1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 * Copyright 2022 Garrett D'Amore 27 * Copyright 2023 RackTop Systems, Inc. 28 */ 29 30 #include <mdb/mdb_param.h> 31 #include <mdb/mdb_modapi.h> 32 #include <mdb/mdb_ks.h> 33 #include <mdb/mdb_ctf.h> 34 35 #include <sys/types.h> 36 #include <sys/thread.h> 37 #include <sys/session.h> 38 #include <sys/user.h> 39 #include <sys/proc.h> 40 #include <sys/var.h> 41 #include <sys/t_lock.h> 42 #include <sys/callo.h> 43 #include <sys/priocntl.h> 44 #include <sys/class.h> 45 #include <sys/regset.h> 46 #include <sys/stack.h> 47 #include <sys/cpuvar.h> 48 #include <sys/vnode.h> 49 #include <sys/vfs.h> 50 #include <sys/flock_impl.h> 51 #include <sys/kmem_impl.h> 52 #include <sys/vmem_impl.h> 53 #include <sys/kstat.h> 54 #include <sys/dditypes.h> 55 #include <sys/ddi_impldefs.h> 56 #include <sys/sysmacros.h> 57 #include <sys/sysconf.h> 58 #include <sys/task.h> 59 #include <sys/project.h> 60 #include <sys/errorq_impl.h> 61 #include <sys/cred_impl.h> 62 #include <sys/zone.h> 63 #include <sys/panic.h> 64 #include <regex.h> 65 #include <sys/port_impl.h> 66 #include <sys/contract/process_impl.h> 67 68 #include "avl.h" 69 #include "bio.h" 70 #include "bitset.h" 71 #include "combined.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "cred.h" 75 #include "ctxop.h" 76 #include "cyclic.h" 77 #include "damap.h" 78 #include "ddi_periodic.h" 79 #include "devinfo.h" 80 #include "dnlc.h" 81 #include "findstack.h" 82 #include "fm.h" 83 #include "gcore.h" 84 #include "group.h" 85 #include "irm.h" 86 #include "kgrep.h" 87 #include "kmem.h" 88 #include "ldi.h" 89 #include "leaky.h" 90 #include "lgrp.h" 91 #include "list.h" 92 #include "log.h" 93 #include "mdi.h" 94 #include "memory.h" 95 #include "modhash.h" 96 #include "ndievents.h" 97 #include "net.h" 98 #include "netstack.h" 99 #include "nvpair.h" 100 #include "pci.h" 101 #include "pg.h" 102 #include "rctl.h" 103 #include "sobj.h" 104 #include "streams.h" 105 #include "sysevent.h" 106 #include "taskq.h" 107 #include "thread.h" 108 #include "tsd.h" 109 #include "tsol.h" 110 #include "typegraph.h" 111 #include "vfs.h" 112 #include "zone.h" 113 #include "hotplug.h" 114 115 /* 116 * Surely this is defined somewhere... 117 */ 118 #define NINTR 16 119 120 #define KILOS 10 121 #define MEGS 20 122 #define GIGS 30 123 124 #ifndef STACK_BIAS 125 #define STACK_BIAS 0 126 #endif 127 128 static char 129 pstat2ch(uchar_t state) 130 { 131 switch (state) { 132 case SSLEEP: return ('S'); 133 case SRUN: return ('R'); 134 case SZOMB: return ('Z'); 135 case SIDL: return ('I'); 136 case SONPROC: return ('O'); 137 case SSTOP: return ('T'); 138 case SWAIT: return ('W'); 139 default: return ('?'); 140 } 141 } 142 143 #define PS_PRTTHREADS 0x1 144 #define PS_PRTLWPS 0x2 145 #define PS_PSARGS 0x4 146 #define PS_TASKS 0x8 147 #define PS_PROJECTS 0x10 148 #define PS_ZONES 0x20 149 #define PS_SERVICES 0x40 150 151 static int 152 ps_threadprint(uintptr_t addr, const void *data, void *private) 153 { 154 const kthread_t *t = (const kthread_t *)data; 155 uint_t prt_flags = *((uint_t *)private); 156 157 static const mdb_bitmask_t t_state_bits[] = { 158 { "TS_FREE", UINT_MAX, TS_FREE }, 159 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 160 { "TS_RUN", TS_RUN, TS_RUN }, 161 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 162 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 163 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 164 { "TS_WAIT", TS_WAIT, TS_WAIT }, 165 { NULL, 0, 0 } 166 }; 167 168 if (prt_flags & PS_PRTTHREADS) 169 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 170 171 if (prt_flags & PS_PRTLWPS) { 172 char desc[128] = ""; 173 174 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc)); 175 176 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc); 177 } 178 179 return (WALK_NEXT); 180 } 181 182 typedef struct mdb_pflags_proc { 183 struct pid *p_pidp; 184 ushort_t p_pidflag; 185 uint_t p_proc_flag; 186 uint_t p_flag; 187 } mdb_pflags_proc_t; 188 189 static int 190 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 191 { 192 mdb_pflags_proc_t pr; 193 struct pid pid; 194 195 static const mdb_bitmask_t p_flag_bits[] = { 196 { "SSYS", SSYS, SSYS }, 197 { "SEXITING", SEXITING, SEXITING }, 198 { "SITBUSY", SITBUSY, SITBUSY }, 199 { "SFORKING", SFORKING, SFORKING }, 200 { "SWATCHOK", SWATCHOK, SWATCHOK }, 201 { "SKILLED", SKILLED, SKILLED }, 202 { "SSCONT", SSCONT, SSCONT }, 203 { "SZONETOP", SZONETOP, SZONETOP }, 204 { "SEXTKILLED", SEXTKILLED, SEXTKILLED }, 205 { "SUGID", SUGID, SUGID }, 206 { "SEXECED", SEXECED, SEXECED }, 207 { "SJCTL", SJCTL, SJCTL }, 208 { "SNOWAIT", SNOWAIT, SNOWAIT }, 209 { "SVFORK", SVFORK, SVFORK }, 210 { "SVFWAIT", SVFWAIT, SVFWAIT }, 211 { "SEXITLWPS", SEXITLWPS, SEXITLWPS }, 212 { "SHOLDFORK", SHOLDFORK, SHOLDFORK }, 213 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 }, 214 { "SCOREDUMP", SCOREDUMP, SCOREDUMP }, 215 { "SMSACCT", SMSACCT, SMSACCT }, 216 { "SLWPWRAP", SLWPWRAP, SLWPWRAP }, 217 { "SAUTOLPG", SAUTOLPG, SAUTOLPG }, 218 { "SNOCD", SNOCD, SNOCD }, 219 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH }, 220 { "SMSFORK", SMSFORK, SMSFORK }, 221 { "SDOCORE", SDOCORE, SDOCORE }, 222 { NULL, 0, 0 } 223 }; 224 225 static const mdb_bitmask_t p_pidflag_bits[] = { 226 { "CLDPEND", CLDPEND, CLDPEND }, 227 { "CLDCONT", CLDCONT, CLDCONT }, 228 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD }, 229 { "CLDWAITPID", CLDWAITPID, CLDWAITPID }, 230 { NULL, 0, 0 } 231 }; 232 233 static const mdb_bitmask_t p_proc_flag_bits[] = { 234 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE }, 235 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE }, 236 { "P_PR_FORK", P_PR_FORK, P_PR_FORK }, 237 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK }, 238 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC }, 239 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC }, 240 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ }, 241 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL }, 242 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL }, 243 { NULL, 0, 0 } 244 }; 245 246 if (!(flags & DCMD_ADDRSPEC)) { 247 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) { 248 mdb_warn("can't walk 'proc'"); 249 return (DCMD_ERR); 250 } 251 return (DCMD_OK); 252 } 253 254 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 || 255 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) { 256 mdb_warn("cannot read proc_t or pid"); 257 return (DCMD_ERR); 258 } 259 260 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id); 261 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag, 262 p_flag_bits); 263 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag, 264 p_pidflag_bits); 265 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag, 266 p_proc_flag_bits); 267 268 return (DCMD_OK); 269 } 270 271 typedef struct mdb_ps_proc { 272 char p_stat; 273 struct pid *p_pidp; 274 struct pid *p_pgidp; 275 struct cred *p_cred; 276 struct sess *p_sessp; 277 struct task *p_task; 278 struct zone *p_zone; 279 struct cont_process *p_ct_process; 280 pid_t p_ppid; 281 uint_t p_flag; 282 struct { 283 char u_comm[MAXCOMLEN + 1]; 284 char u_psargs[PSARGSZ]; 285 } p_user; 286 } mdb_ps_proc_t; 287 288 /* 289 * A reasonable enough limit. Note that we purposefully let this column over-run 290 * if needed. 291 */ 292 #define FMRI_LEN (128) 293 294 int 295 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 296 { 297 uint_t prt_flags = 0; 298 mdb_ps_proc_t pr; 299 struct pid pid, pgid, sid; 300 sess_t session; 301 cred_t cred; 302 task_t tk; 303 kproject_t pj; 304 zone_t zn; 305 struct cont_process cp; 306 char fmri[FMRI_LEN] = ""; 307 308 if (!(flags & DCMD_ADDRSPEC)) { 309 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 310 mdb_warn("can't walk 'proc'"); 311 return (DCMD_ERR); 312 } 313 return (DCMD_OK); 314 } 315 316 if (mdb_getopts(argc, argv, 317 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 318 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 319 's', MDB_OPT_SETBITS, PS_SERVICES, &prt_flags, 320 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 321 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 322 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 323 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 324 return (DCMD_USAGE); 325 326 if (DCMD_HDRSPEC(flags)) { 327 mdb_printf("%<u>%-1s %-6s %-6s %-6s %-6s ", 328 "S", "PID", "PPID", "PGID", "SID"); 329 if (prt_flags & PS_TASKS) 330 mdb_printf("%-5s ", "TASK"); 331 if (prt_flags & PS_PROJECTS) 332 mdb_printf("%-5s ", "PROJ"); 333 if (prt_flags & PS_ZONES) 334 mdb_printf("%-5s ", "ZONE"); 335 if (prt_flags & PS_SERVICES) 336 mdb_printf("%-40s ", "SERVICE"); 337 mdb_printf("%-6s %-10s %-?s %-s%</u>\n", 338 "UID", "FLAGS", "ADDR", "NAME"); 339 } 340 341 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1) 342 return (DCMD_ERR); 343 344 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 345 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 346 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 347 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 348 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 349 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 350 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 351 if (prt_flags & PS_PROJECTS) 352 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 353 if (prt_flags & PS_ZONES) 354 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone); 355 if ((prt_flags & PS_SERVICES) && pr.p_ct_process != NULL) { 356 mdb_vread(&cp, sizeof (cp), (uintptr_t)pr.p_ct_process); 357 358 if (mdb_read_refstr((uintptr_t)cp.conp_svc_fmri, fmri, 359 sizeof (fmri)) <= 0) 360 (void) strlcpy(fmri, "?", sizeof (fmri)); 361 362 /* Strip any standard prefix and suffix. */ 363 if (strncmp(fmri, "svc:/", sizeof ("svc:/") - 1) == 0) { 364 char *i = fmri; 365 char *j = fmri + sizeof ("svc:/") - 1; 366 for (; *j != '\0'; i++, j++) { 367 if (strcmp(j, ":default") == 0) 368 break; 369 *i = *j; 370 } 371 372 *i = '\0'; 373 } 374 } 375 376 mdb_printf("%-c %-6d %-6d %-6d %-6d ", 377 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 378 sid.pid_id); 379 if (prt_flags & PS_TASKS) 380 mdb_printf("%-5d ", tk.tk_tkid); 381 if (prt_flags & PS_PROJECTS) 382 mdb_printf("%-5d ", pj.kpj_id); 383 if (prt_flags & PS_ZONES) 384 mdb_printf("%-5d ", zn.zone_id); 385 if (prt_flags & PS_SERVICES) 386 mdb_printf("%-40s ", fmri); 387 mdb_printf("%-6d 0x%08x %0?p %-s\n", 388 cred.cr_uid, pr.p_flag, addr, 389 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 390 391 if (prt_flags & ~PS_PSARGS) 392 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 393 394 return (DCMD_OK); 395 } 396 397 static void 398 ps_help(void) 399 { 400 mdb_printf("Display processes.\n\n" 401 "Options:\n" 402 " -f\tDisplay command arguments\n" 403 " -l\tDisplay LWPs\n" 404 " -T\tDisplay tasks\n" 405 " -P\tDisplay projects\n" 406 " -s\tDisplay SMF FMRI\n" 407 " -z\tDisplay zones\n" 408 " -t\tDisplay threads\n\n"); 409 410 mdb_printf("The resulting output is a table of the processes on the " 411 "system. The\n" 412 "columns in the output consist of a combination of the " 413 "following fields:\n\n"); 414 mdb_printf("S\tProcess state. Possible states are:\n" 415 "\tS\tSleeping (SSLEEP)\n" 416 "\tR\tRunnable (SRUN)\n" 417 "\tZ\tZombie (SZOMB)\n" 418 "\tI\tIdle (SIDL)\n" 419 "\tO\tOn Cpu (SONPROC)\n" 420 "\tT\tStopped (SSTOP)\n" 421 "\tW\tWaiting (SWAIT)\n"); 422 423 mdb_printf("PID\tProcess id.\n"); 424 mdb_printf("PPID\tParent process id.\n"); 425 mdb_printf("PGID\tProcess group id.\n"); 426 mdb_printf("SID\tProcess id of the session leader.\n"); 427 mdb_printf("TASK\tThe task id of the process.\n"); 428 mdb_printf("PROJ\tThe project id of the process.\n"); 429 mdb_printf("ZONE\tThe zone id of the process.\n"); 430 mdb_printf("SERVICE The SMF service FMRI of the process.\n"); 431 mdb_printf("UID\tThe user id of the process.\n"); 432 mdb_printf("FLAGS\tThe process flags (see ::pflags).\n"); 433 mdb_printf("ADDR\tThe kernel address of the proc_t structure of the " 434 "process\n"); 435 mdb_printf("NAME\tThe name (p_user.u_comm field) of the process. If " 436 "the -f flag\n" 437 "\tis specified, the arguments of the process are displayed.\n"); 438 } 439 440 #define PG_NEWEST 0x0001 441 #define PG_OLDEST 0x0002 442 #define PG_PIPE_OUT 0x0004 443 #define PG_EXACT_MATCH 0x0008 444 445 typedef struct pgrep_data { 446 uint_t pg_flags; 447 uint_t pg_psflags; 448 uintptr_t pg_xaddr; 449 hrtime_t pg_xstart; 450 const char *pg_pat; 451 #ifndef _KMDB 452 regex_t pg_reg; 453 #endif 454 } pgrep_data_t; 455 456 typedef struct mdb_pgrep_proc { 457 struct { 458 timestruc_t u_start; 459 char u_comm[MAXCOMLEN + 1]; 460 } p_user; 461 } mdb_pgrep_proc_t; 462 463 /*ARGSUSED*/ 464 static int 465 pgrep_cb(uintptr_t addr, const void *ignored, void *data) 466 { 467 mdb_pgrep_proc_t p; 468 pgrep_data_t *pgp = data; 469 #ifndef _KMDB 470 regmatch_t pmatch; 471 #endif 472 473 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1) 474 return (WALK_ERR); 475 476 /* 477 * kmdb doesn't have access to the reg* functions, so we fall back 478 * to strstr/strcmp. 479 */ 480 #ifdef _KMDB 481 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 482 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) : 483 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL)) 484 return (WALK_NEXT); 485 #else 486 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0) 487 return (WALK_NEXT); 488 489 if ((pgp->pg_flags & PG_EXACT_MATCH) && 490 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0')) 491 return (WALK_NEXT); 492 #endif 493 494 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 495 hrtime_t start; 496 497 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC + 498 p.p_user.u_start.tv_nsec; 499 500 if (pgp->pg_flags & PG_NEWEST) { 501 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) { 502 pgp->pg_xaddr = addr; 503 pgp->pg_xstart = start; 504 } 505 } else { 506 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) { 507 pgp->pg_xaddr = addr; 508 pgp->pg_xstart = start; 509 } 510 } 511 512 } else if (pgp->pg_flags & PG_PIPE_OUT) { 513 mdb_printf("%p\n", addr); 514 515 } else { 516 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 517 mdb_warn("can't invoke 'ps'"); 518 return (WALK_DONE); 519 } 520 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 521 } 522 523 return (WALK_NEXT); 524 } 525 526 /*ARGSUSED*/ 527 int 528 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 529 { 530 pgrep_data_t pg; 531 int i; 532 #ifndef _KMDB 533 int err; 534 #endif 535 536 if (flags & DCMD_ADDRSPEC) 537 return (DCMD_USAGE); 538 539 pg.pg_flags = 0; 540 pg.pg_xaddr = 0; 541 542 i = mdb_getopts(argc, argv, 543 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 544 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 545 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 546 NULL); 547 548 argc -= i; 549 argv += i; 550 551 if (argc != 1) 552 return (DCMD_USAGE); 553 554 /* 555 * -n and -o are mutually exclusive. 556 */ 557 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 558 return (DCMD_USAGE); 559 560 if (argv->a_type != MDB_TYPE_STRING) 561 return (DCMD_USAGE); 562 563 if (flags & DCMD_PIPE_OUT) 564 pg.pg_flags |= PG_PIPE_OUT; 565 566 pg.pg_pat = argv->a_un.a_str; 567 if (DCMD_HDRSPEC(flags)) 568 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 569 else 570 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 571 572 #ifndef _KMDB 573 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 574 size_t nbytes; 575 char *buf; 576 577 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 578 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 579 (void) regerror(err, &pg.pg_reg, buf, nbytes); 580 mdb_warn("%s\n", buf); 581 582 return (DCMD_ERR); 583 } 584 #endif 585 586 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 587 mdb_warn("can't walk 'proc'"); 588 return (DCMD_ERR); 589 } 590 591 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 592 if (pg.pg_flags & PG_PIPE_OUT) { 593 mdb_printf("%p\n", pg.pg_xaddr); 594 } else { 595 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 596 0, NULL) != 0) { 597 mdb_warn("can't invoke 'ps'"); 598 return (DCMD_ERR); 599 } 600 } 601 } 602 603 return (DCMD_OK); 604 } 605 606 int 607 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 608 { 609 task_t tk; 610 kproject_t pj; 611 612 if (!(flags & DCMD_ADDRSPEC)) { 613 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 614 mdb_warn("can't walk task_cache"); 615 return (DCMD_ERR); 616 } 617 return (DCMD_OK); 618 } 619 if (DCMD_HDRSPEC(flags)) { 620 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 621 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 622 } 623 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 624 mdb_warn("can't read task_t structure at %p", addr); 625 return (DCMD_ERR); 626 } 627 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 628 mdb_warn("can't read project_t structure at %p", addr); 629 return (DCMD_ERR); 630 } 631 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 632 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 633 tk.tk_flags); 634 return (DCMD_OK); 635 } 636 637 int 638 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 639 { 640 kproject_t pj; 641 642 if (!(flags & DCMD_ADDRSPEC)) { 643 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 644 mdb_warn("can't walk projects"); 645 return (DCMD_ERR); 646 } 647 return (DCMD_OK); 648 } 649 if (DCMD_HDRSPEC(flags)) { 650 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 651 "ADDR", "PROJID", "ZONEID", "REFCNT"); 652 } 653 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 654 mdb_warn("can't read kproject_t structure at %p", addr); 655 return (DCMD_ERR); 656 } 657 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 658 pj.kpj_count); 659 return (DCMD_OK); 660 } 661 662 /* walk callouts themselves, either by list or id hash. */ 663 int 664 callout_walk_init(mdb_walk_state_t *wsp) 665 { 666 if (wsp->walk_addr == 0) { 667 mdb_warn("callout doesn't support global walk"); 668 return (WALK_ERR); 669 } 670 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 671 return (WALK_NEXT); 672 } 673 674 #define CALLOUT_WALK_BYLIST 0 675 #define CALLOUT_WALK_BYID 1 676 677 /* the walker arg switches between walking by list (0) and walking by id (1). */ 678 int 679 callout_walk_step(mdb_walk_state_t *wsp) 680 { 681 int retval; 682 683 if (wsp->walk_addr == 0) { 684 return (WALK_DONE); 685 } 686 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 687 wsp->walk_addr) == -1) { 688 mdb_warn("failed to read callout at %p", wsp->walk_addr); 689 return (WALK_DONE); 690 } 691 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 692 wsp->walk_cbdata); 693 694 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 695 wsp->walk_addr = 696 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 697 } else { 698 wsp->walk_addr = 699 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 700 } 701 702 return (retval); 703 } 704 705 void 706 callout_walk_fini(mdb_walk_state_t *wsp) 707 { 708 mdb_free(wsp->walk_data, sizeof (callout_t)); 709 } 710 711 /* 712 * walker for callout lists. This is different from hashes and callouts. 