1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <vm/seg_vn.h> 53 #include <vm/anon.h> 54 #include <vm/as.h> 55 #include <vm/seg_map.h> 56 #include <sys/dditypes.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/sysconf.h> 60 #include <sys/task.h> 61 #include <sys/project.h> 62 #include <sys/taskq.h> 63 #include <sys/taskq_impl.h> 64 #include <sys/errorq_impl.h> 65 #include <sys/cred_impl.h> 66 #include <sys/zone.h> 67 #include <sys/panic.h> 68 #include <regex.h> 69 #include <sys/port_impl.h> 70 71 #include "avl.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "pg.h" 78 #include "group.h" 79 #include "list.h" 80 #include "log.h" 81 #include "kgrep.h" 82 #include "kmem.h" 83 #include "bio.h" 84 #include "streams.h" 85 #include "cyclic.h" 86 #include "findstack.h" 87 #include "ndievents.h" 88 #include "mmd.h" 89 #include "net.h" 90 #include "nvpair.h" 91 #include "ctxop.h" 92 #include "tsd.h" 93 #include "thread.h" 94 #include "memory.h" 95 #include "sobj.h" 96 #include "sysevent.h" 97 #include "rctl.h" 98 #include "tsol.h" 99 #include "typegraph.h" 100 #include "ldi.h" 101 #include "vfs.h" 102 #include "zone.h" 103 #include "modhash.h" 104 #include "mdi.h" 105 #include "fm.h" 106 107 /* 108 * Surely this is defined somewhere... 109 */ 110 #define NINTR 16 111 112 #ifndef STACK_BIAS 113 #define STACK_BIAS 0 114 #endif 115 116 static char 117 pstat2ch(uchar_t state) 118 { 119 switch (state) { 120 case SSLEEP: return ('S'); 121 case SRUN: return ('R'); 122 case SZOMB: return ('Z'); 123 case SIDL: return ('I'); 124 case SONPROC: return ('O'); 125 case SSTOP: return ('T'); 126 default: return ('?'); 127 } 128 } 129 130 #define PS_PRTTHREADS 0x1 131 #define PS_PRTLWPS 0x2 132 #define PS_PSARGS 0x4 133 #define PS_TASKS 0x8 134 #define PS_PROJECTS 0x10 135 #define PS_ZONES 0x20 136 137 static int 138 ps_threadprint(uintptr_t addr, const void *data, void *private) 139 { 140 const kthread_t *t = (const kthread_t *)data; 141 uint_t prt_flags = *((uint_t *)private); 142 143 static const mdb_bitmask_t t_state_bits[] = { 144 { "TS_FREE", UINT_MAX, TS_FREE }, 145 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 146 { "TS_RUN", TS_RUN, TS_RUN }, 147 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 148 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 149 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 150 { NULL, 0, 0 } 151 }; 152 153 if (prt_flags & PS_PRTTHREADS) 154 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 155 156 if (prt_flags & PS_PRTLWPS) 157 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 158 159 return (WALK_NEXT); 160 } 161 162 int 163 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 164 { 165 uint_t prt_flags = 0; 166 proc_t pr; 167 struct pid pid, pgid, sid; 168 sess_t session; 169 cred_t cred; 170 task_t tk; 171 kproject_t pj; 172 zone_t zn; 173 174 if (!(flags & DCMD_ADDRSPEC)) { 175 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 176 mdb_warn("can't walk 'proc'"); 177 return (DCMD_ERR); 178 } 179 return (DCMD_OK); 180 } 181 182 if (mdb_getopts(argc, argv, 183 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 184 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 185 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 186 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 187 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 188 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 189 return (DCMD_USAGE); 190 191 if (DCMD_HDRSPEC(flags)) { 192 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 193 "S", "PID", "PPID", "PGID", "SID"); 194 if (prt_flags & PS_TASKS) 195 mdb_printf("%5s ", "TASK"); 196 if (prt_flags & PS_PROJECTS) 197 mdb_printf("%5s ", "PROJ"); 198 if (prt_flags & PS_ZONES) 199 mdb_printf("%5s ", "ZONE"); 200 mdb_printf("%6s %10s %?s %s%</u>\n", 201 "UID", "FLAGS", "ADDR", "NAME"); 202 } 203 204 mdb_vread(&pr, sizeof (pr), addr); 205 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 206 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 207 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 208 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 209 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 210 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 211 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 212 if (prt_flags & PS_PROJECTS) 213 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 214 if (prt_flags & PS_ZONES) 215 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 216 217 mdb_printf("%c %6d %6d %6d %6d ", 218 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 219 sid.pid_id); 220 if (prt_flags & PS_TASKS) 221 mdb_printf("%5d ", tk.tk_tkid); 222 if (prt_flags & PS_PROJECTS) 223 mdb_printf("%5d ", pj.kpj_id); 224 if (prt_flags & PS_ZONES) 225 mdb_printf("%5d ", zn.zone_id); 226 mdb_printf("%6d 0x%08x %0?p %s\n", 227 cred.cr_uid, pr.p_flag, addr, 228 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 229 230 if (prt_flags & ~PS_PSARGS) 231 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 232 233 return (DCMD_OK); 234 } 235 236 #define PG_NEWEST 0x0001 237 #define PG_OLDEST 0x0002 238 #define PG_PIPE_OUT 0x0004 239 #define PG_EXACT_MATCH 0x0008 240 241 typedef struct pgrep_data { 242 uint_t pg_flags; 243 uint_t pg_psflags; 244 uintptr_t pg_xaddr; 245 hrtime_t pg_xstart; 246 const char *pg_pat; 247 #ifndef _KMDB 248 regex_t pg_reg; 249 #endif 250 } pgrep_data_t; 251 252 /*ARGSUSED*/ 253 static int 254 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 255 { 256 const proc_t *prp = pdata; 257 pgrep_data_t *pgp = data; 258 #ifndef _KMDB 259 regmatch_t pmatch; 260 #endif 261 262 /* 263 * kmdb doesn't have access to the reg* functions, so we fall back 264 * to strstr/strcmp. 265 */ 266 #ifdef _KMDB 267 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 268 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 269 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 270 return (WALK_NEXT); 271 #else 272 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 273 return (WALK_NEXT); 274 275 if ((pgp->pg_flags & PG_EXACT_MATCH) && 276 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 277 return (WALK_NEXT); 278 #endif 279 280 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 281 hrtime_t start; 282 283 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 284 prp->p_user.u_start.tv_nsec; 285 286 if (pgp->pg_flags & PG_NEWEST) { 287 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 288 pgp->pg_xaddr = addr; 289 pgp->pg_xstart = start; 290 } 291 } else { 292 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 293 pgp->pg_xaddr = addr; 294 pgp->pg_xstart = start; 295 } 296 } 297 298 } else if (pgp->pg_flags & PG_PIPE_OUT) { 299 mdb_printf("%p\n", addr); 300 301 } else { 302 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 303 mdb_warn("can't invoke 'ps'"); 304 return (WALK_DONE); 305 } 306 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 307 } 308 309 return (WALK_NEXT); 310 } 311 312 /*ARGSUSED*/ 313 int 314 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 315 { 316 pgrep_data_t pg; 317 int i; 318 #ifndef _KMDB 319 int err; 320 #endif 321 322 if (flags & DCMD_ADDRSPEC) 323 return (DCMD_USAGE); 324 325 pg.pg_flags = 0; 326 pg.pg_xaddr = 0; 327 328 i = mdb_getopts(argc, argv, 329 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 330 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 331 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 332 NULL); 333 334 argc -= i; 335 argv += i; 336 337 if (argc != 1) 338 return (DCMD_USAGE); 339 340 /* 341 * -n and -o are mutually exclusive. 