xref: /illumos-gate/usr/src/cmd/mdb/common/modules/genunix/genunix.c (revision 66492cf01c4f0eb178cb6e056451d04be61a0374)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
23  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2017 Joyent, Inc.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  */
27 
28 #include <mdb/mdb_param.h>
29 #include <mdb/mdb_modapi.h>
30 #include <mdb/mdb_ks.h>
31 #include <mdb/mdb_ctf.h>
32 
33 #include <sys/types.h>
34 #include <sys/thread.h>
35 #include <sys/session.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/var.h>
39 #include <sys/t_lock.h>
40 #include <sys/callo.h>
41 #include <sys/priocntl.h>
42 #include <sys/class.h>
43 #include <sys/regset.h>
44 #include <sys/stack.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vnode.h>
47 #include <sys/vfs.h>
48 #include <sys/flock_impl.h>
49 #include <sys/kmem_impl.h>
50 #include <sys/vmem_impl.h>
51 #include <sys/kstat.h>
52 #include <sys/dditypes.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/sysmacros.h>
55 #include <sys/sysconf.h>
56 #include <sys/task.h>
57 #include <sys/project.h>
58 #include <sys/errorq_impl.h>
59 #include <sys/cred_impl.h>
60 #include <sys/zone.h>
61 #include <sys/panic.h>
62 #include <regex.h>
63 #include <sys/port_impl.h>
64 
65 #include "avl.h"
66 #include "bio.h"
67 #include "bitset.h"
68 #include "combined.h"
69 #include "contract.h"
70 #include "cpupart_mdb.h"
71 #include "cred.h"
72 #include "ctxop.h"
73 #include "cyclic.h"
74 #include "damap.h"
75 #include "ddi_periodic.h"
76 #include "devinfo.h"
77 #include "dnlc.h"
78 #include "findstack.h"
79 #include "fm.h"
80 #include "gcore.h"
81 #include "group.h"
82 #include "irm.h"
83 #include "kgrep.h"
84 #include "kmem.h"
85 #include "ldi.h"
86 #include "leaky.h"
87 #include "lgrp.h"
88 #include "list.h"
89 #include "log.h"
90 #include "mdi.h"
91 #include "memory.h"
92 #include "mmd.h"
93 #include "modhash.h"
94 #include "ndievents.h"
95 #include "net.h"
96 #include "netstack.h"
97 #include "nvpair.h"
98 #include "pg.h"
99 #include "rctl.h"
100 #include "sobj.h"
101 #include "streams.h"
102 #include "sysevent.h"
103 #include "taskq.h"
104 #include "thread.h"
105 #include "tsd.h"
106 #include "tsol.h"
107 #include "typegraph.h"
108 #include "vfs.h"
109 #include "zone.h"
110 #include "hotplug.h"
111 
112 /*
113  * Surely this is defined somewhere...
114  */
115 #define	NINTR		16
116 
117 #define	KILOS		10
118 #define	MEGS		20
119 #define	GIGS		30
120 
121 #ifndef STACK_BIAS
122 #define	STACK_BIAS	0
123 #endif
124 
125 static char
126 pstat2ch(uchar_t state)
127 {
128 	switch (state) {
129 		case SSLEEP: return ('S');
130 		case SRUN: return ('R');
131 		case SZOMB: return ('Z');
132 		case SIDL: return ('I');
133 		case SONPROC: return ('O');
134 		case SSTOP: return ('T');
135 		case SWAIT: return ('W');
136 		default: return ('?');
137 	}
138 }
139 
140 #define	PS_PRTTHREADS	0x1
141 #define	PS_PRTLWPS	0x2
142 #define	PS_PSARGS	0x4
143 #define	PS_TASKS	0x8
144 #define	PS_PROJECTS	0x10
145 #define	PS_ZONES	0x20
146 
147 static int
148 ps_threadprint(uintptr_t addr, const void *data, void *private)
149 {
150 	const kthread_t *t = (const kthread_t *)data;
151 	uint_t prt_flags = *((uint_t *)private);
152 
153 	static const mdb_bitmask_t t_state_bits[] = {
154 		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
155 		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
156 		{ "TS_RUN",	TS_RUN,		TS_RUN		},
157 		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
158 		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
159 		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
160 		{ "TS_WAIT",	TS_WAIT,	TS_WAIT		},
161 		{ NULL,		0,		0		}
162 	};
163 
164 	if (prt_flags & PS_PRTTHREADS)
165 		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
166 
167 	if (prt_flags & PS_PRTLWPS)
168 		mdb_printf("\tL  %?a ID: %u\n", t->t_lwp, t->t_tid);
169 
170 	return (WALK_NEXT);
171 }
172 
173 typedef struct mdb_pflags_proc {
174 	struct pid 	*p_pidp;
175 	ushort_t	p_pidflag;
176 	uint_t		p_proc_flag;
177 	uint_t		p_flag;
178 } mdb_pflags_proc_t;
179 
180 static int
181 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
182 {
183 	mdb_pflags_proc_t pr;
184 	struct pid pid;
185 
186 	static const mdb_bitmask_t p_flag_bits[] = {
187 		{ "SSYS",		SSYS,		SSYS		},
188 		{ "SEXITING",		SEXITING,	SEXITING	},
189 		{ "SITBUSY",		SITBUSY,	SITBUSY		},
190 		{ "SFORKING",		SFORKING,	SFORKING	},
191 		{ "SWATCHOK",		SWATCHOK,	SWATCHOK	},
192 		{ "SKILLED",		SKILLED,	SKILLED		},
193 		{ "SSCONT",		SSCONT,		SSCONT		},
194 		{ "SZONETOP",		SZONETOP,	SZONETOP	},
195 		{ "SEXTKILLED",		SEXTKILLED,	SEXTKILLED	},
196 		{ "SUGID",		SUGID,		SUGID		},
197 		{ "SEXECED",		SEXECED,	SEXECED		},
198 		{ "SJCTL",		SJCTL,		SJCTL		},
199 		{ "SNOWAIT",		SNOWAIT,	SNOWAIT		},
200 		{ "SVFORK",		SVFORK,		SVFORK		},
201 		{ "SVFWAIT",		SVFWAIT,	SVFWAIT		},
202 		{ "SEXITLWPS",		SEXITLWPS,	SEXITLWPS	},
203 		{ "SHOLDFORK",		SHOLDFORK,	SHOLDFORK	},
204 		{ "SHOLDFORK1",		SHOLDFORK1,	SHOLDFORK1	},
205 		{ "SCOREDUMP",		SCOREDUMP,	SCOREDUMP	},
206 		{ "SMSACCT",		SMSACCT,	SMSACCT		},
207 		{ "SLWPWRAP",		SLWPWRAP,	SLWPWRAP	},
208 		{ "SAUTOLPG",		SAUTOLPG,	SAUTOLPG	},
209 		{ "SNOCD",		SNOCD,		SNOCD		},
210 		{ "SHOLDWATCH",		SHOLDWATCH,	SHOLDWATCH	},
211 		{ "SMSFORK",		SMSFORK,	SMSFORK		},
212 		{ "SDOCORE",		SDOCORE,	SDOCORE		},
213 		{ NULL,			0,		0		}
214 	};
215 
216 	static const mdb_bitmask_t p_pidflag_bits[] = {
217 		{ "CLDPEND",		CLDPEND,	CLDPEND		},
218 		{ "CLDCONT",		CLDCONT,	CLDCONT		},
219 		{ "CLDNOSIGCHLD",	CLDNOSIGCHLD,	CLDNOSIGCHLD	},
220 		{ "CLDWAITPID",		CLDWAITPID,	CLDWAITPID	},
221 		{ NULL,			0,		0		}
222 	};
223 
224 	static const mdb_bitmask_t p_proc_flag_bits[] = {
225 		{ "P_PR_TRACE",		P_PR_TRACE,	P_PR_TRACE	},
226 		{ "P_PR_PTRACE",	P_PR_PTRACE,	P_PR_PTRACE	},
227 		{ "P_PR_FORK",		P_PR_FORK,	P_PR_FORK	},
228 		{ "P_PR_LOCK",		P_PR_LOCK,	P_PR_LOCK	},
229 		{ "P_PR_ASYNC",		P_PR_ASYNC,	P_PR_ASYNC	},
230 		{ "P_PR_EXEC",		P_PR_EXEC,	P_PR_EXEC	},
231 		{ "P_PR_BPTADJ",	P_PR_BPTADJ,	P_PR_BPTADJ	},
232 		{ "P_PR_RUNLCL",	P_PR_RUNLCL,	P_PR_RUNLCL	},
233 		{ "P_PR_KILLCL",	P_PR_KILLCL,	P_PR_KILLCL	},
234 		{ NULL,			0,		0		}
235 	};
236 
237 	if (!(flags & DCMD_ADDRSPEC)) {
238 		if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
239 			mdb_warn("can't walk 'proc'");
240 			return (DCMD_ERR);
241 		}
242 		return (DCMD_OK);
243 	}
244 
245 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
246 	    mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
247 		mdb_warn("cannot read proc_t or pid");
248 		return (DCMD_ERR);
249 	}
250 
251 	mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
252 	mdb_printf("\tp_flag:      %08x <%b>\n", pr.p_flag, pr.p_flag,
253 	    p_flag_bits);
254 	mdb_printf("\tp_pidflag:   %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
255 	    p_pidflag_bits);
256 	mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
257 	    p_proc_flag_bits);
258 
259 	return (DCMD_OK);
260 }
261 
262 typedef struct mdb_ps_proc {
263 	char		p_stat;
264 	struct pid 	*p_pidp;
265 	struct pid 	*p_pgidp;
266 	struct cred	*p_cred;
267 	struct sess	*p_sessp;
268 	struct task	*p_task;
269 	struct zone	*p_zone;
270 	pid_t		p_ppid;
271 	uint_t		p_flag;
272 	struct {
273 		char		u_comm[MAXCOMLEN + 1];
274 		char		u_psargs[PSARGSZ];
275 	} p_user;
276 } mdb_ps_proc_t;
277 
278 int
279 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
280 {
281 	uint_t prt_flags = 0;
282 	mdb_ps_proc_t pr;
283 	struct pid pid, pgid, sid;
284 	sess_t session;
285 	cred_t cred;
286 	task_t tk;
287 	kproject_t pj;
288 	zone_t zn;
289 
290 	if (!(flags & DCMD_ADDRSPEC)) {
291 		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
292 			mdb_warn("can't walk 'proc'");
293 			return (DCMD_ERR);
294 		}
295 		return (DCMD_OK);
296 	}
297 
298 	if (mdb_getopts(argc, argv,
299 	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
300 	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
301 	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
302 	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
303 	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
304 	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
305 		return (DCMD_USAGE);
306 
307 	if (DCMD_HDRSPEC(flags)) {
308 		mdb_printf("%<u>%1s %6s %6s %6s %6s ",
309 		    "S", "PID", "PPID", "PGID", "SID");
310 		if (prt_flags & PS_TASKS)
311 			mdb_printf("%5s ", "TASK");
312 		if (prt_flags & PS_PROJECTS)
313 			mdb_printf("%5s ", "PROJ");
314 		if (prt_flags & PS_ZONES)
315 			mdb_printf("%5s ", "ZONE");
316 		mdb_printf("%6s %10s %?s %s%</u>\n",
317 		    "UID", "FLAGS", "ADDR", "NAME");
318 	}
319 
320 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
321 		return (DCMD_ERR);
322 
323 	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
324 	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
325 	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
326 	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
327 	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
328 	if (prt_flags & (PS_TASKS | PS_PROJECTS))
329 		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
330 	if (prt_flags & PS_PROJECTS)
331 		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
332 	if (prt_flags & PS_ZONES)
333 		mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
334 
335 	mdb_printf("%c %6d %6d %6d %6d ",
336 	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
337 	    sid.pid_id);
338 	if (prt_flags & PS_TASKS)
339 		mdb_printf("%5d ", tk.tk_tkid);
340 	if (prt_flags & PS_PROJECTS)
341 		mdb_printf("%5d ", pj.kpj_id);
342 	if (prt_flags & PS_ZONES)
343 		mdb_printf("%5d ", zn.zone_id);
344 	mdb_printf("%6d 0x%08x %0?p %s\n",
345 	    cred.cr_uid, pr.p_flag, addr,
346 	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
347 
348 	if (prt_flags & ~PS_PSARGS)
349 		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
350 
351 	return (DCMD_OK);
352 }
353 
354 #define	PG_NEWEST	0x0001
355 #define	PG_OLDEST	0x0002
356 #define	PG_PIPE_OUT	0x0004
357 #define	PG_EXACT_MATCH	0x0008
358 
359 typedef struct pgrep_data {
360 	uint_t pg_flags;
361 	uint_t pg_psflags;
362 	uintptr_t pg_xaddr;
363 	hrtime_t pg_xstart;
364 	const char *pg_pat;
365 #ifndef _KMDB
366 	regex_t pg_reg;
367 #endif
368 } pgrep_data_t;
369 
370 typedef struct mdb_pgrep_proc {
371 	struct {
372 		timestruc_t	u_start;
373 		char		u_comm[MAXCOMLEN + 1];
374 	} p_user;
375 } mdb_pgrep_proc_t;
376 
377 /*ARGSUSED*/
378 static int
379 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
380 {
381 	mdb_pgrep_proc_t p;
382 	pgrep_data_t *pgp = data;
383 #ifndef _KMDB
384 	regmatch_t pmatch;
385 #endif
386 
387 	if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
388 		return (WALK_ERR);
389 
390 	/*
391 	 * kmdb doesn't have access to the reg* functions, so we fall back
392 	 * to strstr/strcmp.
393 	 */
394 #ifdef _KMDB
395 	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
396 	    (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
397 	    (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
398 		return (WALK_NEXT);
399 #else
400 	if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
401 		return (WALK_NEXT);
402 
403 	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
404 	    (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
405 		return (WALK_NEXT);
406 #endif
407 
408 	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
409 		hrtime_t start;
410 
411 		start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
412 		    p.p_user.u_start.tv_nsec;
413 
414 		if (pgp->pg_flags & PG_NEWEST) {
415 			if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
416 				pgp->pg_xaddr = addr;
417 				pgp->pg_xstart = start;
418 			}
419 		} else {
420 			if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
421 				pgp->pg_xaddr = addr;
422 				pgp->pg_xstart = start;
423 			}
424 		}
425 
426 	} else if (pgp->pg_flags & PG_PIPE_OUT) {
427 		mdb_printf("%p\n", addr);
428 
429 	} else {
430 		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
431 			mdb_warn("can't invoke 'ps'");
432 			return (WALK_DONE);
433 		}
434 		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
435 	}
436 
437 	return (WALK_NEXT);
438 }
439 
440 /*ARGSUSED*/
441 int
442 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
443 {
444 	pgrep_data_t pg;
445 	int i;
446 #ifndef _KMDB
447 	int err;
448 #endif
449 
450 	if (flags & DCMD_ADDRSPEC)
451 		return (DCMD_USAGE);
452 
453 	pg.pg_flags = 0;
454 	pg.pg_xaddr = 0;
455 
456 	i = mdb_getopts(argc, argv,
457 	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
458 	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
459 	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
460 	    NULL);
461 
462 	argc -= i;
463 	argv += i;
464 
465 	if (argc != 1)
466 		return (DCMD_USAGE);
467 
468 	/*
469 	 * -n and -o are mutually exclusive.
470 	 */
471 	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
472 		return (DCMD_USAGE);
473 
474 	if (argv->a_type != MDB_TYPE_STRING)
475 		return (DCMD_USAGE);
476 
477 	if (flags & DCMD_PIPE_OUT)
478 		pg.pg_flags |= PG_PIPE_OUT;
479 
480 	pg.pg_pat = argv->a_un.a_str;
481 	if (DCMD_HDRSPEC(flags))
482 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
483 	else
484 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
485 
486 #ifndef _KMDB
487 	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
488 		size_t nbytes;
489 		char *buf;
490 
491 		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
492 		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
493 		(void) regerror(err, &pg.pg_reg, buf, nbytes);
494 		mdb_warn("%s\n", buf);
495 
496 		return (DCMD_ERR);
497 	}
498 #endif
499 
500 	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
501 		mdb_warn("can't walk 'proc'");
502 		return (DCMD_ERR);
503 	}
504 
505 	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
506 		if (pg.pg_flags & PG_PIPE_OUT) {
507 			mdb_printf("%p\n", pg.pg_xaddr);
508 		} else {
509 			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
510 			    0, NULL) != 0) {
511 				mdb_warn("can't invoke 'ps'");
512 				return (DCMD_ERR);
513 			}
514 		}
515 	}
516 
517 	return (DCMD_OK);
518 }
519 
520 int
521 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
522 {
523 	task_t tk;
524 	kproject_t pj;
525 
526 	if (!(flags & DCMD_ADDRSPEC)) {
527 		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
528 			mdb_warn("can't walk task_cache");
529 			return (DCMD_ERR);
530 		}
531 		return (DCMD_OK);
532 	}
533 	if (DCMD_HDRSPEC(flags)) {
534 		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
535 		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
536 	}
537 	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
538 		mdb_warn("can't read task_t structure at %p", addr);
539 		return (DCMD_ERR);
540 	}
541 	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
542 		mdb_warn("can't read project_t structure at %p", addr);
543 		return (DCMD_ERR);
544 	}
545 	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
546 	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
547 	    tk.tk_flags);
548 	return (DCMD_OK);
549 }
550 
551 int
552 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
553 {
554 	kproject_t pj;
555 
556 	if (!(flags & DCMD_ADDRSPEC)) {
557 		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
558 			mdb_warn("can't walk projects");
559 			return (DCMD_ERR);
560 		}
561 		return (DCMD_OK);
562 	}
563 	if (DCMD_HDRSPEC(flags)) {
564 		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
565 		    "ADDR", "PROJID", "ZONEID", "REFCNT");
566 	}
567 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
568 		mdb_warn("can't read kproject_t structure at %p", addr);
569 		return (DCMD_ERR);
570 	}
571 	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
572 	    pj.kpj_count);
573 	return (DCMD_OK);
574 }
575 
576 /* walk callouts themselves, either by list or id hash. */
577 int
578 callout_walk_init(mdb_walk_state_t *wsp)
579 {
580 	if (wsp->walk_addr == NULL) {
581 		mdb_warn("callout doesn't support global walk");
582 		return (WALK_ERR);
583 	}
584 	wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
585 	return (WALK_NEXT);
586 }
587 
588 #define	CALLOUT_WALK_BYLIST	0
589 #define	CALLOUT_WALK_BYID	1
590 
591 /* the walker arg switches between walking by list (0) and walking by id (1). */
592 int
593 callout_walk_step(mdb_walk_state_t *wsp)
594 {
595 	int retval;
596 
597 	if (wsp->walk_addr == NULL) {
598 		return (WALK_DONE);
599 	}
600 	if (mdb_vread(wsp->walk_data, sizeof (callout_t),
601 	    wsp->walk_addr) == -1) {
602 		mdb_warn("failed to read callout at %p", wsp->walk_addr);
603 		return (WALK_DONE);
604 	}
605 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
606 	    wsp->walk_cbdata);
607 
608 	if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
609 		wsp->walk_addr =
610 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
611 	} else {
612 		wsp->walk_addr =
613 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
614 	}
615 
616 	return (retval);
617 }
618 
619 void
620 callout_walk_fini(mdb_walk_state_t *wsp)
621 {
622 	mdb_free(wsp->walk_data, sizeof (callout_t));
623 }
624 
625 /*
626  * walker for callout lists. This is different from hashes and callouts.
627  * Thankfully, it's also simpler.