713 * Thankfully, it's also simpler. 714 */ 715 int 716 callout_list_walk_init(mdb_walk_state_t *wsp) 717 { 718 if (wsp->walk_addr == 0) { 719 mdb_warn("callout list doesn't support global walk"); 720 return (WALK_ERR); 721 } 722 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 723 return (WALK_NEXT); 724 } 725 726 int 727 callout_list_walk_step(mdb_walk_state_t *wsp) 728 { 729 int retval; 730 731 if (wsp->walk_addr == 0) { 732 return (WALK_DONE); 733 } 734 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 735 wsp->walk_addr) != sizeof (callout_list_t)) { 736 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 737 return (WALK_ERR); 738 } 739 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 740 wsp->walk_cbdata); 741 742 wsp->walk_addr = (uintptr_t) 743 (((callout_list_t *)wsp->walk_data)->cl_next); 744 745 return (retval); 746 } 747 748 void 749 callout_list_walk_fini(mdb_walk_state_t *wsp) 750 { 751 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 752 } 753 754 /* routines/structs to walk callout table(s) */ 755 typedef struct cot_data { 756 callout_table_t *ct0; 757 callout_table_t ct; 758 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 759 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 760 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 761 int cotndx; 762 int cotsize; 763 } cot_data_t; 764 765 int 766 callout_table_walk_init(mdb_walk_state_t *wsp) 767 { 768 int max_ncpus; 769 cot_data_t *cot_walk_data; 770 771 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 772 773 if (wsp->walk_addr == 0) { 774 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 775 mdb_warn("failed to read 'callout_table'"); 776 return (WALK_ERR); 777 } 778 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 779 mdb_warn("failed to get callout_table array size"); 780 return (WALK_ERR); 781 } 782 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 783 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 784 } else { 785 /* not a global walk */ 786 cot_walk_data->cotsize = 1; 787 } 788 789 cot_walk_data->cotndx = 0; 790 wsp->walk_data = cot_walk_data; 791 792 return (WALK_NEXT); 793 } 794 795 int 796 callout_table_walk_step(mdb_walk_state_t *wsp) 797 { 798 int retval; 799 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 800 size_t size; 801 802 if (cotwd->cotndx >= cotwd->cotsize) { 803 return (WALK_DONE); 804 } 805 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 806 wsp->walk_addr) != sizeof (callout_table_t)) { 807 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 808 return (WALK_ERR); 809 } 810 811 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 812 if (cotwd->ct.ct_idhash != NULL) { 813 if (mdb_vread(cotwd->cot_idhash, size, 814 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 815 mdb_warn("failed to read id_hash at %p", 816 cotwd->ct.ct_idhash); 817 return (WALK_ERR); 818 } 819 } 820 if (cotwd->ct.ct_clhash != NULL) { 821 if (mdb_vread(&(cotwd->cot_clhash), size, 822 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 823 mdb_warn("failed to read cl_hash at %p", 824 cotwd->ct.ct_clhash); 825 return (WALK_ERR); 826 } 827 } 828 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 829 if (cotwd->ct.ct_kstat_data != NULL) { 830 if (mdb_vread(&(cotwd->ct_kstat_data), size, 831 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 832 mdb_warn("failed to read kstats at %p", 833 cotwd->ct.ct_kstat_data); 834 return (WALK_ERR); 835 } 836 } 837 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 838 wsp->walk_cbdata); 839 840 cotwd->cotndx++; 841 if (cotwd->cotndx >= cotwd->cotsize) { 842 return (WALK_DONE); 843 } 844 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 845 sizeof (callout_table_t)); 846 847 return (retval); 848 } 849 850 void 851 callout_table_walk_fini(mdb_walk_state_t *wsp) 852 { 853 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 854 } 855 856 static const char *co_typenames[] = { "R", "N" }; 857 858 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 859 860 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 861 862 /* callout flags, in no particular order */ 863 #define COF_REAL 0x00000001 864 #define COF_NORM 0x00000002 865 #define COF_LONG 0x00000004 866 #define COF_SHORT 0x00000008 867 #define COF_EMPTY 0x00000010 868 #define COF_TIME 0x00000020 869 #define COF_BEFORE 0x00000040 870 #define COF_AFTER 0x00000080 871 #define COF_SEQID 0x00000100 872 #define COF_FUNC 0x00000200 873 #define COF_ADDR 0x00000400 874 #define COF_EXEC 0x00000800 875 #define COF_HIRES 0x00001000 876 #define COF_ABS 0x00002000 877 #define COF_TABLE 0x00004000 878 #define COF_BYIDH 0x00008000 879 #define COF_FREE 0x00010000 880 #define COF_LIST 0x00020000 881 #define COF_EXPREL 0x00040000 882 #define COF_HDR 0x00080000 883 #define COF_VERBOSE 0x00100000 884 #define COF_LONGLIST 0x00200000 885 #define COF_THDR 0x00400000 886 #define COF_LHDR 0x00800000 887 #define COF_CHDR 0x01000000 888 #define COF_PARAM 0x02000000 889 #define COF_DECODE 0x04000000 890 #define COF_HEAP 0x08000000 891 #define COF_QUEUE 0x10000000 892 893 /* show real and normal, short and long, expired and unexpired. */ 894 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 895 896 #define COF_LIST_FLAGS \ 897 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 898 899 /* private callout data for callback functions */ 900 typedef struct callout_data { 901 uint_t flags; /* COF_* */ 902 cpu_t *cpu; /* cpu pointer if given */ 903 int seqid; /* cpu seqid, or -1 */ 904 hrtime_t time; /* expiration time value */ 905 hrtime_t atime; /* expiration before value */ 906 hrtime_t btime; /* expiration after value */ 907 uintptr_t funcaddr; /* function address or NULL */ 908 uintptr_t param; /* parameter to function or NULL */ 909 hrtime_t now; /* current system time */ 910 int nsec_per_tick; /* for conversions */ 911 ulong_t ctbits; /* for decoding xid */ 912 callout_table_t *co_table; /* top of callout table array */ 913 int ndx; /* table index. */ 914 int bucket; /* which list/id bucket are we in */ 915 hrtime_t exp; /* expire time */ 916 int list_flags; /* copy of cl_flags */ 917 } callout_data_t; 918 919 /* this callback does the actual callback itself (finally). */ 920 /*ARGSUSED*/ 921 static int 922 callouts_cb(uintptr_t addr, const void *data, void *priv) 923 { 924 callout_data_t *coargs = (callout_data_t *)priv; 925 callout_t *co = (callout_t *)data; 926 int tableid, list_flags; 927 callout_id_t coid; 928 929 if ((coargs == NULL) || (co == NULL)) { 930 return (WALK_ERR); 931 } 932 933 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 934 /* 935 * The callout must have been reallocated. No point in 936 * walking any more. 937 */ 938 return (WALK_DONE); 939 } 940 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 941 /* 942 * The callout must have been freed. No point in 943 * walking any more. 944 */ 945 return (WALK_DONE); 946 } 947 if ((coargs->flags & COF_FUNC) && 948 (coargs->funcaddr != (uintptr_t)co->c_func)) { 949 return (WALK_NEXT); 950 } 951 if ((coargs->flags & COF_PARAM) && 952 (coargs->param != (uintptr_t)co->c_arg)) { 953 return (WALK_NEXT); 954 } 955 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 956 return (WALK_NEXT); 957 } 958 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 959 return (WALK_NEXT); 960 } 961 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 962 return (WALK_NEXT); 963 } 964 /* it is possible we don't have the exp time or flags */ 965 if (coargs->flags & COF_BYIDH) { 966 if (!(coargs->flags & COF_FREE)) { 967 /* we have to fetch the expire time ourselves. */ 968 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 969 (uintptr_t)co->c_list + offsetof(callout_list_t, 970 cl_expiration)) == -1) { 971 mdb_warn("failed to read expiration " 972 "time from %p", co->c_list); 973 coargs->exp = 0; 974 } 975 /* and flags. */ 976 if (mdb_vread(&coargs->list_flags, sizeof (int), 977 (uintptr_t)co->c_list + offsetof(callout_list_t, 978 cl_flags)) == -1) { 979 mdb_warn("failed to read list flags" 980 "from %p", co->c_list); 981 coargs->list_flags = 0; 982 } 983 } else { 984 /* free callouts can't use list pointer. */ 985 coargs->exp = 0; 986 coargs->list_flags = 0; 987 } 988 if (coargs->exp != 0) { 989 if ((coargs->flags & COF_TIME) && 990 (coargs->exp != coargs->time)) { 991 return (WALK_NEXT); 992 } 993 if ((coargs->flags & COF_BEFORE) && 994 (coargs->exp > coargs->btime)) { 995 return (WALK_NEXT); 996 } 997 if ((coargs->flags & COF_AFTER) && 998 (coargs->exp < coargs->atime)) { 999 return (WALK_NEXT); 1000 } 1001 } 1002 /* tricky part, since both HIRES and ABS can be set */ 1003 list_flags = coargs->list_flags; 1004 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1005 /* both flags are set, only skip "regular" ones */ 1006 if (! (list_flags & COF_LIST_FLAGS)) { 1007 return (WALK_NEXT); 1008 } 1009 } else { 1010 /* individual flags, or no flags */ 1011 if ((coargs->flags & COF_HIRES) && 1012 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1013 return (WALK_NEXT); 1014 } 1015 if ((coargs->flags & COF_ABS) && 1016 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1017 return (WALK_NEXT); 1018 } 1019 } 1020 /* 1021 * We do the checks for COF_HEAP and COF_QUEUE here only if we 1022 * are traversing BYIDH. If the traversal is by callout list, 1023 * we do this check in callout_list_cb() to be more 1024 * efficient. 1025 */ 1026 if ((coargs->flags & COF_HEAP) && 1027 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1028 return (WALK_NEXT); 1029 } 1030 1031 if ((coargs->flags & COF_QUEUE) && 1032 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1033 return (WALK_NEXT); 1034 } 1035 } 1036 1037 #define callout_table_mask ((1 << coargs->ctbits) - 1) 1038 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 1039 #undef callout_table_mask 1040 coid = CO_PLAIN_ID(co->c_xid); 1041 1042 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 1043 /* 1044 * We need to print the headers. If walking by id, then 1045 * the list header isn't printed, so we must include 1046 * that info here. 1047 */ 1048 if (!(coargs->flags & COF_VERBOSE)) { 1049 mdb_printf("%<u>%3s %-1s %-14s %</u>", 1050 "SEQ", "T", "EXP"); 1051 } else if (coargs->flags & COF_BYIDH) { 1052 mdb_printf("%<u>%-14s %</u>", "EXP"); 1053 } 1054 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 1055 "XHAL", "XID", "FUNC(ARG)"); 1056 if (coargs->flags & COF_LONGLIST) { 1057 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 1058 "PREVID", "NEXTID", "PREVL", "NEXTL"); 1059 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 1060 "DONE", "UTOS", "THREAD"); 1061 } 1062 mdb_printf("\n"); 1063 coargs->flags &= ~COF_CHDR; 1064 coargs->flags |= (COF_THDR | COF_LHDR); 1065 } 1066 1067 if (!(coargs->flags & COF_ADDR)) { 1068 if (!(coargs->flags & COF_VERBOSE)) { 1069 mdb_printf("%-3d %1s %-14llx ", 1070 TABLE_TO_SEQID(tableid), 1071 co_typenames[tableid & CALLOUT_TYPE_MASK], 1072 (coargs->flags & COF_EXPREL) ? 1073 coargs->exp - coargs->now : coargs->exp); 1074 } else if (coargs->flags & COF_BYIDH) { 1075 mdb_printf("%-14x ", 1076 (coargs->flags & COF_EXPREL) ? 1077 coargs->exp - coargs->now : coargs->exp); 1078 } 1079 list_flags = coargs->list_flags; 1080 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 1081 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 1082 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 1083 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 1084 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 1085 (long long)coid, co->c_func, co->c_arg); 1086 if (coargs->flags & COF_LONGLIST) { 1087 mdb_printf(" %-?p %-?p %-?p %-?p", 1088 co->c_idprev, co->c_idnext, co->c_clprev, 1089 co->c_clnext); 1090 mdb_printf(" %-?p %-4d %-0?p", 1091 co->c_done, co->c_waiting, co->c_executor); 1092 } 1093 } else { 1094 /* address only */ 1095 mdb_printf("%-0p", addr); 1096 } 1097 mdb_printf("\n"); 1098 return (WALK_NEXT); 1099 } 1100 1101 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 1102 /*ARGSUSED*/ 1103 static int 1104 callout_list_cb(uintptr_t addr, const void *data, void *priv) 1105 { 1106 callout_data_t *coargs = (callout_data_t *)priv; 1107 callout_list_t *cl = (callout_list_t *)data; 1108 callout_t *coptr; 1109 int list_flags; 1110 1111 if ((coargs == NULL) || (cl == NULL)) { 1112 return (WALK_ERR); 1113 } 1114 1115 coargs->exp = cl->cl_expiration; 1116 coargs->list_flags = cl->cl_flags; 1117 if ((coargs->flags & COF_FREE) && 1118 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1119 /* 1120 * The callout list must have been reallocated. No point in 1121 * walking any more. 1122 */ 1123 return (WALK_DONE); 1124 } 1125 if (!(coargs->flags & COF_FREE) && 1126 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1127 /* 1128 * The callout list must have been freed. No point in 1129 * walking any more. 1130 */ 1131 return (WALK_DONE); 1132 } 1133 if ((coargs->flags & COF_TIME) && 1134 (cl->cl_expiration != coargs->time)) { 1135 return (WALK_NEXT); 1136 } 1137 if ((coargs->flags & COF_BEFORE) && 1138 (cl->cl_expiration > coargs->btime)) { 1139 return (WALK_NEXT); 1140 } 1141 if ((coargs->flags & COF_AFTER) && 1142 (cl->cl_expiration < coargs->atime)) { 1143 return (WALK_NEXT); 1144 } 1145 if (!(coargs->flags & COF_EMPTY) && 1146 (cl->cl_callouts.ch_head == NULL)) { 1147 return (WALK_NEXT); 1148 } 1149 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 1150 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1151 /* both flags are set, only skip "regular" ones */ 1152 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 1153 return (WALK_NEXT); 1154 } 1155 } else { 1156 if ((coargs->flags & COF_HIRES) && 1157 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1158 return (WALK_NEXT); 1159 } 1160 if ((coargs->flags & COF_ABS) && 1161 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1162 return (WALK_NEXT); 1163 } 1164 } 1165 1166 if ((coargs->flags & COF_HEAP) && 1167 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1168 return (WALK_NEXT); 1169 } 1170 1171 if ((coargs->flags & COF_QUEUE) && 1172 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1173 return (WALK_NEXT); 1174 } 1175 1176 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 1177 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 1178 if (!(coargs->flags & COF_VERBOSE)) { 1179 /* don't be redundant again */ 1180 mdb_printf("%<u>SEQ T %</u>"); 1181 } 1182 mdb_printf("%<u>EXP HA BUCKET " 1183 "CALLOUTS %</u>"); 1184 1185 if (coargs->flags & COF_LONGLIST) { 1186 mdb_printf("%<u> %-?s %-?s%</u>", 1187 "PREV", "NEXT"); 1188 } 1189 mdb_printf("\n"); 1190 coargs->flags &= ~COF_LHDR; 1191 coargs->flags |= (COF_THDR | COF_CHDR); 1192 } 1193 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 1194 if (!(coargs->flags & COF_ADDR)) { 1195 if (!(coargs->flags & COF_VERBOSE)) { 1196 mdb_printf("%3d %1s ", 1197 TABLE_TO_SEQID(coargs->ndx), 1198 co_typenames[coargs->ndx & 1199 CALLOUT_TYPE_MASK]); 1200 } 1201 1202 list_flags = coargs->list_flags; 1203 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 1204 (coargs->flags & COF_EXPREL) ? 1205 coargs->exp - coargs->now : coargs->exp, 1206 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1207 "H" : " ", 1208 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1209 "A" : " ", 1210 coargs->bucket, cl->cl_callouts.ch_head); 1211 1212 if (coargs->flags & COF_LONGLIST) { 1213 mdb_printf(" %-?p %-?p", 1214 cl->cl_prev, cl->cl_next); 1215 } 1216 } else { 1217 /* address only */ 1218 mdb_printf("%-0p", addr); 1219 } 1220 mdb_printf("\n"); 1221 if (coargs->flags & COF_LIST) { 1222 return (WALK_NEXT); 1223 } 1224 } 1225 /* yet another layer as we walk the actual callouts via list. */ 1226 if (cl->cl_callouts.ch_head == NULL) { 1227 return (WALK_NEXT); 1228 } 1229 /* free list structures do not have valid callouts off of them. */ 1230 if (coargs->flags & COF_FREE) { 1231 return (WALK_NEXT); 1232 } 1233 coptr = (callout_t *)cl->cl_callouts.ch_head; 1234 1235 if (coargs->flags & COF_VERBOSE) { 1236 mdb_inc_indent(4); 1237 } 1238 /* 1239 * walk callouts using yet another callback routine. 1240 * we use callouts_bytime because id hash is handled via 1241 * the callout_t_cb callback. 1242 */ 1243 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1244 (uintptr_t)coptr) == -1) { 1245 mdb_warn("cannot walk callouts at %p", coptr); 1246 return (WALK_ERR); 1247 } 1248 if (coargs->flags & COF_VERBOSE) { 1249 mdb_dec_indent(4); 1250 } 1251 1252 return (WALK_NEXT); 1253 } 1254 1255 /* this callback handles the details of callout table walking. */ 1256 static int 1257 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1258 { 1259 callout_data_t *coargs = (callout_data_t *)priv; 1260 cot_data_t *cotwd = (cot_data_t *)data; 1261 callout_table_t *ct = &(cotwd->ct); 1262 int index, seqid, cotype; 1263 int i; 1264 callout_list_t *clptr; 1265 callout_t *coptr; 1266 1267 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1268 return (WALK_ERR); 1269 } 1270 1271 index = ((char *)addr - (char *)coargs->co_table) / 1272 sizeof (callout_table_t); 1273 cotype = index & CALLOUT_TYPE_MASK; 1274 seqid = TABLE_TO_SEQID(index); 1275 1276 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1277 return (WALK_NEXT); 1278 } 1279 1280 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1281 return (WALK_NEXT); 1282 } 1283 1284 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1285 return (WALK_NEXT); 1286 } 1287 1288 if (!(coargs->flags & COF_EMPTY) && ( 1289 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) { 1290 return (WALK_NEXT); 1291 } 1292 1293 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1294 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1295 /* print table hdr */ 1296 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1297 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1298 coargs->flags &= ~COF_THDR; 1299 coargs->flags |= (COF_LHDR | COF_CHDR); 1300 if (coargs->flags & COF_LONGLIST) { 1301 /* more info! */ 1302 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1303 " %-?s %-?s %-?s%</u>", 1304 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1305 "PEND", "FREE", "LOCK"); 1306 } 1307 mdb_printf("\n"); 1308 } 1309 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1310 if (!