342 */ 343 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 344 return (DCMD_USAGE); 345 346 if (argv->a_type != MDB_TYPE_STRING) 347 return (DCMD_USAGE); 348 349 if (flags & DCMD_PIPE_OUT) 350 pg.pg_flags |= PG_PIPE_OUT; 351 352 pg.pg_pat = argv->a_un.a_str; 353 if (DCMD_HDRSPEC(flags)) 354 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 355 else 356 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 357 358 #ifndef _KMDB 359 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 360 size_t nbytes; 361 char *buf; 362 363 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 364 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 365 (void) regerror(err, &pg.pg_reg, buf, nbytes); 366 mdb_warn("%s\n", buf); 367 368 return (DCMD_ERR); 369 } 370 #endif 371 372 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 373 mdb_warn("can't walk 'proc'"); 374 return (DCMD_ERR); 375 } 376 377 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 378 if (pg.pg_flags & PG_PIPE_OUT) { 379 mdb_printf("%p\n", pg.pg_xaddr); 380 } else { 381 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 382 0, NULL) != 0) { 383 mdb_warn("can't invoke 'ps'"); 384 return (DCMD_ERR); 385 } 386 } 387 } 388 389 return (DCMD_OK); 390 } 391 392 int 393 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 394 { 395 task_t tk; 396 kproject_t pj; 397 398 if (!(flags & DCMD_ADDRSPEC)) { 399 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 400 mdb_warn("can't walk task_cache"); 401 return (DCMD_ERR); 402 } 403 return (DCMD_OK); 404 } 405 if (DCMD_HDRSPEC(flags)) { 406 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 407 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 408 } 409 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 410 mdb_warn("can't read task_t structure at %p", addr); 411 return (DCMD_ERR); 412 } 413 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 414 mdb_warn("can't read project_t structure at %p", addr); 415 return (DCMD_ERR); 416 } 417 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 418 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 419 tk.tk_flags); 420 return (DCMD_OK); 421 } 422 423 int 424 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 425 { 426 kproject_t pj; 427 428 if (!(flags & DCMD_ADDRSPEC)) { 429 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 430 mdb_warn("can't walk projects"); 431 return (DCMD_ERR); 432 } 433 return (DCMD_OK); 434 } 435 if (DCMD_HDRSPEC(flags)) { 436 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 437 "ADDR", "PROJID", "ZONEID", "REFCNT"); 438 } 439 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 440 mdb_warn("can't read kproject_t structure at %p", addr); 441 return (DCMD_ERR); 442 } 443 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 444 pj.kpj_count); 445 return (DCMD_OK); 446 } 447 448 /*ARGSUSED*/ 449 int 450 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 451 { 452 callout_table_t *co_ktable[CALLOUT_TABLES]; 453 int co_kfanout; 454 callout_table_t co_table; 455 callout_t co_callout; 456 callout_t *co_ptr; 457 int co_id; 458 clock_t lbolt; 459 int i, j, k; 460 const char *lbolt_sym; 461 462 if ((flags & DCMD_ADDRSPEC) || argc != 0) 463 return (DCMD_USAGE); 464 465 if (mdb_prop_postmortem) 466 lbolt_sym = "panic_lbolt"; 467 else 468 lbolt_sym = "lbolt"; 469 470 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 471 mdb_warn("failed to read '%s'", lbolt_sym); 472 return (DCMD_ERR); 473 } 474 475 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 476 mdb_warn("failed to read callout_fanout"); 477 return (DCMD_ERR); 478 } 479 480 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 481 mdb_warn("failed to read callout_table"); 482 return (DCMD_ERR); 483 } 484 485 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 486 "FUNCTION", "ARGUMENT", "ID", "TIME"); 487 488 for (i = 0; i < CALLOUT_NTYPES; i++) { 489 for (j = 0; j < co_kfanout; j++) { 490 491 co_id = CALLOUT_TABLE(i, j); 492 493 if (mdb_vread(&co_table, sizeof (co_table), 494 (uintptr_t)co_ktable[co_id]) == -1) { 495 mdb_warn("failed to read table at %p", 496 (uintptr_t)co_ktable[co_id]); 497 continue; 498 } 499 500 for (k = 0; k < CALLOUT_BUCKETS; k++) { 501 co_ptr = co_table.ct_idhash[k]; 502 503 while (co_ptr != NULL) { 504 mdb_vread(&co_callout, 505 sizeof (co_callout), 506 (uintptr_t)co_ptr); 507 508 mdb_printf("%-24a %0?p %0?lx %?lx " 509 "(T%+ld)\n", co_callout.c_func, 510 co_callout.c_arg, co_callout.c_xid, 511 co_callout.c_runtime, 512 co_callout.c_runtime - lbolt); 513 514 co_ptr = co_callout.c_idnext; 515 } 516 } 517 } 518 } 519 520 return (DCMD_OK); 521 } 522 523 /*ARGSUSED*/ 524 int 525 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 526 { 527 long num_classes, i; 528 sclass_t *class_tbl; 529 GElf_Sym g_sclass; 530 char class_name[PC_CLNMSZ]; 531 size_t tbl_size; 532 533 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 534 mdb_warn("failed to find symbol sclass\n"); 535 return (DCMD_ERR); 536 } 537 538 tbl_size = (size_t)g_sclass.st_size; 539 num_classes = tbl_size / (sizeof (sclass_t)); 540 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 541 542 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 543 mdb_warn("failed to read sclass"); 544 return (DCMD_ERR); 545 } 546 547 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 548 "INIT FCN", "CLASS FCN"); 549 550 for (i = 0; i < num_classes; i++) { 551 if (mdb_vread(class_name, sizeof (class_name), 552 (uintptr_t)class_tbl[i].cl_name) == -1) 553 (void) strcpy(class_name, "???"); 554 555 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 556 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 557 } 558 559 return (DCMD_OK); 560 } 561 562 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 563 564 int 565 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 566 { 567 uintptr_t rootdir; 568 vnode_t vn; 569 char buf[MAXPATHLEN]; 570 571 uint_t opt_F = FALSE; 572 573 if (mdb_getopts(argc, argv, 574 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 575 return (DCMD_USAGE); 576 577 if (!(flags & DCMD_ADDRSPEC)) { 578 mdb_warn("expected explicit vnode_t address before ::\n"); 579 return (DCMD_USAGE); 580 } 581 582 if (mdb_readvar(&rootdir, "rootdir") == -1) { 583 mdb_warn("failed to read rootdir"); 584 return (DCMD_ERR); 585 } 586 587 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 588 return (DCMD_ERR); 589 590 if (*buf == '\0') { 591 mdb_printf("??\n"); 592 return (DCMD_OK); 593 } 594 595 mdb_printf("%s", buf); 596 if (opt_F && buf[strlen(buf)-1] != '/' && 597 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 598 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 599 mdb_printf("\n"); 600 601 return (DCMD_OK); 602 } 603 604 int 605 ld_walk_init(mdb_walk_state_t *wsp) 606 { 607 wsp->walk_data = (void *)wsp->walk_addr; 608 return (WALK_NEXT); 609 } 610 611 int 612 ld_walk_step(mdb_walk_state_t *wsp) 613 { 614 int status; 615 lock_descriptor_t ld; 616 617 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 618 mdb_warn("couldn't read lock_descriptor_t at %p\n", 619 wsp->walk_addr); 620 return (WALK_ERR); 621 } 622 623 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 624 if (status == WALK_ERR) 625 return (WALK_ERR); 626 627 wsp->walk_addr = (uintptr_t)ld.l_next; 628 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 629 return (WALK_DONE); 630 631 return (status); 632 } 633 634 int 635 lg_walk_init(mdb_walk_state_t *wsp) 636 { 637 GElf_Sym sym; 638 639 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 640 mdb_warn("failed to find symbol 'lock_graph'\n"); 641 return (WALK_ERR); 642 } 643 644 wsp->walk_addr = (uintptr_t)sym.st_value; 645 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 646 647 return (WALK_NEXT); 648 } 649 650 typedef struct lg_walk_data { 651 uintptr_t startaddr; 652 mdb_walk_cb_t callback; 653 void *data; 654 } lg_walk_data_t; 655 656 /* 657 * We can't use ::walk lock_descriptor directly, because the head of each graph 658 * is really a dummy lock. Rather than trying to dynamically determine if this 659 * is a dummy node or not, we just filter out the initial element of the 660 * list. 661 */ 662 static int 663 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 664 { 665 lg_walk_data_t *lw = priv; 666 667 if (addr != lw->startaddr) 668 return (lw->callback(addr, data, lw->data)); 669 670 return (WALK_NEXT); 671 } 672 673 int 674 lg_walk_step(mdb_walk_state_t *wsp) 675 { 676 graph_t *graph; 677 lg_walk_data_t lw; 678 679 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 680 return (WALK_DONE); 681 682 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 683 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 684 return (WALK_ERR); 685 } 686 687 wsp->walk_addr += sizeof (graph); 688 689 if (graph == NULL) 690 return (WALK_NEXT); 691 692 lw.callback = wsp->walk_callback; 693 lw.data = wsp->walk_cbdata; 694 695 lw.startaddr = (uintptr_t)&(graph->active_locks); 696 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 697 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 698 return (WALK_ERR); 699 } 700 701 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 702 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 703 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 704 return (WALK_ERR); 705 } 706 707 return (WALK_NEXT); 708 } 709 710 /* 711 * The space available for the path corresponding to the locked vnode depends 712 * on whether we are printing 32- or 64-bit addresses. 