628  */
629 int
630 callout_list_walk_init(mdb_walk_state_t *wsp)
631 {
632 	if (wsp->walk_addr == NULL) {
633 		mdb_warn("callout list doesn't support global walk");
634 		return (WALK_ERR);
635 	}
636 	wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
637 	return (WALK_NEXT);
638 }
639 
640 int
641 callout_list_walk_step(mdb_walk_state_t *wsp)
642 {
643 	int retval;
644 
645 	if (wsp->walk_addr == NULL) {
646 		return (WALK_DONE);
647 	}
648 	if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
649 	    wsp->walk_addr) != sizeof (callout_list_t)) {
650 		mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
651 		return (WALK_ERR);
652 	}
653 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
654 	    wsp->walk_cbdata);
655 
656 	wsp->walk_addr = (uintptr_t)
657 	    (((callout_list_t *)wsp->walk_data)->cl_next);
658 
659 	return (retval);
660 }
661 
662 void
663 callout_list_walk_fini(mdb_walk_state_t *wsp)
664 {
665 	mdb_free(wsp->walk_data, sizeof (callout_list_t));
666 }
667 
668 /* routines/structs to walk callout table(s) */
669 typedef struct cot_data {
670 	callout_table_t *ct0;
671 	callout_table_t ct;
672 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
673 	callout_hash_t cot_clhash[CALLOUT_BUCKETS];
674 	kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
675 	int cotndx;
676 	int cotsize;
677 } cot_data_t;
678 
679 int
680 callout_table_walk_init(mdb_walk_state_t *wsp)
681 {
682 	int max_ncpus;
683 	cot_data_t *cot_walk_data;
684 
685 	cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
686 
687 	if (wsp->walk_addr == NULL) {
688 		if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
689 			mdb_warn("failed to read 'callout_table'");
690 			return (WALK_ERR);
691 		}
692 		if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
693 			mdb_warn("failed to get callout_table array size");
694 			return (WALK_ERR);
695 		}
696 		cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
697 		wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
698 	} else {
699 		/* not a global walk */
700 		cot_walk_data->cotsize = 1;
701 	}
702 
703 	cot_walk_data->cotndx = 0;
704 	wsp->walk_data = cot_walk_data;
705 
706 	return (WALK_NEXT);
707 }
708 
709 int
710 callout_table_walk_step(mdb_walk_state_t *wsp)
711 {
712 	int retval;
713 	cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
714 	size_t size;
715 
716 	if (cotwd->cotndx >= cotwd->cotsize) {
717 		return (WALK_DONE);
718 	}
719 	if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
720 	    wsp->walk_addr) != sizeof (callout_table_t)) {
721 		mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
722 		return (WALK_ERR);
723 	}
724 
725 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
726 	if (cotwd->ct.ct_idhash != NULL) {
727 		if (mdb_vread(cotwd->cot_idhash, size,
728 		    (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
729 			mdb_warn("failed to read id_hash at %p",
730 			    cotwd->ct.ct_idhash);
731 			return (WALK_ERR);
732 		}
733 	}
734 	if (cotwd->ct.ct_clhash != NULL) {
735 		if (mdb_vread(&(cotwd->cot_clhash), size,
736 		    (uintptr_t)cotwd->ct.ct_clhash) == -1) {
737 			mdb_warn("failed to read cl_hash at %p",
738 			    cotwd->ct.ct_clhash);
739 			return (WALK_ERR);
740 		}
741 	}
742 	size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
743 	if (cotwd->ct.ct_kstat_data != NULL) {
744 		if (mdb_vread(&(cotwd->ct_kstat_data), size,
745 		    (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
746 			mdb_warn("failed to read kstats at %p",
747 			    cotwd->ct.ct_kstat_data);
748 			return (WALK_ERR);
749 		}
750 	}
751 	retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
752 	    wsp->walk_cbdata);
753 
754 	cotwd->cotndx++;
755 	if (cotwd->cotndx >= cotwd->cotsize) {
756 		return (WALK_DONE);
757 	}
758 	wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
759 	    sizeof (callout_table_t));
760 
761 	return (retval);
762 }
763 
764 void
765 callout_table_walk_fini(mdb_walk_state_t *wsp)
766 {
767 	mdb_free(wsp->walk_data, sizeof (cot_data_t));
768 }
769 
770 static const char *co_typenames[] = { "R", "N" };
771 
772 #define	CO_PLAIN_ID(xid)	((xid) & CALLOUT_ID_MASK)
773 
774 #define	TABLE_TO_SEQID(x)	((x) >> CALLOUT_TYPE_BITS)
775 
776 /* callout flags, in no particular order */
777 #define	COF_REAL	0x00000001
778 #define	COF_NORM	0x00000002
779 #define	COF_LONG	0x00000004
780 #define	COF_SHORT	0x00000008
781 #define	COF_EMPTY	0x00000010
782 #define	COF_TIME	0x00000020
783 #define	COF_BEFORE	0x00000040
784 #define	COF_AFTER	0x00000080
785 #define	COF_SEQID	0x00000100
786 #define	COF_FUNC	0x00000200
787 #define	COF_ADDR	0x00000400
788 #define	COF_EXEC	0x00000800
789 #define	COF_HIRES	0x00001000
790 #define	COF_ABS		0x00002000
791 #define	COF_TABLE	0x00004000
792 #define	COF_BYIDH	0x00008000
793 #define	COF_FREE	0x00010000
794 #define	COF_LIST	0x00020000
795 #define	COF_EXPREL	0x00040000
796 #define	COF_HDR		0x00080000
797 #define	COF_VERBOSE	0x00100000
798 #define	COF_LONGLIST	0x00200000
799 #define	COF_THDR	0x00400000
800 #define	COF_LHDR	0x00800000
801 #define	COF_CHDR	0x01000000
802 #define	COF_PARAM	0x02000000
803 #define	COF_DECODE	0x04000000
804 #define	COF_HEAP	0x08000000
805 #define	COF_QUEUE	0x10000000
806 
807 /* show real and normal, short and long, expired and unexpired. */
808 #define	COF_DEFAULT	(COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
809 
810 #define	COF_LIST_FLAGS	\
811 	(CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
812 
813 /* private callout data for callback functions */
814 typedef struct callout_data {
815 	uint_t flags;		/* COF_* */
816 	cpu_t *cpu;		/* cpu pointer if given */
817 	int seqid;		/* cpu seqid, or -1 */
818 	hrtime_t time;		/* expiration time value */
819 	hrtime_t atime;		/* expiration before value */
820 	hrtime_t btime;		/* expiration after value */
821 	uintptr_t funcaddr;	/* function address or NULL */
822 	uintptr_t param;	/* parameter to function or NULL */
823 	hrtime_t now;		/* current system time */
824 	int nsec_per_tick;	/* for conversions */
825 	ulong_t ctbits;		/* for decoding xid */
826 	callout_table_t *co_table;	/* top of callout table array */
827 	int ndx;		/* table index. */
828 	int bucket;		/* which list/id bucket are we in */
829 	hrtime_t exp;		/* expire time */
830 	int list_flags;		/* copy of cl_flags */
831 } callout_data_t;
832 
833 /* this callback does the actual callback itself (finally). */
834 /*ARGSUSED*/
835 static int
836 callouts_cb(uintptr_t addr, const void *data, void *priv)
837 {
838 	callout_data_t *coargs = (callout_data_t *)priv;
839 	callout_t *co = (callout_t *)data;
840 	int tableid, list_flags;
841 	callout_id_t coid;
842 
843 	if ((coargs == NULL) || (co == NULL)) {
844 		return (WALK_ERR);
845 	}
846 
847 	if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
848 		/*
849 		 * The callout must have been reallocated. No point in
850 		 * walking any more.
851 		 */
852 		return (WALK_DONE);
853 	}
854 	if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
855 		/*
856 		 * The callout must have been freed. No point in
857 		 * walking any more.
858 		 */
859 		return (WALK_DONE);
860 	}
861 	if ((coargs->flags & COF_FUNC) &&
862 	    (coargs->funcaddr != (uintptr_t)co->c_func)) {
863 		return (WALK_NEXT);
864 	}
865 	if ((coargs->flags & COF_PARAM) &&
866 	    (coargs->param != (uintptr_t)co->c_arg)) {
867 		return (WALK_NEXT);
868 	}
869 	if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
870 		return (WALK_NEXT);
871 	}
872 	if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
873 		return (WALK_NEXT);
874 	}
875 	if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
876 		return (WALK_NEXT);
877 	}
878 	/* it is possible we don't have the exp time or flags */
879 	if (coargs->flags & COF_BYIDH) {
880 		if (!(coargs->flags & COF_FREE)) {
881 			/* we have to fetch the expire time ourselves. */
882 			if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
883 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
884 			    cl_expiration)) == -1) {
885 				mdb_warn("failed to read expiration "
886 				    "time from %p", co->c_list);
887 				coargs->exp = 0;
888 			}
889 			/* and flags. */
890 			if (mdb_vread(&coargs->list_flags, sizeof (int),
891 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
892 			    cl_flags)) == -1) {
893 				mdb_warn("failed to read list flags"
894 				    "from %p", co->c_list);
895 				coargs->list_flags = 0;
896 			}
897 		} else {
898 			/* free callouts can't use list pointer. */
899 			coargs->exp = 0;
900 			coargs->list_flags = 0;
901 		}
902 		if (coargs->exp != 0) {
903 			if ((coargs->flags & COF_TIME) &&
904 			    (coargs->exp != coargs->time)) {
905 				return (WALK_NEXT);
906 			}
907 			if ((coargs->flags & COF_BEFORE) &&
908 			    (coargs->exp > coargs->btime)) {
909 				return (WALK_NEXT);
910 			}
911 			if ((coargs->flags & COF_AFTER) &&
912 			    (coargs->exp < coargs->atime)) {
913 				return (WALK_NEXT);
914 			}
915 		}
916 		/* tricky part, since both HIRES and ABS can be set */
917 		list_flags = coargs->list_flags;
918 		if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
919 			/* both flags are set, only skip "regular" ones */
920 			if (! (list_flags & COF_LIST_FLAGS)) {
921 				return (WALK_NEXT);
922 			}
923 		} else {
924 			/* individual flags, or no flags */
925 			if ((coargs->flags & COF_HIRES) &&
926 			    !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
927 				return (WALK_NEXT);
928 			}
929 			if ((coargs->flags & COF_ABS) &&
930 			    !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
931 				return (WALK_NEXT);
932 			}
933 		}
934 		/*
935 		 * We do the checks for COF_HEAP and COF_QUEUE here only if we
936 		 * are traversing BYIDH. If the traversal is by callout list,
937 		 * we do this check in callout_list_cb() to be more
938 		 * efficient.
939 		 */
940 		if ((coargs->flags & COF_HEAP) &&
941 		    !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
942 			return (WALK_NEXT);
943 		}
944 
945 		if ((coargs->flags & COF_QUEUE) &&
946 		    !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
947 			return (WALK_NEXT);
948 		}
949 	}
950 
951 #define	callout_table_mask	((1 << coargs->ctbits) - 1)
952 	tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
953 #undef	callout_table_mask
954 	coid = CO_PLAIN_ID(co->c_xid);
955 
956 	if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
957 		/*
958 		 * We need to print the headers. If walking by id, then
959 		 * the list header isn't printed, so we must include
960 		 * that info here.
961 		 */
962 		if (!(coargs->flags & COF_VERBOSE)) {
963 			mdb_printf("%<u>%3s %-1s %-14s %</u>",
964 			    "SEQ", "T", "EXP");
965 		} else if (coargs->flags & COF_BYIDH) {
966 			mdb_printf("%<u>%-14s %</u>", "EXP");
967 		}
968 		mdb_printf("%<u>%-4s %-?s %-20s%</u>",
969 		    "XHAL", "XID", "FUNC(ARG)");
970 		if (coargs->flags & COF_LONGLIST) {
971 			mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
972 			    "PREVID", "NEXTID", "PREVL", "NEXTL");
973 			mdb_printf("%<u> %-?s %-4s %-?s%</u>",
974 			    "DONE", "UTOS", "THREAD");
975 		}
976 		mdb_printf("\n");
977 		coargs->flags &= ~COF_CHDR;
978 		coargs->flags |= (COF_THDR | COF_LHDR);
979 	}
980 
981 	if (!(coargs->flags & COF_ADDR)) {
982 		if (!(coargs->flags & COF_VERBOSE)) {
983 			mdb_printf("%-3d %1s %-14llx ",
984 			    TABLE_TO_SEQID(tableid),
985 			    co_typenames[tableid & CALLOUT_TYPE_MASK],
986 			    (coargs->flags & COF_EXPREL) ?
987 			    coargs->exp - coargs->now : coargs->exp);
988 		} else if (coargs->flags & COF_BYIDH) {
989 			mdb_printf("%-14x ",
990 			    (coargs->flags & COF_EXPREL) ?
991 			    coargs->exp - coargs->now : coargs->exp);
992 		}
993 		list_flags = coargs->list_flags;
994 		mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
995 		    (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
996 		    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
997 		    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
998 		    (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
999 		    (long long)coid, co->c_func, co->c_arg);
1000 		if (coargs->flags & COF_LONGLIST) {
1001 			mdb_printf(" %-?p %-?p %-?p %-?p",
1002 			    co->c_idprev, co->c_idnext, co->c_clprev,
1003 			    co->c_clnext);
1004 			mdb_printf(" %-?p %-4d %-0?p",
1005 			    co->c_done, co->c_waiting, co->c_executor);
1006 		}
1007 	} else {
1008 		/* address only */
1009 		mdb_printf("%-0p", addr);
1010 	}
1011 	mdb_printf("\n");
1012 	return (WALK_NEXT);
1013 }
1014 
1015 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1016 /*ARGSUSED*/
1017 static int
1018 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1019 {
1020 	callout_data_t *coargs = (callout_data_t *)priv;
1021 	callout_list_t *cl = (callout_list_t *)data;
1022 	callout_t *coptr;
1023 	int list_flags;
1024 
1025 	if ((coargs == NULL) || (cl == NULL)) {
1026 		return (WALK_ERR);
1027 	}
1028 
1029 	coargs->exp = cl->cl_expiration;
1030 	coargs->list_flags = cl->cl_flags;
1031 	if ((coargs->flags & COF_FREE) &&
1032 	    !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1033 		/*
1034 		 * The callout list must have been reallocated. No point in
1035 		 * walking any more.
1036 		 */
1037 		return (WALK_DONE);
1038 	}
1039 	if (!(coargs->flags & COF_FREE) &&
1040 	    (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1041 		/*
1042 		 * The callout list must have been freed. No point in
1043 		 * walking any more.
1044 		 */
1045 		return (WALK_DONE);
1046 	}
1047 	if ((coargs->flags & COF_TIME) &&
1048 	    (cl->cl_expiration != coargs->time)) {
1049 		return (WALK_NEXT);
1050 	}
1051 	if ((coargs->flags & COF_BEFORE) &&
1052 	    (cl->cl_expiration > coargs->btime)) {
1053 		return (WALK_NEXT);
1054 	}
1055 	if ((coargs->flags & COF_AFTER) &&
1056 	    (cl->cl_expiration < coargs->atime)) {
1057 		return (WALK_NEXT);
1058 	}
1059 	if (!(coargs->flags & COF_EMPTY) &&
1060 	    (cl->cl_callouts.ch_head == NULL)) {
1061 		return (WALK_NEXT);
1062 	}
1063 	/* FOUR cases, each different, !A!B, !AB, A!B, AB */
1064 	if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1065 		/* both flags are set, only skip "regular" ones */
1066 		if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1067 			return (WALK_NEXT);
1068 		}
1069 	} else {
1070 		if ((coargs->flags & COF_HIRES) &&
1071 		    !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1072 			return (WALK_NEXT);
1073 		}
1074 		if ((coargs->flags & COF_ABS) &&
1075 		    !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1076 			return (WALK_NEXT);
1077 		}
1078 	}
1079 
1080 	if ((coargs->flags & COF_HEAP) &&
1081 	    !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1082 		return (WALK_NEXT);
1083 	}
1084 
1085 	if ((coargs->flags & COF_QUEUE) &&
1086 	    !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1087 		return (WALK_NEXT);
1088 	}
1089 
1090 	if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1091 	    (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1092 		if (!(coargs->flags & COF_VERBOSE)) {
1093 			/* don't be redundant again */
1094 			mdb_printf("%<u>SEQ T %</u>");
1095 		}
1096 		mdb_printf("%<u>EXP            HA BUCKET "
1097 		    "CALLOUTS         %</u>");
1098 
1099 		if (coargs->flags & COF_LONGLIST) {
1100 			mdb_printf("%<u> %-?s %-?s%</u>",
1101 			    "PREV", "NEXT");
1102 		}
1103 		mdb_printf("\n");
1104 		coargs->flags &= ~COF_LHDR;
1105 		coargs->flags |= (COF_THDR | COF_CHDR);
1106 	}
1107 	if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1108 		if (!(coargs->flags & COF_ADDR)) {
1109 			if (!(coargs->flags & COF_VERBOSE)) {
1110 				mdb_printf("%3d %1s ",
1111 				    TABLE_TO_SEQID(coargs->ndx),
1112 				    co_typenames[coargs->ndx &
1113 				    CALLOUT_TYPE_MASK]);
1114 			}
1115 
1116 			list_flags = coargs->list_flags;
1117 			mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1118 			    (coargs->flags & COF_EXPREL) ?
1119 			    coargs->exp - coargs->now : coargs->exp,
1120 			    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1121 			    "H" : " ",
1122 			    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1123 			    "A" : " ",
1124 			    coargs->bucket, cl->cl_callouts.ch_head);
1125 
1126 			if (coargs->flags & COF_LONGLIST) {
1127 				mdb_printf(" %-?p %-?p",
1128 				    cl->cl_prev, cl->cl_next);
1129 			}
1130 		} else {
1131 			/* address only */
1132 			mdb_printf("%-0p", addr);
1133 		}
1134 		mdb_printf("\n");
1135 		if (coargs->flags & COF_LIST) {
1136 			return (WALK_NEXT);
1137 		}
1138 	}
1139 	/* yet another layer as we walk the actual callouts via list. */
1140 	if (cl->cl_callouts.ch_head == NULL) {
1141 		return (WALK_NEXT);
1142 	}
1143 	/* free list structures do not have valid callouts off of them. */
1144 	if (coargs->flags & COF_FREE) {
1145 		return (WALK_NEXT);
1146 	}
1147 	coptr = (callout_t *)cl->cl_callouts.ch_head;
1148 
1149 	if (coargs->flags & COF_VERBOSE) {
1150 		mdb_inc_indent(4);
1151 	}
1152 	/*
1153 	 * walk callouts using yet another callback routine.
1154 	 * we use callouts_bytime because id hash is handled via
1155 	 * the callout_t_cb callback.