(coargs->flags & COF_ADDR)) { 1311 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1312 seqid, co_typenames[cotype], 1313 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1314 ct->ct_heap); 1315 if (coargs->flags & COF_LONGLIST) { 1316 /* more info! */ 1317 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1318 " %-?lld %-?lld %-?p", 1319 ct->ct_heap_num, ct->ct_heap_max, 1320 ct->ct_taskq, ct->ct_expired.ch_head, 1321 ct->ct_queue.ch_head, 1322 cotwd->ct_timeouts_pending, 1323 cotwd->ct_allocations - 1324 cotwd->ct_timeouts_pending, 1325 ct->ct_mutex); 1326 } 1327 } else { 1328 /* address only */ 1329 mdb_printf("%-0?p", addr); 1330 } 1331 mdb_printf("\n"); 1332 if (coargs->flags & COF_TABLE) { 1333 return (WALK_NEXT); 1334 } 1335 } 1336 1337 coargs->ndx = index; 1338 if (coargs->flags & COF_VERBOSE) { 1339 mdb_inc_indent(4); 1340 } 1341 /* keep digging. */ 1342 if (!(coargs->flags & COF_BYIDH)) { 1343 /* walk the list hash table */ 1344 if (coargs->flags & COF_FREE) { 1345 clptr = ct->ct_lfree; 1346 coargs->bucket = 0; 1347 if (clptr == NULL) { 1348 return (WALK_NEXT); 1349 } 1350 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1351 (uintptr_t)clptr) == -1) { 1352 mdb_warn("cannot walk callout free list at %p", 1353 clptr); 1354 return (WALK_ERR); 1355 } 1356 } else { 1357 /* first print the expired list. */ 1358 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1359 if (clptr != NULL) { 1360 coargs->bucket = -1; 1361 if (mdb_pwalk("callout_list", callout_list_cb, 1362 coargs, (uintptr_t)clptr) == -1) { 1363 mdb_warn("cannot walk callout_list" 1364 " at %p", clptr); 1365 return (WALK_ERR); 1366 } 1367 } 1368 /* then, print the callout queue */ 1369 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1370 if (clptr != NULL) { 1371 coargs->bucket = -1; 1372 if (mdb_pwalk("callout_list", callout_list_cb, 1373 coargs, (uintptr_t)clptr) == -1) { 1374 mdb_warn("cannot walk callout_list" 1375 " at %p", clptr); 1376 return (WALK_ERR); 1377 } 1378 } 1379 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1380 if (ct->ct_clhash == NULL) { 1381 /* nothing to do */ 1382 break; 1383 } 1384 if (cotwd->cot_clhash[i].ch_head == NULL) { 1385 continue; 1386 } 1387 clptr = (callout_list_t *) 1388 cotwd->cot_clhash[i].ch_head; 1389 coargs->bucket = i; 1390 /* walk list with callback routine. */ 1391 if (mdb_pwalk("callout_list", callout_list_cb, 1392 coargs, (uintptr_t)clptr) == -1) { 1393 mdb_warn("cannot walk callout_list" 1394 " at %p", clptr); 1395 return (WALK_ERR); 1396 } 1397 } 1398 } 1399 } else { 1400 /* walk the id hash table. */ 1401 if (coargs->flags & COF_FREE) { 1402 coptr = ct->ct_free; 1403 coargs->bucket = 0; 1404 if (coptr == NULL) { 1405 return (WALK_NEXT); 1406 } 1407 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1408 (uintptr_t)coptr) == -1) { 1409 mdb_warn("cannot walk callout id free list" 1410 " at %p", coptr); 1411 return (WALK_ERR); 1412 } 1413 } else { 1414 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1415 if (ct->ct_idhash == NULL) { 1416 break; 1417 } 1418 coptr = (callout_t *) 1419 cotwd->cot_idhash[i].ch_head; 1420 if (coptr == NULL) { 1421 continue; 1422 } 1423 coargs->bucket = i; 1424 1425 /* 1426 * walk callouts directly by id. For id 1427 * chain, the callout list is just a header, 1428 * so there's no need to walk it. 1429 */ 1430 if (mdb_pwalk("callouts_byid", callouts_cb, 1431 coargs, (uintptr_t)coptr) == -1) { 1432 mdb_warn("cannot walk callouts at %p", 1433 coptr); 1434 return (WALK_ERR); 1435 } 1436 } 1437 } 1438 } 1439 if (coargs->flags & COF_VERBOSE) { 1440 mdb_dec_indent(4); 1441 } 1442 return (WALK_NEXT); 1443 } 1444 1445 /* 1446 * initialize some common info for both callout dcmds. 1447 */ 1448 int 1449 callout_common_init(callout_data_t *coargs) 1450 { 1451 /* we need a couple of things */ 1452 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1453 mdb_warn("failed to read 'callout_table'"); 1454 return (DCMD_ERR); 1455 } 1456 /* need to get now in nsecs. Approximate with hrtime vars */ 1457 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1458 sizeof (hrtime_t)) { 1459 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1460 "hrtime_base") != sizeof (hrtime_t)) { 1461 mdb_warn("Could not determine current system time"); 1462 return (DCMD_ERR); 1463 } 1464 } 1465 1466 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1467 mdb_warn("failed to read 'callout_table_bits'"); 1468 return (DCMD_ERR); 1469 } 1470 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1471 mdb_warn("failed to read 'nsec_per_tick'"); 1472 return (DCMD_ERR); 1473 } 1474 return (DCMD_OK); 1475 } 1476 1477 /* 1478 * dcmd to print callouts. Optional addr limits to specific table. 1479 * Parses lots of options that get passed to callbacks for walkers. 1480 * Has it's own help function. 1481 */ 1482 /*ARGSUSED*/ 1483 int 1484 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1485 { 1486 callout_data_t coargs; 1487 /* getopts doesn't help much with stuff like this */ 1488 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1489 char *funcname = NULL; 1490 char *paramstr = NULL; 1491 uintptr_t Stmp, Ctmp; /* for getopt. */ 1492 int retval; 1493 1494 coargs.flags = COF_DEFAULT; 1495 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1496 coargs.seqid = -1; 1497 1498 if (mdb_getopts(argc, argv, 1499 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1500 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1501 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1502 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1503 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1504 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1505 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1506 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1507 'd', MDB_OPT_SETBITS, 1, &dflag, 1508 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1509 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1510 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1511 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1512 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1513 'k', MDB_OPT_SETBITS, 1, &kflag, 1514 'f', MDB_OPT_STR, &funcname, 1515 'p', MDB_OPT_STR, ¶mstr, 1516 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1517 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1518 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1519 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1520 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1521 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1522 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1523 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1524 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1525 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1526 NULL) != argc) { 1527 return (DCMD_USAGE); 1528 } 1529 1530 /* initialize from kernel variables */ 1531 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1532 return (retval); 1533 } 1534 1535 /* do some option post-processing */ 1536 if (kflag) { 1537 coargs.time *= coargs.nsec_per_tick; 1538 coargs.atime *= coargs.nsec_per_tick; 1539 coargs.btime *= coargs.nsec_per_tick; 1540 } 1541 1542 if (dflag) { 1543 coargs.time += coargs.now; 1544 coargs.atime += coargs.now; 1545 coargs.btime += coargs.now; 1546 } 1547 if (Sflag) { 1548 if (flags & DCMD_ADDRSPEC) { 1549 mdb_printf("-S option conflicts with explicit" 1550 " address\n"); 1551 return (DCMD_USAGE); 1552 } 1553 coargs.flags |= COF_SEQID; 1554 coargs.seqid = (int)Stmp; 1555 } 1556 if (Cflag) { 1557 if (flags & DCMD_ADDRSPEC) { 1558 mdb_printf("-C option conflicts with explicit" 1559 " address\n"); 1560 return (DCMD_USAGE); 1561 } 1562 if (coargs.flags & COF_SEQID) { 1563 mdb_printf("-C and -S are mutually exclusive\n"); 1564 return (DCMD_USAGE); 1565 } 1566 coargs.cpu = (cpu_t *)Ctmp; 1567 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1568 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1569 mdb_warn("failed to read cpu_t at %p", Ctmp); 1570 return (DCMD_ERR); 1571 } 1572 coargs.flags |= COF_SEQID; 1573 } 1574 /* avoid null outputs. */ 1575 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1576 coargs.flags |= COF_REAL | COF_NORM; 1577 } 1578 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1579 coargs.flags |= COF_LONG | COF_SHORT; 1580 } 1581 if (tflag) { 1582 if (aflag || bflag) { 1583 mdb_printf("-t and -a|b are mutually exclusive\n"); 1584 return (DCMD_USAGE); 1585 } 1586 coargs.flags |= COF_TIME; 1587 } 1588 if (aflag) { 1589 coargs.flags |= COF_AFTER; 1590 } 1591 if (bflag) { 1592 coargs.flags |= COF_BEFORE; 1593 } 1594 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1595 mdb_printf("value for -a must be earlier than the value" 1596 " for -b.\n"); 1597 return (DCMD_USAGE); 1598 } 1599 1600 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1601 mdb_printf("-H and -Q are mutually exclusive\n"); 1602 return (DCMD_USAGE); 1603 } 1604 1605 if (funcname != NULL) { 1606 GElf_Sym sym; 1607 1608 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1609 coargs.funcaddr = mdb_strtoull(funcname); 1610 } else { 1611 coargs.funcaddr = sym.st_value; 1612 } 1613 coargs.flags |= COF_FUNC; 1614 } 1615 1616 if (paramstr != NULL) { 1617 GElf_Sym sym; 1618 1619 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1620 coargs.param = mdb_strtoull(paramstr); 1621 } else { 1622 coargs.param = sym.st_value; 1623 } 1624 coargs.flags |= COF_PARAM; 1625 } 1626 1627 if (!(flags & DCMD_ADDRSPEC)) { 1628 /* don't pass "dot" if no addr. */ 1629 addr = 0; 1630 } 1631 if (addr != 0) { 1632 /* 1633 * a callout table was specified. Ignore -r|n option 1634 * to avoid null output. 1635 */ 1636 coargs.flags |= (COF_REAL | COF_NORM); 1637 } 1638 1639 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1640 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1641 } 1642 if (coargs.flags & COF_FREE) { 1643 coargs.flags |= COF_EMPTY; 1644 /* -F = free callouts, -FL = free lists */ 1645 if (!(coargs.flags & COF_LIST)) { 1646 coargs.flags |= COF_BYIDH; 1647 } 1648 } 1649 1650 /* walk table, using specialized callback routine. */ 1651 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1652 mdb_warn("cannot walk callout_table"); 1653 return (DCMD_ERR); 1654 } 1655 return (DCMD_OK); 1656 } 1657 1658 1659 /* 1660 * Given an extended callout id, dump its information. 1661 */ 1662 /*ARGSUSED*/ 1663 int 1664 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1665 { 1666 callout_data_t coargs; 1667 callout_table_t *ctptr; 1668 callout_table_t ct; 1669 callout_id_t coid; 1670 callout_t *coptr; 1671 int tableid; 1672 callout_id_t xid; 1673 ulong_t idhash; 1674 int i, retval; 1675 const mdb_arg_t *arg; 1676 size_t size; 1677 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1678 1679 coargs.flags = COF_DEFAULT | COF_BYIDH; 1680 i = mdb_getopts(argc, argv, 1681 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1682 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1683 NULL); 1684 argc -= i; 1685 argv += i; 1686 1687 if (argc != 1) { 1688 return (DCMD_USAGE); 1689 } 1690 arg = &argv[0]; 1691 1692 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1693 xid = arg->a_un.a_val; 1694 } else { 1695 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1696 } 1697 1698 if (DCMD_HDRSPEC(flags)) { 1699 coargs.flags |= COF_CHDR; 1700 } 1701 1702 1703 /* initialize from kernel variables */ 1704 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1705 return (retval); 1706 } 1707 1708 /* we must massage the environment so that the macros will play nice */ 1709 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1710 #define callout_table_bits coargs.ctbits 1711 #define nsec_per_tick coargs.nsec_per_tick 1712 tableid = CALLOUT_ID_TO_TABLE(xid); 1713 idhash = CALLOUT_IDHASH(xid); 1714 #undef callouts_table_bits 1715 #undef callout_table_mask 1716 #undef nsec_per_tick 1717 coid = CO_PLAIN_ID(xid); 1718 1719 if (flags & DCMD_ADDRSPEC) { 1720 mdb_printf("calloutid does not accept explicit address.\n"); 1721 return (DCMD_USAGE); 1722 } 1723 1724 if (coargs.flags & COF_DECODE) { 1725 if (DCMD_HDRSPEC(flags)) { 1726 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1727 "SEQ", "T", "XL", "XID", "IDHASH"); 1728 } 1729 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1730 TABLE_TO_SEQID(tableid), 1731 co_typenames[tableid & CALLOUT_TYPE_MASK], 1732 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1733 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1734 (long long)coid, idhash); 1735 return (DCMD_OK); 1736 } 1737 1738 /* get our table. Note this relies on the types being correct */ 1739 ctptr = coargs.co_table + tableid; 1740 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1741 mdb_warn("failed to read callout_table at %p", ctptr); 1742 return (DCMD_ERR); 1743 } 1744 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1745 if (ct.ct_idhash != NULL) { 1746 if (mdb_vread(&(cot_idhash), size, 1747 (uintptr_t)ct.ct_idhash) == -1) { 1748 mdb_warn("failed to read id_hash at %p", 1749 ct.ct_idhash); 1750 return (WALK_ERR); 1751 } 1752 } 1753 1754 /* callout at beginning of hash chain */ 1755 if (ct.ct_idhash == NULL) { 1756 mdb_printf("id hash chain for this xid is empty\n"); 1757 return (DCMD_ERR); 1758 } 1759 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1760 if (coptr == NULL) { 1761 mdb_printf("id hash chain for this xid is empty\n"); 1762 return (DCMD_ERR); 1763 } 1764 1765 coargs.ndx = tableid; 1766 coargs.bucket = idhash; 1767 1768 /* use the walker, luke */ 1769 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1770 (uintptr_t)coptr) == -1) { 1771 mdb_warn("cannot walk callouts at %p", coptr); 1772 return (WALK_ERR); 1773 } 1774 1775 return (DCMD_OK); 1776 } 1777 1778 void 1779 callout_help(void) 1780 { 1781 mdb_printf("callout: display callouts.\n" 1782 "Given a callout table address, display callouts from table.\n" 1783 "Without an address, display callouts from all tables.\n" 1784 "options:\n" 1785 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1786 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1787 " -x : limit display to callouts which are executing\n" 1788 " -h : limit display to callouts based on hrestime\n" 1789 " -B : limit display to callouts based on absolute time\n" 1790 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1791 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1792 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1793 " -d : interpret time option to -t|a|b as delta from current time\n" 1794 " -k : use ticks instead of nanoseconds as arguments to" 1795 " -t|a|b. Note that\n ticks are less accurate and may not" 1796 " match other tick times (ie: lbolt).\n" 1797 " -D : display exiration time as delta from current time\n" 1798 " -S seqid : limit display to callouts for this cpu sequence id\n" 1799 " -C addr : limit display to callouts for this cpu pointer\n" 1800 " -f name|addr : limit display to callouts with this function\n" 1801 " -p name|addr : limit display to callouts functions with this" 1802 " parameter\n" 1803 " -T : display the callout table itself, instead of callouts\n" 1804 " -L : display callout lists instead of callouts\n" 1805 " -E : with -T or L, display empty data structures.\n" 1806 " -i : traverse callouts by id hash instead of list hash\n" 1807 " -F : walk free callout list (free list with -i) instead\n" 1808 " -v : display more info for each item\n" 1809 " -V : show details of each level of info as it is traversed\n" 1810 " -H : limit display to callouts in the callout heap\n" 1811 " -Q : limit display to callouts in the callout queue\n" 1812 " -A : show only addresses. Useful for pipelines.\n"); 1813 } 1814 1815 void 1816 calloutid_help(void) 1817 { 1818 mdb_printf("calloutid: display callout by id.\n" 1819 "Given an extended callout id, display the callout infomation.\n" 1820 "options:\n" 1821 " -d : do not dereference callout, just decode the id.\n" 1822 " -v : verbose display more info about the callout\n"); 1823 } 1824 1825 /*ARGSUSED*/ 1826 int 1827 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1828 { 1829 long num_classes, i; 1830 sclass_t *class_tbl; 1831 GElf_Sym g_sclass; 1832 char class_name[PC_CLNMSZ]; 1833 size_t tbl_size; 1834 1835 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1836 mdb_warn("failed to find symbol sclass\n"); 1837 return (DCMD_ERR); 1838 } 1839 1840 tbl_size = (size_t)g_sclass.st_size; 1841 num_classes = tbl_size / (sizeof (sclass_t)); 1842 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1843 1844 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1845 mdb_warn("failed to read sclass"); 1846 return (DCMD_ERR); 1847 } 1848 1849 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1850 "INIT FCN", "CLASS FCN"); 1851 1852 for (i = 0; i < num_classes; i++) { 1853 if (mdb_vread(class_name, sizeof (class_name), 1854 (uintptr_t)class_tbl[i].cl_name) == -1) 1855 (void) strcpy(class_name, "???"); 1856 1857 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1858 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1859 } 1860 1861 return (DCMD_OK); 1862 } 1863 1864 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1865 1866 int 1867 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1868 { 1869 uintptr_t rootdir; 1870 vnode_t vn; 1871 char buf[MAXPATHLEN]; 1872 1873 uint_t opt_F = FALSE; 1874 1875 if (mdb_getopts(argc, argv, 1876 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1877 return (DCMD_USAGE); 1878 1879 if (!(flags & DCMD_ADDRSPEC)) { 1880 mdb_warn("expected explicit vnode_t address before ::\n"); 1881 return (DCMD_USAGE); 1882 } 1883 1884 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1885 mdb_warn("failed to read rootdir"); 1886 return (DCMD_ERR); 1887 } 1888 1889 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1890 return (DCMD_ERR); 1891 1892 if (*buf == '\0') { 1893 mdb_printf("??