk mblk_t list using b_cont", 3823 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3824 { "b_next", "walk mblk_t list using b_next", 3825 mblk_walk_init, b_next_step, mblk_walk_fini }, 3826 { "qlink", "walk queue_t list using q_link", 3827 queue_walk_init, queue_link_step, queue_walk_fini }, 3828 { "qnext", "walk queue_t list using q_next", 3829 queue_walk_init, queue_next_step, queue_walk_fini }, 3830 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3831 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3832 { "readq", "walk read queue side of stdata", 3833 str_walk_init, strr_walk_step, str_walk_fini }, 3834 { "writeq", "walk write queue side of stdata", 3835 str_walk_init, strw_walk_step, str_walk_fini }, 3836 3837 /* from thread.c */ 3838 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3839 deathrow_walk_init, deathrow_walk_step, NULL }, 3840 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3841 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3842 { "cpupart_dispq", 3843 "given a cpupart_t, walk threads in dispatcher queues", 3844 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3845 { "lwp_deathrow", "walk lwp_deathrow", 3846 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3847 { "thread", "global or per-process kthread_t structures", 3848 thread_walk_init, thread_walk_step, thread_walk_fini }, 3849 { "thread_deathrow", "walk threads on thread_deathrow", 3850 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3851 3852 /* from tsd.c */ 3853 { "tsd", "walk list of thread-specific data", 3854 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3855 3856 /* from tsol.c */ 3857 { "tnrh", "walk remote host cache structures", 3858 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 3859 { "tnrhtp", "walk remote host template structures", 3860 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 3861 3862 /* 3863 * typegraph does not work under kmdb, as it requires too much memory 3864 * for its internal data structures. 3865 */ 3866 #ifndef _KMDB 3867 /* from typegraph.c */ 3868 { "typeconflict", "walk buffers with conflicting type inferences", 3869 typegraph_walk_init, typeconflict_walk_step }, 3870 { "typeunknown", "walk buffers with unknown types", 3871 typegraph_walk_init, typeunknown_walk_step }, 3872 #endif 3873 3874 /* from vfs.c */ 3875 { "vfs", "walk file system list", 3876 vfs_walk_init, vfs_walk_step }, 3877 3878 /* from mdi.c */ 3879 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 3880 mdi_pi_client_link_walk_init, 3881 mdi_pi_client_link_walk_step, 3882 mdi_pi_client_link_walk_fini }, 3883 3884 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 3885 mdi_pi_phci_link_walk_init, 3886 mdi_pi_phci_link_walk_step, 3887 mdi_pi_phci_link_walk_fini }, 3888 3889 { "mdiphci_list", "Walker for mdi_phci ph_next link", 3890 mdi_phci_ph_next_walk_init, 3891 mdi_phci_ph_next_walk_step, 3892 mdi_phci_ph_next_walk_fini }, 3893 3894 /* from netstack.c */ 3895 { "netstack", "walk a list of kernel netstacks", 3896 netstack_walk_init, netstack_walk_step, NULL }, 3897 3898 { NULL } 3899 }; 3900 3901 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3902 3903 const mdb_modinfo_t * 3904 _mdb_init(void) 3905 { 3906 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3907 mdb_warn("failed to read 'top_devinfo'"); 3908 return (NULL); 3909 } 3910 3911 if (findstack_init() != DCMD_OK) 3912 return (NULL); 3913 3914 kmem_init(); 3915 3916 return (&modinfo); 3917 } 3918 3919 void 3920 _mdb_fini(void) 3921 { 3922 /* 3923 * Force ::findleaks to let go any cached memory 3924 */ 3925 leaky_cleanup(1); 3926 } 3927