1156 	 */
1157 	if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1158 	    (uintptr_t)coptr) == -1) {
1159 		mdb_warn("cannot walk callouts at %p", coptr);
1160 		return (WALK_ERR);
1161 	}
1162 	if (coargs->flags & COF_VERBOSE) {
1163 		mdb_dec_indent(4);
1164 	}
1165 
1166 	return (WALK_NEXT);
1167 }
1168 
1169 /* this callback handles the details of callout table walking. */
1170 static int
1171 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1172 {
1173 	callout_data_t *coargs = (callout_data_t *)priv;
1174 	cot_data_t *cotwd = (cot_data_t *)data;
1175 	callout_table_t *ct = &(cotwd->ct);
1176 	int index, seqid, cotype;
1177 	int i;
1178 	callout_list_t *clptr;
1179 	callout_t *coptr;
1180 
1181 	if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1182 		return (WALK_ERR);
1183 	}
1184 
1185 	index =  ((char *)addr - (char *)coargs->co_table) /
1186 	    sizeof (callout_table_t);
1187 	cotype = index & CALLOUT_TYPE_MASK;
1188 	seqid = TABLE_TO_SEQID(index);
1189 
1190 	if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1191 		return (WALK_NEXT);
1192 	}
1193 
1194 	if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1195 		return (WALK_NEXT);
1196 	}
1197 
1198 	if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1199 		return (WALK_NEXT);
1200 	}
1201 
1202 	if (!(coargs->flags & COF_EMPTY) && (
1203 	    (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) {
1204 		return (WALK_NEXT);
1205 	}
1206 
1207 	if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1208 	    (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1209 		/* print table hdr */
1210 		mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1211 		    "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1212 		coargs->flags &= ~COF_THDR;
1213 		coargs->flags |= (COF_LHDR | COF_CHDR);
1214 		if (coargs->flags & COF_LONGLIST) {
1215 			/* more info! */
1216 			mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1217 			    " %-?s %-?s %-?s%</u>",
1218 			    "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1219 			    "PEND", "FREE", "LOCK");
1220 		}
1221 		mdb_printf("\n");
1222 	}
1223 	if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1224 		if (!(coargs->flags & COF_ADDR)) {
1225 			mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1226 			    seqid, co_typenames[cotype],
1227 			    ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1228 			    ct->ct_heap);
1229 			if (coargs->flags & COF_LONGLIST)  {
1230 				/* more info! */
1231 				mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1232 				    " %-?lld %-?lld %-?p",
1233 				    ct->ct_heap_num,  ct->ct_heap_max,
1234 				    ct->ct_taskq, ct->ct_expired.ch_head,
1235 				    ct->ct_queue.ch_head,
1236 				    cotwd->ct_timeouts_pending,
1237 				    cotwd->ct_allocations -
1238 				    cotwd->ct_timeouts_pending,
1239 				    ct->ct_mutex);
1240 			}
1241 		} else {
1242 			/* address only */
1243 			mdb_printf("%-0?p", addr);
1244 		}
1245 		mdb_printf("\n");
1246 		if (coargs->flags & COF_TABLE) {
1247 			return (WALK_NEXT);
1248 		}
1249 	}
1250 
1251 	coargs->ndx = index;
1252 	if (coargs->flags & COF_VERBOSE) {
1253 		mdb_inc_indent(4);
1254 	}
1255 	/* keep digging. */
1256 	if (!(coargs->flags & COF_BYIDH)) {
1257 		/* walk the list hash table */
1258 		if (coargs->flags & COF_FREE) {
1259 			clptr = ct->ct_lfree;
1260 			coargs->bucket = 0;
1261 			if (clptr == NULL) {
1262 				return (WALK_NEXT);
1263 			}
1264 			if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1265 			    (uintptr_t)clptr) == -1) {
1266 				mdb_warn("cannot walk callout free list at %p",
1267 				    clptr);
1268 				return (WALK_ERR);
1269 			}
1270 		} else {
1271 			/* first print the expired list. */
1272 			clptr = (callout_list_t *)ct->ct_expired.ch_head;
1273 			if (clptr != NULL) {
1274 				coargs->bucket = -1;
1275 				if (mdb_pwalk("callout_list", callout_list_cb,
1276 				    coargs, (uintptr_t)clptr) == -1) {
1277 					mdb_warn("cannot walk callout_list"
1278 					    " at %p", clptr);
1279 					return (WALK_ERR);
1280 				}
1281 			}
1282 			/* then, print the callout queue */
1283 			clptr = (callout_list_t *)ct->ct_queue.ch_head;
1284 			if (clptr != NULL) {
1285 				coargs->bucket = -1;
1286 				if (mdb_pwalk("callout_list", callout_list_cb,
1287 				    coargs, (uintptr_t)clptr) == -1) {
1288 					mdb_warn("cannot walk callout_list"
1289 					    " at %p", clptr);
1290 					return (WALK_ERR);
1291 				}
1292 			}
1293 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1294 				if (ct->ct_clhash == NULL) {
1295 					/* nothing to do */
1296 					break;
1297 				}
1298 				if (cotwd->cot_clhash[i].ch_head == NULL) {
1299 					continue;
1300 				}
1301 				clptr = (callout_list_t *)
1302 				    cotwd->cot_clhash[i].ch_head;
1303 				coargs->bucket = i;
1304 				/* walk list with callback routine. */
1305 				if (mdb_pwalk("callout_list", callout_list_cb,
1306 				    coargs, (uintptr_t)clptr) == -1) {
1307 					mdb_warn("cannot walk callout_list"
1308 					    " at %p", clptr);
1309 					return (WALK_ERR);
1310 				}
1311 			}
1312 		}
1313 	} else {
1314 		/* walk the id hash table. */
1315 		if (coargs->flags & COF_FREE) {
1316 			coptr = ct->ct_free;
1317 			coargs->bucket = 0;
1318 			if (coptr == NULL) {
1319 				return (WALK_NEXT);
1320 			}
1321 			if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1322 			    (uintptr_t)coptr) == -1) {
1323 				mdb_warn("cannot walk callout id free list"
1324 				    " at %p", coptr);
1325 				return (WALK_ERR);
1326 			}
1327 		} else {
1328 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1329 				if (ct->ct_idhash == NULL) {
1330 					break;
1331 				}
1332 				coptr = (callout_t *)
1333 				    cotwd->cot_idhash[i].ch_head;
1334 				if (coptr == NULL) {
1335 					continue;
1336 				}
1337 				coargs->bucket = i;
1338 
1339 				/*
1340 				 * walk callouts directly by id. For id
1341 				 * chain, the callout list is just a header,
1342 				 * so there's no need to walk it.
1343 				 */
1344 				if (mdb_pwalk("callouts_byid", callouts_cb,
1345 				    coargs, (uintptr_t)coptr) == -1) {
1346 					mdb_warn("cannot walk callouts at %p",
1347 					    coptr);
1348 					return (WALK_ERR);
1349 				}
1350 			}
1351 		}
1352 	}
1353 	if (coargs->flags & COF_VERBOSE) {
1354 		mdb_dec_indent(4);
1355 	}
1356 	return (WALK_NEXT);
1357 }
1358 
1359 /*
1360  * initialize some common info for both callout dcmds.
1361  */
1362 int
1363 callout_common_init(callout_data_t *coargs)
1364 {
1365 	/* we need a couple of things */
1366 	if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1367 		mdb_warn("failed to read 'callout_table'");
1368 		return (DCMD_ERR);
1369 	}
1370 	/* need to get now in nsecs. Approximate with hrtime vars */
1371 	if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1372 	    sizeof (hrtime_t)) {
1373 		if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1374 		    "hrtime_base") != sizeof (hrtime_t)) {
1375 			mdb_warn("Could not determine current system time");
1376 			return (DCMD_ERR);
1377 		}
1378 	}
1379 
1380 	if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1381 		mdb_warn("failed to read 'callout_table_bits'");
1382 		return (DCMD_ERR);
1383 	}
1384 	if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1385 		mdb_warn("failed to read 'nsec_per_tick'");
1386 		return (DCMD_ERR);
1387 	}
1388 	return (DCMD_OK);
1389 }
1390 
1391 /*
1392  * dcmd to print callouts.  Optional addr limits to specific table.
1393  * Parses lots of options that get passed to callbacks for walkers.
1394  * Has it's own help function.
1395  */
1396 /*ARGSUSED*/
1397 int
1398 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1399 {
1400 	callout_data_t coargs;
1401 	/* getopts doesn't help much with stuff like this */
1402 	boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1403 	char *funcname = NULL;
1404 	char *paramstr = NULL;
1405 	uintptr_t Stmp, Ctmp;	/* for getopt. */
1406 	int retval;
1407 
1408 	coargs.flags = COF_DEFAULT;
1409 	Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1410 	coargs.seqid = -1;
1411 
1412 	if (mdb_getopts(argc, argv,
1413 	    'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1414 	    'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1415 	    'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1416 	    's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1417 	    'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1418 	    'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1419 	    'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1420 	    'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1421 	    'd', MDB_OPT_SETBITS, 1, &dflag,
1422 	    'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1423 	    'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1424 	    't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1425 	    'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1426 	    'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1427 	    'k', MDB_OPT_SETBITS, 1, &kflag,
1428 	    'f', MDB_OPT_STR, &funcname,
1429 	    'p', MDB_OPT_STR, &paramstr,
1430 	    'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1431 	    'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1432 	    'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1433 	    'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1434 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1435 	    'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1436 	    'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1437 	    'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1438 	    'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1439 	    'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1440 	    NULL) != argc) {
1441 		return (DCMD_USAGE);
1442 	}
1443 
1444 	/* initialize from kernel variables */
1445 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1446 		return (retval);
1447 	}
1448 
1449 	/* do some option post-processing */
1450 	if (kflag) {
1451 		coargs.time *= coargs.nsec_per_tick;
1452 		coargs.atime *= coargs.nsec_per_tick;
1453 		coargs.btime *= coargs.nsec_per_tick;
1454 	}
1455 
1456 	if (dflag) {
1457 		coargs.time += coargs.now;
1458 		coargs.atime += coargs.now;
1459 		coargs.btime += coargs.now;
1460 	}
1461 	if (Sflag) {
1462 		if (flags & DCMD_ADDRSPEC) {
1463 			mdb_printf("-S option conflicts with explicit"
1464 			    " address\n");
1465 			return (DCMD_USAGE);
1466 		}
1467 		coargs.flags |= COF_SEQID;
1468 		coargs.seqid = (int)Stmp;
1469 	}
1470 	if (Cflag) {
1471 		if (flags & DCMD_ADDRSPEC) {
1472 			mdb_printf("-C option conflicts with explicit"
1473 			    " address\n");
1474 			return (DCMD_USAGE);
1475 		}
1476 		if (coargs.flags & COF_SEQID) {
1477 			mdb_printf("-C and -S are mutually exclusive\n");
1478 			return (DCMD_USAGE);
1479 		}
1480 		coargs.cpu = (cpu_t *)Ctmp;
1481 		if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1482 		    (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1483 			mdb_warn("failed to read cpu_t at %p", Ctmp);
1484 			return (DCMD_ERR);
1485 		}
1486 		coargs.flags |= COF_SEQID;
1487 	}
1488 	/* avoid null outputs. */
1489 	if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1490 		coargs.flags |= COF_REAL | COF_NORM;
1491 	}
1492 	if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1493 		coargs.flags |= COF_LONG | COF_SHORT;
1494 	}
1495 	if (tflag) {
1496 		if (aflag || bflag) {
1497 			mdb_printf("-t and -a|b are mutually exclusive\n");
1498 			return (DCMD_USAGE);
1499 		}
1500 		coargs.flags |= COF_TIME;
1501 	}
1502 	if (aflag) {
1503 		coargs.flags |= COF_AFTER;
1504 	}
1505 	if (bflag) {
1506 		coargs.flags |= COF_BEFORE;
1507 	}
1508 	if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1509 		mdb_printf("value for -a must be earlier than the value"
1510 		    " for -b.\n");
1511 		return (DCMD_USAGE);
1512 	}
1513 
1514 	if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1515 		mdb_printf("-H and -Q are mutually exclusive\n");
1516 		return (DCMD_USAGE);
1517 	}
1518 
1519 	if (funcname != NULL) {
1520 		GElf_Sym sym;
1521 
1522 		if (mdb_lookup_by_name(funcname, &sym) != 0) {
1523 			coargs.funcaddr = mdb_strtoull(funcname);
1524 		} else {
1525 			coargs.funcaddr = sym.st_value;
1526 		}
1527 		coargs.flags |= COF_FUNC;
1528 	}
1529 
1530 	if (paramstr != NULL) {
1531 		GElf_Sym sym;
1532 
1533 		if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1534 			coargs.param = mdb_strtoull(paramstr);
1535 		} else {
1536 			coargs.param = sym.st_value;
1537 		}
1538 		coargs.flags |= COF_PARAM;
1539 	}
1540 
1541 	if (!(flags & DCMD_ADDRSPEC)) {
1542 		/* don't pass "dot" if no addr. */
1543 		addr = NULL;
1544 	}
1545 	if (addr != NULL) {
1546 		/*
1547 		 * a callout table was specified. Ignore -r|n option
1548 		 * to avoid null output.
1549 		 */
1550 		coargs.flags |= (COF_REAL | COF_NORM);
1551 	}
1552 
1553 	if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1554 		coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1555 	}
1556 	if (coargs.flags & COF_FREE) {
1557 		coargs.flags |= COF_EMPTY;
1558 		/* -F = free callouts, -FL = free lists */
1559 		if (!(coargs.flags & COF_LIST)) {
1560 			coargs.flags |= COF_BYIDH;
1561 		}
1562 	}
1563 
1564 	/* walk table, using specialized callback routine. */
1565 	if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1566 		mdb_warn("cannot walk callout_table");
1567 		return (DCMD_ERR);
1568 	}
1569 	return (DCMD_OK);
1570 }
1571 
1572 
1573 /*
1574  * Given an extended callout id, dump its information.
1575  */
1576 /*ARGSUSED*/
1577 int
1578 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1579 {
1580 	callout_data_t coargs;
1581 	callout_table_t *ctptr;
1582 	callout_table_t ct;
1583 	callout_id_t coid;
1584 	callout_t *coptr;
1585 	int tableid;
1586 	callout_id_t xid;
1587 	ulong_t idhash;
1588 	int i, retval;
1589 	const mdb_arg_t *arg;
1590 	size_t size;
1591 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1592 
1593 	coargs.flags = COF_DEFAULT | COF_BYIDH;
1594 	i = mdb_getopts(argc, argv,
1595 	    'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1596 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1597 	    NULL);
1598 	argc -= i;
1599 	argv += i;
1600 
1601 	if (argc != 1) {
1602 		return (DCMD_USAGE);
1603 	}
1604 	arg = &argv[0];
1605 
1606 	if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1607 		xid = arg->a_un.a_val;
1608 	} else {
1609 		xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1610 	}
1611 
1612 	if (DCMD_HDRSPEC(flags)) {
1613 		coargs.flags |= COF_CHDR;
1614 	}
1615 
1616 
1617 	/* initialize from kernel variables */
1618 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1619 		return (retval);
1620 	}
1621 
1622 	/* we must massage the environment so that the macros will play nice */
1623 #define	callout_table_mask	((1 << coargs.ctbits) - 1)
1624 #define	callout_table_bits	coargs.ctbits
1625 #define	nsec_per_tick		coargs.nsec_per_tick
1626 	tableid = CALLOUT_ID_TO_TABLE(xid);
1627 	idhash = CALLOUT_IDHASH(xid);
1628 #undef	callouts_table_bits
1629 #undef	callout_table_mask
1630 #undef	nsec_per_tick
1631 	coid = CO_PLAIN_ID(xid);
1632 
1633 	if (flags & DCMD_ADDRSPEC) {
1634 		mdb_printf("calloutid does not accept explicit address.\n");
1635 		return (DCMD_USAGE);
1636 	}
1637 
1638 	if (coargs.flags & COF_DECODE) {
1639 		if (DCMD_HDRSPEC(flags)) {
1640 			mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1641 			    "SEQ", "T", "XL", "XID", "IDHASH");
1642 		}
1643 		mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1644 		    TABLE_TO_SEQID(tableid),
1645 		    co_typenames[tableid & CALLOUT_TYPE_MASK],
1646 		    (xid & CALLOUT_EXECUTING) ? "X" : " ",
1647 		    (xid & CALLOUT_LONGTERM) ? "L" : " ",
1648 		    (long long)coid, idhash);
1649 		return (DCMD_OK);
1650 	}
1651 
1652 	/* get our table. Note this relies on the types being correct */
1653 	ctptr = coargs.co_table + tableid;
1654 	if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1655 		mdb_warn("failed to read callout_table at %p", ctptr);
1656 		return (DCMD_ERR);
1657 	}
1658 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1659 	if (ct.ct_idhash != NULL) {
1660 		if (mdb_vread(&(cot_idhash), size,
1661 		    (uintptr_t)ct.ct_idhash) == -1) {
1662 			mdb_warn("failed to read id_hash at %p",
1663 			    ct.ct_idhash);
1664 			return (WALK_ERR);
1665 		}
1666 	}
1667 
1668 	/* callout at beginning of hash chain */
1669 	if (ct.ct_idhash == NULL) {
1670 		mdb_printf("id hash chain for this xid is empty\n");
1671 		return (DCMD_ERR);
1672 	}
1673 	coptr = (callout_t *)cot_idhash[idhash].ch_head;
1674 	if (coptr == NULL) {
1675 		mdb_printf("id hash chain for this xid is empty\n");
1676 		return (DCMD_ERR);
1677 	}
1678 
1679 	coargs.ndx = tableid;
1680 	coargs.bucket = idhash;
1681 
1682 	/* use the walker, luke */
1683 	if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1684 	    (uintptr_t)coptr) == -1) {
1685 		mdb_warn("cannot walk callouts at %p", coptr);
1686 		return (WALK_ERR);
1687 	}
1688 
1689 	return (DCMD_OK);
1690 }
1691 
1692 void
1693 callout_help(void)
1694 {
1695 	mdb_printf("callout: display callouts.\n"
1696 	    "Given a callout table address, display callouts from table.\n"
1697 	    "Without an address, display callouts from all tables.\n"
1698 	    "options:\n"
1699 	    " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1700 	    " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1701 	    " -x : limit display to callouts which are executing\n"
1702 	    " -h : limit display to callouts based on hrestime\n"
1703 	    " -B : limit display to callouts based on absolute time\n"
1704 	    " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1705 	    " (a)fter time,\n     or (b)efore time. Use -a and -b together "
1706 	    " to specify a range.\n     For \"now\", use -d[t|a|b] 0.\n"
1707 	    " -d : interpret time option to -t|a|b as delta from current time\n"
1708 	    " -k : use ticks instead of nanoseconds as arguments to"
1709 	    " -t|a|b. Note that\n     ticks are less accurate and may not"
1710 	    " match other tick times (ie: lbolt).\n"
1711 	    " -D : display exiration time as delta from current time\n"
1712 	    " -S seqid : limit display to callouts for this cpu sequence id\n"
1713 	    " -C addr :  limit display to callouts for this cpu pointer\n"
1714 	    " -f name|addr : limit display to callouts with this function\n"
1715 	    " -p name|addr : limit display to callouts functions with this"
1716 	    " parameter\n"
1717 	    " -T : display the callout table itself, instead of callouts\n"
1718 	    " -L : display callout lists instead of callouts\n"
1719 	    " -E : with -T or L, display empty data structures.\n"
1720 	    " -i : traverse callouts by id hash instead of list hash\n"
1721 	    " -F : walk free callout list (free list with -i) instead\n"
1722 	    " -v : display more info for each item\n"
1723 	    " -V : show details of each level of info as it is traversed\n"
1724 	    " -H : limit display to callouts in the callout heap\n"
1725 	    " -Q : limit display to callouts in the callout queue\n"
1726 	    " -A : show only addresses. Useful for pipelines.\n");
1727 }
1728 
1729 void
1730 calloutid_help(void)
1731 {
1732 	mdb_printf("calloutid: display callout by id.\n"
1733 	    "Given an extended callout id, display the callout infomation.\n"
1734 	    "options:\n"
1735 	    " -d : do not dereference callout, just decode the id.\n"
1736 	    " -v : verbose display more info about the callout\n");
1737 }
1738 
1739 /*ARGSUSED*/
1740 int
1741 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1742 {
1743 	long num_classes, i;
1744 	sclass_t *class_tbl;
1745 	GElf_Sym g_sclass;
1746 	char class_name[PC_CLNMSZ];
1747 	size_t tbl_size;
1748 
1749 	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1750 		mdb_warn("failed to find symbol sclass\n");
1751 		return (DCMD_ERR);
1752 	}
1753 
1754 	tbl_size = (size_t)g_sclass.st_size;
1755 	num_classes = tbl_size / (sizeof (sclass_t));
1756 	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1757 
1758 	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1759 		mdb_warn("failed to read sclass");
1760 		return (DCMD_ERR);
1761 	}
1762 
1763 	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1764 	    "INIT FCN", "CLASS FCN");
1765 
1766 	for (i = 0; i < num_classes; i++) {
1767 		if (mdb_vread(class_name, sizeof (class_name),
1768 		    (uintptr_t)class_tbl[i].cl_name) == -1)
1769 			(void) strcpy(class_name, "???");
1770 
1771 		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1772 		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1773 	}
1774 
1775 	return (DCMD_OK);
1776 }
1777 
1778 #define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
1779 
1780 int
1781 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1782 {
1783 	uintptr_t rootdir;
1784 	vnode_t vn;
1785 	char buf[MAXPATHLEN];
1786 
1787 	uint_t opt_F = FALSE;
1788 
1789 	if (mdb_getopts(argc, argv,
1790 	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1791 		return (DCMD_USAGE);
1792 
1793 	if (!(flags & DCMD_ADDRSPEC)) {
1794 		mdb_warn("expected explicit vnode_t address before ::\n");
1795 		return (DCMD_USAGE);
1796 	}
1797 
1798 	if (mdb_readvar(&rootdir, "rootdir") == -1) {
1799 		mdb_warn("failed to read rootdir");
1800 		return (DCMD_ERR);
1801 	}
1802 
1803 	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1804 		return (DCMD_ERR);
1805 
1806 	if (*buf == '\0') {
1807 		mdb_printf("??\n");
1808 		return (DCMD_OK);
1809 	}
1810 
1811 	mdb_printf("%s", buf);
1812 	if (opt_F && buf[strlen(buf)-1] != '/' &&
1813 	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1814 		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1815 	mdb_printf("\n");
1816 
1817 	return (DCMD_OK);
1818 }
1819 
1820 int
1821 ld_walk_init(mdb_walk_state_t *wsp)
1822 {
1823 	wsp->walk_data = (void *)wsp->walk_addr;
1824 	return (WALK_NEXT);
1825 }
1826 
1827 int
1828 ld_walk_step(mdb_walk_state_t *wsp)
1829 {
1830 	int status;
1831 	lock_descriptor_t ld;
1832 
1833 	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1834 		mdb_warn("couldn't read lock_descriptor_t at %p\n",
1835 		    wsp->walk_addr);
1836 		return (WALK_ERR);
1837 	}
1838 
1839 	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1840 	if (status == WALK_ERR)
1841 		return (WALK_ERR);
1842 
1843 	wsp->walk_addr = (uintptr_t)ld.l_next;
1844 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1845 		return (WALK_DONE);
1846 
1847 	return (status);
1848 }
1849 
1850 int
1851 lg_walk_init(mdb_walk_state_t *wsp)
1852 {
1853 	GElf_Sym sym;
1854 
1855 	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1856 		mdb_warn("failed to find symbol 'lock_graph'\n");
1857 		return (WALK_ERR);
1858 	}
1859 
1860 	wsp->walk_addr = (uintptr_t)sym.st_value;
1861 	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1862 
1863 	return (WALK_NEXT);
1864 }
1865 
1866 typedef struct lg_walk_data {
1867 	uintptr_t startaddr;
1868 	mdb_walk_cb_t callback;
1869 	void *data;
1870 } lg_walk_data_t;
1871 
1872 /*
1873  * We can't use ::walk lock_descriptor directly, because the head of each graph
1874  * is really a dummy lock.  Rather than trying to dynamically determine if this
1875  * is a dummy node or not, we just filter out the initial element of the
1876  * list.