\n"); 1894 return (DCMD_OK); 1895 } 1896 1897 mdb_printf("%s", buf); 1898 if (opt_F && buf[strlen(buf)-1] != '/' && 1899 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1900 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1901 mdb_printf("\n"); 1902 1903 return (DCMD_OK); 1904 } 1905 1906 int 1907 ld_walk_init(mdb_walk_state_t *wsp) 1908 { 1909 wsp->walk_data = (void *)wsp->walk_addr; 1910 return (WALK_NEXT); 1911 } 1912 1913 int 1914 ld_walk_step(mdb_walk_state_t *wsp) 1915 { 1916 int status; 1917 lock_descriptor_t ld; 1918 1919 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1920 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1921 wsp->walk_addr); 1922 return (WALK_ERR); 1923 } 1924 1925 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1926 if (status == WALK_ERR) 1927 return (WALK_ERR); 1928 1929 wsp->walk_addr = (uintptr_t)ld.l_next; 1930 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1931 return (WALK_DONE); 1932 1933 return (status); 1934 } 1935 1936 int 1937 lg_walk_init(mdb_walk_state_t *wsp) 1938 { 1939 GElf_Sym sym; 1940 1941 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1942 mdb_warn("failed to find symbol 'lock_graph'\n"); 1943 return (WALK_ERR); 1944 } 1945 1946 wsp->walk_addr = (uintptr_t)sym.st_value; 1947 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1948 1949 return (WALK_NEXT); 1950 } 1951 1952 typedef struct lg_walk_data { 1953 uintptr_t startaddr; 1954 mdb_walk_cb_t callback; 1955 void *data; 1956 } lg_walk_data_t; 1957 1958 /* 1959 * We can't use ::walk lock_descriptor directly, because the head of each graph 1960 * is really a dummy lock. Rather than trying to dynamically determine if this 1961 * is a dummy node or not, we just filter out the initial element of the 1962 * list. 1963 */ 1964 static int 1965 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1966 { 1967 lg_walk_data_t *lw = priv; 1968 1969 if (addr != lw->startaddr) 1970 return (lw->callback(addr, data, lw->data)); 1971 1972 return (WALK_NEXT); 1973 } 1974 1975 int 1976 lg_walk_step(mdb_walk_state_t *wsp) 1977 { 1978 graph_t *graph; 1979 lg_walk_data_t lw; 1980 1981 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1982 return (WALK_DONE); 1983 1984 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1985 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1986 return (WALK_ERR); 1987 } 1988 1989 wsp->walk_addr += sizeof (graph); 1990 1991 if (graph == NULL) 1992 return (WALK_NEXT); 1993 1994 lw.callback = wsp->walk_callback; 1995 lw.data = wsp->walk_cbdata; 1996 1997 lw.startaddr = (uintptr_t)&(graph->active_locks); 1998 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1999 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 2000 return (WALK_ERR); 2001 } 2002 2003 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 2004 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 2005 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 2006 return (WALK_ERR); 2007 } 2008 2009 return (WALK_NEXT); 2010 } 2011 2012 /* 2013 * The space available for the path corresponding to the locked vnode depends 2014 * on whether we are printing 32- or 64-bit addresses. 2015 */ 2016 #ifdef _LP64 2017 #define LM_VNPATHLEN 20 2018 #else 2019 #define LM_VNPATHLEN 30 2020 #endif 2021 2022 typedef struct mdb_lminfo_proc { 2023 struct { 2024 char u_comm[MAXCOMLEN + 1]; 2025 } p_user; 2026 } mdb_lminfo_proc_t; 2027 2028 /*ARGSUSED*/ 2029 static int 2030 lminfo_cb(uintptr_t addr, const void *data, void *priv) 2031 { 2032 const lock_descriptor_t *ld = data; 2033 char buf[LM_VNPATHLEN]; 2034 mdb_lminfo_proc_t p; 2035 uintptr_t paddr = 0; 2036 2037 if (ld->l_flock.l_pid != 0) 2038 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL); 2039 2040 if (paddr != 0) 2041 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0); 2042 2043 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 2044 addr, ld->l_type == F_RDLCK ? "RD" : 2045 ld->l_type == F_WRLCK ? "WR" : "??", 2046 ld->l_state, ld->l_flock.l_pid, 2047 ld->l_flock.l_pid == 0 ? "<kernel>" : 2048 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode); 2049 2050 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 2051 sizeof (buf)); 2052 mdb_printf("%s\n", buf); 2053 2054 return (WALK_NEXT); 2055 } 2056 2057 /*ARGSUSED*/ 2058 int 2059 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2060 { 2061 if (DCMD_HDRSPEC(flags)) 2062 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 2063 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 2064 2065 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0)); 2066 } 2067 2068 typedef struct mdb_whereopen { 2069 uint_t mwo_flags; 2070 uintptr_t mwo_target; 2071 boolean_t mwo_found; 2072 } mdb_whereopen_t; 2073 2074 /*ARGSUSED*/ 2075 int 2076 whereopen_fwalk(uintptr_t addr, const void *farg, void *arg) 2077 { 2078 const struct file *f = farg; 2079 mdb_whereopen_t *mwo = arg; 2080 2081 if ((uintptr_t)f->f_vnode == mwo->mwo_target) { 2082 if ((mwo->mwo_flags & DCMD_PIPE_OUT) == 0 && 2083 !mwo->mwo_found) { 2084 mdb_printf("file %p\n", addr); 2085 } 2086 mwo->mwo_found = B_TRUE; 2087 } 2088 2089 return (WALK_NEXT); 2090 } 2091 2092 /*ARGSUSED*/ 2093 int 2094 whereopen_pwalk(uintptr_t addr, const void *ignored, void *arg) 2095 { 2096 mdb_whereopen_t *mwo = arg; 2097 2098 mwo->mwo_found = B_FALSE; 2099 if (mdb_pwalk("file", whereopen_fwalk, mwo, addr) == -1) { 2100 mdb_warn("couldn't file walk proc %p", addr); 2101 return (WALK_ERR); 2102 } 2103 2104 if (mwo->mwo_found) { 2105 mdb_printf("%p\n", addr); 2106 } 2107 2108 return (WALK_NEXT); 2109 } 2110 2111 /*ARGSUSED*/ 2112 int 2113 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2114 { 2115 mdb_whereopen_t mwo; 2116 2117 if (!(flags & DCMD_ADDRSPEC) || addr == 0) 2118 return (DCMD_USAGE); 2119 2120 mwo.mwo_flags = flags; 2121 mwo.mwo_target = addr; 2122 mwo.mwo_found = B_FALSE; 2123 2124 if (mdb_walk("proc", whereopen_pwalk, &mwo) == -1) { 2125 mdb_warn("can't proc walk"); 2126 return (DCMD_ERR); 2127 } 2128 2129 return (DCMD_OK); 2130 } 2131 2132 typedef struct datafmt { 2133 char *hdr1; 2134 char *hdr2; 2135 char *dashes; 2136 char *fmt; 2137 } datafmt_t; 2138 2139 static datafmt_t kmemfmt[] = { 2140 { "cache ", "name ", 2141 "-------------------------", "%-25s " }, 2142 { " buf", " size", "------", "%6u " }, 2143 { " buf", "in use", "------", "%6u " }, 2144 { " buf", " total", "------", "%6u " }, 2145 { " memory", " in use", "----------", "%10lu%c " }, 2146 { " alloc", " succeed", "---------", "%9u " }, 2147 { "alloc", " fail", "-----", "%5u " }, 2148 { NULL, NULL, NULL, NULL } 2149 }; 2150 2151 static datafmt_t vmemfmt[] = { 2152 { "vmem ", "name ", 2153 "-------------------------", "%-*s " }, 2154 { " memory", " in use", "----------", "%9llu%c " }, 2155 { " memory", " total", "-----------", "%10llu%c " }, 2156 { " memory", " import", "----------", "%9llu%c " }, 2157 { " alloc", " succeed", "---------", "%9llu " }, 2158 { "alloc", " fail", "-----", "%5llu " }, 2159 { NULL, NULL, NULL, NULL } 2160 }; 2161 2162 /*ARGSUSED*/ 2163 static int 2164 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2165 { 2166 short rounds, prounds; 2167 2168 if (KMEM_DUMPCC(ccp)) { 2169 rounds = ccp->cc_dump_rounds; 2170 prounds = ccp->cc_dump_prounds; 2171 } else { 2172 rounds = ccp->cc_rounds; 2173 prounds = ccp->cc_prounds; 2174 } 2175 if (rounds > 0) 2176 *avail += rounds; 2177 if (prounds > 0) 2178 *avail += prounds; 2179 2180 return (WALK_NEXT); 2181 } 2182 2183 /*ARGSUSED*/ 2184 static int 2185 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2186 { 2187 *alloc += ccp->cc_alloc; 2188 2189 return (WALK_NEXT); 2190 } 2191 2192 /*ARGSUSED*/ 2193 static int 2194 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2195 { 2196 *avail += sp->slab_chunks - sp->slab_refcnt; 2197 2198 return (WALK_NEXT); 2199 } 2200 2201 typedef struct kmastat_vmem { 2202 uintptr_t kv_addr; 2203 struct kmastat_vmem *kv_next; 2204 size_t kv_meminuse; 2205 int kv_alloc; 2206 int kv_fail; 2207 } kmastat_vmem_t; 2208 2209 typedef struct kmastat_args { 2210 kmastat_vmem_t **ka_kvpp; 2211 uint_t ka_shift; 2212 } kmastat_args_t; 2213 2214 static int 2215 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2216 { 2217 kmastat_vmem_t **kvpp = kap->ka_kvpp; 2218 kmastat_vmem_t *kv; 2219 datafmt_t *dfp = kmemfmt; 2220 int magsize; 2221 2222 int avail, alloc, total; 2223 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2224 cp->cache_slabsize; 2225 2226 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2227 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2228 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2229 2230 magsize = kmem_get_magsize(cp); 2231 2232 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2233 avail = cp->cache_full.ml_total * magsize; 2234 total = cp->cache_buftotal; 2235 2236 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2237 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2238 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2239 2240 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2241 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2242 goto out; 2243 } 2244 2245 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2246 kv->kv_next = *kvpp; 2247 kv->kv_addr = (uintptr_t)cp->cache_arena; 2248 *kvpp = kv; 2249 out: 2250 kv->kv_meminuse += meminuse; 2251 kv->kv_alloc += alloc; 2252 kv->kv_fail += cp->cache_alloc_fail; 2253 2254 mdb_printf((dfp++)->fmt, cp->cache_name); 2255 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2256 mdb_printf((dfp++)->fmt, total - avail); 2257 mdb_printf((dfp++)->fmt, total); 2258 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2259 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2260 kap->ka_shift == KILOS ? 'K' : 'B'); 2261 mdb_printf((dfp++)->fmt, alloc); 2262 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2263 mdb_printf("\n"); 2264 2265 return (WALK_NEXT); 2266 } 2267 2268 static int 2269 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2270 { 2271 kmastat_vmem_t *kv = *kap->ka_kvpp; 2272 size_t len; 2273 2274 while (kv != NULL && kv->kv_addr != addr) 2275 kv = kv->kv_next; 2276 2277 if (kv == NULL || kv->kv_alloc == 0) 2278 return (WALK_NEXT); 2279 2280 len = MIN(17, strlen(v->vm_name)); 2281 2282 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2283 17 - len, "", "", "", "", 2284 kv->kv_meminuse >> kap->ka_shift, 2285 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2286 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2287 2288 return (WALK_NEXT); 2289 } 2290 2291 /*ARGSUSED*/ 2292 static int 2293 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2294 { 2295 datafmt_t *dfp = vmemfmt; 2296 const vmem_kstat_t *vkp = &v->vm_kstat; 2297 uintptr_t paddr; 2298 vmem_t parent; 2299 int ident = 0; 2300 2301 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) { 2302 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2303 mdb_warn("couldn't trace %p's ancestry", addr); 2304 ident = 0; 2305 break; 2306 } 2307 paddr = (uintptr_t)parent.vm_source; 2308 } 2309 2310 mdb_printf("%*s", ident, ""); 2311 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2312 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2313 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2314 *shiftp == KILOS ? 'K' : 'B'); 2315 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2316 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2317 *shiftp == KILOS ? 'K' : 'B'); 2318 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2319 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2320 *shiftp == KILOS ? 'K' : 'B'); 2321 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2322 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2323 2324 mdb_printf("\n"); 2325 2326 return (WALK_NEXT); 2327 } 2328 2329 /*ARGSUSED*/ 2330 int 2331 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2332 { 2333 kmastat_vmem_t *kv = NULL; 2334 datafmt_t *dfp; 2335 kmastat_args_t ka; 2336 2337 ka.ka_shift = 0; 2338 if (mdb_getopts(argc, argv, 2339 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2340 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2341 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2342 return (DCMD_USAGE); 2343 2344 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2345 mdb_printf("%s ", dfp->hdr1); 2346 mdb_printf("\n"); 2347 2348 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2349 mdb_printf("%s ", dfp->hdr2); 2350 mdb_printf("\n"); 2351 2352 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2353 mdb_printf("%s ", dfp->dashes); 2354 mdb_printf("\n"); 2355 2356 ka.ka_kvpp = &kv; 2357 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2358 mdb_warn("can't walk 'kmem_cache'"); 2359 return (DCMD_ERR); 2360 } 2361 2362 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2363 mdb_printf("%s ", dfp->dashes); 2364 mdb_printf("\n"); 2365 2366 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2367 mdb_warn("can't walk 'vmem'"); 2368 return (DCMD_ERR); 2369 } 2370 2371 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2372 mdb_printf("%s ", dfp->dashes); 2373 mdb_printf("\n"); 2374 2375 mdb_printf("\n"); 2376 2377 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2378 mdb_printf("%s ", dfp->hdr1); 2379 mdb_printf("\n"); 2380 2381 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2382 mdb_printf("%s ", dfp->hdr2); 2383 mdb_printf("\n"); 2384 2385 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2386 mdb_printf("%s ", dfp->dashes); 2387 mdb_printf("\n"); 2388 2389 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2390 mdb_warn("can't walk 'vmem'"); 2391 return (DCMD_ERR); 2392 } 2393 2394 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2395 mdb_printf("%s ", dfp->dashes); 2396 mdb_printf("\n"); 2397 return (DCMD_OK); 2398 } 2399 2400 /* 2401 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2402 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2403 * unfortunately, a few of the segs are both large and sparse, so we could 2404 * spend quite a bit of time scanning VAs which have no backing pages. 2405 * 2406 * So for the few very sparse segs, we skip the segment itself, and scan 2407 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2408 * Currently, we do this for: 2409 * 2410 * SEG VMEM ARENA 2411 * kvseg heap_arena 2412 * kvseg32 heap32_arena 2413 * kvseg_core heap_core_arena 2414 * 2415 * In addition, we skip the segkpm segment in its entirety, since it is very 2416 * sparse, and contains no new kernel data. 2417 */ 2418 typedef struct kgrep_walk_data { 2419 kgrep_cb_func *kg_cb; 2420 void *kg_cbdata; 2421 uintptr_t kg_kvseg; 2422 uintptr_t kg_kvseg32; 2423 uintptr_t kg_kvseg_core; 2424 uintptr_t kg_segkpm; 2425 uintptr_t kg_heap_lp_base; 2426 uintptr_t kg_heap_lp_end; 2427 } kgrep_walk_data_t; 2428 2429 static int 2430 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2431 { 2432 uintptr_t base = (uintptr_t)seg->s_base; 2433 2434 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2435 addr == kg->kg_kvseg_core) 2436 return (WALK_NEXT); 2437 2438 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2439 return (WALK_NEXT); 2440 2441 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2442 } 2443 2444 /*ARGSUSED*/ 2445 static int 2446 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2447 { 2448 /* 2449 * skip large page heap address range - it is scanned by walking 2450 * allocated vmem_segs in the heap_lp_arena 2451 */ 2452 if (seg->vs_start == kg->kg_heap_lp_base && 2453 seg->vs_end == kg->kg_heap_lp_end) 2454 return (WALK_NEXT); 2455 2456 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2457 } 2458 2459 /*ARGSUSED*/ 2460 static int 2461 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2462 { 2463 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2464 } 2465 2466 static int 2467 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2468 { 2469 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2470 2471 if (strcmp(vmem->vm_name, "heap") != 0 && 2472 strcmp(vmem->vm_name, "heap32") != 0 && 2473 strcmp(vmem->vm_name, "heap_core") != 0 && 2474 strcmp(vmem->vm_name, "heap_lp") != 0) 2475 return (WALK_NEXT); 2476 2477 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2478 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2479 2480 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2481 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2482 return (WALK_ERR); 2483 } 2484 2485 return (WALK_NEXT); 2486 } 2487 2488 int 2489 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2490 { 2491 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2492 kgrep_walk_data_t kg; 2493 2494 if (mdb_get_state() == MDB_STATE_RUNNING) { 2495 mdb_warn("kgrep can only be run on a system " 2496 "dump or under kmdb; see dumpadm(8)\n"); 2497 return (DCMD_ERR); 2498 } 2499 2500 if (mdb_lookup_by_name("kas", &kas) == -1) { 2501 mdb_warn("failed to locate 'kas' symbol\n"); 2502 return (DCMD_ERR); 2503 } 2504 2505 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2506 mdb_warn("failed to locate 'kvseg' symbol\n"); 2507 return (DCMD_ERR); 2508 } 2509 2510 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2511 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2512 return (DCMD_ERR); 2513 } 2514 2515 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2516 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2517 return (DCMD_ERR); 2518 } 2519 2520 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2521 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2522 return (DCMD_ERR); 2523 } 2524 2525 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2526 mdb_warn("failed to read 'heap_lp_base'\n"); 2527 return (DCMD_ERR); 2528 } 2529 2530 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2531 mdb_warn("failed to read 'heap_lp_end'\n"); 2532 return (DCMD_ERR); 2533 } 2534 2535 kg.kg_cb = cb; 2536 kg.kg_cbdata = cbdata; 2537 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2538 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2539 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2540 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2541 2542 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2543 &kg, kas.st_value) == -1) { 2544 mdb_warn("failed to walk kas segments"); 2545 return (DCMD_ERR); 2546 } 2547 2548 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2549 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2550 return (DCMD_ERR); 2551 } 2552 2553 return (DCMD_OK); 2554 } 2555 2556 size_t 2557 kgrep_subr_pagesize(void) 2558 { 2559 return (PAGESIZE); 2560 } 2561 2562 typedef struct file_walk_data { 2563 struct uf_entry *fw_flist; 2564 int fw_flistsz; 2565 int fw_ndx; 2566 int fw_nofiles; 2567 } file_walk_data_t; 2568 2569 typedef struct mdb_file_proc { 2570 struct { 2571 struct { 2572 int fi_nfiles; 2573 uf_entry_t *volatile fi_list; 2574 } u_finfo; 2575 } p_user; 2576 } mdb_file_proc_t; 2577 2578 int 2579 