713 */ 714 #ifdef _LP64 715 #define LM_VNPATHLEN 20 716 #else 717 #define LM_VNPATHLEN 30 718 #endif 719 720 /*ARGSUSED*/ 721 static int 722 lminfo_cb(uintptr_t addr, const void *data, void *priv) 723 { 724 const lock_descriptor_t *ld = data; 725 char buf[LM_VNPATHLEN]; 726 proc_t p; 727 728 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 729 addr, ld->l_type == F_RDLCK ? "RD" : 730 ld->l_type == F_WRLCK ? "WR" : "??", 731 ld->l_state, ld->l_flock.l_pid, 732 ld->l_flock.l_pid == 0 ? "<kernel>" : 733 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 734 "<defunct>" : p.p_user.u_comm, 735 ld->l_vnode); 736 737 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 738 sizeof (buf)); 739 mdb_printf("%s\n", buf); 740 741 return (WALK_NEXT); 742 } 743 744 /*ARGSUSED*/ 745 int 746 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 747 { 748 if (DCMD_HDRSPEC(flags)) 749 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 750 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 751 752 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 753 } 754 755 /*ARGSUSED*/ 756 int 757 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 758 { 759 struct seg s; 760 761 if (argc != 0) 762 return (DCMD_USAGE); 763 764 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 765 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 766 "SEG", "BASE", "SIZE", "DATA", "OPS"); 767 } 768 769 if (mdb_vread(&s, sizeof (s), addr) == -1) { 770 mdb_warn("failed to read seg at %p", addr); 771 return (DCMD_ERR); 772 } 773 774 mdb_printf("%?p %?p %?lx %?p %a\n", 775 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 776 777 return (DCMD_OK); 778 } 779 780 /*ARGSUSED*/ 781 static int 782 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 783 { 784 uintptr_t pp = 785 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 786 787 if (pp != NULL) 788 (*nres)++; 789 790 return (WALK_NEXT); 791 } 792 793 static int 794 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 795 { 796 797 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 798 799 if (segvn == (uintptr_t)seg->s_ops) { 800 struct segvn_data svn; 801 int nres = 0; 802 803 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 804 805 if (svn.amp == NULL) { 806 mdb_printf(" %8s", ""); 807 goto drive_on; 808 } 809 810 /* 811 * We've got an amp for this segment; walk through 812 * the amp, and determine mappings. 813 */ 814 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 815 &nres, (uintptr_t)svn.amp) == -1) 816 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 817 818 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 819 drive_on: 820 821 if (svn.vp != NULL) { 822 char buf[29]; 823 824 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 825 mdb_printf(" %s", buf); 826 } else 827 mdb_printf(" [ anon ]"); 828 } 829 830 mdb_printf("\n"); 831 return (WALK_NEXT); 832 } 833 834 static int 835 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 836 { 837 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 838 839 if (segvn == (uintptr_t)seg->s_ops) { 840 struct segvn_data svn; 841 842 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 843 844 if (svn.vp != NULL) { 845 mdb_printf(" %0?p", svn.vp); 846 } else { 847 mdb_printf(" [ anon ]"); 848 } 849 } 850 851 mdb_printf("\n"); 852 return (WALK_NEXT); 853 } 854 855 /*ARGSUSED*/ 856 int 857 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 858 { 859 uintptr_t segvn; 860 proc_t proc; 861 uint_t quick = FALSE; 862 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 863 864 GElf_Sym sym; 865 866 if (!(flags & DCMD_ADDRSPEC)) 867 return (DCMD_USAGE); 868 869 if (mdb_getopts(argc, argv, 870 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 871 return (DCMD_USAGE); 872 873 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 874 mdb_warn("failed to read proc at %p", addr); 875 return (DCMD_ERR); 876 } 877 878 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 879 segvn = (uintptr_t)sym.st_value; 880 else 881 segvn = NULL; 882 883 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 884 885 if (quick) { 886 mdb_printf("VNODE\n"); 887 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 888 } else { 889 mdb_printf("%8s %s\n", "RES", "PATH"); 890 } 891 892 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 893 mdb_warn("failed to walk segments of as %p", proc.p_as); 894 return (DCMD_ERR); 895 } 896 897 return (DCMD_OK); 898 } 899 900 typedef struct anon_walk_data { 901 uintptr_t *aw_levone; 902 uintptr_t *aw_levtwo; 903 int aw_nlevone; 904 int aw_levone_ndx; 905 int aw_levtwo_ndx; 906 struct anon_map aw_amp; 907 struct anon_hdr aw_ahp; 908 } anon_walk_data_t; 909 910 int 911 anon_walk_init(mdb_walk_state_t *wsp) 912 { 913 anon_walk_data_t *aw; 914 915 if (wsp->walk_addr == NULL) { 916 mdb_warn("anon walk doesn't support global walks\n"); 917 return (WALK_ERR); 918 } 919 920 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 921 922 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 923 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 924 mdb_free(aw, sizeof (anon_walk_data_t)); 925 return (WALK_ERR); 926 } 927 928 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 929 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 930 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 931 mdb_free(aw, sizeof (anon_walk_data_t)); 932 return (WALK_ERR); 933 } 934 935 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 936 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 937 aw->aw_nlevone = aw->aw_ahp.size; 938 aw->aw_levtwo = NULL; 939 } else { 940 aw->aw_nlevone = 941 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 942 aw->aw_levtwo = 943 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 944 } 945 946 aw->aw_levone = 947 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 948 949 aw->aw_levone_ndx = 0; 950 aw->aw_levtwo_ndx = 0; 951 952 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 953 (uintptr_t)aw->aw_ahp.array_chunk); 954 955 if (aw->aw_levtwo != NULL) { 956 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 957 aw->aw_levone_ndx++; 958 if (aw->aw_levone_ndx == aw->aw_nlevone) { 959 mdb_warn("corrupt anon; couldn't" 960 "find ptr to lev two map"); 961 goto out; 962 } 963 } 964 965 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 966 aw->aw_levone[aw->aw_levone_ndx]); 967 } 968 969 out: 970 wsp->walk_data = aw; 971 return (0); 972 } 973 974 int 975 anon_walk_step(mdb_walk_state_t *wsp) 976 { 977 int status; 978 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 979 struct anon anon; 980 uintptr_t anonptr; 981 982 again: 983 /* 984 * Once we've walked through level one, we're done. 985 */ 986 if (aw->aw_levone_ndx == aw->aw_nlevone) 987 return (WALK_DONE); 988 989 if (aw->aw_levtwo == NULL) { 990 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 991 aw->aw_levone_ndx++; 992 } else { 993 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 994 aw->aw_levtwo_ndx++; 995 996 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 997 aw->aw_levtwo_ndx = 