1877  */
1878 static int
1879 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1880 {
1881 	lg_walk_data_t *lw = priv;
1882 
1883 	if (addr != lw->startaddr)
1884 		return (lw->callback(addr, data, lw->data));
1885 
1886 	return (WALK_NEXT);
1887 }
1888 
1889 int
1890 lg_walk_step(mdb_walk_state_t *wsp)
1891 {
1892 	graph_t *graph;
1893 	lg_walk_data_t lw;
1894 
1895 	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1896 		return (WALK_DONE);
1897 
1898 	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1899 		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1900 		return (WALK_ERR);
1901 	}
1902 
1903 	wsp->walk_addr += sizeof (graph);
1904 
1905 	if (graph == NULL)
1906 		return (WALK_NEXT);
1907 
1908 	lw.callback = wsp->walk_callback;
1909 	lw.data = wsp->walk_cbdata;
1910 
1911 	lw.startaddr = (uintptr_t)&(graph->active_locks);
1912 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1913 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1914 		return (WALK_ERR);
1915 	}
1916 
1917 	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1918 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1919 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1920 		return (WALK_ERR);
1921 	}
1922 
1923 	return (WALK_NEXT);
1924 }
1925 
1926 /*
1927  * The space available for the path corresponding to the locked vnode depends
1928  * on whether we are printing 32- or 64-bit addresses.
1929  */
1930 #ifdef _LP64
1931 #define	LM_VNPATHLEN	20
1932 #else
1933 #define	LM_VNPATHLEN	30
1934 #endif
1935 
1936 typedef struct mdb_lminfo_proc {
1937 	struct {
1938 		char		u_comm[MAXCOMLEN + 1];
1939 	} p_user;
1940 } mdb_lminfo_proc_t;
1941 
1942 /*ARGSUSED*/
1943 static int
1944 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1945 {
1946 	const lock_descriptor_t *ld = data;
1947 	char buf[LM_VNPATHLEN];
1948 	mdb_lminfo_proc_t p;
1949 	uintptr_t paddr = 0;
1950 
1951 	if (ld->l_flock.l_pid != 0)
1952 		paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
1953 
1954 	if (paddr != 0)
1955 		mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
1956 
1957 	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1958 	    addr, ld->l_type == F_RDLCK ? "RD" :
1959 	    ld->l_type == F_WRLCK ? "WR" : "??",
1960 	    ld->l_state, ld->l_flock.l_pid,
1961 	    ld->l_flock.l_pid == 0 ? "<kernel>" :
1962 	    paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
1963 
1964 	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1965 	    sizeof (buf));
1966 	mdb_printf("%s\n", buf);
1967 
1968 	return (WALK_NEXT);
1969 }
1970 
1971 /*ARGSUSED*/
1972 int
1973 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1974 {
1975 	if (DCMD_HDRSPEC(flags))
1976 		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1977 		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1978 
1979 	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
1980 }
1981 
1982 /*ARGSUSED*/
1983 int
1984 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1985 {
1986 	if ((uintptr_t)f->f_vnode == *target) {
1987 		mdb_printf("file %p\n", addr);
1988 		*target = NULL;
1989 	}
1990 
1991 	return (WALK_NEXT);
1992 }
1993 
1994 /*ARGSUSED*/
1995 int
1996 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1997 {
1998 	uintptr_t t = *target;
1999 
2000 	if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
2001 		mdb_warn("couldn't file walk proc %p", addr);
2002 		return (WALK_ERR);
2003 	}
2004 
2005 	if (t == NULL)
2006 		mdb_printf("%p\n", addr);
2007 
2008 	return (WALK_NEXT);
2009 }
2010 
2011 /*ARGSUSED*/
2012 int
2013 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2014 {
2015 	uintptr_t target = addr;
2016 
2017 	if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
2018 		return (DCMD_USAGE);
2019 
2020 	if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
2021 		mdb_warn("can't proc walk");
2022 		return (DCMD_ERR);
2023 	}
2024 
2025 	return (DCMD_OK);
2026 }
2027 
2028 typedef struct datafmt {
2029 	char	*hdr1;
2030 	char	*hdr2;
2031 	char	*dashes;
2032 	char	*fmt;
2033 } datafmt_t;
2034 
2035 static datafmt_t kmemfmt[] = {
2036 	{ "cache                    ", "name                     ",
2037 	"-------------------------", "%-25s "				},
2038 	{ "   buf",	"  size",	"------",	"%6u "		},
2039 	{ "   buf",	"in use",	"------",	"%6u "		},
2040 	{ "   buf",	" total",	"------",	"%6u "		},
2041 	{ "   memory",	"   in use",	"----------",	"%10lu%c "	},
2042 	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
2043 	{ "alloc",	" fail",	"-----",	"%5u "		},
2044 	{ NULL,		NULL,		NULL,		NULL		}
2045 };
2046 
2047 static datafmt_t vmemfmt[] = {
2048 	{ "vmem                     ", "name                     ",
2049 	"-------------------------", "%-*s "				},
2050 	{ "   memory",	"   in use",	"----------",	"%9llu%c "	},
2051 	{ "    memory",	"     total",	"-----------",	"%10llu%c "	},
2052 	{ "   memory",	"   import",	"----------",	"%9llu%c "	},
2053 	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
2054 	{ "alloc",	" fail",	"-----",	"%5llu "	},
2055 	{ NULL,		NULL,		NULL,		NULL		}
2056 };
2057 
2058 /*ARGSUSED*/
2059 static int
2060 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2061 {
2062 	short rounds, prounds;
2063 
2064 	if (KMEM_DUMPCC(ccp)) {
2065 		rounds = ccp->cc_dump_rounds;
2066 		prounds = ccp->cc_dump_prounds;
2067 	} else {
2068 		rounds = ccp->cc_rounds;
2069 		prounds = ccp->cc_prounds;
2070 	}
2071 	if (rounds > 0)
2072 		*avail += rounds;
2073 	if (prounds > 0)
2074 		*avail += prounds;
2075 
2076 	return (WALK_NEXT);
2077 }
2078 
2079 /*ARGSUSED*/
2080 static int
2081 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2082 {
2083 	*alloc += ccp->cc_alloc;
2084 
2085 	return (WALK_NEXT);
2086 }
2087 
2088 /*ARGSUSED*/
2089 static int
2090 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2091 {
2092 	*avail += sp->slab_chunks - sp->slab_refcnt;
2093 
2094 	return (WALK_NEXT);
2095 }
2096 
2097 typedef struct kmastat_vmem {
2098 	uintptr_t kv_addr;
2099 	struct kmastat_vmem *kv_next;
2100 	size_t kv_meminuse;
2101 	int kv_alloc;
2102 	int kv_fail;
2103 } kmastat_vmem_t;
2104 
2105 typedef struct kmastat_args {
2106 	kmastat_vmem_t **ka_kvpp;
2107 	uint_t ka_shift;
2108 } kmastat_args_t;
2109 
2110 static int
2111 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2112 {
2113 	kmastat_vmem_t **kvpp = kap->ka_kvpp;
2114 	kmastat_vmem_t *kv;
2115 	datafmt_t *dfp = kmemfmt;
2116 	int magsize;
2117 
2118 	int avail, alloc, total;
2119 	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2120 	    cp->cache_slabsize;
2121 
2122 	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2123 	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2124 	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2125 
2126 	magsize = kmem_get_magsize(cp);
2127 
2128 	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2129 	avail = cp->cache_full.ml_total * magsize;
2130 	total = cp->cache_buftotal;
2131 
2132 	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2133 	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2134 	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2135 
2136 	for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2137 		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2138 			goto out;
2139 	}
2140 
2141 	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2142 	kv->kv_next = *kvpp;
2143 	kv->kv_addr = (uintptr_t)cp->cache_arena;
2144 	*kvpp = kv;
2145 out:
2146 	kv->kv_meminuse += meminuse;
2147 	kv->kv_alloc += alloc;
2148 	kv->kv_fail += cp->cache_alloc_fail;
2149 
2150 	mdb_printf((dfp++)->fmt, cp->cache_name);
2151 	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2152 	mdb_printf((dfp++)->fmt, total - avail);
2153 	mdb_printf((dfp++)->fmt, total);
2154 	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2155 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2156 	    kap->ka_shift == KILOS ? 'K' : 'B');
2157 	mdb_printf((dfp++)->fmt, alloc);
2158 	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2159 	mdb_printf("\n");
2160 
2161 	return (WALK_NEXT);
2162 }
2163 
2164 static int
2165 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2166 {
2167 	kmastat_vmem_t *kv = *kap->ka_kvpp;
2168 	size_t len;
2169 
2170 	while (kv != NULL && kv->kv_addr != addr)
2171 		kv = kv->kv_next;
2172 
2173 	if (kv == NULL || kv->kv_alloc == 0)
2174 		return (WALK_NEXT);
2175 
2176 	len = MIN(17, strlen(v->vm_name));
2177 
2178 	mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2179 	    17 - len, "", "", "", "",
2180 	    kv->kv_meminuse >> kap->ka_shift,
2181 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2182 	    kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2183 
2184 	return (WALK_NEXT);
2185 }
2186 
2187 /*ARGSUSED*/
2188 static int
2189 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2190 {
2191 	datafmt_t *dfp = vmemfmt;
2192 	const vmem_kstat_t *vkp = &v->vm_kstat;
2193 	uintptr_t paddr;
2194 	vmem_t parent;
2195 	int ident = 0;
2196 
2197 	for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
2198 		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2199 			mdb_warn("couldn't trace %p's ancestry", addr);
2200 			ident = 0;
2201 			break;
2202 		}
2203 		paddr = (uintptr_t)parent.vm_source;
2204 	}
2205 
2206 	mdb_printf("%*s", ident, "");
2207 	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2208 	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2209 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2210 	    *shiftp == KILOS ? 'K' : 'B');
2211 	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2212 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2213 	    *shiftp == KILOS ? 'K' : 'B');
2214 	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2215 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2216 	    *shiftp == KILOS ? 'K' : 'B');
2217 	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2218 	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2219 
2220 	mdb_printf("\n");
2221 
2222 	return (WALK_NEXT);
2223 }
2224 
2225 /*ARGSUSED*/
2226 int
2227 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2228 {
2229 	kmastat_vmem_t *kv = NULL;
2230 	datafmt_t *dfp;
2231 	kmastat_args_t ka;
2232 
2233 	ka.ka_shift = 0;
2234 	if (mdb_getopts(argc, argv,
2235 	    'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2236 	    'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2237 	    'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2238 		return (DCMD_USAGE);
2239 
2240 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2241 		mdb_printf("%s ", dfp->hdr1);
2242 	mdb_printf("\n");
2243 
2244 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2245 		mdb_printf("%s ", dfp->hdr2);
2246 	mdb_printf("\n");
2247 
2248 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2249 		mdb_printf("%s ", dfp->dashes);
2250 	mdb_printf("\n");
2251 
2252 	ka.ka_kvpp = &kv;
2253 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2254 		mdb_warn("can't walk 'kmem_cache'");
2255 		return (DCMD_ERR);
2256 	}
2257 
2258 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2259 		mdb_printf("%s ", dfp->dashes);
2260 	mdb_printf("\n");
2261 
2262 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2263 		mdb_warn("can't walk 'vmem'");
2264 		return (DCMD_ERR);
2265 	}
2266 
2267 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2268 		mdb_printf("%s ", dfp->dashes);
2269 	mdb_printf("\n");
2270 
2271 	mdb_printf("\n");
2272 
2273 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2274 		mdb_printf("%s ", dfp->hdr1);
2275 	mdb_printf("\n");
2276 
2277 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2278 		mdb_printf("%s ", dfp->hdr2);
2279 	mdb_printf("\n");
2280 
2281 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2282 		mdb_printf("%s ", dfp->dashes);
2283 	mdb_printf("\n");
2284 
2285 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2286 		mdb_warn("can't walk 'vmem'");
2287 		return (DCMD_ERR);
2288 	}
2289 
2290 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2291 		mdb_printf("%s ", dfp->dashes);
2292 	mdb_printf("\n");
2293 	return (DCMD_OK);
2294 }
2295 
2296 /*
2297  * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
2298  * up of a set of 'struct seg's.  We could just scan each seg en masse, but
2299  * unfortunately, a few of the segs are both large and sparse, so we could
2300  * spend quite a bit of time scanning VAs which have no backing pages.
2301  *
2302  * So for the few very sparse segs, we skip the segment itself, and scan
2303  * the allocated vmem_segs in the vmem arena which manages that part of kas.
2304  * Currently, we do this for:
2305  *
2306  *	SEG		VMEM ARENA
2307  *	kvseg		heap_arena
2308  *	kvseg32		heap32_arena
2309  *	kvseg_core	heap_core_arena
2310  *
2311  * In addition, we skip the segkpm segment in its entirety, since it is very
2312  * sparse, and contains no new kernel data.