file_walk_init(mdb_walk_state_t *wsp) 2580 { 2581 file_walk_data_t *fw; 2582 mdb_file_proc_t p; 2583 2584 if (wsp->walk_addr == 0) { 2585 mdb_warn("file walk doesn't support global walks\n"); 2586 return (WALK_ERR); 2587 } 2588 2589 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2590 2591 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t", 2592 wsp->walk_addr, 0) == -1) { 2593 mdb_free(fw, sizeof (file_walk_data_t)); 2594 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2595 return (WALK_ERR); 2596 } 2597 2598 if (p.p_user.u_finfo.fi_nfiles == 0) { 2599 mdb_free(fw, sizeof (file_walk_data_t)); 2600 return (WALK_DONE); 2601 } 2602 2603 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2604 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2605 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2606 2607 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2608 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2609 mdb_warn("failed to read file array at %p", 2610 p.p_user.u_finfo.fi_list); 2611 mdb_free(fw->fw_flist, fw->fw_flistsz); 2612 mdb_free(fw, sizeof (file_walk_data_t)); 2613 return (WALK_ERR); 2614 } 2615 2616 fw->fw_ndx = 0; 2617 wsp->walk_data = fw; 2618 2619 return (WALK_NEXT); 2620 } 2621 2622 int 2623 file_walk_step(mdb_walk_state_t *wsp) 2624 { 2625 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2626 struct file file; 2627 uintptr_t fp; 2628 2629 again: 2630 if (fw->fw_ndx == fw->fw_nofiles) 2631 return (WALK_DONE); 2632 2633 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0) 2634 goto again; 2635 2636 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2637 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2638 } 2639 2640 int 2641 allfile_walk_step(mdb_walk_state_t *wsp) 2642 { 2643 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2644 struct file file; 2645 uintptr_t fp; 2646 2647 if (fw->fw_ndx == fw->fw_nofiles) 2648 return (WALK_DONE); 2649 2650 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0) 2651 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2652 else 2653 bzero(&file, sizeof (file)); 2654 2655 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2656 } 2657 2658 void 2659 file_walk_fini(mdb_walk_state_t *wsp) 2660 { 2661 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2662 2663 mdb_free(fw->fw_flist, fw->fw_flistsz); 2664 mdb_free(fw, sizeof (file_walk_data_t)); 2665 } 2666 2667 int 2668 port_walk_init(mdb_walk_state_t *wsp) 2669 { 2670 if (wsp->walk_addr == 0) { 2671 mdb_warn("port walk doesn't support global walks\n"); 2672 return (WALK_ERR); 2673 } 2674 2675 if (mdb_layered_walk("file", wsp) == -1) { 2676 mdb_warn("couldn't walk 'file'"); 2677 return (WALK_ERR); 2678 } 2679 return (WALK_NEXT); 2680 } 2681 2682 int 2683 port_walk_step(mdb_walk_state_t *wsp) 2684 { 2685 struct vnode vn; 2686 uintptr_t vp; 2687 uintptr_t pp; 2688 struct port port; 2689 2690 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2691 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2692 mdb_warn("failed to read vnode_t at %p", vp); 2693 return (WALK_ERR); 2694 } 2695 if (vn.v_type != VPORT) 2696 return (WALK_NEXT); 2697 2698 pp = (uintptr_t)vn.v_data; 2699 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2700 mdb_warn("failed to read port_t at %p", pp); 2701 return (WALK_ERR); 2702 } 2703 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2704 } 2705 2706 typedef struct portev_walk_data { 2707 list_node_t *pev_node; 2708 list_node_t *pev_last; 2709 size_t pev_offset; 2710 } portev_walk_data_t; 2711 2712 int 2713 portev_walk_init(mdb_walk_state_t *wsp) 2714 { 2715 portev_walk_data_t *pevd; 2716 struct port port; 2717 struct vnode vn; 2718 struct list *list; 2719 uintptr_t vp; 2720 2721 if (wsp->walk_addr == 0) { 2722 mdb_warn("portev walk doesn't support global walks\n"); 2723 return (WALK_ERR); 2724 } 2725 2726 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2727 2728 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2729 mdb_free(pevd, sizeof (portev_walk_data_t)); 2730 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2731 return (WALK_ERR); 2732 } 2733 2734 vp = (uintptr_t)port.port_vnode; 2735 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2736 mdb_free(pevd, sizeof (portev_walk_data_t)); 2737 mdb_warn("failed to read vnode_t at %p", vp); 2738 return (WALK_ERR); 2739 } 2740 2741 if (vn.v_type != VPORT) { 2742 mdb_free(pevd, sizeof (portev_walk_data_t)); 2743 mdb_warn("input address (%p) does not point to an event port", 2744 wsp->walk_addr); 2745 return (WALK_ERR); 2746 } 2747 2748 if (port.port_queue.portq_nent == 0) { 2749 mdb_free(pevd, sizeof (portev_walk_data_t)); 2750 return (WALK_DONE); 2751 } 2752 list = &port.port_queue.portq_list; 2753 pevd->pev_offset = list->list_offset; 2754 pevd->pev_last = list->list_head.list_prev; 2755 pevd->pev_node = list->list_head.list_next; 2756 wsp->walk_data = pevd; 2757 return (WALK_NEXT); 2758 } 2759 2760 int 2761 portev_walk_step(mdb_walk_state_t *wsp) 2762 { 2763 portev_walk_data_t *pevd; 2764 struct port_kevent ev; 2765 uintptr_t evp; 2766 2767 pevd = (portev_walk_data_t *)wsp->walk_data; 2768 2769 if (pevd->pev_last == NULL) 2770 return (WALK_DONE); 2771 if (pevd->pev_node == pevd->pev_last) 2772 pevd->pev_last = NULL; /* last round */ 2773 2774 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2775 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2776 mdb_warn("failed to read port_kevent at %p", evp); 2777 return (WALK_DONE); 2778 } 2779 pevd->pev_node = ev.portkev_node.list_next; 2780 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2781 } 2782 2783 void 2784 portev_walk_fini(mdb_walk_state_t *wsp) 2785 { 2786 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2787 2788 if (pevd != NULL) 2789 mdb_free(pevd, sizeof (portev_walk_data_t)); 2790 } 2791 2792 typedef struct proc_walk_data { 2793 uintptr_t *pw_stack; 2794 int pw_depth; 2795 int pw_max; 2796 } proc_walk_data_t; 2797 2798 int 2799 proc_walk_init(mdb_walk_state_t *wsp) 2800 { 2801 GElf_Sym sym; 2802 proc_walk_data_t *pw; 2803 2804 if (wsp->walk_addr == 0) { 2805 if (mdb_lookup_by_name("p0", &sym) == -1) { 2806 mdb_warn("failed to read 'practive'"); 2807 return (WALK_ERR); 2808 } 2809 wsp->walk_addr = (uintptr_t)sym.st_value; 2810 } 2811 2812 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2813 2814 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2815 mdb_warn("failed to read 'nproc'"); 2816 mdb_free(pw, sizeof (pw)); 2817 return (WALK_ERR); 2818 } 2819 2820 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2821 wsp->walk_data = pw; 2822 2823 return (WALK_NEXT); 2824 } 2825 2826 typedef struct mdb_walk_proc { 2827 struct proc *p_child; 2828 struct proc *p_sibling; 2829 } mdb_walk_proc_t; 2830 2831 int 2832 proc_walk_step(mdb_walk_state_t *wsp) 2833 { 2834 proc_walk_data_t *pw = wsp->walk_data; 2835 uintptr_t addr = wsp->walk_addr; 2836 uintptr_t cld, sib; 2837 int status; 2838 mdb_walk_proc_t pr; 2839 2840 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2841 addr, 0) == -1) { 2842 mdb_warn("failed to read proc at %p", addr); 2843 return (WALK_DONE); 2844 } 2845 2846 cld = (uintptr_t)pr.p_child; 2847 sib = (uintptr_t)pr.p_sibling; 2848 2849 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2850 pw->pw_depth--; 2851 goto sib; 2852 } 2853 2854 /* 2855 * Always pass NULL as the local copy pointer. Consumers 2856 * should use mdb_ctf_vread() to read their own minimal 2857 * version of proc_t. Thus minimizing the chance of breakage 2858 * with older crash dumps. 2859 */ 2860 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata); 2861 2862 if (status != WALK_NEXT) 2863 return (status); 2864 2865 if ((wsp->walk_addr = cld) != 0) { 2866 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2867 cld, 0) == -1) { 2868 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2869 addr, cld); 2870 goto sib; 2871 } 2872 2873 pw->pw_stack[pw->pw_depth++] = addr; 2874 2875 if (pw->pw_depth == pw->pw_max) { 2876 mdb_warn("depth %d exceeds max depth; try again\n", 2877 pw->pw_depth); 2878 return (WALK_DONE); 2879 } 2880 return (WALK_NEXT); 2881 } 2882 2883 sib: 2884 /* 2885 * We know that p0 has no siblings, and if another starting proc 2886 * was given, we don't want to walk its siblings anyway. 2887 */ 2888 if (pw->pw_depth == 0) 2889 return (WALK_DONE); 2890 2891 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2892 sib, 0) == -1) { 2893 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2894 addr, sib); 2895 sib = 0; 2896 } 2897 2898 if ((wsp->walk_addr = sib) == 0) { 2899 if (pw->pw_depth > 0) { 2900 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2901 return (WALK_NEXT); 2902 } 2903 return (WALK_DONE); 2904 } 2905 2906 return (WALK_NEXT); 2907 } 2908 2909 void 2910 proc_walk_fini(mdb_walk_state_t *wsp) 2911 { 2912 proc_walk_data_t *pw = wsp->walk_data; 2913 2914 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2915 mdb_free(pw, sizeof (proc_walk_data_t)); 2916 } 2917 2918 int 2919 task_walk_init(mdb_walk_state_t *wsp) 2920 { 2921 task_t task; 2922 2923 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2924 mdb_warn("failed to read task at %p", wsp->walk_addr); 2925 return (WALK_ERR); 2926 } 2927 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2928 wsp->walk_data = task.tk_memb_list; 2929 return (WALK_NEXT); 2930 } 2931 2932 typedef struct mdb_task_proc { 2933 struct proc *p_tasknext; 2934 } mdb_task_proc_t; 2935 2936 int 2937 task_walk_step(mdb_walk_state_t *wsp) 2938 { 2939 mdb_task_proc_t proc; 2940 int status; 2941 2942 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t", 2943 wsp->walk_addr, 0) == -1) { 2944 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2945 return (WALK_DONE); 2946 } 2947 2948 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2949 2950 if (proc.p_tasknext == wsp->walk_data) 2951 return (WALK_DONE); 2952 2953 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2954 return (status); 2955 } 2956 2957 int 2958 project_walk_init(mdb_walk_state_t *wsp) 2959 { 2960 if (wsp->walk_addr == 0) { 2961 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2962 mdb_warn("failed to read 'proj0p'"); 2963 return (WALK_ERR); 2964 } 2965 } 2966 wsp->walk_data = (void *)wsp->walk_addr; 2967 return (WALK_NEXT); 2968 } 2969 2970 int 2971 project_walk_step(mdb_walk_state_t *wsp) 2972 { 2973 uintptr_t addr = wsp->walk_addr; 2974 kproject_t pj; 2975 int status; 2976 2977 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2978 mdb_warn("failed to read project at %p", addr); 2979 return (WALK_DONE); 2980 } 2981 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2982 if (status != WALK_NEXT) 2983 return (status); 2984 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2985 if ((void *)wsp->walk_addr == wsp->walk_data) 2986 return (WALK_DONE); 2987 return (WALK_NEXT); 2988 } 2989 2990 static int 2991 generic_walk_step(mdb_walk_state_t *wsp) 2992 { 2993 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2994 wsp->walk_cbdata)); 2995 } 2996 2997 static int 2998 cpu_walk_cmp(const void *l, const void *r) 2999 { 3000 uintptr_t lhs = *((uintptr_t *)l); 3001 uintptr_t rhs = *((uintptr_t *)r); 3002 cpu_t lcpu, rcpu; 3003 3004 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 3005 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 3006 3007 if (lcpu.cpu_id < rcpu.cpu_id) 3008 return (-1); 3009 3010 if (lcpu.cpu_id > rcpu.cpu_id) 3011 return (1); 3012 3013 return (0); 3014 } 3015 3016 typedef struct cpu_walk { 3017 uintptr_t *cw_array; 3018 int cw_ndx; 3019 } cpu_walk_t; 3020 3021 int 3022 cpu_walk_init(mdb_walk_state_t *wsp) 3023 { 3024 cpu_walk_t *cw; 3025 int max_ncpus, i = 0; 3026 uintptr_t current, first; 3027 cpu_t cpu, panic_cpu; 3028 uintptr_t panicstr, addr = 0; 3029 GElf_Sym sym; 3030 3031 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 3032 3033 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 3034 mdb_warn("failed to read 'max_ncpus'"); 3035 return (WALK_ERR); 3036 } 3037 3038 if (mdb_readvar(&panicstr, "panicstr") == -1) { 3039 mdb_warn("failed to read 'panicstr'"); 3040 return (WALK_ERR); 3041 } 3042 3043 if (panicstr != 0) { 3044 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 3045 mdb_warn("failed to find 'panic_cpu'"); 3046 return (WALK_ERR); 3047 } 3048 3049 addr = (uintptr_t)sym.st_value; 3050 3051 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 3052 mdb_warn("failed to read 'panic_cpu'"); 3053 return (WALK_ERR); 3054 } 3055 } 3056 3057 /* 3058 * Unfortunately, there is no platform-independent way to walk 3059 * CPUs in ID order. We therefore loop through in cpu_next order, 3060 * building an array of CPU pointers which will subsequently be 3061 * sorted. 3062 */ 3063 cw->cw_array = 3064 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 3065 3066 if (mdb_readvar(&first, "cpu_list") == -1) { 3067 mdb_warn("failed to read 'cpu_list'"); 3068 return (WALK_ERR); 3069 } 3070 3071 current = first; 3072 do { 3073 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 3074 mdb_warn("failed to read cpu at %p", current); 3075 return (WALK_ERR); 3076 } 3077 3078 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) { 3079 cw->cw_array[i++] = addr; 3080 } else { 3081 cw->cw_array[i++] = current; 3082 } 3083 } while ((current = (uintptr_t)cpu.cpu_next) != first); 3084 3085 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 3086 wsp->walk_data = cw; 3087 3088 return (WALK_NEXT); 3089 } 3090 3091 int 3092 cpu_walk_step(mdb_walk_state_t *wsp) 3093 { 3094 cpu_walk_t *cw = wsp->walk_data; 3095 cpu_t cpu; 3096 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 3097 3098 if (addr == 0) 3099 return (WALK_DONE); 3100 3101 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 3102 mdb_warn("failed to read cpu at %p", addr); 3103 return (WALK_DONE); 3104 } 3105 3106 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 3107 } 3108 3109 typedef struct cpuinfo_data { 3110 intptr_t cid_cpu; 3111 uintptr_t **cid_ithr; 3112 char cid_print_head; 3113 char cid_print_thr; 3114 char cid_print_ithr; 3115 char cid_print_flags; 3116 } cpuinfo_data_t; 3117 3118 int 3119 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 3120 { 3121 cpu_t c; 3122 int id; 3123 uint8_t pil; 3124 3125 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3126 return (WALK_NEXT); 3127 3128 if (thr->t_bound_cpu == NULL) { 3129 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3130 return (WALK_NEXT); 3131 } 3132 3133 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3134 3135 if ((id = c.cpu_id) >= NCPU) { 3136 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3137 thr->t_bound_cpu, id, NCPU); 3138 return (WALK_NEXT); 3139 } 3140 3141 if ((pil = thr->t_pil) >= NINTR) { 3142 mdb_warn("thread %p has pil (%d) greater than %d\n", 3143 addr, pil, NINTR); 3144 return (WALK_NEXT); 3145 } 3146 3147 if (cid->cid_ithr[id][pil] != 0) { 3148 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3149 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3150 return (WALK_NEXT); 3151 } 3152 3153 cid->cid_ithr[id][pil] = addr; 3154 3155 return (WALK_NEXT); 3156 } 3157 3158 #define CPUINFO_IDWIDTH 3 3159 #define CPUINFO_FLAGWIDTH 9 3160 3161 #ifdef _LP64 3162 #if defined(__amd64) 3163 #define CPUINFO_TWIDTH 16 3164 #define CPUINFO_CPUWIDTH 16 3165 #else 3166 #define CPUINFO_CPUWIDTH 11 3167 #define CPUINFO_TWIDTH 11 3168 #endif 3169 #else 3170 #define CPUINFO_CPUWIDTH 8 3171 #define CPUINFO_TWIDTH 8 3172 #endif 3173 3174 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3175 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3176 #define CPUINFO_ITHRDELT 4 3177 3178 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3179 flagline < nflaglines ? flagbuf[flagline++] : "") 3180 3181 typedef struct mdb_cpuinfo_proc { 3182 struct { 3183 char u_comm[MAXCOMLEN + 1]; 3184 } p_user; 3185 } mdb_cpuinfo_proc_t; 3186 3187 int 3188 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3189 { 3190 kthread_t t; 3191 disp_t disp; 3192 mdb_cpuinfo_proc_t p; 3193 uintptr_t pinned = 0; 3194 char **flagbuf; 3195 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3196 3197 const char *flags[] = { 3198 "RUNNING", "READY", "QUIESCED", "EXISTS", 3199 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3200 "SPARE", "FAULTED", "DISABLED", NULL 3201 }; 3202 3203 if (cid->cid_cpu != -1) { 3204 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3205 return (WALK_NEXT); 3206 3207 /* 3208 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3209 */ 3210 cid->cid_cpu = -1; 3211 rval = WALK_DONE; 3212 } 3213 3214 if (cid->cid_print_head) { 3215 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3216 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3217 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3218 "PROC"); 3219 cid->cid_print_head = FALSE; 3220 } 3221 3222 bspl = cpu->cpu_base_spl; 3223 3224 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3225 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3226 return (WALK_ERR); 3227 } 3228 3229 mdb_printf("%3d %0*p %3x %4d %4d ", 3230 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3231 disp.disp_nrunnable, bspl); 3232 3233 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3234 mdb_printf("%3d ", t.t_pri); 3235 } else { 3236 mdb_printf("%3s ", "-"); 3237 } 3238 3239 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3240 cpu->cpu_kprunrun ? "yes" : "no"); 3241 3242 if (cpu->cpu_last_swtch) { 3243 mdb_printf("t-%-4d ", 3244 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 3245 } else { 3246 mdb_printf("%-6s ", "-"); 3247 } 3248 3249 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3250 3251 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3252 mdb_printf(" (idle)\n"); 3253 else if (cpu->cpu_thread == NULL) 3254 mdb_printf(" -\n"); 3255 else { 3256 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3257 (uintptr_t)t.t_procp, 0) != -1) { 3258 mdb_printf(" %s\n", p.p_user.u_comm); 3259 } else { 3260 mdb_printf(" ?\n"); 3261 } 3262 } 3263 3264 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3265 3266 if (cid->cid_print_flags) { 3267 int first = 1, i, j, k; 3268 char *s; 3269 3270 cid->cid_print_head = TRUE; 3271 3272 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3273 if (!