0; 998 999 do { 1000 aw->aw_levone_ndx++; 1001 1002 if (aw->aw_levone_ndx == aw->aw_nlevone) 1003 return (WALK_DONE); 1004 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1005 1006 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1007 sizeof (uintptr_t), 1008 aw->aw_levone[aw->aw_levone_ndx]); 1009 } 1010 } 1011 1012 if (anonptr != NULL) { 1013 mdb_vread(&anon, sizeof (anon), anonptr); 1014 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1015 } else 1016 goto again; 1017 1018 return (status); 1019 } 1020 1021 void 1022 anon_walk_fini(mdb_walk_state_t *wsp) 1023 { 1024 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1025 1026 if (aw->aw_levtwo != NULL) 1027 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1028 1029 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1030 mdb_free(aw, sizeof (anon_walk_data_t)); 1031 } 1032 1033 /*ARGSUSED*/ 1034 int 1035 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1036 { 1037 if ((uintptr_t)f->f_vnode == *target) { 1038 mdb_printf("file %p\n", addr); 1039 *target = NULL; 1040 } 1041 1042 return (WALK_NEXT); 1043 } 1044 1045 /*ARGSUSED*/ 1046 int 1047 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1048 { 1049 uintptr_t t = *target; 1050 1051 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1052 mdb_warn("couldn't file walk proc %p", addr); 1053 return (WALK_ERR); 1054 } 1055 1056 if (t == NULL) 1057 mdb_printf("%p\n", addr); 1058 1059 return (WALK_NEXT); 1060 } 1061 1062 /*ARGSUSED*/ 1063 int 1064 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1065 { 1066 uintptr_t target = addr; 1067 1068 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1069 return (DCMD_USAGE); 1070 1071 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1072 mdb_warn("can't proc walk"); 1073 return (DCMD_ERR); 1074 } 1075 1076 return (DCMD_OK); 1077 } 1078 1079 typedef struct datafmt { 1080 char *hdr1; 1081 char *hdr2; 1082 char *dashes; 1083 char *fmt; 1084 } datafmt_t; 1085 1086 static datafmt_t kmemfmt[] = { 1087 { "cache ", "name ", 1088 "-------------------------", "%-25s " }, 1089 { " buf", " size", "------", "%6u " }, 1090 { " buf", "in use", "------", "%6u " }, 1091 { " buf", " total", "------", "%6u " }, 1092 { " memory", " in use", "---------", "%9u " }, 1093 { " alloc", " succeed", "---------", "%9u " }, 1094 { "alloc", " fail", "-----", "%5u " }, 1095 { NULL, NULL, NULL, NULL } 1096 }; 1097 1098 static datafmt_t vmemfmt[] = { 1099 { "vmem ", "name ", 1100 "-------------------------", "%-*s " }, 1101 { " memory", " in use", "---------", "%9llu " }, 1102 { " memory", " total", "----------", "%10llu " }, 1103 { " memory", " import", "---------", "%9llu " }, 1104 { " alloc", " succeed", "---------", "%9llu " }, 1105 { "alloc", " fail", "-----", "%5llu " }, 1106 { NULL, NULL, NULL, NULL } 1107 }; 1108 1109 /*ARGSUSED*/ 1110 static int 1111 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1112 { 1113 if (ccp->cc_rounds > 0) 1114 *avail += ccp->cc_rounds; 1115 if (ccp->cc_prounds > 0) 1116 *avail += ccp->cc_prounds; 1117 1118 return (WALK_NEXT); 1119 } 1120 1121 /*ARGSUSED*/ 1122 static int 1123 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1124 { 1125 *alloc += ccp->cc_alloc; 1126 1127 return (WALK_NEXT); 1128 } 1129 1130 /*ARGSUSED*/ 1131 static int 1132 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1133 { 1134 *avail += sp->slab_chunks - sp->slab_refcnt; 1135 1136 return (WALK_NEXT); 1137 } 1138 1139 typedef struct kmastat_vmem { 1140 uintptr_t kv_addr; 1141 struct kmastat_vmem *kv_next; 1142 int kv_meminuse; 1143 int kv_alloc; 1144 int kv_fail; 1145 } kmastat_vmem_t; 1146 1147 typedef struct kmastat_args { 1148 kmastat_vmem_t **ka_kvpp; 1149 uint_t ka_shift; 1150 } kmastat_args_t; 1151 1152 static int 1153 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1154 { 1155 kmastat_vmem_t **kvp = kap->ka_kvpp; 1156 kmastat_vmem_t *kv; 1157 datafmt_t *dfp = kmemfmt; 1158 int magsize; 1159 1160 int avail, alloc, total; 1161 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1162 cp->cache_slabsize; 1163 1164 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1165 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1166 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1167 1168 magsize = kmem_get_magsize(cp); 1169 1170 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1171 avail = cp->cache_full.ml_total * magsize; 1172 total = cp->cache_buftotal; 1173 1174 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1175 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1176 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1177 1178 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1179 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1180 goto out; 1181 } 1182 1183 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1184 kv->kv_next = *kvp; 1185 kv->kv_addr = (uintptr_t)cp->cache_arena; 1186 *kvp = kv; 1187 out: 1188 kv->kv_meminuse += meminuse; 1189 kv->kv_alloc += alloc; 1190 kv->kv_fail += cp->cache_alloc_fail; 1191 1192 mdb_printf((dfp++)->fmt, cp->cache_name); 1193 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1194 mdb_printf((dfp++)->fmt, total - avail); 1195 mdb_printf((dfp++)->fmt, total); 1196 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift); 1197 mdb_printf((dfp++)->fmt, alloc); 1198 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1199 mdb_printf("\n"); 1200 1201 return (WALK_NEXT); 1202 } 1203 1204 static int 1205 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 1206 { 1207 kmastat_vmem_t *kv = *kap->ka_kvpp; 1208 size_t len; 1209 1210 while (kv != NULL && kv->kv_addr != addr) 1211 kv = kv->kv_next; 1212 1213 if (kv == NULL || kv->kv_alloc == 0) 1214 return (WALK_NEXT); 1215 1216 len = MIN(17, strlen(v->vm_name)); 1217 1218 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1219 17 - len, "", "", "", "", 1220 kv->kv_meminuse >> kap->ka_shift, kv->kv_alloc, kv->kv_fail); 1221 1222 return (WALK_NEXT); 1223 } 1224 1225 /*ARGSUSED*/ 1226 static int 1227 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 1228 { 1229 datafmt_t *dfp = vmemfmt; 1230 const vmem_kstat_t *vkp = &v->vm_kstat; 1231 uintptr_t paddr; 1232 vmem_t parent; 1233 int ident = 0; 1234 1235 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1236 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1237 mdb_warn("couldn't trace %p's ancestry", addr); 1238 ident = 0; 1239 break; 1240 } 1241 paddr = (uintptr_t)parent.vm_source; 1242 } 1243 1244 mdb_printf("%*s", ident, ""); 1245 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1246 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1247 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1248 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp); 1249 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1250 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1251 1252 mdb_printf("\n"); 1253 1254 return (WALK_NEXT); 1255 } 1256 1257 /*ARGSUSED*/ 1258 int 1259 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1260 { 1261 kmastat_vmem_t *kv = NULL; 1262 datafmt_t *dfp; 1263 kmastat_args_t ka; 1264 1265 ka.ka_shift = 0; 1266 if (mdb_getopts(argc, argv, 1267 'k', MDB_OPT_SETBITS, 10, &ka.ka_shift, 1268 'm', MDB_OPT_SETBITS, 20, &ka.ka_shift, 1269 'g', MDB_OPT_SETBITS, 30, &ka.ka_shift, NULL) != argc) 1270 return (DCMD_USAGE); 1271 1272 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1273 mdb_printf("%s ", dfp->hdr1); 1274 mdb_printf("\n"); 1275 1276 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1277 mdb_printf("%s ", dfp->hdr2); 1278 mdb_printf("\n"); 1279 1280 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1281 mdb_printf("%s ", dfp->dashes); 1282 mdb_printf("\n"); 1283 1284 ka.ka_kvpp = &kv; 1285 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 1286 mdb_warn("can't walk 'kmem_cache'"); 1287 return (DCMD_ERR); 1288 } 1289 1290 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1291 mdb_printf("%s ", dfp->dashes); 1292 mdb_printf("\n"); 1293 1294 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 1295 mdb_warn("can't walk 'vmem'"); 1296 return (DCMD_ERR); 1297 } 1298 1299 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1300 mdb_printf("%s ", dfp->dashes); 1301 mdb_printf("\n"); 1302 1303 mdb_printf("\n"); 1304 1305 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1306 mdb_printf("%s ", dfp->hdr1); 1307 mdb_printf("\n"); 1308 1309 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1310 mdb_printf("%s ", dfp->hdr2); 1311 mdb_printf("\n"); 1312 1313 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1314 mdb_printf("%s ", dfp->dashes); 1315 mdb_printf("\n"); 1316 1317 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 1318 mdb_warn("can't walk 'vmem'"); 1319 return (DCMD_ERR); 1320 } 1321 1322 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1323 mdb_printf("%s ", dfp->dashes); 1324 mdb_printf("\n"); 1325 return (DCMD_OK); 1326 } 1327 1328 /* 1329 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1330 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1331 * unfortunately, a few of the segs are both large and sparse, so we could 1332 * spend quite a bit of time scanning VAs which have no backing pages. 