2313  */
2314 typedef struct kgrep_walk_data {
2315 	kgrep_cb_func *kg_cb;
2316 	void *kg_cbdata;
2317 	uintptr_t kg_kvseg;
2318 	uintptr_t kg_kvseg32;
2319 	uintptr_t kg_kvseg_core;
2320 	uintptr_t kg_segkpm;
2321 	uintptr_t kg_heap_lp_base;
2322 	uintptr_t kg_heap_lp_end;
2323 } kgrep_walk_data_t;
2324 
2325 static int
2326 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2327 {
2328 	uintptr_t base = (uintptr_t)seg->s_base;
2329 
2330 	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2331 	    addr == kg->kg_kvseg_core)
2332 		return (WALK_NEXT);
2333 
2334 	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2335 		return (WALK_NEXT);
2336 
2337 	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2338 }
2339 
2340 /*ARGSUSED*/
2341 static int
2342 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2343 {
2344 	/*
2345 	 * skip large page heap address range - it is scanned by walking
2346 	 * allocated vmem_segs in the heap_lp_arena
2347 	 */
2348 	if (seg->vs_start == kg->kg_heap_lp_base &&
2349 	    seg->vs_end == kg->kg_heap_lp_end)
2350 		return (WALK_NEXT);
2351 
2352 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2353 }
2354 
2355 /*ARGSUSED*/
2356 static int
2357 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2358 {
2359 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2360 }
2361 
2362 static int
2363 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2364 {
2365 	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2366 
2367 	if (strcmp(vmem->vm_name, "heap") != 0 &&
2368 	    strcmp(vmem->vm_name, "heap32") != 0 &&
2369 	    strcmp(vmem->vm_name, "heap_core") != 0 &&
2370 	    strcmp(vmem->vm_name, "heap_lp") != 0)
2371 		return (WALK_NEXT);
2372 
2373 	if (strcmp(vmem->vm_name, "heap_lp") == 0)
2374 		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2375 
2376 	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2377 		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2378 		return (WALK_ERR);
2379 	}
2380 
2381 	return (WALK_NEXT);
2382 }
2383 
2384 int
2385 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2386 {
2387 	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2388 	kgrep_walk_data_t kg;
2389 
2390 	if (mdb_get_state() == MDB_STATE_RUNNING) {
2391 		mdb_warn("kgrep can only be run on a system "
2392 		    "dump or under kmdb; see dumpadm(1M)\n");
2393 		return (DCMD_ERR);
2394 	}
2395 
2396 	if (mdb_lookup_by_name("kas", &kas) == -1) {
2397 		mdb_warn("failed to locate 'kas' symbol\n");
2398 		return (DCMD_ERR);
2399 	}
2400 
2401 	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2402 		mdb_warn("failed to locate 'kvseg' symbol\n");
2403 		return (DCMD_ERR);
2404 	}
2405 
2406 	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2407 		mdb_warn("failed to locate 'kvseg32' symbol\n");
2408 		return (DCMD_ERR);
2409 	}
2410 
2411 	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2412 		mdb_warn("failed to locate 'kvseg_core' symbol\n");
2413 		return (DCMD_ERR);
2414 	}
2415 
2416 	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2417 		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2418 		return (DCMD_ERR);
2419 	}
2420 
2421 	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2422 		mdb_warn("failed to read 'heap_lp_base'\n");
2423 		return (DCMD_ERR);
2424 	}
2425 
2426 	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2427 		mdb_warn("failed to read 'heap_lp_end'\n");
2428 		return (DCMD_ERR);
2429 	}
2430 
2431 	kg.kg_cb = cb;
2432 	kg.kg_cbdata = cbdata;
2433 	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2434 	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2435 	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2436 	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2437 
2438 	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2439 	    &kg, kas.st_value) == -1) {
2440 		mdb_warn("failed to walk kas segments");
2441 		return (DCMD_ERR);
2442 	}
2443 
2444 	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2445 		mdb_warn("failed to walk heap/heap32 vmem arenas");
2446 		return (DCMD_ERR);
2447 	}
2448 
2449 	return (DCMD_OK);
2450 }
2451 
2452 size_t
2453 kgrep_subr_pagesize(void)
2454 {
2455 	return (PAGESIZE);
2456 }
2457 
2458 typedef struct file_walk_data {
2459 	struct uf_entry *fw_flist;
2460 	int fw_flistsz;
2461 	int fw_ndx;
2462 	int fw_nofiles;
2463 } file_walk_data_t;
2464 
2465 typedef struct mdb_file_proc {
2466 	struct {
2467 		struct {
2468 			int			fi_nfiles;
2469 			uf_entry_t *volatile	fi_list;
2470 		} u_finfo;
2471 	} p_user;
2472 } mdb_file_proc_t;
2473 
2474 int
2475 file_walk_init(mdb_walk_state_t *wsp)
2476 {
2477 	file_walk_data_t *fw;
2478 	mdb_file_proc_t p;
2479 
2480 	if (wsp->walk_addr == NULL) {
2481 		mdb_warn("file walk doesn't support global walks\n");
2482 		return (WALK_ERR);
2483 	}
2484 
2485 	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2486 
2487 	if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2488 	    wsp->walk_addr, 0) == -1) {
2489 		mdb_free(fw, sizeof (file_walk_data_t));
2490 		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2491 		return (WALK_ERR);
2492 	}
2493 
2494 	if (p.p_user.u_finfo.fi_nfiles == 0) {
2495 		mdb_free(fw, sizeof (file_walk_data_t));
2496 		return (WALK_DONE);
2497 	}
2498 
2499 	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2500 	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2501 	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2502 
2503 	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2504 	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2505 		mdb_warn("failed to read file array at %p",
2506 		    p.p_user.u_finfo.fi_list);
2507 		mdb_free(fw->fw_flist, fw->fw_flistsz);
2508 		mdb_free(fw, sizeof (file_walk_data_t));
2509 		return (WALK_ERR);
2510 	}
2511 
2512 	fw->fw_ndx = 0;
2513 	wsp->walk_data = fw;
2514 
2515 	return (WALK_NEXT);
2516 }
2517 
2518 int
2519 file_walk_step(mdb_walk_state_t *wsp)
2520 {
2521 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2522 	struct file file;
2523 	uintptr_t fp;
2524 
2525 again:
2526 	if (fw->fw_ndx == fw->fw_nofiles)
2527 		return (WALK_DONE);
2528 
2529 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
2530 		goto again;
2531 
2532 	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2533 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2534 }
2535 
2536 int
2537 allfile_walk_step(mdb_walk_state_t *wsp)
2538 {
2539 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2540 	struct file file;
2541 	uintptr_t fp;
2542 
2543 	if (fw->fw_ndx == fw->fw_nofiles)
2544 		return (WALK_DONE);
2545 
2546 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
2547 		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2548 	else
2549 		bzero(&file, sizeof (file));
2550 
2551 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2552 }
2553 
2554 void
2555 file_walk_fini(mdb_walk_state_t *wsp)
2556 {
2557 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2558 
2559 	mdb_free(fw->fw_flist, fw->fw_flistsz);
2560 	mdb_free(fw, sizeof (file_walk_data_t));
2561 }
2562 
2563 int
2564 port_walk_init(mdb_walk_state_t *wsp)
2565 {
2566 	if (wsp->walk_addr == NULL) {
2567 		mdb_warn("port walk doesn't support global walks\n");
2568 		return (WALK_ERR);
2569 	}
2570 
2571 	if (mdb_layered_walk("file", wsp) == -1) {
2572 		mdb_warn("couldn't walk 'file'");
2573 		return (WALK_ERR);
2574 	}
2575 	return (WALK_NEXT);
2576 }
2577 
2578 int
2579 port_walk_step(mdb_walk_state_t *wsp)
2580 {
2581 	struct vnode	vn;
2582 	uintptr_t	vp;
2583 	uintptr_t	pp;
2584 	struct port	port;
2585 
2586 	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2587 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2588 		mdb_warn("failed to read vnode_t at %p", vp);
2589 		return (WALK_ERR);
2590 	}
2591 	if (vn.v_type != VPORT)
2592 		return (WALK_NEXT);
2593 
2594 	pp = (uintptr_t)vn.v_data;
2595 	if (mdb_vread(&port, sizeof (port), pp) == -1) {
2596 		mdb_warn("failed to read port_t at %p", pp);
2597 		return (WALK_ERR);
2598 	}
2599 	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2600 }
2601 
2602 typedef struct portev_walk_data {
2603 	list_node_t	*pev_node;
2604 	list_node_t	*pev_last;
2605 	size_t		pev_offset;
2606 } portev_walk_data_t;
2607 
2608 int
2609 portev_walk_init(mdb_walk_state_t *wsp)
2610 {
2611 	portev_walk_data_t *pevd;
2612 	struct port	port;
2613 	struct vnode	vn;
2614 	struct list	*list;
2615 	uintptr_t	vp;
2616 
2617 	if (wsp->walk_addr == NULL) {
2618 		mdb_warn("portev walk doesn't support global walks\n");
2619 		return (WALK_ERR);
2620 	}
2621 
2622 	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2623 
2624 	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2625 		mdb_free(pevd, sizeof (portev_walk_data_t));
2626 		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2627 		return (WALK_ERR);
2628 	}
2629 
2630 	vp = (uintptr_t)port.port_vnode;
2631 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2632 		mdb_free(pevd, sizeof (portev_walk_data_t));
2633 		mdb_warn("failed to read vnode_t at %p", vp);
2634 		return (WALK_ERR);
2635 	}
2636 
2637 	if (vn.v_type != VPORT) {
2638 		mdb_free(pevd, sizeof (portev_walk_data_t));
2639 		mdb_warn("input address (%p) does not point to an event port",
2640 		    wsp->walk_addr);
2641 		return (WALK_ERR);
2642 	}
2643 
2644 	if (port.port_queue.portq_nent == 0) {
2645 		mdb_free(pevd, sizeof (portev_walk_data_t));
2646 		return (WALK_DONE);
2647 	}
2648 	list = &port.port_queue.portq_list;
2649 	pevd->pev_offset = list->list_offset;
2650 	pevd->pev_last = list->list_head.list_prev;
2651 	pevd->pev_node = list->list_head.list_next;
2652 	wsp->walk_data = pevd;
2653 	return (WALK_NEXT);
2654 }
2655 
2656 int
2657 portev_walk_step(mdb_walk_state_t *wsp)
2658 {
2659 	portev_walk_data_t	*pevd;
2660 	struct port_kevent	ev;
2661 	uintptr_t		evp;
2662 
2663 	pevd = (portev_walk_data_t *)wsp->walk_data;
2664 
2665 	if (pevd->pev_last == NULL)
2666 		return (WALK_DONE);
2667 	if (pevd->pev_node == pevd->pev_last)
2668 		pevd->pev_last = NULL;		/* last round */
2669 
2670 	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2671 	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2672 		mdb_warn("failed to read port_kevent at %p", evp);
2673 		return (WALK_DONE);
2674 	}
2675 	pevd->pev_node = ev.portkev_node.list_next;
2676 	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2677 }
2678 
2679 void
2680 portev_walk_fini(mdb_walk_state_t *wsp)
2681 {
2682 	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2683 
2684 	if (pevd != NULL)
2685 		mdb_free(pevd, sizeof (portev_walk_data_t));
2686 }
2687 
2688 typedef struct proc_walk_data {
2689 	uintptr_t *pw_stack;
2690 	int pw_depth;
2691 	int pw_max;
2692 } proc_walk_data_t;
2693 
2694 int
2695 proc_walk_init(mdb_walk_state_t *wsp)
2696 {
2697 	GElf_Sym sym;
2698 	proc_walk_data_t *pw;
2699 
2700 	if (wsp->walk_addr == NULL) {
2701 		if (mdb_lookup_by_name("p0", &sym) == -1) {
2702 			mdb_warn("failed to read 'practive'");
2703 			return (WALK_ERR);
2704 		}
2705 		wsp->walk_addr = (uintptr_t)sym.st_value;
2706 	}
2707 
2708 	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2709 
2710 	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2711 		mdb_warn("failed to read 'nproc'");
2712 		mdb_free(pw, sizeof (pw));
2713 		return (WALK_ERR);
2714 	}
2715 
2716 	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2717 	wsp->walk_data = pw;
2718 
2719 	return (WALK_NEXT);
2720 }
2721 
2722 typedef struct mdb_walk_proc {
2723 	struct proc	*p_child;
2724 	struct proc	*p_sibling;
2725 } mdb_walk_proc_t;
2726 
2727 int
2728 proc_walk_step(mdb_walk_state_t *wsp)
2729 {
2730 	proc_walk_data_t *pw = wsp->walk_data;
2731 	uintptr_t addr = wsp->walk_addr;
2732 	uintptr_t cld, sib;
2733 	int status;
2734 	mdb_walk_proc_t pr;
2735 
2736 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2737 	    addr, 0) == -1) {
2738 		mdb_warn("failed to read proc at %p", addr);
2739 		return (WALK_DONE);
2740 	}
2741 
2742 	cld = (uintptr_t)pr.p_child;
2743 	sib = (uintptr_t)pr.p_sibling;
2744 
2745 	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2746 		pw->pw_depth--;
2747 		goto sib;
2748 	}
2749 
2750 	/*
2751 	 * Always pass NULL as the local copy pointer. Consumers
2752 	 * should use mdb_ctf_vread() to read their own minimal
2753 	 * version of proc_t. Thus minimizing the chance of breakage
2754 	 * with older crash dumps.
2755 	 */
2756 	status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2757 
2758 	if (status != WALK_NEXT)
2759 		return (status);
2760 
2761 	if ((wsp->walk_addr = cld) != NULL) {
2762 		if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2763 		    cld, 0) == -1) {
2764 			mdb_warn("proc %p has invalid p_child %p; skipping\n",
2765 			    addr, cld);
2766 			goto sib;
2767 		}
2768 
2769 		pw->pw_stack[pw->pw_depth++] = addr;
2770 
2771 		if (pw->pw_depth == pw->pw_max) {
2772 			mdb_warn("depth %d exceeds max depth; try again\n",
2773 			    pw->pw_depth);
2774 			return (WALK_DONE);
2775 		}
2776 		return (WALK_NEXT);
2777 	}
2778 
2779 sib:
2780 	/*
2781 	 * We know that p0 has no siblings, and if another starting proc
2782 	 * was given, we don't want to walk its siblings anyway.
2783 	 */
2784 	if (pw->pw_depth == 0)
2785 		return (WALK_DONE);
2786 
2787 	if (sib != NULL && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2788 	    sib, 0) == -1) {
2789 		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2790 		    addr, sib);
2791 		sib = NULL;
2792 	}
2793 
2794 	if ((wsp->walk_addr = sib) == NULL) {
2795 		if (pw->pw_depth > 0) {
2796 			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2797 			return (WALK_NEXT);
2798 		}
2799 		return (WALK_DONE);
2800 	}
2801 
2802 	return (WALK_NEXT);
2803 }
2804 
2805 void
2806 proc_walk_fini(mdb_walk_state_t *wsp)
2807 {
2808 	proc_walk_data_t *pw = wsp->walk_data;
2809 
2810 	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2811 	mdb_free(pw, sizeof (proc_walk_data_t));
2812 }
2813 
2814 int
2815 task_walk_init(mdb_walk_state_t *wsp)
2816 {
2817 	task_t task;
2818 
2819 	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2820 		mdb_warn("failed to read task at %p", wsp->walk_addr);
2821 		return (WALK_ERR);
2822 	}
2823 	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2824 	wsp->walk_data = task.tk_memb_list;
2825 	return (WALK_NEXT);
2826 }
2827 
2828 typedef struct mdb_task_proc {
2829 	struct proc	*p_tasknext;
2830 } mdb_task_proc_t;
2831 
2832 int
2833 task_walk_step(mdb_walk_state_t *wsp)
2834 {
2835 	mdb_task_proc_t proc;
2836 	int status;
2837 
2838 	if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2839 	    wsp->walk_addr, 0) == -1) {
2840 		mdb_warn("failed to read proc at %p", wsp->walk_addr);
2841 		return (WALK_DONE);
2842 	}
2843 
2844 	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2845 
2846 	if (proc.p_tasknext == wsp->walk_data)
2847 		return (WALK_DONE);
2848 
2849 	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2850 	return (status);
2851 }
2852 
2853 int
2854 project_walk_init(mdb_walk_state_t *wsp)
2855 {
2856 	if (wsp->walk_addr == NULL) {
2857 		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2858 			mdb_warn("failed to read 'proj0p'");
2859 			return (WALK_ERR);
2860 		}
2861 	}
2862 	wsp->walk_data = (void *)wsp->walk_addr;
2863 	return (WALK_NEXT);
2864 }
2865 
2866 int
2867 project_walk_step(mdb_walk_state_t *wsp)
2868 {
2869 	uintptr_t addr = wsp->walk_addr;
2870 	kproject_t pj;
2871 	int status;
2872 
2873 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2874 		mdb_warn("failed to read project at %p", addr);
2875 		return (WALK_DONE);
2876 	}
2877 	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2878 	if (status != WALK_NEXT)
2879 		return (status);
2880 	wsp->walk_addr = (uintptr_t)pj.kpj_next;
2881 	if ((void *)wsp->walk_addr == wsp->walk_data)
2882 		return (WALK_DONE);
2883 	return (WALK_NEXT);
2884 }
2885 
2886 static int
2887 generic_walk_step(mdb_walk_state_t *wsp)
2888 {
2889 	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2890 	    wsp->walk_cbdata));
2891 }
2892 
2893 static int
2894 cpu_walk_cmp(const void *l, const void *r)
2895 {
2896 	uintptr_t lhs = *((uintptr_t *)l);
2897 	uintptr_t rhs = *((uintptr_t *)r);
2898 	cpu_t lcpu, rcpu;
2899 
2900 	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2901 	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2902 
2903 	if (lcpu.cpu_id < rcpu.cpu_id)
2904 		return (-1);
2905 
2906 	if (lcpu.cpu_id > rcpu.cpu_id)
2907 		return (1);
2908 
2909 	return (0);
2910 }
2911 
2912 typedef struct cpu_walk {
2913 	uintptr_t *cw_array;
2914 	int cw_ndx;
2915 } cpu_walk_t;
2916 
2917 int
2918 cpu_walk_init(mdb_walk_state_t *wsp)
2919 {
2920 	cpu_walk_t *cw;
2921 	int max_ncpus, i = 0;
2922 	uintptr_t current, first;
2923 	cpu_t cpu, panic_cpu;
2924 	uintptr_t panicstr, addr;
2925 	GElf_Sym sym;
2926 
2927 	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2928 
2929 	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2930 		mdb_warn("failed to read 'max_ncpus'");
2931 		return (WALK_ERR);
2932 	}
2933 
2934 	if (mdb_readvar(&panicstr, "panicstr") == -1) {
2935 		mdb_warn("failed to read 'panicstr'");
2936 		return (WALK_ERR);
2937 	}
2938 
2939 	if (panicstr != NULL) {
2940 		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2941 			mdb_warn("failed to find 'panic_cpu'");
2942 			return (WALK_ERR);
2943 		}
2944 
2945 		addr = (uintptr_t)sym.st_value;
2946 
2947 		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2948 			mdb_warn("failed to read 'panic_cpu'");
2949 			return (WALK_ERR);
2950 		}
2951 	}
2952 
2953 	/*
2954 	 * Unfortunately, there is no platform-independent way to walk
2955 	 * CPUs in ID order.  We therefore loop through in cpu_next order,
2956 	 * building an array of CPU pointers which will subsequently be
2957 	 * sorted.