(cpu->cpu_flags & i)) 3274 continue; 3275 3276 if (first) { 3277 s = mdb_alloc(CPUINFO_THRDELT + 1, 3278 UM_GC | UM_SLEEP); 3279 3280 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3281 "%*s|%*s", CPUINFO_FLAGDELT, "", 3282 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3283 flagbuf[nflaglines++] = s; 3284 } 3285 3286 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3287 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3288 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3289 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3290 first ? "<--+" : ""); 3291 3292 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3293 s[k] = ' '; 3294 s[k] = '\0'; 3295 3296 flagbuf[nflaglines++] = s; 3297 first = 0; 3298 } 3299 } 3300 3301 if (cid->cid_print_ithr) { 3302 int i, found_one = FALSE; 3303 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3304 3305 for (i = NINTR - 1; i >= 0; i--) { 3306 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3307 3308 if (iaddr == 0) 3309 continue; 3310 3311 if (!found_one) { 3312 found_one = TRUE; 3313 3314 CPUINFO_INDENT; 3315 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3316 CPUINFO_ITHRDELT, ""); 3317 3318 CPUINFO_INDENT; 3319 mdb_printf("%c%*s+--> %3s %s\n", 3320 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3321 "", "PIL", "THREAD"); 3322 } 3323 3324 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3325 mdb_warn("failed to read kthread_t at %p", 3326 iaddr); 3327 return (WALK_ERR); 3328 } 3329 3330 CPUINFO_INDENT; 3331 mdb_printf("%c%*s %3d %0*p\n", 3332 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3333 t.t_pil, CPUINFO_TWIDTH, iaddr); 3334 3335 pinned = (uintptr_t)t.t_intr; 3336 } 3337 3338 if (found_one && pinned != 0) { 3339 cid->cid_print_head = TRUE; 3340 (void) strcpy(p.p_user.u_comm, "?"); 3341 3342 if (mdb_vread(&t, sizeof (t), 3343 (uintptr_t)pinned) == -1) { 3344 mdb_warn("failed to read kthread_t at %p", 3345 pinned); 3346 return (WALK_ERR); 3347 } 3348 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3349 (uintptr_t)t.t_procp, 0) == -1) { 3350 mdb_warn("failed to read proc_t at %p", 3351 t.t_procp); 3352 return (WALK_ERR); 3353 } 3354 3355 CPUINFO_INDENT; 3356 mdb_printf("%c%*s %3s %0*p %s\n", 3357 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3358 CPUINFO_TWIDTH, pinned, 3359 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3360 "(idle)" : p.p_user.u_comm); 3361 } 3362 } 3363 3364 if (disp.disp_nrunnable && cid->cid_print_thr) { 3365 dispq_t *dq; 3366 3367 int i, npri = disp.disp_npri; 3368 3369 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3370 3371 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3372 (uintptr_t)disp.disp_q) == -1) { 3373 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3374 return (WALK_ERR); 3375 } 3376 3377 CPUINFO_INDENT; 3378 mdb_printf("|\n"); 3379 3380 CPUINFO_INDENT; 3381 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3382 CPUINFO_TWIDTH, "THREAD", "PROC"); 3383 3384 for (i = npri - 1; i >= 0; i--) { 3385 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3386 3387 while (taddr != 0) { 3388 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3389 mdb_warn("failed to read kthread_t " 3390 "at %p", taddr); 3391 return (WALK_ERR); 3392 } 3393 if (mdb_ctf_vread(&p, "proc_t", 3394 "mdb_cpuinfo_proc_t", 3395 (uintptr_t)t.t_procp, 0) == -1) { 3396 mdb_warn("failed to read proc_t at %p", 3397 t.t_procp); 3398 return (WALK_ERR); 3399 } 3400 3401 CPUINFO_INDENT; 3402 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3403 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3404 3405 taddr = (uintptr_t)t.t_link; 3406 } 3407 } 3408 cid->cid_print_head = TRUE; 3409 } 3410 3411 while (flagline < nflaglines) 3412 mdb_printf("%s\n", flagbuf[flagline++]); 3413 3414 if (cid->cid_print_head) 3415 mdb_printf("\n"); 3416 3417 return (rval); 3418 } 3419 3420 int 3421 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3422 { 3423 uint_t verbose = FALSE; 3424 cpuinfo_data_t cid; 3425 3426 cid.cid_print_ithr = FALSE; 3427 cid.cid_print_thr = FALSE; 3428 cid.cid_print_flags = FALSE; 3429 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3430 cid.cid_cpu = -1; 3431 3432 if (flags & DCMD_ADDRSPEC) 3433 cid.cid_cpu = addr; 3434 3435 if (mdb_getopts(argc, argv, 3436 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3437 return (DCMD_USAGE); 3438 3439 if (verbose) { 3440 cid.cid_print_ithr = TRUE; 3441 cid.cid_print_thr = TRUE; 3442 cid.cid_print_flags = TRUE; 3443 cid.cid_print_head = TRUE; 3444 } 3445 3446 if (cid.cid_print_ithr) { 3447 int i; 3448 3449 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3450 * NCPU, UM_SLEEP | UM_GC); 3451 3452 for (i = 0; i < NCPU; i++) 3453 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3454 NINTR, UM_SLEEP | UM_GC); 3455 3456 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3457 &cid) == -1) { 3458 mdb_warn("couldn't walk thread"); 3459 return (DCMD_ERR); 3460 } 3461 } 3462 3463 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3464 mdb_warn("can't walk cpus"); 3465 return (DCMD_ERR); 3466 } 3467 3468 if (cid.cid_cpu != -1) { 3469 /* 3470 * We didn't find this CPU when we walked through the CPUs 3471 * (i.e. the address specified doesn't show up in the "cpu" 3472 * walk). However, the specified address may still correspond 3473 * to a valid cpu_t (for example, if the specified address is 3474 * the actual panicking cpu_t and not the cached panic_cpu). 3475 * Point is: even if we didn't find it, we still want to try 3476 * to print the specified address as a cpu_t. 3477 */ 3478 cpu_t cpu; 3479 3480 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3481 mdb_warn("%p is neither a valid CPU ID nor a " 3482 "valid cpu_t address\n", cid.cid_cpu); 3483 return (DCMD_ERR); 3484 } 3485 3486 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3487 } 3488 3489 return (DCMD_OK); 3490 } 3491 3492 /*ARGSUSED*/ 3493 int 3494 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3495 { 3496 int i; 3497 3498 if (!(flags & DCMD_ADDRSPEC)) 3499 return (DCMD_USAGE); 3500 3501 for (i = 0; i < sizeof (addr) * NBBY; i++) 3502 mdb_printf("%p\n", addr ^ (1UL << i)); 3503 3504 return (DCMD_OK); 3505 } 3506 3507 typedef struct mdb_as2proc_proc { 3508 struct as *p_as; 3509 } mdb_as2proc_proc_t; 3510 3511 /*ARGSUSED*/ 3512 int 3513 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp) 3514 { 3515 mdb_as2proc_proc_t p; 3516 3517 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0); 3518 3519 if (p.p_as == *asp) 3520 mdb_printf("%p\n", addr); 3521 return (WALK_NEXT); 3522 } 3523 3524 /*ARGSUSED*/ 3525 int 3526 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3527 { 3528 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3529 return (DCMD_USAGE); 3530 3531 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3532 mdb_warn("failed to walk proc"); 3533 return (DCMD_ERR); 3534 } 3535 3536 return (DCMD_OK); 3537 } 3538 3539 typedef struct mdb_ptree_proc { 3540 struct proc *p_parent; 3541 struct { 3542 char u_comm[MAXCOMLEN + 1]; 3543 } p_user; 3544 } mdb_ptree_proc_t; 3545 3546 /*ARGSUSED*/ 3547 int 3548 ptree_walk(uintptr_t addr, const void *ignored, void *data) 3549 { 3550 mdb_ptree_proc_t proc; 3551 mdb_ptree_proc_t parent; 3552 int ident = 0; 3553 uintptr_t paddr; 3554 3555 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0); 3556 3557 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) { 3558 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0); 3559 paddr = (uintptr_t)parent.p_parent; 3560 } 3561 3562 mdb_inc_indent(ident); 3563 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm); 3564 mdb_dec_indent(ident); 3565 3566 return (WALK_NEXT); 3567 } 3568 3569 void 3570 ptree_ancestors(uintptr_t addr, uintptr_t start) 3571 { 3572 mdb_ptree_proc_t p; 3573 3574 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) { 3575 mdb_warn("couldn't read ancestor at %p", addr); 3576 return; 3577 } 3578 3579 if (p.p_parent != NULL) 3580 ptree_ancestors((uintptr_t)p.p_parent, start); 3581 3582 if (addr != start) 3583 (void) ptree_walk(addr, &p, NULL); 3584 } 3585 3586 /*ARGSUSED*/ 3587 int 3588 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3589 { 3590 if (!(flags & DCMD_ADDRSPEC)) 3591 addr = 0; 3592 else 3593 ptree_ancestors(addr, addr); 3594 3595 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3596 mdb_warn("couldn't walk 'proc'"); 3597 return (DCMD_ERR); 3598 } 3599 3600 return (DCMD_OK); 3601 } 3602 3603 typedef struct mdb_fd_proc { 3604 struct { 3605 struct { 3606 int fi_nfiles; 3607 uf_entry_t *volatile fi_list; 3608 } u_finfo; 3609 } p_user; 3610 } mdb_fd_proc_t; 3611 3612 /*ARGSUSED*/ 3613 static int 3614 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3615 { 3616 int fdnum; 3617 const mdb_arg_t *argp = &argv[0]; 3618 mdb_fd_proc_t p; 3619 uf_entry_t uf; 3620 3621 if ((flags & DCMD_ADDRSPEC) == 0) { 3622 mdb_warn("fd doesn't give global information\n"); 3623 return (DCMD_ERR); 3624 } 3625 if (argc != 1) 3626 return (DCMD_USAGE); 3627 3628 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3629 fdnum = argp->a_un.a_val; 3630 else 3631 fdnum = mdb_strtoull(argp->a_un.a_str); 3632 3633 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) { 3634 mdb_warn("couldn't read proc_t at %p", addr); 3635 return (DCMD_ERR); 3636 } 3637 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3638 mdb_warn("process %p only has %d files open.\n", 3639 addr, p.p_user.u_finfo.fi_nfiles); 3640 return (DCMD_ERR); 3641 } 3642 if (mdb_vread(&uf, sizeof (uf_entry_t), 3643 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3644 mdb_warn("couldn't read uf_entry_t at %p", 3645 &p.p_user.u_finfo.fi_list[fdnum]); 3646 return (DCMD_ERR); 3647 } 3648 3649 mdb_printf("%p\n", uf.uf_file); 3650 return (DCMD_OK); 3651 } 3652 3653 /*ARGSUSED*/ 3654 static int 3655 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3656 { 3657 pid_t pid = (pid_t)addr; 3658 3659 if (argc != 0) 3660 return (DCMD_USAGE); 3661 3662 if ((addr = mdb_pid2proc(pid, NULL)) == 0) { 3663 mdb_warn("PID 0t%d not found\n", pid); 3664 return (DCMD_ERR); 3665 } 3666 3667 mdb_printf("%p\n", addr); 3668 return (DCMD_OK); 3669 } 3670 3671 static char *sysfile_cmd[] = { 3672 "exclude:", 3673 "include:", 3674 "forceload:", 3675 "rootdev:", 3676 "rootfs:", 3677 "swapdev:", 3678 "swapfs:", 3679 "moddir:", 3680 "set", 3681 "unknown", 3682 }; 3683 3684 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3685 3686 /*ARGSUSED*/ 3687 static int 3688 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3689 { 3690 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3691 *target = NULL; 3692 return (WALK_DONE); 3693 } 3694 return (WALK_NEXT); 3695 } 3696 3697 /*ARGSUSED*/ 3698 static int 3699 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3700 { 3701 struct sysparam *sysp, sys; 3702 char var[256]; 3703 char modname[256]; 3704 char val[256]; 3705 char strval[256]; 3706 vmem_t *mod_sysfile_arena; 3707 void *straddr; 3708 3709 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3710 mdb_warn("failed to read sysparam_hd"); 3711 return (DCMD_ERR); 3712 } 3713 3714 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3715 mdb_warn("failed to read mod_sysfile_arena"); 3716 return (DCMD_ERR); 3717 } 3718 3719 while (sysp != NULL) { 3720 var[0] = '\0'; 3721 val[0] = '\0'; 3722 modname[0] = '\0'; 3723 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3724 mdb_warn("couldn't read sysparam %p", sysp); 3725 return (DCMD_ERR); 3726 } 3727 if (sys.sys_modnam != NULL && 3728 mdb_readstr(modname, 256, 3729 (uintptr_t)sys.sys_modnam) == -1) { 3730 mdb_warn("couldn't read modname in %p", sysp); 3731 return (DCMD_ERR); 3732 } 3733 if (sys.sys_ptr != NULL && 3734 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3735 mdb_warn("couldn't read ptr in %p", sysp); 3736 return (DCMD_ERR); 3737 } 3738 if (sys.sys_op != SETOP_NONE) { 3739 /* 3740 * Is this an int or a string? We determine this 3741 * by checking whether straddr is contained in 3742 * mod_sysfile_arena. If so, the walker will set 3743 * straddr to NULL. 3744 */ 3745 straddr = (void *)(uintptr_t)sys.sys_info; 3746 if (sys.sys_op == SETOP_ASSIGN && 3747 sys.sys_info != 0 && 3748 mdb_pwalk("vmem_seg", 3749 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3750 (uintptr_t)mod_sysfile_arena) == 0 && 3751 straddr == NULL && 3752 mdb_readstr(strval, 256, 3753 (uintptr_t)sys.sys_info) != -1) { 3754 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3755 strval); 3756 } else { 3757 (void) mdb_snprintf(val, sizeof (val), 3758 "0x%llx [0t%llu]", sys.sys_info, 3759 sys.sys_info); 3760 } 3761 } 3762 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3763 modname, modname[0] == '\0' ? "" : ":", 3764 var, sysfile_ops[sys.sys_op], val); 3765 3766 sysp = sys.sys_next; 3767 } 3768 3769 return (DCMD_OK); 3770 } 3771 3772 int 3773 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3774 { 3775 3776 if (*didp == thr->t_did) { 3777 mdb_printf("%p\n", addr); 3778 return (WALK_DONE); 3779 } else 3780 return (WALK_NEXT); 3781 } 3782 3783 /*ARGSUSED*/ 3784 int 3785 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3786 { 3787 const mdb_arg_t *argp = &argv[0]; 3788 kt_did_t did; 3789 3790 if (argc != 1) 3791 return (DCMD_USAGE); 3792 3793 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3794 3795 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3796 mdb_warn("failed to walk thread"); 3797 return (DCMD_ERR); 3798 3799 } 3800 return (DCMD_OK); 3801 3802 } 3803 3804 static int 3805 errorq_walk_init(mdb_walk_state_t *wsp) 3806 { 3807 if (wsp->walk_addr == 0 && 3808 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3809 mdb_warn("failed to read errorq_list"); 3810 return (WALK_ERR); 3811 } 3812 3813 return (WALK_NEXT); 3814 } 3815 3816 static int 3817 errorq_walk_step(mdb_walk_state_t *wsp) 3818 { 3819 uintptr_t addr = wsp->walk_addr; 3820 errorq_t eq; 3821 3822 if (addr == 0) 3823 return (WALK_DONE); 3824 3825 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3826 mdb_warn("failed to read errorq at %p", addr); 3827 return (WALK_ERR); 3828 } 3829 3830 wsp->walk_addr = (uintptr_t)eq.eq_next; 3831 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3832 } 3833 3834 typedef struct eqd_walk_data { 3835 uintptr_t *eqd_stack; 3836 void *eqd_buf; 3837 ulong_t eqd_qpos; 3838 ulong_t eqd_qlen; 3839 size_t eqd_size; 3840 } eqd_walk_data_t; 3841 3842 /* 3843 * In order to walk the list of pending error queue elements, we push the 3844 * addresses of the corresponding data buffers in to the eqd_stack array. 3845 * The error lists are in reverse chronological order when iterating using 3846 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3847 * walker client gets addresses in order from oldest error to newest error. 3848 */ 3849 static void 3850 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3851 { 3852 errorq_elem_t eqe; 3853 3854 while (addr != 0) { 3855 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3856 mdb_warn("failed to read errorq element at %p", addr); 3857 break; 3858 } 3859 3860 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3861 mdb_warn("errorq is overfull -- more than %lu " 3862 "elems found\n", eqdp->eqd_qlen); 3863 break; 3864 } 3865 3866 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3867 addr = (uintptr_t)eqe.eqe_prev; 3868 } 3869 } 3870 3871 static int 3872 eqd_walk_init(mdb_walk_state_t *wsp) 3873 { 3874 eqd_walk_data_t *eqdp; 3875 errorq_elem_t eqe, *addr; 3876 errorq_t eq; 3877 ulong_t i; 3878 3879 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3880 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3881 return (WALK_ERR); 3882 } 3883 3884 if (eq.eq_ptail != NULL && 3885 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3886 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3887 return (WALK_ERR); 3888 } 3889 3890 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3891 wsp->walk_data = eqdp; 3892 3893 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3894 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3895 eqdp->eqd_qlen = eq.eq_qlen; 3896 eqdp->eqd_qpos = 0; 3897 eqdp->eqd_size = eq.eq_size; 3898 3899 /* 3900 * The newest elements in the queue are on the pending list, so we 3901 * push those on to our stack first. 3902 */ 3903 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3904 3905 /* 3906 * If eq_ptail is set, it may point to a subset of the errors on the 3907 * pending list in the event a atomic_cas_ptr() failed; if ptail's 3908 * data is already in our stack, NULL out eq_ptail and ignore it. 3909 */ 3910 if (eq.eq_ptail != NULL) { 3911 for (i = 0; i < eqdp->eqd_qpos; i++) { 3912 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3913 eq.eq_ptail = NULL; 3914 break; 3915 } 3916 } 3917 } 3918 3919 /* 3920 * If eq_phead is set, it has the processing list in order from oldest 3921 * to newest. Use this to recompute eq_ptail as best we can and then 3922 * we nicely fall into eqd_push_list() of eq_ptail below. 3923 */ 3924 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3925 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3926 eq.eq_ptail = addr; 3927 3928 /* 3929 * The oldest elements in the queue are on the processing list, subject 3930 * to machinations in the if-clauses above. Push any such elements. 3931 */ 3932 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3933 return (WALK_NEXT); 3934 } 3935 3936 static int 3937 eqd_walk_step(mdb_walk_state_t *wsp) 3938 { 3939 eqd_walk_data_t *eqdp = wsp->walk_data; 3940 uintptr_t addr; 3941 3942 if (eqdp->eqd_qpos == 0) 3943 return (WALK_DONE); 3944 3945 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3946 3947 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3948 mdb_warn("failed to read errorq data at %p", addr); 3949 return (WALK_ERR); 3950 } 3951 3952 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3953 } 3954 3955 static void 3956 eqd_walk_fini(mdb_walk_state_t *wsp) 3957 { 3958 eqd_walk_data_t *eqdp = wsp->walk_data; 3959 3960 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3961 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3962 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3963 } 3964 3965 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3966 3967 static int 3968 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3969 { 3970 int i; 3971 errorq_t eq; 3972 uint_t opt_v = FALSE; 3973 3974 if (!