1333 * 1334 * So for the few very sparse segs, we skip the segment itself, and scan 1335 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1336 * Currently, we do this for: 1337 * 1338 * SEG VMEM ARENA 1339 * kvseg heap_arena 1340 * kvseg32 heap32_arena 1341 * kvseg_core heap_core_arena 1342 * 1343 * In addition, we skip the segkpm segment in its entirety, since it is very 1344 * sparse, and contains no new kernel data. 1345 */ 1346 typedef struct kgrep_walk_data { 1347 kgrep_cb_func *kg_cb; 1348 void *kg_cbdata; 1349 uintptr_t kg_kvseg; 1350 uintptr_t kg_kvseg32; 1351 uintptr_t kg_kvseg_core; 1352 uintptr_t kg_segkpm; 1353 uintptr_t kg_heap_lp_base; 1354 uintptr_t kg_heap_lp_end; 1355 } kgrep_walk_data_t; 1356 1357 static int 1358 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1359 { 1360 uintptr_t base = (uintptr_t)seg->s_base; 1361 1362 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1363 addr == kg->kg_kvseg_core) 1364 return (WALK_NEXT); 1365 1366 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1367 return (WALK_NEXT); 1368 1369 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1370 } 1371 1372 /*ARGSUSED*/ 1373 static int 1374 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1375 { 1376 /* 1377 * skip large page heap address range - it is scanned by walking 1378 * allocated vmem_segs in the heap_lp_arena 1379 */ 1380 if (seg->vs_start == kg->kg_heap_lp_base && 1381 seg->vs_end == kg->kg_heap_lp_end) 1382 return (WALK_NEXT); 1383 1384 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1385 } 1386 1387 /*ARGSUSED*/ 1388 static int 1389 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1390 { 1391 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1392 } 1393 1394 static int 1395 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1396 { 1397 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1398 1399 if (strcmp(vmem->vm_name, "heap") != 0 && 1400 strcmp(vmem->vm_name, "heap32") != 0 && 1401 strcmp(vmem->vm_name, "heap_core") != 0 && 1402 strcmp(vmem->vm_name, "heap_lp") != 0) 1403 return (WALK_NEXT); 1404 1405 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1406 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1407 1408 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1409 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1410 return (WALK_ERR); 1411 } 1412 1413 return (WALK_NEXT); 1414 } 1415 1416 int 1417 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1418 { 1419 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1420 kgrep_walk_data_t kg; 1421 1422 if (mdb_get_state() == MDB_STATE_RUNNING) { 1423 mdb_warn("kgrep can only be run on a system " 1424 "dump or under kmdb; see dumpadm(1M)\n"); 1425 return (DCMD_ERR); 1426 } 1427 1428 if (mdb_lookup_by_name("kas", &kas) == -1) { 1429 mdb_warn("failed to locate 'kas' symbol\n"); 1430 return (DCMD_ERR); 1431 } 1432 1433 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1434 mdb_warn("failed to locate 'kvseg' symbol\n"); 1435 return (DCMD_ERR); 1436 } 1437 1438 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1439 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1440 return (DCMD_ERR); 1441 } 1442 1443 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1444 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1445 return (DCMD_ERR); 1446 } 1447 1448 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1449 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1450 return (DCMD_ERR); 1451 } 1452 1453 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1454 mdb_warn("failed to read 'heap_lp_base'\n"); 1455 return (DCMD_ERR); 1456 } 1457 1458 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1459 mdb_warn("failed to read 'heap_lp_end'\n"); 1460 return (DCMD_ERR); 1461 } 1462 1463 kg.kg_cb = cb; 1464 kg.kg_cbdata = cbdata; 1465 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1466 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1467 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1468 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1469 1470 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1471 &kg, kas.st_value) == -1) { 1472 mdb_warn("failed to walk kas segments"); 1473 return (DCMD_ERR); 1474 } 1475 1476 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1477 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1478 return (DCMD_ERR); 1479 } 1480 1481 return (DCMD_OK); 1482 } 1483 1484 size_t 1485 kgrep_subr_pagesize(void) 1486 { 1487 return (PAGESIZE); 1488 } 1489 1490 typedef struct file_walk_data { 1491 struct uf_entry *fw_flist; 1492 int fw_flistsz; 1493 int fw_ndx; 1494 int fw_nofiles; 1495 } file_walk_data_t; 1496 1497 int 1498 file_walk_init(mdb_walk_state_t *wsp) 1499 { 1500 file_walk_data_t *fw; 1501 proc_t p; 1502 1503 if (wsp->walk_addr == NULL) { 1504 mdb_warn("file walk doesn't support global walks\n"); 1505 return (WALK_ERR); 1506 } 1507 1508 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1509 1510 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1511 mdb_free(fw, sizeof (file_walk_data_t)); 1512 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1513 return (WALK_ERR); 1514 } 1515 1516 if (p.p_user.u_finfo.fi_nfiles == 0) { 1517 mdb_free(fw, sizeof (file_walk_data_t)); 1518 return (WALK_DONE); 1519 } 1520 1521 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1522 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1523 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1524 1525 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1526 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1527 mdb_warn("failed to read file array at %p", 1528 p.p_user.u_finfo.fi_list); 1529 mdb_free(fw->fw_flist, fw->fw_flistsz); 1530 mdb_free(fw, sizeof (file_walk_data_t)); 1531 return (WALK_ERR); 1532 } 1533 1534 fw->fw_ndx = 0; 1535 wsp->walk_data = fw; 1536 1537 return (WALK_NEXT); 1538 } 1539 1540 int 1541 file_walk_step(mdb_walk_state_t *wsp) 1542 { 1543 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1544 struct file file; 1545 uintptr_t fp; 1546 1547 again: 1548 if (fw->fw_ndx == fw->fw_nofiles) 1549 return (WALK_DONE); 1550 1551 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1552 goto again; 1553 1554 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1555 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1556 } 1557 1558 int 1559 allfile_walk_step(mdb_walk_state_t *wsp) 1560 { 1561 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1562 struct file file; 1563 uintptr_t fp; 1564 1565 if (fw->fw_ndx == fw->fw_nofiles) 1566 return (WALK_DONE); 1567 1568 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1569 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1570 else 1571 bzero(&file, sizeof (file)); 1572 1573 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1574 } 1575 1576 void 1577 file_walk_fini(mdb_walk_state_t *wsp) 1578 { 1579 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1580 