2958 	 */
2959 	cw->cw_array =
2960 	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2961 
2962 	if (mdb_readvar(&first, "cpu_list") == -1) {
2963 		mdb_warn("failed to read 'cpu_list'");
2964 		return (WALK_ERR);
2965 	}
2966 
2967 	current = first;
2968 	do {
2969 		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2970 			mdb_warn("failed to read cpu at %p", current);
2971 			return (WALK_ERR);
2972 		}
2973 
2974 		if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
2975 			cw->cw_array[i++] = addr;
2976 		} else {
2977 			cw->cw_array[i++] = current;
2978 		}
2979 	} while ((current = (uintptr_t)cpu.cpu_next) != first);
2980 
2981 	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2982 	wsp->walk_data = cw;
2983 
2984 	return (WALK_NEXT);
2985 }
2986 
2987 int
2988 cpu_walk_step(mdb_walk_state_t *wsp)
2989 {
2990 	cpu_walk_t *cw = wsp->walk_data;
2991 	cpu_t cpu;
2992 	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2993 
2994 	if (addr == NULL)
2995 		return (WALK_DONE);
2996 
2997 	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2998 		mdb_warn("failed to read cpu at %p", addr);
2999 		return (WALK_DONE);
3000 	}
3001 
3002 	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3003 }
3004 
3005 typedef struct cpuinfo_data {
3006 	intptr_t cid_cpu;
3007 	uintptr_t **cid_ithr;
3008 	char	cid_print_head;
3009 	char	cid_print_thr;
3010 	char	cid_print_ithr;
3011 	char	cid_print_flags;
3012 } cpuinfo_data_t;
3013 
3014 int
3015 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3016 {
3017 	cpu_t c;
3018 	int id;
3019 	uint8_t pil;
3020 
3021 	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3022 		return (WALK_NEXT);
3023 
3024 	if (thr->t_bound_cpu == NULL) {
3025 		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3026 		return (WALK_NEXT);
3027 	}
3028 
3029 	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3030 
3031 	if ((id = c.cpu_id) >= NCPU) {
3032 		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3033 		    thr->t_bound_cpu, id, NCPU);
3034 		return (WALK_NEXT);
3035 	}
3036 
3037 	if ((pil = thr->t_pil) >= NINTR) {
3038 		mdb_warn("thread %p has pil (%d) greater than %d\n",
3039 		    addr, pil, NINTR);
3040 		return (WALK_NEXT);
3041 	}
3042 
3043 	if (cid->cid_ithr[id][pil] != NULL) {
3044 		mdb_warn("CPU %d has multiple threads at pil %d (at least "
3045 		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3046 		return (WALK_NEXT);
3047 	}
3048 
3049 	cid->cid_ithr[id][pil] = addr;
3050 
3051 	return (WALK_NEXT);
3052 }
3053 
3054 #define	CPUINFO_IDWIDTH		3
3055 #define	CPUINFO_FLAGWIDTH	9
3056 
3057 #ifdef _LP64
3058 #if defined(__amd64)
3059 #define	CPUINFO_TWIDTH		16
3060 #define	CPUINFO_CPUWIDTH	16
3061 #else
3062 #define	CPUINFO_CPUWIDTH	11
3063 #define	CPUINFO_TWIDTH		11
3064 #endif
3065 #else
3066 #define	CPUINFO_CPUWIDTH	8
3067 #define	CPUINFO_TWIDTH		8
3068 #endif
3069 
3070 #define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3071 #define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3072 #define	CPUINFO_ITHRDELT	4
3073 
3074 #define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
3075     flagline < nflaglines ? flagbuf[flagline++] : "")
3076 
3077 typedef struct mdb_cpuinfo_proc {
3078 	struct {
3079 		char		u_comm[MAXCOMLEN + 1];
3080 	} p_user;
3081 } mdb_cpuinfo_proc_t;
3082 
3083 int
3084 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3085 {
3086 	kthread_t t;
3087 	disp_t disp;
3088 	mdb_cpuinfo_proc_t p;
3089 	uintptr_t pinned;
3090 	char **flagbuf;
3091 	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3092 
3093 	const char *flags[] = {
3094 	    "RUNNING", "READY", "QUIESCED", "EXISTS",
3095 	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3096 	    "SPARE", "FAULTED", NULL
3097 	};
3098 
3099 	if (cid->cid_cpu != -1) {
3100 		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3101 			return (WALK_NEXT);
3102 
3103 		/*
3104 		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3105 		 */
3106 		cid->cid_cpu = -1;
3107 		rval = WALK_DONE;
3108 	}
3109 
3110 	if (cid->cid_print_head) {
3111 		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3112 		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3113 		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3114 		    "PROC");
3115 		cid->cid_print_head = FALSE;
3116 	}
3117 
3118 	bspl = cpu->cpu_base_spl;
3119 
3120 	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3121 		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3122 		return (WALK_ERR);
3123 	}
3124 
3125 	mdb_printf("%3d %0*p %3x %4d %4d ",
3126 	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3127 	    disp.disp_nrunnable, bspl);
3128 
3129 	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3130 		mdb_printf("%3d ", t.t_pri);
3131 	} else {
3132 		mdb_printf("%3s ", "-");
3133 	}
3134 
3135 	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3136 	    cpu->cpu_kprunrun ? "yes" : "no");
3137 
3138 	if (cpu->cpu_last_swtch) {
3139 		mdb_printf("t-%-4d ",
3140 		    (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3141 	} else {
3142 		mdb_printf("%-6s ", "-");
3143 	}
3144 
3145 	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3146 
3147 	if (cpu->cpu_thread == cpu->cpu_idle_thread)
3148 		mdb_printf(" (idle)\n");
3149 	else if (cpu->cpu_thread == NULL)
3150 		mdb_printf(" -\n");
3151 	else {
3152 		if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3153 		    (uintptr_t)t.t_procp, 0) != -1) {
3154 			mdb_printf(" %s\n", p.p_user.u_comm);
3155 		} else {
3156 			mdb_printf(" ?\n");
3157 		}
3158 	}
3159 
3160 	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3161 
3162 	if (cid->cid_print_flags) {
3163 		int first = 1, i, j, k;
3164 		char *s;
3165 
3166 		cid->cid_print_head = TRUE;
3167 
3168 		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3169 			if (!(cpu->cpu_flags & i))
3170 				continue;
3171 
3172 			if (first) {
3173 				s = mdb_alloc(CPUINFO_THRDELT + 1,
3174 				    UM_GC | UM_SLEEP);
3175 
3176 				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3177 				    "%*s|%*s", CPUINFO_FLAGDELT, "",
3178 				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3179 				flagbuf[nflaglines++] = s;
3180 			}
3181 
3182 			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3183 			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3184 			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3185 			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3186 			    first ? "<--+" : "");
3187 
3188 			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3189 				s[k] = ' ';
3190 			s[k] = '\0';
3191 
3192 			flagbuf[nflaglines++] = s;
3193 			first = 0;
3194 		}
3195 	}
3196 
3197 	if (cid->cid_print_ithr) {
3198 		int i, found_one = FALSE;
3199 		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3200 
3201 		for (i = NINTR - 1; i >= 0; i--) {
3202 			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3203 
3204 			if (iaddr == NULL)
3205 				continue;
3206 
3207 			if (!found_one) {
3208 				found_one = TRUE;
3209 
3210 				CPUINFO_INDENT;
3211 				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3212 				    CPUINFO_ITHRDELT, "");
3213 
3214 				CPUINFO_INDENT;
3215 				mdb_printf("%c%*s+--> %3s %s\n",
3216 				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3217 				    "", "PIL", "THREAD");
3218 			}
3219 
3220 			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3221 				mdb_warn("failed to read kthread_t at %p",
3222 				    iaddr);
3223 				return (WALK_ERR);
3224 			}
3225 
3226 			CPUINFO_INDENT;
3227 			mdb_printf("%c%*s     %3d %0*p\n",
3228 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3229 			    t.t_pil, CPUINFO_TWIDTH, iaddr);
3230 
3231 			pinned = (uintptr_t)t.t_intr;
3232 		}
3233 
3234 		if (found_one && pinned != NULL) {
3235 			cid->cid_print_head = TRUE;
3236 			(void) strcpy(p.p_user.u_comm, "?");
3237 
3238 			if (mdb_vread(&t, sizeof (t),
3239 			    (uintptr_t)pinned) == -1) {
3240 				mdb_warn("failed to read kthread_t at %p",
3241 				    pinned);
3242 				return (WALK_ERR);
3243 			}
3244 			if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3245 			    (uintptr_t)t.t_procp, 0) == -1) {
3246 				mdb_warn("failed to read proc_t at %p",
3247 				    t.t_procp);
3248 				return (WALK_ERR);
3249 			}
3250 
3251 			CPUINFO_INDENT;
3252 			mdb_printf("%c%*s     %3s %0*p %s\n",
3253 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3254 			    CPUINFO_TWIDTH, pinned,
3255 			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
3256 			    "(idle)" : p.p_user.u_comm);
3257 		}
3258 	}
3259 
3260 	if (disp.disp_nrunnable && cid->cid_print_thr) {
3261 		dispq_t *dq;
3262 
3263 		int i, npri = disp.disp_npri;
3264 
3265 		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3266 
3267 		if (mdb_vread(dq, sizeof (dispq_t) * npri,
3268 		    (uintptr_t)disp.disp_q) == -1) {
3269 			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3270 			return (WALK_ERR);
3271 		}
3272 
3273 		CPUINFO_INDENT;
3274 		mdb_printf("|\n");
3275 
3276 		CPUINFO_INDENT;
3277 		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
3278 		    CPUINFO_TWIDTH, "THREAD", "PROC");
3279 
3280 		for (i = npri - 1; i >= 0; i--) {
3281 			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3282 
3283 			while (taddr != NULL) {
3284 				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3285 					mdb_warn("failed to read kthread_t "
3286 					    "at %p", taddr);
3287 					return (WALK_ERR);
3288 				}
3289 				if (mdb_ctf_vread(&p, "proc_t",
3290 				    "mdb_cpuinfo_proc_t",
3291 				    (uintptr_t)t.t_procp, 0) == -1) {
3292 					mdb_warn("failed to read proc_t at %p",
3293 					    t.t_procp);
3294 					return (WALK_ERR);
3295 				}
3296 
3297 				CPUINFO_INDENT;
3298 				mdb_printf("      %3d %0*p %s\n", t.t_pri,
3299 				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3300 
3301 				taddr = (uintptr_t)t.t_link;
3302 			}
3303 		}
3304 		cid->cid_print_head = TRUE;
3305 	}
3306 
3307 	while (flagline < nflaglines)
3308 		mdb_printf("%s\n", flagbuf[flagline++]);
3309 
3310 	if (cid->cid_print_head)
3311 		mdb_printf("\n");
3312 
3313 	return (rval);
3314 }
3315 
3316 int
3317 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3318 {
3319 	uint_t verbose = FALSE;
3320 	cpuinfo_data_t cid;
3321 
3322 	cid.cid_print_ithr = FALSE;
3323 	cid.cid_print_thr = FALSE;
3324 	cid.cid_print_flags = FALSE;
3325 	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3326 	cid.cid_cpu = -1;
3327 
3328 	if (flags & DCMD_ADDRSPEC)
3329 		cid.cid_cpu = addr;
3330 
3331 	if (mdb_getopts(argc, argv,
3332 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3333 		return (DCMD_USAGE);
3334 
3335 	if (verbose) {
3336 		cid.cid_print_ithr = TRUE;
3337 		cid.cid_print_thr = TRUE;
3338 		cid.cid_print_flags = TRUE;
3339 		cid.cid_print_head = TRUE;
3340 	}
3341 
3342 	if (cid.cid_print_ithr) {
3343 		int i;
3344 
3345 		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3346 		    * NCPU, UM_SLEEP | UM_GC);
3347 
3348 		for (i = 0; i < NCPU; i++)
3349 			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3350 			    NINTR, UM_SLEEP | UM_GC);
3351 
3352 		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3353 		    &cid) == -1) {
3354 			mdb_warn("couldn't walk thread");
3355 			return (DCMD_ERR);
3356 		}
3357 	}
3358 
3359 	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3360 		mdb_warn("can't walk cpus");
3361 		return (DCMD_ERR);
3362 	}
3363 
3364 	if (cid.cid_cpu != -1) {
3365 		/*
3366 		 * We didn't find this CPU when we walked through the CPUs
3367 		 * (i.e. the address specified doesn't show up in the "cpu"
3368 		 * walk).  However, the specified address may still correspond
3369 		 * to a valid cpu_t (for example, if the specified address is
3370 		 * the actual panicking cpu_t and not the cached panic_cpu).
3371 		 * Point is:  even if we didn't find it, we still want to try
3372 		 * to print the specified address as a cpu_t.
3373 		 */
3374 		cpu_t cpu;
3375 
3376 		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3377 			mdb_warn("%p is neither a valid CPU ID nor a "
3378 			    "valid cpu_t address\n", cid.cid_cpu);
3379 			return (DCMD_ERR);
3380 		}
3381 
3382 		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3383 	}
3384 
3385 	return (DCMD_OK);
3386 }
3387 
3388 /*ARGSUSED*/
3389 int
3390 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3391 {
3392 	int i;
3393 
3394 	if (!(flags & DCMD_ADDRSPEC))
3395 		return (DCMD_USAGE);
3396 
3397 	for (i = 0; i < sizeof (addr) * NBBY; i++)
3398 		mdb_printf("%p\n", addr ^ (1UL << i));
3399 
3400 	return (DCMD_OK);
3401 }
3402 
3403 typedef struct mdb_as2proc_proc {
3404 	struct as *p_as;
3405 } mdb_as2proc_proc_t;
3406 
3407 /*ARGSUSED*/
3408 int
3409 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3410 {
3411 	mdb_as2proc_proc_t p;
3412 
3413 	mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3414 
3415 	if (p.p_as == *asp)
3416 		mdb_printf("%p\n", addr);
3417 	return (WALK_NEXT);
3418 }
3419 
3420 /*ARGSUSED*/
3421 int
3422 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3423 {
3424 	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3425 		return (DCMD_USAGE);
3426 
3427 	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3428 		mdb_warn("failed to walk proc");
3429 		return (DCMD_ERR);
3430 	}
3431 
3432 	return (DCMD_OK);
3433 }
3434 
3435 typedef struct mdb_ptree_proc {
3436 	struct proc	*p_parent;
3437 	struct {
3438 		char		u_comm[MAXCOMLEN + 1];
3439 	} p_user;
3440 } mdb_ptree_proc_t;
3441 
3442 /*ARGSUSED*/
3443 int
3444 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3445 {
3446 	mdb_ptree_proc_t proc;
3447 	mdb_ptree_proc_t parent;
3448 	int ident = 0;
3449 	uintptr_t paddr;
3450 
3451 	mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3452 
3453 	for (paddr = (uintptr_t)proc.p_parent; paddr != NULL; ident += 5) {
3454 		mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3455 		paddr = (uintptr_t)parent.p_parent;
3456 	}
3457 
3458 	mdb_inc_indent(ident);
3459 	mdb_printf("%0?p  %s\n", addr, proc.p_user.u_comm);
3460 	mdb_dec_indent(ident);
3461 
3462 	return (WALK_NEXT);
3463 }
3464 
3465 void
3466 ptree_ancestors(uintptr_t addr, uintptr_t start)
3467 {
3468 	mdb_ptree_proc_t p;
3469 
3470 	if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3471 		mdb_warn("couldn't read ancestor at %p", addr);
3472 		return;
3473 	}
3474 
3475 	if (p.p_parent != NULL)
3476 		ptree_ancestors((uintptr_t)p.p_parent, start);
3477 
3478 	if (addr != start)
3479 		(void) ptree_walk(addr, &p, NULL);
3480 }
3481 
3482 /*ARGSUSED*/
3483 int
3484 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3485 {
3486 	if (!(flags & DCMD_ADDRSPEC))
3487 		addr = NULL;
3488 	else
3489 		ptree_ancestors(addr, addr);
3490 
3491 	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3492 		mdb_warn("couldn't walk 'proc'");
3493 		return (DCMD_ERR);
3494 	}
3495 
3496 	return (DCMD_OK);
3497 }
3498 
3499 typedef struct mdb_fd_proc {
3500 	struct {
3501 		struct {
3502 			int			fi_nfiles;
3503 			uf_entry_t *volatile	fi_list;
3504 		} u_finfo;
3505 	} p_user;
3506 } mdb_fd_proc_t;
3507 
3508 /*ARGSUSED*/
3509 static int
3510 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3511 {
3512 	int fdnum;
3513 	const mdb_arg_t *argp = &argv[0];
3514 	mdb_fd_proc_t p;
3515 	uf_entry_t uf;
3516 
3517 	if ((flags & DCMD_ADDRSPEC) == 0) {
3518 		mdb_warn("fd doesn't give global information\n");
3519 		return (DCMD_ERR);
3520 	}
3521 	if (argc != 1)
3522 		return (DCMD_USAGE);
3523 
3524 	if (argp->a_type == MDB_TYPE_IMMEDIATE)
3525 		fdnum = argp->a_un.a_val;
3526 	else
3527 		fdnum = mdb_strtoull(argp->a_un.a_str);
3528 
3529 	if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3530 		mdb_warn("couldn't read proc_t at %p", addr);
3531 		return (DCMD_ERR);
3532 	}
3533 	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3534 		mdb_warn("process %p only has %d files open.\n",
3535 		    addr, p.p_user.u_finfo.fi_nfiles);
3536 		return (DCMD_ERR);
3537 	}
3538 	if (mdb_vread(&uf, sizeof (uf_entry_t),
3539 	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3540 		mdb_warn("couldn't read uf_entry_t at %p",
3541 		    &p.p_user.u_finfo.fi_list[fdnum]);
3542 		return (DCMD_ERR);
3543 	}
3544 
3545 	mdb_printf("%p\n", uf.uf_file);
3546 	return (DCMD_OK);
3547 }
3548 
3549 /*ARGSUSED*/
3550 static int
3551 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3552 {
3553 	pid_t pid = (pid_t)addr;
3554 
3555 	if (argc != 0)
3556 		return (DCMD_USAGE);
3557 
3558 	if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3559 		mdb_warn("PID 0t%d not found\n", pid);
3560 		return (DCMD_ERR);
3561 	}
3562 
3563 	mdb_printf("%p\n", addr);
3564 	return (DCMD_OK);
3565 }
3566 
3567 static char *sysfile_cmd[] = {
3568 	"exclude:",
3569 	"include:",
3570 	"forceload:",
3571 	"rootdev:",
3572 	"rootfs:",
3573 	"swapdev:",
3574 	"swapfs:",
3575 	"moddir:",
3576 	"set",
3577 	"unknown",
3578 };
3579 
3580 static char *sysfile_ops[] = { "", "=", "&", "|" };
3581 
3582 /*ARGSUSED*/
3583 static int
3584 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3585 {
3586 	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3587 		*target = NULL;
3588 		return (WALK_DONE);
3589 	}
3590 	return (WALK_NEXT);
3591 }
3592 
3593 /*ARGSUSED*/
3594 static int
3595 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3596 {
3597 	struct sysparam *sysp, sys;
3598 	char var[256];
3599 	char modname[256];
3600 	char val[256];
3601 	char strval[256];
3602 	vmem_t *mod_sysfile_arena;
3603 	void *straddr;
3604 
3605 	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3606 		mdb_warn("failed to read sysparam_hd");
3607 		return (DCMD_ERR);
3608 	}
3609 
3610 	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3611 		mdb_warn("failed to read mod_sysfile_arena");
3612 		return (DCMD_ERR);
3613 	}
3614 
3615 	while (sysp != NULL) {
3616 		var[0] = '\0';
3617 		val[0] = '\0';
3618 		modname[0] = '\0';
3619 		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3620 			mdb_warn("couldn't read sysparam %p", sysp);
3621 			return (DCMD_ERR);
3622 		}
3623 		if (sys.sys_modnam != NULL &&
3624 		    mdb_readstr(modname, 256,
3625 		    (uintptr_t)sys.sys_modnam) == -1) {
3626 			mdb_warn("couldn't read modname in %p", sysp);
3627 			return (DCMD_ERR);
3628 		}
3629 		if (sys.sys_ptr != NULL &&
3630 		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3631 			mdb_warn("couldn't read ptr in %p", sysp);
3632 			return (DCMD_ERR);
3633 		}
3634 		if (sys.sys_op != SETOP_NONE) {
3635 			/*
3636 			 * Is this an int or a string?  We determine this
3637 			 * by checking whether straddr is contained in
3638 			 * mod_sysfile_arena.  If so, the walker will set
3639 			 * straddr to NULL.
3640 			 */
3641 			straddr = (void *)(uintptr_t)sys.sys_info;
3642 			if (sys.sys_op == SETOP_ASSIGN &&
3643 			    sys.sys_info != 0 &&
3644 			    mdb_pwalk("vmem_seg",
3645 			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3646 			    (uintptr_t)mod_sysfile_arena) == 0 &&
3647 			    straddr == NULL &&
3648 			    mdb_readstr(strval, 256,
3649 			    (uintptr_t)sys.sys_info) != -1) {
3650 				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3651 				    strval);
3652 			} else {
3653 				(void) mdb_snprintf(val, sizeof (val),
3654 				    "0x%llx [0t%llu]", sys.sys_info,
3655 				    sys.sys_info);
3656 			}
3657 		}
3658 		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3659 		    modname, modname[0] == '\0' ? "" : ":",
3660 		    var, sysfile_ops[sys.sys_op], val);
3661 
3662 		sysp = sys.sys_next;
3663 	}
3664 
3665 	return (DCMD_OK);
3666 }
3667 
3668 int
3669 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3670 {
3671 
3672 	if (*didp == thr->t_did) {
3673 		mdb_printf("%p\n", addr);
3674 		return (WALK_DONE);
3675 	} else
3676 		return (WALK_NEXT);
3677 }
3678 
3679 /*ARGSUSED*/
3680 int
3681 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3682 {
3683 	const mdb_arg_t *argp = &argv[0];
3684 	kt_did_t	did;
3685 
3686 	if (argc != 1)
3687 		return (DCMD_USAGE);
3688 
3689 	did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3690 
3691 	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3692 		mdb_warn("failed to walk thread");
3693 		return (DCMD_ERR);
3694 
3695 	}
3696 	return (DCMD_OK);
3697 
3698 }
3699 
3700 static int
3701 errorq_walk_init(mdb_walk_state_t *wsp)
3702 {
3703 	if (wsp->walk_addr == NULL &&
3704 	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3705 		mdb_warn("failed to read errorq_list");
3706 		return (WALK_ERR);
3707 	}
3708 
3709 	return (WALK_NEXT);
3710 }
3711 
3712 static int
3713 errorq_walk_step(mdb_walk_state_t *wsp)
3714 {
3715 	uintptr_t addr = wsp->walk_addr;
3716 	errorq_t eq;
3717 
3718 	if (addr == NULL)
3719 		return (WALK_DONE);
3720 
3721 	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3722 		mdb_warn("failed to read errorq at %p", addr);
3723 		return (WALK_ERR);
3724 	}
3725 
3726 	wsp->walk_addr = (uintptr_t)eq.eq_next;
3727 	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3728 }
3729 
3730 typedef struct eqd_walk_data {
3731 	uintptr_t *eqd_stack;
3732 	void *eqd_buf;
3733 	ulong_t eqd_qpos;
3734 	ulong_t eqd_qlen;
3735 	size_t eqd_size;
3736 } eqd_walk_data_t;
3737 
3738 /*
3739  * In order to walk the list of pending error queue elements, we push the
3740  * addresses of the corresponding data buffers in to the eqd_stack array.