(flags & DCMD_ADDRSPEC)) { 3975 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3976 mdb_warn("can't walk 'errorq'"); 3977 return (DCMD_ERR); 3978 } 3979 return (DCMD_OK); 3980 } 3981 3982 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3983 argc -= i; 3984 argv += i; 3985 3986 if (argc != 0) 3987 return (DCMD_USAGE); 3988 3989 if (opt_v || DCMD_HDRSPEC(flags)) { 3990 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3991 "ADDR", "NAME", "S", "V", "N"); 3992 if (!opt_v) { 3993 mdb_printf("%7s %7s %7s%</u>\n", 3994 "ACCEPT", "DROP", "LOG"); 3995 } else { 3996 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3997 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3998 } 3999 } 4000 4001 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 4002 mdb_warn("failed to read errorq at %p", addr); 4003 return (DCMD_ERR); 4004 } 4005 4006 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 4007 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 4008 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 4009 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 4010 4011 if (!opt_v) { 4012 mdb_printf("%7llu %7llu %7llu\n", 4013 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 4014 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 4015 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 4016 } else { 4017 mdb_printf("%5s %6lu %6lu %3u %a\n", 4018 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 4019 mdb_printf("%38s\n%41s" 4020 "%12s %llu\n" 4021 "%53s %llu\n" 4022 "%53s %llu\n" 4023 "%53s %llu\n" 4024 "%53s %llu\n" 4025 "%53s %llu\n" 4026 "%53s %llu\n" 4027 "%53s %llu\n\n", 4028 "|", "+-> ", 4029 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 4030 "DROPPED", EQKSVAL(eq, eqk_dropped), 4031 "LOGGED", EQKSVAL(eq, eqk_logged), 4032 "RESERVED", EQKSVAL(eq, eqk_reserved), 4033 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 4034 "COMMITTED", EQKSVAL(eq, eqk_committed), 4035 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 4036 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 4037 } 4038 4039 return (DCMD_OK); 4040 } 4041 4042 /*ARGSUSED*/ 4043 static int 4044 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4045 { 4046 cpu_t panic_cpu; 4047 kthread_t *panic_thread; 4048 void *buf; 4049 panic_data_t *pd; 4050 int i, n; 4051 4052 if (!mdb_prop_postmortem) { 4053 mdb_warn("panicinfo can only be run on a system " 4054 "dump; see dumpadm(8)\n"); 4055 return (DCMD_ERR); 4056 } 4057 4058 if (flags & DCMD_ADDRSPEC || argc != 0) 4059 return (DCMD_USAGE); 4060 4061 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 4062 mdb_warn("failed to read 'panic_cpu'"); 4063 else 4064 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 4065 4066 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 4067 mdb_warn("failed to read 'panic_thread'"); 4068 else 4069 mdb_printf("%16s %?p\n", "thread", panic_thread); 4070 4071 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 4072 pd = (panic_data_t *)buf; 4073 4074 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 4075 pd->pd_version != PANICBUFVERS) { 4076 mdb_warn("failed to read 'panicbuf'"); 4077 mdb_free(buf, PANICBUFSIZE); 4078 return (DCMD_ERR); 4079 } 4080 4081 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 4082 4083 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 4084 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 4085 4086 for (i = 0; i < n; i++) 4087 mdb_printf("%16s %?llx\n", 4088 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 4089 4090 mdb_free(buf, PANICBUFSIZE); 4091 return (DCMD_OK); 4092 } 4093 4094 /* 4095 * ::time dcmd, which will print a hires timestamp of when we entered the 4096 * debugger, or the lbolt value if used with the -l option. 4097 * 4098 */ 4099 /*ARGSUSED*/ 4100 static int 4101 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4102 { 4103 uint_t opt_dec = FALSE; 4104 uint_t opt_lbolt = FALSE; 4105 uint_t opt_hex = FALSE; 4106 const char *fmt; 4107 hrtime_t result; 4108 4109 if (mdb_getopts(argc, argv, 4110 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 4111 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 4112 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 4113 NULL) != argc) 4114 return (DCMD_USAGE); 4115 4116 if (opt_dec && opt_hex) 4117 return (DCMD_USAGE); 4118 4119 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 4120 fmt = 4121 opt_hex ? "0x%llx\n" : 4122 opt_dec ? "0t%lld\n" : "%#llr\n"; 4123 4124 mdb_printf(fmt, result); 4125 return (DCMD_OK); 4126 } 4127 4128 void 4129 time_help(void) 4130 { 4131 mdb_printf("Prints the system time in nanoseconds.\n\n" 4132 "::time will return the timestamp at which we dropped into, \n" 4133 "if called from, kmdb(1); the core dump's high resolution \n" 4134 "time if inspecting one; or the running hires time if we're \n" 4135 "looking at a live system.\n\n" 4136 "Switches:\n" 4137 " -d report times in decimal\n" 4138 " -l prints the number of clock ticks since system boot\n" 4139 " -x report times in hexadecimal\n"); 4140 } 4141 4142 extern int cmd_refstr(uintptr_t, uint_t, int, const mdb_arg_t *); 4143 4144 static const mdb_dcmd_t dcmds[] = { 4145 4146 /* from genunix.c */ 4147 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4148 { "binding_hash_entry", ":", "print driver names hash table entry", 4149 binding_hash_entry }, 4150 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 4151 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4152 " [-FivVA]", 4153 "display callouts", callout, callout_help }, 4154 { "calloutid", "[-d|v] xid", "print callout by extended id", 4155 calloutid, calloutid_help }, 4156 { "class", NULL, "print process scheduler classes", class }, 4157 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4158 { "did2thread", "? kt_did", "find kernel thread for this id", 4159 did2thread }, 4160 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4161 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4162 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4163 { "lminfo", NULL, "print lock manager information", lminfo }, 4164 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4165 { "panicinfo", NULL, "print panic information", panicinfo }, 4166 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4167 { "project", NULL, "display kernel project(s)", project }, 4168 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps, 4169 ps_help }, 4170 { "pflags", NULL, "display various proc_t flags", pflags }, 4171 { "pgrep", "[-x] [-n | -o] pattern", 4172 "pattern match against all processes", pgrep }, 4173 { "ptree", NULL, "print process tree", ptree }, 4174 { "refstr", NULL, "print string from a refstr_t", cmd_refstr, NULL }, 4175 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4176 sysevent}, 4177 { "sysevent_channel", "?", "print sysevent channel database", 4178 sysevent_channel}, 4179 { "sysevent_class_list", ":", "print sysevent class list", 4180 sysevent_class_list}, 4181 { "sysevent_subclass_list", ":", 4182 "print sysevent subclass list", sysevent_subclass_list}, 4183 { "system", NULL, "print contents of /etc/system file", sysfile }, 4184 { "task", NULL, "display kernel task(s)", task }, 4185 { "time", "[-dlx]", "display system time", time, time_help }, 4186 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4187 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4188 whereopen }, 4189 4190 /* from bio.c */ 4191 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4192 4193 /* from bitset.c */ 4194 { "bitset", ":", "display a bitset", bitset, bitset_help }, 4195 4196 /* from contract.c */ 4197 { "contract", "?", "display a contract", cmd_contract }, 4198 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4199 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4200 4201 /* from cpupart.c */ 4202 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4203 4204 /* from cred.c */ 4205 { "cred", ":[-v]", "display a credential", cmd_cred }, 4206 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 4207 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 4208 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 4209 4210 /* from cyclic.c */ 4211 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4212 { "cycid", "?", "dump a cyclic id", cycid }, 4213 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4214 { "cyclic", ":", "developer information", cyclic }, 4215 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4216 4217 /* from damap.c */ 4218 { "damap", ":", "display a damap_t", damap, damap_help }, 4219 4220 /* from ddi_periodic.c */ 4221 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 4222 4223 /* from devinfo.c */ 4224 { "devbindings", "?[-qs] [device-name | major-num]", 4225 "print devinfo nodes bound to device-name or major-num", 4226 devbindings, devinfo_help }, 4227 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node", 4228 devinfo, devinfo_help }, 4229 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4230 devinfo_audit }, 4231 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4232 devinfo_audit_log }, 4233 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4234 devinfo_audit_node }, 4235 { "devinfo2driver", ":", "find driver name for this devinfo node", 4236 devinfo2driver }, 4237 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4238 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4239 dev2major }, 4240 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4241 dev2minor }, 4242 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4243 devt }, 4244 { "major2name", "?<major-num>", "convert major number to dev name", 4245 major2name }, 4246 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4247 minornodes }, 4248 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4249 modctl2devinfo }, 4250 { "name2major", "<dev-name>", "convert dev name to major number", 4251 name2major }, 4252 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree", 4253 prtconf, prtconf_help }, 4254 { "softstate", ":<instance>", "retrieve soft-state pointer", 4255 softstate }, 4256 { "devinfo_fm", ":", "devinfo fault managment configuration", 4257 devinfo_fm }, 4258 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4259 devinfo_fmce}, 4260 4261 /* from findstack.c */ 4262 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4263 { "findstack_debug", NULL, "toggle findstack debugging", 4264 findstack_debug }, 4265 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4266 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4267 "print unique kernel thread stacks", 4268 stacks, stacks_help }, 4269 4270 /* from fm.c */ 4271 { "ereport", "[-v]", "print ereports logged in dump", 4272 ereport }, 4273 4274 /* from group.c */ 4275 { "group", "?[-q]", "display a group", group}, 4276 4277 /* from hotplug.c */ 4278 { "hotplug", "?[-p]", "display a registered hotplug attachment", 4279 hotplug, hotplug_help }, 4280 4281 /* from irm.c */ 4282 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4283 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4284 irmreqs_dcmd }, 4285 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4286 4287 /* from kgrep.c + genunix.c */ 4288 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4289 kgrep_help }, 4290 4291 /* from kmem.c */ 4292 { "allocdby", ":", "given a thread, print its allocated buffers", 4293 allocdby }, 4294 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4295 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4296 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4297 { "kmalog", "?[ fail | slab | zerosized ]", 4298 "display kmem transaction log and stack traces for specified type", 4299 kmalog }, 4300 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4301 kmastat }, 4302 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4303 "of the kmem allocator", kmausers, kmausers_help }, 4304 { "kmem_cache", "?[-n name]", 4305 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4306 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4307 "[-B minbinsize]", "display slab usage per kmem cache", 4308 kmem_slabs, kmem_slabs_help }, 4309 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4310 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4311 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4312 kmem_verify }, 4313 { "vmem", "?", "print a vmem_t", vmem }, 4314 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4315 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4316 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4317 { "whatthread", ":[-v]", "print threads whose stack contains the " 4318 "given address", whatthread }, 4319 4320 /* from ldi.c */ 4321 { "ldi_handle", "?[-i]", "display a layered driver handle", 4322 ldi_handle, ldi_handle_help }, 4323 { "ldi_ident", NULL, "display a layered driver identifier", 4324 ldi_ident, ldi_ident_help }, 4325 4326 /* from leaky.c + leaky_subr.c */ 4327 { "findleaks", FINDLEAKS_USAGE, 4328 "search for potential kernel memory leaks", findleaks, 4329 findleaks_help }, 4330 4331 /* from lgrp.c */ 4332 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4333 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4334 4335 /* from log.c */ 4336 { "msgbuf", "?[-tTv]", "print most recent console messages", msgbuf, 4337 msgbuf_help }, 4338 4339 /* from mdi.c */ 4340 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4341 "and detailed pi_prop list", mdipi }, 4342 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4343 mdiprops }, 4344 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4345 "list all paths", mdiphci }, 4346 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4347 "all phcis", mdivhci }, 4348 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4349 "client links", mdiclient_paths }, 4350 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4351 "phci links", mdiphci_paths }, 4352 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4353 mdiphcis }, 4354 4355 /* from memory.c */ 4356 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4357 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4358 { "memstat", NULL, "display memory usage summary", memstat }, 4359 { "page", "?", "display a summarized page_t", page }, 4360 { "pagelookup", "?[-v vp] [-o offset]", 4361 "find the page_t with the name {vp, offset}", 4362 pagelookup, pagelookup_help }, 4363 { "page_num2pp", ":", "find the page_t for a given page frame number", 4364 page_num2pp }, 4365 { "pmap", ":[-q]", "print process memory map", pmap }, 4366 { "seg", ":", "print address space segment", seg }, 4367 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4368 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4369 4370 /* from modhash.c */ 4371 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4372 "display information about one or all mod_hash structures", 4373 modhash, modhash_help }, 4374 { "modent", ":[-k | -v | -t type]", 4375 "display information about a mod_hash_entry", modent, 4376 modent_help }, 4377 4378 /* from net.c */ 4379 { "dladm", "?<sub-command> [flags]", "show data link information", 4380 dladm, dladm_help }, 4381 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4382 mi }, 4383 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4384 "show network statistics", netstat }, 4385 { "sonode", "?[-f inet | inet6 | unix | #] " 4386 "[-t stream | dgram | raw | #] [-p #]", 4387 "filter and display sonode", sonode }, 4388 4389 /* from netstack.c */ 4390 { "netstack", "", "show stack instances", netstack }, 4391 { "netstackid2netstack", ":", 4392 "translate a netstack id to its netstack_t", 4393 netstackid2netstack }, 4394 4395 /* from nvpair.c */ 4396 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4397 nvpair_print }, 4398 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4399 print_nvlist }, 4400 4401 /* from pg.c */ 4402 { "pg", "?[-q]", "display a pg", pg}, 4403 4404 /* from rctl.c */ 4405 { "rctl_dict", "?", "print systemwide default rctl definitions", 4406 rctl_dict }, 4407 { "rctl_list", ":[handle]", "print rctls for the given proc", 4408 rctl_list }, 4409 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4410 rctl }, 4411 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4412 "sequence", rctl_validate }, 4413 4414 /* from sobj.c */ 4415 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4416 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4417 mutex_help }, 4418 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4419 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4420 { "turnstile", "?", "display a turnstile", turnstile }, 4421 4422 /* from stream.c */ 4423 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4424 "print an mblk", mblk_prt, mblk_help }, 4425 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4426 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4427 mblk2dblk }, 4428 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4429 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4430 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4431 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4432 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4433 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4434 "filter and display STREAM queue", queue, queue_help }, 4435 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4436 "filter and display STREAM head", stdata, stdata_help }, 4437 { "str2mate", ":", "print mate of this stream", str2mate }, 4438 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4439 { "stream", ":", "display STREAM", stream }, 4440 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4441 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4442 "filter and display STREAM sync queue", syncq, syncq_help }, 4443 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4444 4445 /* from taskq.c */ 4446 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4447 "display a taskq", taskq, taskq_help }, 4448 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4449 4450 /* from thread.c */ 4451 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4452 thread_help }, 4453 { "threadlist", "?[-t] [-v [count]]", 4454 "display threads and associated C stack traces", threadlist, 4455 threadlist_help }, 4456 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4457 stackinfo_help }, 4458 4459 /* from tsd.c */ 4460 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4461 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4462 4463 /* 4464 * typegraph does not work under kmdb, as it requires too much memory 4465 * for its internal data structures. 