1581 mdb_free(fw->fw_flist, fw->fw_flistsz); 1582 mdb_free(fw, sizeof (file_walk_data_t)); 1583 } 1584 1585 int 1586 port_walk_init(mdb_walk_state_t *wsp) 1587 { 1588 if (wsp->walk_addr == NULL) { 1589 mdb_warn("port walk doesn't support global walks\n"); 1590 return (WALK_ERR); 1591 } 1592 1593 if (mdb_layered_walk("file", wsp) == -1) { 1594 mdb_warn("couldn't walk 'file'"); 1595 return (WALK_ERR); 1596 } 1597 return (WALK_NEXT); 1598 } 1599 1600 int 1601 port_walk_step(mdb_walk_state_t *wsp) 1602 { 1603 struct vnode vn; 1604 uintptr_t vp; 1605 uintptr_t pp; 1606 struct port port; 1607 1608 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1609 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1610 mdb_warn("failed to read vnode_t at %p", vp); 1611 return (WALK_ERR); 1612 } 1613 if (vn.v_type != VPORT) 1614 return (WALK_NEXT); 1615 1616 pp = (uintptr_t)vn.v_data; 1617 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1618 mdb_warn("failed to read port_t at %p", pp); 1619 return (WALK_ERR); 1620 } 1621 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1622 } 1623 1624 typedef struct portev_walk_data { 1625 list_node_t *pev_node; 1626 list_node_t *pev_last; 1627 size_t pev_offset; 1628 } portev_walk_data_t; 1629 1630 int 1631 portev_walk_init(mdb_walk_state_t *wsp) 1632 { 1633 portev_walk_data_t *pevd; 1634 struct port port; 1635 struct vnode vn; 1636 struct list *list; 1637 uintptr_t vp; 1638 1639 if (wsp->walk_addr == NULL) { 1640 mdb_warn("portev walk doesn't support global walks\n"); 1641 return (WALK_ERR); 1642 } 1643 1644 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1645 1646 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1647 mdb_free(pevd, sizeof (portev_walk_data_t)); 1648 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1649 return (WALK_ERR); 1650 } 1651 1652 vp = (uintptr_t)port.port_vnode; 1653 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1654 mdb_free(pevd, sizeof (portev_walk_data_t)); 1655 mdb_warn("failed to read vnode_t at %p", vp); 1656 return (WALK_ERR); 1657 } 1658 1659 if (vn.v_type != VPORT) { 1660 mdb_free(pevd, sizeof (portev_walk_data_t)); 1661 mdb_warn("input address (%p) does not point to an event port", 1662 wsp->walk_addr); 1663 return (WALK_ERR); 1664 } 1665 1666 if (port.port_queue.portq_nent == 0) { 1667 mdb_free(pevd, sizeof (portev_walk_data_t)); 1668 return (WALK_DONE); 1669 } 1670 list = &port.port_queue.portq_list; 1671 pevd->pev_offset = list->list_offset; 1672 pevd->pev_last = list->list_head.list_prev; 1673 pevd->pev_node = list->list_head.list_next; 1674 wsp->walk_data = pevd; 1675 return (WALK_NEXT); 1676 } 1677 1678 int 1679 portev_walk_step(mdb_walk_state_t *wsp) 1680 { 1681 portev_walk_data_t *pevd; 1682 struct port_kevent ev; 1683 uintptr_t evp; 1684 1685 pevd = (portev_walk_data_t *)wsp->walk_data; 1686 1687 if (pevd->pev_last == NULL) 1688 return (WALK_DONE); 1689 if (pevd->pev_node == pevd->pev_last) 1690 pevd->pev_last = NULL; /* last round */ 1691 1692 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1693 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1694 mdb_warn("failed to read port_kevent at %p", evp); 1695 return (WALK_DONE); 1696 } 1697 pevd->pev_node = ev.portkev_node.list_next; 1698 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1699 } 1700 1701 void 1702 portev_walk_fini(mdb_walk_state_t *wsp) 1703 { 1704 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1705 1706 if (pevd != NULL) 1707 mdb_free(pevd, sizeof (portev_walk_data_t)); 1708 } 1709 1710 typedef struct proc_walk_data { 1711 uintptr_t *pw_stack; 1712 int pw_depth; 1713 int pw_max; 1714 } proc_walk_data_t; 1715 1716 int 1717 proc_walk_init(mdb_walk_state_t *wsp) 1718 { 1719 GElf_Sym sym; 1720 proc_walk_data_t *pw; 1721 1722 if (wsp->walk_addr == NULL) { 1723 if (mdb_lookup_by_name("p0", &sym) == -1) { 1724 mdb_warn("failed to read 'practive'"); 1725 return (WALK_ERR); 1726 } 1727 wsp->walk_addr = (uintptr_t)sym.st_value; 1728 } 1729 1730 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1731 1732 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1733 mdb_warn("failed to read 'nproc'"); 1734 mdb_free(pw, sizeof (pw)); 1735 return (WALK_ERR); 1736 } 1737 1738 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1739 wsp->walk_data = pw; 1740 1741 return (WALK_NEXT); 1742 } 1743 1744 int 1745 proc_walk_step(mdb_walk_state_t *wsp) 1746 { 1747 proc_walk_data_t *pw = wsp->walk_data; 1748 uintptr_t addr = wsp->walk_addr; 1749 uintptr_t cld, sib; 1750 1751 int status; 1752 proc_t pr; 1753 1754 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1755 mdb_warn("failed to read proc at %p", addr); 1756 return (WALK_DONE); 1757 } 1758 1759 cld = (uintptr_t)pr.p_child; 1760 sib = (uintptr_t)pr.p_sibling; 1761 1762 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1763 pw->pw_depth--; 1764 goto sib; 1765 } 1766 1767 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1768 1769 if (status != WALK_NEXT) 1770 return (status); 1771 1772 if ((wsp->walk_addr = cld) != NULL) { 1773 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1774 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1775 addr, cld); 1776 goto sib; 1777 } 1778 1779 pw->pw_stack[pw->pw_depth++] = addr; 1780 1781 if (pw->pw_depth == pw->pw_max) { 1782 mdb_warn("depth %d exceeds max depth; try again\n", 1783 pw->pw_depth); 1784 return (WALK_DONE); 1785 } 1786 return (WALK_NEXT); 1787 } 1788 1789 sib: 1790 /* 1791 * We know that p0 has no siblings, and if another starting proc 1792 * was given, we don't want to walk its siblings anyway. 1793 */ 1794 if (pw->pw_depth == 0) 1795 return (WALK_DONE); 1796 1797 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1798 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1799 addr, sib); 1800 sib = NULL; 1801 } 1802 1803 if ((wsp->walk_addr = sib) == NULL) { 1804 if (pw->pw_depth > 0) { 1805 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1806 return (WALK_NEXT); 1807 } 1808 return (WALK_DONE); 1809 } 1810 1811 return (WALK_NEXT); 1812 } 1813 1814 void 1815 proc_walk_fini(mdb_walk_state_t *wsp) 1816 { 1817 proc_walk_data_t *pw = wsp->walk_data; 1818 1819 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1820 mdb_free(pw, sizeof (proc_walk_data_t)); 1821 } 1822 1823 int 1824 task_walk_init(mdb_walk_state_t *wsp) 1825 { 1826 task_t task; 1827 1828 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1829 mdb_warn("failed to read task at %p", wsp->walk_addr); 1830 return (WALK_ERR); 1831 } 1832 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1833 wsp->walk_data = task.tk_memb_list; 1834 return (WALK_NEXT); 1835 } 1836 1837 int 1838 task_walk_step(mdb_walk_state_t *wsp) 1839 { 1840 proc_t proc; 1841 int status; 1842 1843 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1844 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1845 return (WALK_DONE); 1846 } 1847 1848 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1849 1850 if (proc.p_tasknext == wsp->walk_data) 1851 return (WALK_DONE); 1852 1853 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1854 return (status); 1855 } 1856 1857 int 1858 project_walk_init(mdb_walk_state_t *wsp) 1859 { 1860 if (wsp->walk_addr == NULL) { 1861 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1862 mdb_warn("failed to read 'proj0p'"); 1863 return (WALK_ERR); 1864 } 1865 } 1866 wsp->walk_data = (void *)wsp->walk_addr; 1867 return (WALK_NEXT); 1868 } 1869 1870 int 1871 project_walk_step(mdb_walk_state_t *wsp) 1872 { 1873 uintptr_t addr = wsp->walk_addr; 1874 kproject_t pj; 1875 int status; 1876 1877 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1878 mdb_warn("failed to read project at %p", addr); 1879 return (WALK_DONE); 1880 } 1881 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1882 if (status != WALK_NEXT) 1883 return (status); 1884 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1885 if ((void *)wsp->walk_addr == wsp->walk_data) 1886 return (WALK_DONE); 1887 return (WALK_NEXT); 1888 } 1889 1890 static