3741  * The error lists are in reverse chronological order when iterating using
3742  * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3743  * walker client gets addresses in order from oldest error to newest error.
3744  */
3745 static void
3746 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3747 {
3748 	errorq_elem_t eqe;
3749 
3750 	while (addr != NULL) {
3751 		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3752 			mdb_warn("failed to read errorq element at %p", addr);
3753 			break;
3754 		}
3755 
3756 		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3757 			mdb_warn("errorq is overfull -- more than %lu "
3758 			    "elems found\n", eqdp->eqd_qlen);
3759 			break;
3760 		}
3761 
3762 		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3763 		addr = (uintptr_t)eqe.eqe_prev;
3764 	}
3765 }
3766 
3767 static int
3768 eqd_walk_init(mdb_walk_state_t *wsp)
3769 {
3770 	eqd_walk_data_t *eqdp;
3771 	errorq_elem_t eqe, *addr;
3772 	errorq_t eq;
3773 	ulong_t i;
3774 
3775 	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3776 		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3777 		return (WALK_ERR);
3778 	}
3779 
3780 	if (eq.eq_ptail != NULL &&
3781 	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3782 		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3783 		return (WALK_ERR);
3784 	}
3785 
3786 	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3787 	wsp->walk_data = eqdp;
3788 
3789 	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3790 	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3791 	eqdp->eqd_qlen = eq.eq_qlen;
3792 	eqdp->eqd_qpos = 0;
3793 	eqdp->eqd_size = eq.eq_size;
3794 
3795 	/*
3796 	 * The newest elements in the queue are on the pending list, so we
3797 	 * push those on to our stack first.
3798 	 */
3799 	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3800 
3801 	/*
3802 	 * If eq_ptail is set, it may point to a subset of the errors on the
3803 	 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3804 	 * data is already in our stack, NULL out eq_ptail and ignore it.
3805 	 */
3806 	if (eq.eq_ptail != NULL) {
3807 		for (i = 0; i < eqdp->eqd_qpos; i++) {
3808 			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3809 				eq.eq_ptail = NULL;
3810 				break;
3811 			}
3812 		}
3813 	}
3814 
3815 	/*
3816 	 * If eq_phead is set, it has the processing list in order from oldest
3817 	 * to newest.  Use this to recompute eq_ptail as best we can and then
3818 	 * we nicely fall into eqd_push_list() of eq_ptail below.
3819 	 */
3820 	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3821 	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3822 		eq.eq_ptail = addr;
3823 
3824 	/*
3825 	 * The oldest elements in the queue are on the processing list, subject
3826 	 * to machinations in the if-clauses above.  Push any such elements.
3827 	 */
3828 	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3829 	return (WALK_NEXT);
3830 }
3831 
3832 static int
3833 eqd_walk_step(mdb_walk_state_t *wsp)
3834 {
3835 	eqd_walk_data_t *eqdp = wsp->walk_data;
3836 	uintptr_t addr;
3837 
3838 	if (eqdp->eqd_qpos == 0)
3839 		return (WALK_DONE);
3840 
3841 	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3842 
3843 	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3844 		mdb_warn("failed to read errorq data at %p", addr);
3845 		return (WALK_ERR);
3846 	}
3847 
3848 	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3849 }
3850 
3851 static void
3852 eqd_walk_fini(mdb_walk_state_t *wsp)
3853 {
3854 	eqd_walk_data_t *eqdp = wsp->walk_data;
3855 
3856 	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3857 	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3858 	mdb_free(eqdp, sizeof (eqd_walk_data_t));
3859 }
3860 
3861 #define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3862 
3863 static int
3864 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3865 {
3866 	int i;
3867 	errorq_t eq;
3868 	uint_t opt_v = FALSE;
3869 
3870 	if (!(flags & DCMD_ADDRSPEC)) {
3871 		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3872 			mdb_warn("can't walk 'errorq'");
3873 			return (DCMD_ERR);
3874 		}
3875 		return (DCMD_OK);
3876 	}
3877 
3878 	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3879 	argc -= i;
3880 	argv += i;
3881 
3882 	if (argc != 0)
3883 		return (DCMD_USAGE);
3884 
3885 	if (opt_v || DCMD_HDRSPEC(flags)) {
3886 		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3887 		    "ADDR", "NAME", "S", "V", "N");
3888 		if (!opt_v) {
3889 			mdb_printf("%7s %7s %7s%</u>\n",
3890 			    "ACCEPT", "DROP", "LOG");
3891 		} else {
3892 			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3893 			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3894 		}
3895 	}
3896 
3897 	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3898 		mdb_warn("failed to read errorq at %p", addr);
3899 		return (DCMD_ERR);
3900 	}
3901 
3902 	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3903 	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3904 	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3905 	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3906 
3907 	if (!opt_v) {
3908 		mdb_printf("%7llu %7llu %7llu\n",
3909 		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3910 		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3911 		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3912 	} else {
3913 		mdb_printf("%5s %6lu %6lu %3u %a\n",
3914 		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3915 		mdb_printf("%38s\n%41s"
3916 		    "%12s %llu\n"
3917 		    "%53s %llu\n"
3918 		    "%53s %llu\n"
3919 		    "%53s %llu\n"
3920 		    "%53s %llu\n"
3921 		    "%53s %llu\n"
3922 		    "%53s %llu\n"
3923 		    "%53s %llu\n\n",
3924 		    "|", "+-> ",
3925 		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
3926 		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
3927 		    "LOGGED",		EQKSVAL(eq, eqk_logged),
3928 		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
3929 		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
3930 		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
3931 		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
3932 		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
3933 	}
3934 
3935 	return (DCMD_OK);
3936 }
3937 
3938 /*ARGSUSED*/
3939 static int
3940 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3941 {
3942 	cpu_t panic_cpu;
3943 	kthread_t *panic_thread;
3944 	void *buf;
3945 	panic_data_t *pd;
3946 	int i, n;
3947 
3948 	if (!mdb_prop_postmortem) {
3949 		mdb_warn("panicinfo can only be run on a system "
3950 		    "dump; see dumpadm(1M)\n");
3951 		return (DCMD_ERR);
3952 	}
3953 
3954 	if (flags & DCMD_ADDRSPEC || argc != 0)
3955 		return (DCMD_USAGE);
3956 
3957 	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3958 		mdb_warn("failed to read 'panic_cpu'");
3959 	else
3960 		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3961 
3962 	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3963 		mdb_warn("failed to read 'panic_thread'");
3964 	else
3965 		mdb_printf("%16s %?p\n", "thread", panic_thread);
3966 
3967 	buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3968 	pd = (panic_data_t *)buf;
3969 
3970 	if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3971 	    pd->pd_version != PANICBUFVERS) {
3972 		mdb_warn("failed to read 'panicbuf'");
3973 		mdb_free(buf, PANICBUFSIZE);
3974 		return (DCMD_ERR);
3975 	}
3976 
3977 	mdb_printf("%16s %s\n", "message",  (char *)buf + pd->pd_msgoff);
3978 
3979 	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3980 	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3981 
3982 	for (i = 0; i < n; i++)
3983 		mdb_printf("%16s %?llx\n",
3984 		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3985 
3986 	mdb_free(buf, PANICBUFSIZE);
3987 	return (DCMD_OK);
3988 }
3989 
3990 /*
3991  * ::time dcmd, which will print a hires timestamp of when we entered the
3992  * debugger, or the lbolt value if used with the -l option.
3993  *
3994  */
3995 /*ARGSUSED*/
3996 static int
3997 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3998 {
3999 	uint_t opt_dec = FALSE;
4000 	uint_t opt_lbolt = FALSE;
4001 	uint_t opt_hex = FALSE;
4002 	const char *fmt;
4003 	hrtime_t result;
4004 
4005 	if (mdb_getopts(argc, argv,
4006 	    'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4007 	    'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4008 	    'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4009 	    NULL) != argc)
4010 		return (DCMD_USAGE);
4011 
4012 	if (opt_dec && opt_hex)
4013 		return (DCMD_USAGE);
4014 
4015 	result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4016 	fmt =
4017 	    opt_hex ? "0x%llx\n" :
4018 	    opt_dec ? "0t%lld\n" : "%#llr\n";
4019 
4020 	mdb_printf(fmt, result);
4021 	return (DCMD_OK);
4022 }
4023 
4024 void
4025 time_help(void)
4026 {
4027 	mdb_printf("Prints the system time in nanoseconds.\n\n"
4028 	    "::time will return the timestamp at which we dropped into, \n"
4029 	    "if called from, kmdb(1); the core dump's high resolution \n"
4030 	    "time if inspecting one; or the running hires time if we're \n"
4031 	    "looking at a live system.\n\n"
4032 	    "Switches:\n"
4033 	    "  -d   report times in decimal\n"
4034 	    "  -l   prints the number of clock ticks since system boot\n"
4035 	    "  -x   report times in hexadecimal\n");
4036 }
4037 
4038 static const mdb_dcmd_t dcmds[] = {
4039 
4040 	/* from genunix.c */
4041 	{ "as2proc", ":", "convert as to proc_t address", as2proc },
4042 	{ "binding_hash_entry", ":", "print driver names hash table entry",
4043 		binding_hash_entry },
4044 	{ "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4045 	    " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4046 	    " [-FivVA]",
4047 	    "display callouts", callout, callout_help },
4048 	{ "calloutid", "[-d|v] xid", "print callout by extended id",
4049 	    calloutid, calloutid_help },
4050 	{ "class", NULL, "print process scheduler classes", class },
4051 	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4052 	{ "did2thread", "? kt_did", "find kernel thread for this id",
4053 		did2thread },
4054 	{ "errorq", "?[-v]", "display kernel error queues", errorq },
4055 	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
4056 	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
4057 	{ "lminfo", NULL, "print lock manager information", lminfo },
4058 	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4059 	{ "panicinfo", NULL, "print panic information", panicinfo },
4060 	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4061 	{ "project", NULL, "display kernel project(s)", project },
4062 	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
4063 	{ "pflags", NULL, "display various proc_t flags", pflags },
4064 	{ "pgrep", "[-x] [-n | -o] pattern",
4065 		"pattern match against all processes", pgrep },
4066 	{ "ptree", NULL, "print process tree", ptree },
4067 	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4068 		sysevent},
4069 	{ "sysevent_channel", "?", "print sysevent channel database",
4070 		sysevent_channel},
4071 	{ "sysevent_class_list", ":", "print sysevent class list",
4072 		sysevent_class_list},
4073 	{ "sysevent_subclass_list", ":",
4074 		"print sysevent subclass list", sysevent_subclass_list},
4075 	{ "system", NULL, "print contents of /etc/system file", sysfile },
4076 	{ "task", NULL, "display kernel task(s)", task },
4077 	{ "time", "[-dlx]", "display system time", time, time_help },
4078 	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4079 	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
4080 	    whereopen },
4081 
4082 	/* from bio.c */
4083 	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4084 
4085 	/* from bitset.c */
4086 	{ "bitset", ":", "display a bitset", bitset, bitset_help },
4087 
4088 	/* from contract.c */
4089 	{ "contract", "?", "display a contract", cmd_contract },
4090 	{ "ctevent", ":", "display a contract event", cmd_ctevent },
4091 	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4092 
4093 	/* from cpupart.c */
4094 	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
4095 
4096 	/* from cred.c */
4097 	{ "cred", ":[-v]", "display a credential", cmd_cred },
4098 	{ "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4099 	{ "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4100 	{ "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4101 
4102 	/* from cyclic.c */
4103 	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
4104 	{ "cycid", "?", "dump a cyclic id", cycid },
4105 	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4106 	{ "cyclic", ":", "developer information", cyclic },
4107 	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4108 
4109 	/* from damap.c */
4110 	{ "damap", ":", "display a damap_t", damap, damap_help },
4111 
4112 	/* from ddi_periodic.c */
4113 	{ "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4114 
4115 	/* from devinfo.c */
4116 	{ "devbindings", "?[-qs] [device-name | major-num]",
4117 	    "print devinfo nodes bound to device-name or major-num",
4118 	    devbindings, devinfo_help },
4119 	{ "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
4120 	    devinfo_help },
4121 	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4122 	    devinfo_audit },
4123 	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4124 	    devinfo_audit_log },
4125 	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4126 	    devinfo_audit_node },
4127 	{ "devinfo2driver", ":", "find driver name for this devinfo node",
4128 	    devinfo2driver },
4129 	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
4130 	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
4131 	    dev2major },
4132 	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4133 	    dev2minor },
4134 	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4135 	    devt },
4136 	{ "major2name", "?<major-num>", "convert major number to dev name",
4137 	    major2name },
4138 	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
4139 	    minornodes },
4140 	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
4141 	    modctl2devinfo },
4142 	{ "name2major", "<dev-name>", "convert dev name to major number",
4143 	    name2major },
4144 	{ "prtconf", "?[-vpc] [-d driver]", "print devinfo tree", prtconf,
4145 	    prtconf_help },
4146 	{ "softstate", ":<instance>", "retrieve soft-state pointer",
4147 	    softstate },
4148 	{ "devinfo_fm", ":", "devinfo fault managment configuration",
4149 	    devinfo_fm },
4150 	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
4151 	    devinfo_fmce},
4152 
4153 	/* from findstack.c */
4154 	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
4155 	{ "findstack_debug", NULL, "toggle findstack debugging",
4156 		findstack_debug },
4157 	{ "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4158 		"[-s sobj | -S sobj] [-t tstate | -T tstate]",
4159 		"print unique kernel thread stacks",
4160 		stacks, stacks_help },
4161 
4162 	/* from fm.c */
4163 	{ "ereport", "[-v]", "print ereports logged in dump",
4164 	    ereport },
4165 
4166 	/* from group.c */
4167 	{ "group", "?[-q]", "display a group", group},
4168 
4169 	/* from hotplug.c */
4170 	{ "hotplug", "?[-p]", "display a registered hotplug attachment",
4171 	    hotplug, hotplug_help },
4172 
4173 	/* from irm.c */
4174 	{ "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4175 	{ "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4176 	    irmreqs_dcmd },
4177 	{ "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4178 
4179 	/* from kgrep.c + genunix.c */
4180 	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4181 		kgrep_help },
4182 
4183 	/* from kmem.c */
4184 	{ "allocdby", ":", "given a thread, print its allocated buffers",
4185 		allocdby },
4186 	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4187 		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4188 	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
4189 	{ "kmalog", "?[ fail | slab ]",
4190 	    "display kmem transaction log and stack traces", kmalog },
4191 	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
4192 	    kmastat },
4193 	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4194 		"of the kmem allocator", kmausers, kmausers_help },
4195 	{ "kmem_cache", "?[-n name]",
4196 		"print kernel memory caches", kmem_cache, kmem_cache_help},
4197 	{ "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4198 		"[-B minbinsize]", "display slab usage per kmem cache",
4199 		kmem_slabs, kmem_slabs_help },
4200 	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4201 	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4202 	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
4203 		kmem_verify },
4204 	{ "vmem", "?", "print a vmem_t", vmem },
4205 	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4206 		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
4207 		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4208 	{ "whatthread", ":[-v]", "print threads whose stack contains the "
4209 		"given address", whatthread },
4210 
4211 	/* from ldi.c */
4212 	{ "ldi_handle", "?[-i]", "display a layered driver handle",
4213 	    ldi_handle, ldi_handle_help },
4214 	{ "ldi_ident", NULL, "display a layered driver identifier",
4215 	    ldi_ident, ldi_ident_help },
4216 
4217 	/* from leaky.c + leaky_subr.c */
4218 	{ "findleaks", FINDLEAKS_USAGE,
4219 	    "search for potential kernel memory leaks", findleaks,
4220 	    findleaks_help },
4221 
4222 	/* from lgrp.c */
4223 	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4224 	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4225 
4226 	/* from log.c */
4227 	{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4228 
4229 	/* from mdi.c */
4230 	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
4231 		"and detailed pi_prop list", mdipi },
4232 	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4233 		mdiprops },
4234 	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
4235 		"list all paths", mdiphci },
4236 	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4237 		"all phcis", mdivhci },
4238 	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4239 		"client links", mdiclient_paths },
4240 	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4241 		"phci links", mdiphci_paths },
4242 	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4243 		mdiphcis },
4244 
4245 	/* from memory.c */
4246 	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4247 	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
4248 	{ "memstat", NULL, "display memory usage summary", memstat },
4249 	{ "page", "?", "display a summarized page_t", page },
4250 	{ "pagelookup", "?[-v vp] [-o offset]",
4251 		"find the page_t with the name {vp, offset}",
4252 		pagelookup, pagelookup_help },
4253 	{ "page_num2pp", ":", "find the page_t for a given page frame number",
4254 		page_num2pp },
4255 	{ "pmap", ":[-q]", "print process memory map", pmap },
4256 	{ "seg", ":", "print address space segment", seg },
4257 	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
4258 	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4259 
4260 	/* from mmd.c */
4261 	{ "multidata", ":[-sv]", "display a summarized multidata_t",
4262 		multidata },
4263 	{ "pattbl", ":", "display a summarized multidata attribute table",
4264 		pattbl },
4265 	{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
4266 		pattr2multidata },
4267 	{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4268 		pdesc2slab },
4269 	{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4270 	{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4271 		slab2multidata },
4272 
4273 	/* from modhash.c */
4274 	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4275 		"display information about one or all mod_hash structures",
4276 		modhash, modhash_help },
4277 	{ "modent", ":[-k | -v | -t type]",
4278 		"display information about a mod_hash_entry", modent,
4279 		modent_help },
4280 
4281 	/* from net.c */
4282 	{ "dladm", "?<sub-command> [flags]", "show data link information",
4283 		dladm, dladm_help },
4284 	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4285 		mi },
4286 	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4287 		"show network statistics", netstat },
4288 	{ "sonode", "?[-f inet | inet6 | unix | #] "
4289 		"[-t stream | dgram | raw | #] [-p #]",
4290 		"filter and display sonode", sonode },
4291 
4292 	/* from netstack.c */
4293 	{ "netstack", "", "show stack instances", netstack },
4294 	{ "netstackid2netstack", ":",
4295 		"translate a netstack id to its netstack_t",
4296 		netstackid2netstack },
4297 
4298 	/* from nvpair.c */
4299 	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4300 		nvpair_print },
4301 	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4302 		print_nvlist },
4303 
4304 	/* from pg.c */
4305 	{ "pg", "?[-q]", "display a pg", pg},
4306 
4307 	/* from rctl.c */
4308 	{ "rctl_dict", "?", "print systemwide default rctl definitions",
4309 		rctl_dict },
4310 	{ "rctl_list", ":[handle]", "print rctls for the given proc",
4311 		rctl_list },
4312 	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4313 		rctl },
4314 	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
4315 		"sequence", rctl_validate },
4316 
4317 	/* from sobj.c */
4318 	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
4319 	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4320 		mutex_help },
4321 	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4322 	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4323 	{ "turnstile", "?", "display a turnstile", turnstile },
4324 
4325 	/* from stream.c */
4326 	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4327 		"print an mblk", mblk_prt, mblk_help },
4328 	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4329 	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4330 		mblk2dblk },
4331 	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4332 	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
4333 	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
4334 	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
4335 	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
4336 	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4337 		"filter and display STREAM queue", queue, queue_help },
4338 	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
4339 		"filter and display STREAM head", stdata, stdata_help },
4340 	{ "str2mate", ":", "print mate of this stream", str2mate },
4341 	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
4342 	{ "stream", ":", "display STREAM", stream },
4343 	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
4344 	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4345 		"filter and display STREAM sync queue", syncq, syncq_help },
4346 	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
4347 
4348 	/* from taskq.c */
4349 	{ "taskq", ":[-atT] [-m min_maxq] [-n name]",
4350 	    "display a taskq", taskq, taskq_help },
4351 	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4352 
4353 	/* from thread.c */
4354 	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4355 		thread_help },
4356 	{ "threadlist", "?[-t] [-v [count]]",
4357 		"display threads and associated C stack traces", threadlist,
4358 		threadlist_help },
4359 	{ "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4360 		stackinfo_help },
4361 
4362 	/* from tsd.c */
4363 	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4364 	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
4365 
4366 	/*
4367 	 * typegraph does not work under kmdb, as it requires too much memory
4368 	 * for its internal data structures.