4466 */ 4467 #ifndef _KMDB 4468 /* from typegraph.c */ 4469 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4470 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4471 findfalse }, 4472 { "typegraph", NULL, "build type graph", typegraph }, 4473 { "istype", ":type", "manually set object type", istype }, 4474 { "notype", ":", "manually clear object type", notype }, 4475 { "whattype", ":", "determine object type", whattype }, 4476 #endif 4477 4478 /* from vfs.c */ 4479 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4480 { "pfiles", ":[-fp]", "print process file information", pfiles, 4481 pfiles_help }, 4482 4483 /* from zone.c */ 4484 { "zid2zone", ":", "find the zone_t with the given zone id", 4485 zid2zone }, 4486 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4487 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4488 "selected zones", zsd }, 4489 4490 #ifndef _KMDB 4491 { "gcore", NULL, "generate a user core for the given process", 4492 gcore_dcmd }, 4493 #endif 4494 4495 { NULL } 4496 }; 4497 4498 static const mdb_walker_t walkers[] = { 4499 4500 /* from genunix.c */ 4501 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4502 callout_walk_init, callout_walk_step, callout_walk_fini, 4503 (void *)CALLOUT_WALK_BYLIST }, 4504 { "callouts_byid", "walk callouts by id hash chain", 4505 callout_walk_init, callout_walk_step, callout_walk_fini, 4506 (void *)CALLOUT_WALK_BYID }, 4507 { "callout_list", "walk a callout list", callout_list_walk_init, 4508 callout_list_walk_step, callout_list_walk_fini }, 4509 { "callout_table", "walk callout table array", callout_table_walk_init, 4510 callout_table_walk_step, callout_table_walk_fini }, 4511 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4512 { "dnlc", "walk dnlc entries", 4513 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini }, 4514 { "ereportq_dump", "walk list of ereports in dump error queue", 4515 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4516 { "ereportq_pend", "walk list of ereports in pending error queue", 4517 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4518 { "errorq", "walk list of system error queues", 4519 errorq_walk_init, errorq_walk_step, NULL }, 4520 { "errorq_data", "walk pending error queue data buffers", 4521 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4522 { "allfile", "given a proc pointer, list all file pointers", 4523 file_walk_init, allfile_walk_step, file_walk_fini }, 4524 { "file", "given a proc pointer, list of open file pointers", 4525 file_walk_init, file_walk_step, file_walk_fini }, 4526 { "lock_descriptor", "walk lock_descriptor_t structures", 4527 ld_walk_init, ld_walk_step, NULL }, 4528 { "lock_graph", "walk lock graph", 4529 lg_walk_init, lg_walk_step, NULL }, 4530 { "port", "given a proc pointer, list of created event ports", 4531 port_walk_init, port_walk_step, NULL }, 4532 { "portev", "given a port pointer, list of events in the queue", 4533 portev_walk_init, portev_walk_step, portev_walk_fini }, 4534 { "proc", "list of active proc_t structures", 4535 proc_walk_init, proc_walk_step, proc_walk_fini }, 4536 { "projects", "walk a list of kernel projects", 4537 project_walk_init, project_walk_step, NULL }, 4538 { "sysevent_pend", "walk sysevent pending queue", 4539 sysevent_pend_walk_init, sysevent_walk_step, 4540 sysevent_walk_fini}, 4541 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4542 sysevent_walk_step, sysevent_walk_fini}, 4543 { "sysevent_channel", "walk sysevent channel subscriptions", 4544 sysevent_channel_walk_init, sysevent_channel_walk_step, 4545 sysevent_channel_walk_fini}, 4546 { "sysevent_class_list", "walk sysevent subscription's class list", 4547 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4548 sysevent_class_list_walk_fini}, 4549 { "sysevent_subclass_list", 4550 "walk sysevent subscription's subclass list", 4551 sysevent_subclass_list_walk_init, 4552 sysevent_subclass_list_walk_step, 4553 sysevent_subclass_list_walk_fini}, 4554 { "task", "given a task pointer, walk its processes", 4555 task_walk_init, task_walk_step, NULL }, 4556 4557 /* from avl.c */ 4558 { AVL_WALK_NAME, AVL_WALK_DESC, 4559 avl_walk_init, avl_walk_step, avl_walk_fini }, 4560 4561 /* from bio.c */ 4562 { "buf", "walk the bio buf hash", 4563 buf_walk_init, buf_walk_step, buf_walk_fini }, 4564 4565 /* from contract.c */ 4566 { "contract", "walk all contracts, or those of the specified type", 4567 ct_walk_init, generic_walk_step, NULL }, 4568 { "ct_event", "walk events on a contract event queue", 4569 ct_event_walk_init, generic_walk_step, NULL }, 4570 { "ct_listener", "walk contract event queue listeners", 4571 ct_listener_walk_init, generic_walk_step, NULL }, 4572 4573 /* from cpupart.c */ 4574 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4575 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4576 NULL }, 4577 { "cpupart_walk", "walk the set of cpu partitions", 4578 cpupart_walk_init, cpupart_walk_step, NULL }, 4579 4580 /* from ctxop.c */ 4581 { "ctxop", "walk list of context ops on a thread", 4582 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4583 4584 /* from cyclic.c */ 4585 { "cyccpu", "walk per-CPU cyc_cpu structures", 4586 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4587 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4588 cycomni_walk_init, cycomni_walk_step, NULL }, 4589 { "cyctrace", "walk cyclic trace buffer", 4590 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4591 4592 /* from devinfo.c */ 4593 { "binding_hash", "walk all entries in binding hash table", 4594 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4595 { "devinfo", "walk devinfo tree or subtree", 4596 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4597 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4598 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4599 devinfo_audit_log_walk_fini}, 4600 { "devinfo_audit_node", "walk per-devinfo audit history", 4601 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4602 devinfo_audit_node_walk_fini}, 4603 { "devinfo_children", "walk children of devinfo node", 4604 devinfo_children_walk_init, devinfo_children_walk_step, 4605 devinfo_children_walk_fini }, 4606 { "devinfo_parents", "walk ancestors of devinfo node", 4607 devinfo_parents_walk_init, devinfo_parents_walk_step, 4608 devinfo_parents_walk_fini }, 4609 { "devinfo_siblings", "walk siblings of devinfo node", 4610 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4611 { "devi_next", "walk devinfo list", 4612 NULL, devi_next_walk_step, NULL }, 4613 { "devnames", "walk devnames array", 4614 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4615 { "minornode", "given a devinfo node, walk minor nodes", 4616 minornode_walk_init, minornode_walk_step, NULL }, 4617 { "softstate", 4618 "given an i_ddi_soft_state*, list all in-use driver stateps", 4619 soft_state_walk_init, soft_state_walk_step, 4620 NULL, NULL }, 4621 { "softstate_all", 4622 "given an i_ddi_soft_state*, list all driver stateps", 4623 soft_state_walk_init, soft_state_all_walk_step, 4624 NULL, NULL }, 4625 { "devinfo_fmc", 4626 "walk a fault management handle cache active list", 4627 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4628 4629 /* from group.c */ 4630 { "group", "walk all elements of a group", 4631 group_walk_init, group_walk_step, NULL }, 4632 4633 /* from irm.c */ 4634 { "irmpools", "walk global list of interrupt pools", 4635 irmpools_walk_init, list_walk_step, list_walk_fini }, 4636 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4637 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4638 4639 /* from kmem.c */ 4640 { "allocdby", "given a thread, walk its allocated bufctls", 4641 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4642 { "bufctl", "walk a kmem cache's bufctls", 4643 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4644 { "bufctl_history", "walk the available history of a bufctl", 4645 bufctl_history_walk_init, bufctl_history_walk_step, 4646 bufctl_history_walk_fini }, 4647 { "freedby", "given a thread, walk its freed bufctls", 4648 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4649 { "freectl", "walk a kmem cache's free bufctls", 4650 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4651 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4652 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4653 { "freemem", "walk a kmem cache's free memory", 4654 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4655 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4656 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4657 { "kmem", "walk a kmem cache", 4658 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4659 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4660 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4661 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4662 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4663 { "kmem_log", "walk the kmem transaction log", 4664 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4665 { "kmem_slab", "given a kmem cache, walk its slabs", 4666 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4667 { "kmem_slab_partial", 4668 "given a kmem cache, walk its partially allocated slabs (min 1)", 4669 kmem_slab_walk_partial_init, combined_walk_step, 4670 combined_walk_fini }, 4671 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4672 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4673 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4674 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4675 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4676 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4677 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4678 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4679 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4680 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4681 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4682 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4683 4684 /* from ldi.c */ 4685 { "ldi_handle", "walk the layered driver handle hash", 4686 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4687 { "ldi_ident", "walk the layered driver identifier hash", 4688 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4689 4690 /* from leaky.c + leaky_subr.c */ 4691 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4692 "stack trace", 4693 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4694 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4695 "leaks w/ same stack trace", 4696 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4697 4698 /* from lgrp.c */ 4699 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4700 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4701 { "lgrptbl", "walk lgroup table", 4702 lgrp_walk_init, lgrp_walk_step, NULL }, 4703 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4704 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4705 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4706 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4707 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4708 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4709 4710 /* from list.c */ 4711 { LIST_WALK_NAME, LIST_WALK_DESC, 4712 list_walk_init, list_walk_step, list_walk_fini }, 4713 4714 /* from mdi.c */ 4715 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4716 mdi_pi_client_link_walk_init, 4717 mdi_pi_client_link_walk_step, 4718 mdi_pi_client_link_walk_fini }, 4719 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4720 mdi_pi_phci_link_walk_init, 4721 mdi_pi_phci_link_walk_step, 4722 mdi_pi_phci_link_walk_fini }, 4723 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4724 mdi_phci_ph_next_walk_init, 4725 mdi_phci_ph_next_walk_step, 4726 mdi_phci_ph_next_walk_fini }, 4727 4728 /* from memory.c */ 4729 { "allpages", "walk all pages, including free pages", 4730 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4731 { "anon", "given an amp, list allocated anon structures", 4732 anon_walk_init, anon_walk_step, anon_walk_fini, 4733 ANON_WALK_ALLOC }, 4734 { "anon_all", "given an amp, list contents of all anon slots", 4735 anon_walk_init, anon_walk_step, anon_walk_fini, 4736 ANON_WALK_ALL }, 4737 { "memlist", "walk specified memlist", 4738 NULL, memlist_walk_step, NULL }, 4739 { "page", "walk all pages, or those from the specified vnode", 4740 page_walk_init, page_walk_step, page_walk_fini }, 4741 { "seg", "given an as, list of segments", 4742 seg_walk_init, avl_walk_step, avl_walk_fini }, 4743 { "segvn_anon", 4744 "given a struct segvn_data, list allocated anon structures", 4745 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4746 ANON_WALK_ALLOC }, 4747 { "segvn_anon_all", 4748 "given a struct segvn_data, list contents of all anon slots", 4749 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4750 ANON_WALK_ALL }, 4751 { "segvn_pages", 4752 "given a struct segvn_data, list resident pages in " 4753 "offset order", 4754 segvn_pages_walk_init, segvn_pages_walk_step, 4755 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4756 { "segvn_pages_all", 4757 "for each offset in a struct segvn_data, give page_t pointer " 4758 "(if resident), or NULL.", 4759 segvn_pages_walk_init, segvn_pages_walk_step, 4760 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4761 { "swapinfo", "walk swapinfo structures", 4762 swap_walk_init, swap_walk_step, NULL }, 4763 4764 /* from modhash.c */ 4765 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4766 modhash_walk_step, NULL }, 4767 { "modent", "walk list of entries in a given mod_hash", 4768 modent_walk_init, modent_walk_step, modent_walk_fini }, 4769 { "modchain", "walk list of entries in a given mod_hash_entry", 4770 NULL, modchain_walk_step, NULL }, 4771 4772 /* from net.c */ 4773 { "icmp", "walk ICMP control structures using MI for all stacks", 4774 mi_payload_walk_init, mi_payload_walk_step, NULL, 4775 &mi_icmp_arg }, 4776 { "mi", "given a MI_O, walk the MI", 4777 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4778 { "sonode", "given a sonode, walk its children", 4779 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4780 { "icmp_stacks", "walk all the icmp_stack_t", 4781 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4782 { "tcp_stacks", "walk all the tcp_stack_t", 4783 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4784 { "udp_stacks", "walk all the udp_stack_t", 4785 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4786 4787 /* from netstack.c */ 4788 { "netstack", "walk a list of kernel netstacks", 4789 netstack_walk_init, netstack_walk_step, NULL }, 4790 4791 /* from nvpair.c */ 4792 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4793 nvpair_walk_init, nvpair_walk_step, NULL }, 4794 4795 /* from pci.c */ 4796 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init, 4797 pcie_bus_walk_step, NULL }, 4798 4799 /* from rctl.c */ 4800 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4801 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4802 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4803 rctl_set_walk_step, NULL }, 4804 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4805 rctl_val_walk_init, rctl_val_walk_step }, 4806 4807 /* from sobj.c */ 4808 { "blocked", "walk threads blocked on a given sobj", 4809 blocked_walk_init, blocked_walk_step, NULL }, 4810 { "wchan", "given a wchan, list of blocked threads", 4811 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4812 4813 /* from stream.c */ 4814 { "b_cont", "walk mblk_t list using b_cont", 4815 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4816 { "b_next", "walk mblk_t list using b_next", 4817 mblk_walk_init, b_next_step, mblk_walk_fini }, 4818 { "qlink", "walk queue_t list using q_link", 4819 queue_walk_init, queue_link_step, queue_walk_fini }, 4820 { "qnext", "walk queue_t list using q_next", 4821 queue_walk_init, queue_next_step, queue_walk_fini }, 4822 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4823 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4824 { "readq", "walk read queue side of stdata", 4825 str_walk_init, strr_walk_step, str_walk_fini }, 4826 { "writeq", "walk write queue side of stdata", 4827 str_walk_init, strw_walk_step, str_walk_fini }, 4828 4829 /* from taskq.c */ 4830 { "taskq_thread", "given a taskq_t, list all of its threads", 4831 taskq_thread_walk_init, 4832 taskq_thread_walk_step, 4833 taskq_thread_walk_fini }, 4834 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4835 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4836 4837 /* from thread.c */ 4838 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4839 deathrow_walk_init, deathrow_walk_step, NULL }, 4840 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4841 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4842 { "cpupart_dispq", 4843 "given a cpupart_t, walk threads in dispatcher queues", 4844 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4845 { "lwp_deathrow", "walk lwp_deathrow", 4846 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4847 { "thread", "global or per-process kthread_t structures", 4848 thread_walk_init, thread_walk_step, thread_walk_fini }, 4849 { "thread_deathrow", "walk threads on thread_deathrow", 4850 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4851 4852 /* from tsd.c */ 4853 { "tsd", "walk list of thread-specific data", 4854 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4855 4856 /* from tsol.c */ 4857 { "tnrh", "walk remote host cache structures", 4858 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4859 { "tnrhtp", "walk remote host template structures", 4860 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4861 4862 /* 4863 * typegraph does not work under kmdb, as it requires too much memory 4864 * for its internal data structures. 4865 */ 4866 #ifndef _KMDB 4867 /* from typegraph.c */ 4868 { "typeconflict", "walk buffers with conflicting type inferences", 4869 typegraph_walk_init, typeconflict_walk_step }, 4870 { "typeunknown", "walk buffers with unknown types", 4871 typegraph_walk_init, typeunknown_walk_step }, 4872 #endif 4873 4874 /* from vfs.c */ 4875 { "vfs", "walk file system list", 4876 vfs_walk_init, vfs_walk_step }, 4877 4878 /* from zone.c */ 4879 { "zone", "walk a list of kernel zones", 4880 zone_walk_init, zone_walk_step, NULL }, 4881 { "zsd", "walk list of zsd entries for a zone", 4882 zsd_walk_init, zsd_walk_step, NULL }, 4883 4884 { NULL } 4885 }; 4886 4887 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4888 4889 /*ARGSUSED*/ 4890 static void 4891 genunix_statechange_cb(void *ignored) 4892 { 4893 /* 4894 * Force ::findleaks and ::stacks to let go any cached state. 4895 */ 4896 leaky_cleanup(1); 4897 stacks_cleanup(1); 4898 4899 kmem_statechange(); /* notify kmem */ 4900 } 4901 4902 const mdb_modinfo_t * 4903 _mdb_init(void) 4904 { 4905 kmem_init(); 4906 4907 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4908 genunix_statechange_cb, NULL); 4909 4910 #ifndef _KMDB 4911 gcore_init(); 4912 #endif 4913 4914 return (&modinfo); 4915 } 4916 4917 void 4918 _mdb_fini(void) 4919 { 4920 leaky_cleanup(1); 4921 stacks_cleanup(1); 4922 } 4923