int 1891 generic_walk_step(mdb_walk_state_t *wsp) 1892 { 1893 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1894 wsp->walk_cbdata)); 1895 } 1896 1897 int 1898 seg_walk_init(mdb_walk_state_t *wsp) 1899 { 1900 if (wsp->walk_addr == NULL) { 1901 mdb_warn("seg walk must begin at struct as *\n"); 1902 return (WALK_ERR); 1903 } 1904 1905 /* 1906 * this is really just a wrapper to AVL tree walk 1907 */ 1908 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1909 return (avl_walk_init(wsp)); 1910 } 1911 1912 static int 1913 cpu_walk_cmp(const void *l, const void *r) 1914 { 1915 uintptr_t lhs = *((uintptr_t *)l); 1916 uintptr_t rhs = *((uintptr_t *)r); 1917 cpu_t lcpu, rcpu; 1918 1919 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1920 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1921 1922 if (lcpu.cpu_id < rcpu.cpu_id) 1923 return (-1); 1924 1925 if (lcpu.cpu_id > rcpu.cpu_id) 1926 return (1); 1927 1928 return (0); 1929 } 1930 1931 typedef struct cpu_walk { 1932 uintptr_t *cw_array; 1933 int cw_ndx; 1934 } cpu_walk_t; 1935 1936 int 1937 cpu_walk_init(mdb_walk_state_t *wsp) 1938 { 1939 cpu_walk_t *cw; 1940 int max_ncpus, i = 0; 1941 uintptr_t current, first; 1942 cpu_t cpu, panic_cpu; 1943 uintptr_t panicstr, addr; 1944 GElf_Sym sym; 1945 1946 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1947 1948 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1949 mdb_warn("failed to read 'max_ncpus'"); 1950 return (WALK_ERR); 1951 } 1952 1953 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1954 mdb_warn("failed to read 'panicstr'"); 1955 return (WALK_ERR); 1956 } 1957 1958 if (panicstr != NULL) { 1959 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1960 mdb_warn("failed to find 'panic_cpu'"); 1961 return (WALK_ERR); 1962 } 1963 1964 addr = (uintptr_t)sym.st_value; 1965 1966 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1967 mdb_warn("failed to read 'panic_cpu'"); 1968 return (WALK_ERR); 1969 } 1970 } 1971 1972 /* 1973 * Unfortunately, there is no platform-independent way to walk 1974 * CPUs in ID order. We therefore loop through in cpu_next order, 1975 * building an array of CPU pointers which will subsequently be 1976 * sorted. 1977 */ 1978 cw->cw_array = 1979 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1980 1981 if (mdb_readvar(&first, "cpu_list") == -1) { 1982 mdb_warn("failed to read 'cpu_list'"); 1983 return (WALK_ERR); 1984 } 1985 1986 current = first; 1987 do { 1988 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 1989 mdb_warn("failed to read cpu at %p", current); 1990 return (WALK_ERR); 1991 } 1992 1993 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 1994 cw->cw_array[i++] = addr; 1995 } else { 1996 cw->cw_array[i++] = current; 1997 } 1998 } while ((current = (uintptr_t)cpu.cpu_next) != first); 1999 2000 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2001 wsp->walk_data = cw; 2002 2003 return (WALK_NEXT); 2004 } 2005 2006 int 2007 cpu_walk_step(mdb_walk_state_t *wsp) 2008 { 2009 cpu_walk_t *cw = wsp->walk_data; 2010 cpu_t cpu; 2011 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2012 2013 if (addr == NULL) 2014 return (WALK_DONE); 2015 2016 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2017 mdb_warn("failed to read cpu at %p", addr); 2018 return (WALK_DONE); 2019 } 2020 2021 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2022 } 2023 2024 typedef struct cpuinfo_data { 2025 intptr_t cid_cpu; 2026 uintptr_t cid_lbolt; 2027 uintptr_t **cid_ithr; 2028 char cid_print_head; 2029 char cid_print_thr; 2030 char cid_print_ithr; 2031 char cid_print_flags; 2032 } cpuinfo_data_t; 2033 2034 int 2035 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2036 { 2037 cpu_t c; 2038 int id; 2039 uint8_t pil; 2040 2041 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2042 return (WALK_NEXT); 2043 2044 if (thr->t_bound_cpu == NULL) { 2045 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2046 return (WALK_NEXT); 2047 } 2048 2049 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2050 2051 if ((id = c.cpu_id) >= NCPU) { 2052 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2053 thr->t_bound_cpu, id, NCPU); 2054 return (WALK_NEXT); 2055 } 2056 2057 if ((pil = thr->t_pil) >= NINTR) { 2058 mdb_warn("thread %p has pil (%d) greater than %d\n", 2059 addr, pil, NINTR); 2060 return (WALK_NEXT); 2061 } 2062 2063 if (cid->cid_ithr[id][pil] != NULL) { 2064 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2065 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2066 return (WALK_NEXT); 2067 } 2068 2069 cid->cid_ithr[id][pil] = addr; 2070 2071 return (WALK_NEXT); 2072 } 2073 2074 #define CPUINFO_IDWIDTH 3 2075 #define CPUINFO_FLAGWIDTH 9 2076 2077 #ifdef _LP64 2078 #if defined(__amd64) 2079 #define CPUINFO_TWIDTH 16 2080 #define CPUINFO_CPUWIDTH 16 2081 #else 2082 #define CPUINFO_CPUWIDTH 11 2083 #define CPUINFO_TWIDTH 11 2084 #endif 2085 #else 2086 #define CPUINFO_CPUWIDTH 8 2087 #define CPUINFO_TWIDTH 8 2088 #endif 2089 2090 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2091 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2092 #define CPUINFO_ITHRDELT 4 2093 2094 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2095 flagline < nflaglines ? flagbuf[flagline++] : "") 2096 2097 int 2098 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2099 { 2100 kthread_t t; 2101 disp_t disp; 2102 proc_t p; 2103 uintptr_t pinned; 2104 char **flagbuf; 2105 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2106 2107 const char *flags[] = { 2108 "RUNNING", "READY", "QUIESCED", "EXISTS", 2109 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2110 "SPARE", "FAULTED", NULL 2111 }; 2112 2113 if (cid->cid_cpu != -1) { 2114 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2115 return (WALK_NEXT); 2116 2117 /* 2118 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2119 */ 2120 cid->cid_cpu = -1; 2121 rval = WALK_DONE; 2122 } 2123 2124 if (cid->cid_print_head) { 2125 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2126 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2127 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2128 "PROC"); 2129 cid->cid_print_head = FALSE; 2130 } 2131 2132 bspl = cpu->cpu_base_spl; 2133 2134 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2135 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2136 return (WALK_ERR); 2137 } 2138 2139 mdb_printf("%3d %0*p %3x %4d %4d ", 2140 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2141 disp.disp_nrunnable, bspl); 2142 2143 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2144 mdb_printf("%3d ", t.t_pri); 2145 } else { 2146 mdb_printf("%3s ", "-"); 2147 } 2148 2149 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2150 cpu->cpu_kprunrun ? "yes" : "no"); 2151 2152 if (cpu->cpu_last_swtch) { 2153 clock_t lbolt; 2154 2155 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2156 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2157 return (WALK_ERR); 2158 } 2159 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2160 } else { 2161 mdb_printf("%-6s ", "-"); 2162 } 2163 2164 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2165 2166 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2167 mdb_printf(" (idle)\n"); 2168 else if (cpu->cpu_thread == NULL) 2169 mdb_printf(" -\n"); 2170 else { 2171 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2172 mdb_printf(" %s\n", p.p_user.u_comm); 2173 } else { 2174 mdb_printf(" ?\n"); 2175 } 2176 } 2177 2178 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2179 2180 if (cid->cid_print_flags) { 2181 int first = 1, i, j, k; 2182 char *s; 2183 2184 cid->cid_print_head = TRUE; 2185 2186 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2187 if (!