4369 	 */
4370 #ifndef _KMDB
4371 	/* from typegraph.c */
4372 	{ "findlocks", ":", "find locks held by specified thread", findlocks },
4373 	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
4374 		findfalse },
4375 	{ "typegraph", NULL, "build type graph", typegraph },
4376 	{ "istype", ":type", "manually set object type", istype },
4377 	{ "notype", ":", "manually clear object type", notype },
4378 	{ "whattype", ":", "determine object type", whattype },
4379 #endif
4380 
4381 	/* from vfs.c */
4382 	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4383 	{ "pfiles", ":[-fp]", "print process file information", pfiles,
4384 		pfiles_help },
4385 
4386 	/* from zone.c */
4387 	{ "zid2zone", ":", "find the zone_t with the given zone id",
4388 		zid2zone },
4389 	{ "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4390 	{ "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4391 	    "selected zones", zsd },
4392 
4393 #ifndef _KMDB
4394 	{ "gcore", NULL, "generate a user core for the given process",
4395 	    gcore_dcmd },
4396 #endif
4397 
4398 	{ NULL }
4399 };
4400 
4401 static const mdb_walker_t walkers[] = {
4402 
4403 	/* from genunix.c */
4404 	{ "callouts_bytime", "walk callouts by list chain (expiration time)",
4405 		callout_walk_init, callout_walk_step, callout_walk_fini,
4406 		(void *)CALLOUT_WALK_BYLIST },
4407 	{ "callouts_byid", "walk callouts by id hash chain",
4408 		callout_walk_init, callout_walk_step, callout_walk_fini,
4409 		(void *)CALLOUT_WALK_BYID },
4410 	{ "callout_list", "walk a callout list", callout_list_walk_init,
4411 		callout_list_walk_step, callout_list_walk_fini },
4412 	{ "callout_table", "walk callout table array", callout_table_walk_init,
4413 		callout_table_walk_step, callout_table_walk_fini },
4414 	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4415 	{ "dnlc", "walk dnlc entries",
4416 		dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4417 	{ "ereportq_dump", "walk list of ereports in dump error queue",
4418 		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4419 	{ "ereportq_pend", "walk list of ereports in pending error queue",
4420 		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4421 	{ "errorq", "walk list of system error queues",
4422 		errorq_walk_init, errorq_walk_step, NULL },
4423 	{ "errorq_data", "walk pending error queue data buffers",
4424 		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4425 	{ "allfile", "given a proc pointer, list all file pointers",
4426 		file_walk_init, allfile_walk_step, file_walk_fini },
4427 	{ "file", "given a proc pointer, list of open file pointers",
4428 		file_walk_init, file_walk_step, file_walk_fini },
4429 	{ "lock_descriptor", "walk lock_descriptor_t structures",
4430 		ld_walk_init, ld_walk_step, NULL },
4431 	{ "lock_graph", "walk lock graph",
4432 		lg_walk_init, lg_walk_step, NULL },
4433 	{ "port", "given a proc pointer, list of created event ports",
4434 		port_walk_init, port_walk_step, NULL },
4435 	{ "portev", "given a port pointer, list of events in the queue",
4436 		portev_walk_init, portev_walk_step, portev_walk_fini },
4437 	{ "proc", "list of active proc_t structures",
4438 		proc_walk_init, proc_walk_step, proc_walk_fini },
4439 	{ "projects", "walk a list of kernel projects",
4440 		project_walk_init, project_walk_step, NULL },
4441 	{ "sysevent_pend", "walk sysevent pending queue",
4442 		sysevent_pend_walk_init, sysevent_walk_step,
4443 		sysevent_walk_fini},
4444 	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4445 		sysevent_walk_step, sysevent_walk_fini},
4446 	{ "sysevent_channel", "walk sysevent channel subscriptions",
4447 		sysevent_channel_walk_init, sysevent_channel_walk_step,
4448 		sysevent_channel_walk_fini},
4449 	{ "sysevent_class_list", "walk sysevent subscription's class list",
4450 		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4451 		sysevent_class_list_walk_fini},
4452 	{ "sysevent_subclass_list",
4453 		"walk sysevent subscription's subclass list",
4454 		sysevent_subclass_list_walk_init,
4455 		sysevent_subclass_list_walk_step,
4456 		sysevent_subclass_list_walk_fini},
4457 	{ "task", "given a task pointer, walk its processes",
4458 		task_walk_init, task_walk_step, NULL },
4459 
4460 	/* from avl.c */
4461 	{ AVL_WALK_NAME, AVL_WALK_DESC,
4462 		avl_walk_init, avl_walk_step, avl_walk_fini },
4463 
4464 	/* from bio.c */
4465 	{ "buf", "walk the bio buf hash",
4466 		buf_walk_init, buf_walk_step, buf_walk_fini },
4467 
4468 	/* from contract.c */
4469 	{ "contract", "walk all contracts, or those of the specified type",
4470 		ct_walk_init, generic_walk_step, NULL },
4471 	{ "ct_event", "walk events on a contract event queue",
4472 		ct_event_walk_init, generic_walk_step, NULL },
4473 	{ "ct_listener", "walk contract event queue listeners",
4474 		ct_listener_walk_init, generic_walk_step, NULL },
4475 
4476 	/* from cpupart.c */
4477 	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4478 		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4479 		NULL },
4480 	{ "cpupart_walk", "walk the set of cpu partitions",
4481 		cpupart_walk_init, cpupart_walk_step, NULL },
4482 
4483 	/* from ctxop.c */
4484 	{ "ctxop", "walk list of context ops on a thread",
4485 		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4486 
4487 	/* from cyclic.c */
4488 	{ "cyccpu", "walk per-CPU cyc_cpu structures",
4489 		cyccpu_walk_init, cyccpu_walk_step, NULL },
4490 	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4491 		cycomni_walk_init, cycomni_walk_step, NULL },
4492 	{ "cyctrace", "walk cyclic trace buffer",
4493 		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4494 
4495 	/* from devinfo.c */
4496 	{ "binding_hash", "walk all entries in binding hash table",
4497 		binding_hash_walk_init, binding_hash_walk_step, NULL },
4498 	{ "devinfo", "walk devinfo tree or subtree",
4499 		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4500 	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
4501 		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4502 		devinfo_audit_log_walk_fini},
4503 	{ "devinfo_audit_node", "walk per-devinfo audit history",
4504 		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4505 		devinfo_audit_node_walk_fini},
4506 	{ "devinfo_children", "walk children of devinfo node",
4507 		devinfo_children_walk_init, devinfo_children_walk_step,
4508 		devinfo_children_walk_fini },
4509 	{ "devinfo_parents", "walk ancestors of devinfo node",
4510 		devinfo_parents_walk_init, devinfo_parents_walk_step,
4511 		devinfo_parents_walk_fini },
4512 	{ "devinfo_siblings", "walk siblings of devinfo node",
4513 		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4514 	{ "devi_next", "walk devinfo list",
4515 		NULL, devi_next_walk_step, NULL },
4516 	{ "devnames", "walk devnames array",
4517 		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4518 	{ "minornode", "given a devinfo node, walk minor nodes",
4519 		minornode_walk_init, minornode_walk_step, NULL },
4520 	{ "softstate",
4521 		"given an i_ddi_soft_state*, list all in-use driver stateps",
4522 		soft_state_walk_init, soft_state_walk_step,
4523 		NULL, NULL },
4524 	{ "softstate_all",
4525 		"given an i_ddi_soft_state*, list all driver stateps",
4526 		soft_state_walk_init, soft_state_all_walk_step,
4527 		NULL, NULL },
4528 	{ "devinfo_fmc",
4529 		"walk a fault management handle cache active list",
4530 		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4531 
4532 	/* from group.c */
4533 	{ "group", "walk all elements of a group",
4534 		group_walk_init, group_walk_step, NULL },
4535 
4536 	/* from irm.c */
4537 	{ "irmpools", "walk global list of interrupt pools",
4538 	    irmpools_walk_init, list_walk_step, list_walk_fini },
4539 	{ "irmreqs", "walk list of interrupt requests in an interrupt pool",
4540 	    irmreqs_walk_init, list_walk_step, list_walk_fini },
4541 
4542 	/* from kmem.c */
4543 	{ "allocdby", "given a thread, walk its allocated bufctls",
4544 		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4545 	{ "bufctl", "walk a kmem cache's bufctls",
4546 		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4547 	{ "bufctl_history", "walk the available history of a bufctl",
4548 		bufctl_history_walk_init, bufctl_history_walk_step,
4549 		bufctl_history_walk_fini },
4550 	{ "freedby", "given a thread, walk its freed bufctls",
4551 		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4552 	{ "freectl", "walk a kmem cache's free bufctls",
4553 		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4554 	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4555 		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4556 	{ "freemem", "walk a kmem cache's free memory",
4557 		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4558 	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
4559 		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4560 	{ "kmem", "walk a kmem cache",
4561 		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4562 	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4563 		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4564 	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
4565 		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4566 	{ "kmem_log", "walk the kmem transaction log",
4567 		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4568 	{ "kmem_slab", "given a kmem cache, walk its slabs",
4569 		kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4570 	{ "kmem_slab_partial",
4571 	    "given a kmem cache, walk its partially allocated slabs (min 1)",
4572 		kmem_slab_walk_partial_init, combined_walk_step,
4573 		combined_walk_fini },
4574 	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
4575 		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4576 	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4577 		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4578 	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
4579 		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4580 	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4581 		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4582 	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4583 		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4584 	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4585 		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4586 
4587 	/* from ldi.c */
4588 	{ "ldi_handle", "walk the layered driver handle hash",
4589 		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4590 	{ "ldi_ident", "walk the layered driver identifier hash",
4591 		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4592 
4593 	/* from leaky.c + leaky_subr.c */
4594 	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4595 	    "stack trace",
4596 		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4597 	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4598 	    "leaks w/ same stack trace",
4599 		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4600 
4601 	/* from lgrp.c */
4602 	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
4603 		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4604 	{ "lgrptbl", "walk lgroup table",
4605 		lgrp_walk_init, lgrp_walk_step, NULL },
4606 	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
4607 		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4608 	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4609 		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4610 	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4611 		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4612 
4613 	/* from list.c */
4614 	{ LIST_WALK_NAME, LIST_WALK_DESC,
4615 		list_walk_init, list_walk_step, list_walk_fini },
4616 
4617 	/* from mdi.c */
4618 	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4619 		mdi_pi_client_link_walk_init,
4620 		mdi_pi_client_link_walk_step,
4621 		mdi_pi_client_link_walk_fini },
4622 	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4623 		mdi_pi_phci_link_walk_init,
4624 		mdi_pi_phci_link_walk_step,
4625 		mdi_pi_phci_link_walk_fini },
4626 	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
4627 		mdi_phci_ph_next_walk_init,
4628 		mdi_phci_ph_next_walk_step,
4629 		mdi_phci_ph_next_walk_fini },
4630 
4631 	/* from memory.c */
4632 	{ "allpages", "walk all pages, including free pages",
4633 		allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4634 	{ "anon", "given an amp, list allocated anon structures",
4635 		anon_walk_init, anon_walk_step, anon_walk_fini,
4636 		ANON_WALK_ALLOC },
4637 	{ "anon_all", "given an amp, list contents of all anon slots",
4638 		anon_walk_init, anon_walk_step, anon_walk_fini,
4639 		ANON_WALK_ALL },
4640 	{ "memlist", "walk specified memlist",
4641 		NULL, memlist_walk_step, NULL },
4642 	{ "page", "walk all pages, or those from the specified vnode",
4643 		page_walk_init, page_walk_step, page_walk_fini },
4644 	{ "seg", "given an as, list of segments",
4645 		seg_walk_init, avl_walk_step, avl_walk_fini },
4646 	{ "segvn_anon",
4647 		"given a struct segvn_data, list allocated anon structures",
4648 		segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4649 		ANON_WALK_ALLOC },
4650 	{ "segvn_anon_all",
4651 		"given a struct segvn_data, list contents of all anon slots",
4652 		segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4653 		ANON_WALK_ALL },
4654 	{ "segvn_pages",
4655 		"given a struct segvn_data, list resident pages in "
4656 		"offset order",
4657 		segvn_pages_walk_init, segvn_pages_walk_step,
4658 		segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4659 	{ "segvn_pages_all",
4660 		"for each offset in a struct segvn_data, give page_t pointer "
4661 		"(if resident), or NULL.",
4662 		segvn_pages_walk_init, segvn_pages_walk_step,
4663 		segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4664 	{ "swapinfo", "walk swapinfo structures",
4665 		swap_walk_init, swap_walk_step, NULL },
4666 
4667 	/* from mmd.c */
4668 	{ "pattr", "walk pattr_t structures", pattr_walk_init,
4669 		mmdq_walk_step, mmdq_walk_fini },
4670 	{ "pdesc", "walk pdesc_t structures",
4671 		pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4672 	{ "pdesc_slab", "walk pdesc_slab_t structures",
4673 		pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4674 
4675 	/* from modhash.c */
4676 	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
4677 		modhash_walk_step, NULL },
4678 	{ "modent", "walk list of entries in a given mod_hash",
4679 		modent_walk_init, modent_walk_step, modent_walk_fini },
4680 	{ "modchain", "walk list of entries in a given mod_hash_entry",
4681 		NULL, modchain_walk_step, NULL },
4682 
4683 	/* from net.c */
4684 	{ "icmp", "walk ICMP control structures using MI for all stacks",
4685 		mi_payload_walk_init, mi_payload_walk_step, NULL,
4686 		&mi_icmp_arg },
4687 	{ "mi", "given a MI_O, walk the MI",
4688 		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4689 	{ "sonode", "given a sonode, walk its children",
4690 		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4691 	{ "icmp_stacks", "walk all the icmp_stack_t",
4692 		icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4693 	{ "tcp_stacks", "walk all the tcp_stack_t",
4694 		tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4695 	{ "udp_stacks", "walk all the udp_stack_t",
4696 		udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4697 
4698 	/* from netstack.c */
4699 	{ "netstack", "walk a list of kernel netstacks",
4700 		netstack_walk_init, netstack_walk_step, NULL },
4701 
4702 	/* from nvpair.c */
4703 	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4704 		nvpair_walk_init, nvpair_walk_step, NULL },
4705 
4706 	/* from rctl.c */
4707 	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4708 		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4709 	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4710 		rctl_set_walk_step, NULL },
4711 	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4712 		rctl_val_walk_init, rctl_val_walk_step },
4713 
4714 	/* from sobj.c */
4715 	{ "blocked", "walk threads blocked on a given sobj",
4716 		blocked_walk_init, blocked_walk_step, NULL },
4717 	{ "wchan", "given a wchan, list of blocked threads",
4718 		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4719 
4720 	/* from stream.c */
4721 	{ "b_cont", "walk mblk_t list using b_cont",
4722 		mblk_walk_init, b_cont_step, mblk_walk_fini },
4723 	{ "b_next", "walk mblk_t list using b_next",
4724 		mblk_walk_init, b_next_step, mblk_walk_fini },
4725 	{ "qlink", "walk queue_t list using q_link",
4726 		queue_walk_init, queue_link_step, queue_walk_fini },
4727 	{ "qnext", "walk queue_t list using q_next",
4728 		queue_walk_init, queue_next_step, queue_walk_fini },
4729 	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4730 		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4731 	{ "readq", "walk read queue side of stdata",
4732 		str_walk_init, strr_walk_step, str_walk_fini },
4733 	{ "writeq", "walk write queue side of stdata",
4734 		str_walk_init, strw_walk_step, str_walk_fini },
4735 
4736 	/* from taskq.c */
4737 	{ "taskq_thread", "given a taskq_t, list all of its threads",
4738 		taskq_thread_walk_init,
4739 		taskq_thread_walk_step,
4740 		taskq_thread_walk_fini },
4741 	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4742 		taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4743 
4744 	/* from thread.c */
4745 	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
4746 		deathrow_walk_init, deathrow_walk_step, NULL },
4747 	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4748 		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4749 	{ "cpupart_dispq",
4750 		"given a cpupart_t, walk threads in dispatcher queues",
4751 		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4752 	{ "lwp_deathrow", "walk lwp_deathrow",
4753 		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4754 	{ "thread", "global or per-process kthread_t structures",
4755 		thread_walk_init, thread_walk_step, thread_walk_fini },
4756 	{ "thread_deathrow", "walk threads on thread_deathrow",
4757 		thread_deathrow_walk_init, deathrow_walk_step, NULL },
4758 
4759 	/* from tsd.c */
4760 	{ "tsd", "walk list of thread-specific data",
4761 		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4762 
4763 	/* from tsol.c */
4764 	{ "tnrh", "walk remote host cache structures",
4765 	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4766 	{ "tnrhtp", "walk remote host template structures",
4767 	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4768 
4769 	/*
4770 	 * typegraph does not work under kmdb, as it requires too much memory
4771 	 * for its internal data structures.
4772 	 */
4773 #ifndef _KMDB
4774 	/* from typegraph.c */
4775 	{ "typeconflict", "walk buffers with conflicting type inferences",
4776 		typegraph_walk_init, typeconflict_walk_step },
4777 	{ "typeunknown", "walk buffers with unknown types",
4778 		typegraph_walk_init, typeunknown_walk_step },
4779 #endif
4780 
4781 	/* from vfs.c */
4782 	{ "vfs", "walk file system list",
4783 		vfs_walk_init, vfs_walk_step },
4784 
4785 	/* from zone.c */
4786 	{ "zone", "walk a list of kernel zones",
4787 		zone_walk_init, zone_walk_step, NULL },
4788 	{ "zsd", "walk list of zsd entries for a zone",
4789 		zsd_walk_init, zsd_walk_step, NULL },
4790 
4791 	{ NULL }
4792 };
4793 
4794 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4795 
4796 /*ARGSUSED*/
4797 static void
4798 genunix_statechange_cb(void *ignored)
4799 {
4800 	/*
4801 	 * Force ::findleaks and ::stacks to let go any cached state.
4802 	 */
4803 	leaky_cleanup(1);
4804 	stacks_cleanup(1);
4805 
4806 	kmem_statechange();	/* notify kmem */
4807 }
4808 
4809 const mdb_modinfo_t *
4810 _mdb_init(void)
4811 {
4812 	kmem_init();
4813 
4814 	(void) mdb_callback_add(MDB_CALLBACK_STCHG,
4815 	    genunix_statechange_cb, NULL);
4816 
4817 #ifndef _KMDB
4818 	gcore_init();
4819 #endif
4820 
4821 	return (&modinfo);
4822 }
4823 
4824 void
4825 _mdb_fini(void)
4826 {
4827 	leaky_cleanup(1);
4828 	stacks_cleanup(1);
4829 }
4830