(cpu->cpu_flags & i)) 2188 continue; 2189 2190 if (first) { 2191 s = mdb_alloc(CPUINFO_THRDELT + 1, 2192 UM_GC | UM_SLEEP); 2193 2194 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2195 "%*s|%*s", CPUINFO_FLAGDELT, "", 2196 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2197 flagbuf[nflaglines++] = s; 2198 } 2199 2200 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2201 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2202 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2203 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2204 first ? "<--+" : ""); 2205 2206 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2207 s[k] = ' '; 2208 s[k] = '\0'; 2209 2210 flagbuf[nflaglines++] = s; 2211 first = 0; 2212 } 2213 } 2214 2215 if (cid->cid_print_ithr) { 2216 int i, found_one = FALSE; 2217 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2218 2219 for (i = NINTR - 1; i >= 0; i--) { 2220 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2221 2222 if (iaddr == NULL) 2223 continue; 2224 2225 if (!found_one) { 2226 found_one = TRUE; 2227 2228 CPUINFO_INDENT; 2229 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2230 CPUINFO_ITHRDELT, ""); 2231 2232 CPUINFO_INDENT; 2233 mdb_printf("%c%*s+--> %3s %s\n", 2234 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2235 "", "PIL", "THREAD"); 2236 } 2237 2238 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2239 mdb_warn("failed to read kthread_t at %p", 2240 iaddr); 2241 return (WALK_ERR); 2242 } 2243 2244 CPUINFO_INDENT; 2245 mdb_printf("%c%*s %3d %0*p\n", 2246 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2247 t.t_pil, CPUINFO_TWIDTH, iaddr); 2248 2249 pinned = (uintptr_t)t.t_intr; 2250 } 2251 2252 if (found_one && pinned != NULL) { 2253 cid->cid_print_head = TRUE; 2254 (void) strcpy(p.p_user.u_comm, "?"); 2255 2256 if (mdb_vread(&t, sizeof (t), 2257 (uintptr_t)pinned) == -1) { 2258 mdb_warn("failed to read kthread_t at %p", 2259 pinned); 2260 return (WALK_ERR); 2261 } 2262 if (mdb_vread(&p, sizeof (p), 2263 (uintptr_t)t.t_procp) == -1) { 2264 mdb_warn("failed to read proc_t at %p", 2265 t.t_procp); 2266 return (WALK_ERR); 2267 } 2268 2269 CPUINFO_INDENT; 2270 mdb_printf("%c%*s %3s %0*p %s\n", 2271 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2272 CPUINFO_TWIDTH, pinned, 2273 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2274 "(idle)" : p.p_user.u_comm); 2275 } 2276 } 2277 2278 if (disp.disp_nrunnable && cid->cid_print_thr) { 2279 dispq_t *dq; 2280 2281 int i, npri = disp.disp_npri; 2282 2283 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2284 2285 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2286 (uintptr_t)disp.disp_q) == -1) { 2287 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2288 return (WALK_ERR); 2289 } 2290 2291 CPUINFO_INDENT; 2292 mdb_printf("|\n"); 2293 2294 CPUINFO_INDENT; 2295 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2296 CPUINFO_TWIDTH, "THREAD", "PROC"); 2297 2298 for (i = npri - 1; i >= 0; i--) { 2299 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2300 2301 while (taddr != NULL) { 2302 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2303 mdb_warn("failed to read kthread_t " 2304 "at %p", taddr); 2305 return (WALK_ERR); 2306 } 2307 if (mdb_vread(&p, sizeof (p), 2308 (uintptr_t)t.t_procp) == -1) { 2309 mdb_warn("failed to read proc_t at %p", 2310 t.t_procp); 2311 return (WALK_ERR); 2312 } 2313 2314 CPUINFO_INDENT; 2315 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2316 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2317 2318 taddr = (uintptr_t)t.t_link; 2319 } 2320 } 2321 cid->cid_print_head = TRUE; 2322 } 2323 2324 while (flagline < nflaglines) 2325 mdb_printf("%s\n", flagbuf[flagline++]); 2326 2327 if (cid->cid_print_head) 2328 mdb_printf("\n"); 2329 2330 return (rval); 2331 } 2332 2333 int 2334 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2335 { 2336 uint_t verbose = FALSE; 2337 cpuinfo_data_t cid; 2338 GElf_Sym sym; 2339 clock_t lbolt; 2340 2341 cid.cid_print_ithr = FALSE; 2342 cid.cid_print_thr = FALSE; 2343 cid.cid_print_flags = FALSE; 2344 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2345 cid.cid_cpu = -1; 2346 2347 if (flags & DCMD_ADDRSPEC) 2348 cid.cid_cpu = addr; 2349 2350 if (mdb_getopts(argc, argv, 2351 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2352 return (DCMD_USAGE); 2353 2354 if (verbose) { 2355 cid.cid_print_ithr = TRUE; 2356 cid.cid_print_thr = TRUE; 2357 cid.cid_print_flags = TRUE; 2358 cid.cid_print_head = TRUE; 2359 } 2360 2361 if (cid.cid_print_ithr) { 2362 int i; 2363 2364 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2365 * NCPU, UM_SLEEP | UM_GC); 2366 2367 for (i = 0; i < NCPU; i++) 2368 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2369 NINTR, UM_SLEEP | UM_GC); 2370 2371 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2372 &cid) == -1) { 2373 mdb_warn("couldn't walk thread"); 2374 return (DCMD_ERR); 2375 } 2376 } 2377 2378 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2379 mdb_warn("failed to find panic_lbolt"); 2380 return (DCMD_ERR); 2381 } 2382 2383 cid.cid_lbolt = (uintptr_t)sym.st_value; 2384 2385 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2386 mdb_warn("failed to read panic_lbolt"); 2387 return (DCMD_ERR); 2388 } 2389 2390 if (lbolt == 0) { 2391 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2392 mdb_warn("failed to find lbolt"); 2393 return (DCMD_ERR); 2394 } 2395 cid.cid_lbolt = (uintptr_t)sym.st_value; 2396 } 2397 2398 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2399 mdb_warn("can't walk cpus"); 2400 return (DCMD_ERR); 2401 } 2402 2403 if (cid.cid_cpu != -1) { 2404 /* 2405 * We didn't find this CPU when we walked through the CPUs 2406 * (i.e. the address specified doesn't show up in the "cpu" 2407 * walk). However, the specified address may still correspond 2408 * to a valid cpu_t (for example, if the specified address is 2409 * the actual panicking cpu_t and not the cached panic_cpu). 2410 * Point is: even if we didn't find it, we still want to try 2411 * to print the specified address as a cpu_t. 2412 */ 2413 cpu_t cpu; 2414 2415 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2416 mdb_warn("%p is neither a valid CPU ID nor a " 2417 "valid cpu_t address\n", cid.cid_cpu); 2418 return (DCMD_ERR); 2419 } 2420 2421 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2422 } 2423 2424 return (DCMD_OK); 2425 } 2426 2427 /*ARGSUSED*/ 2428 int 2429 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2430 { 2431 int i; 2432 2433 if (!(flags & DCMD_ADDRSPEC)) 2434 return (DCMD_USAGE); 2435 2436 for (i = 0; i < sizeof (addr) * NBBY; i++) 2437 mdb_printf("%p\n", addr ^ (1UL << i)); 2438 2439 return (DCMD_OK); 2440 } 2441 2442 /* 2443 * Grumble, grumble. 2444 */ 2445 #define SMAP_HASHFUNC(vp, off) \ 2446 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2447 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2448 2449 int 2450 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2451 { 2452 long smd_hashmsk; 2453 int hash; 2454 uintptr_t offset = 0; 2455 struct smap smp; 2456 uintptr_t saddr, kaddr; 2457 uintptr_t smd_hash, smd_smap; 2458 struct seg seg; 2459 2460 if (!(flags & DCMD_ADDRSPEC)) 2461 return (DCMD_USAGE); 2462 2463 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2464 mdb_warn("failed to read smd_hashmsk"); 2465 return (DCMD_ERR); 2466 } 2467 2468 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2469 mdb_warn("failed to read smd_hash"); 2470 return (DCMD_ERR); 2471 } 2472 2473 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2474 mdb_warn("failed to read smd_hash"); 2475 return (DCMD_ERR); 2476 } 2477 2478 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2479 mdb_warn("failed to read segkmap"); 2480 return (DCMD_ERR); 2481 } 2482 2483 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2484 mdb_warn("failed to read segkmap at %p", kaddr); 2485 return (DCMD_ERR); 2486 } 2487 2488 if (argc != 0) { 2489 const mdb_arg_t *arg = &argv[0]; 2490 2491 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2492 offset = arg->a_un.a_val; 2493 else 2494 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2495 } 2496 2497 hash = SMAP_HASHFUNC(addr, offset); 2498 2499 if (mdb_vread(&saddr, sizeof (saddr), 2500 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2501 mdb_warn("couldn't read smap at %p", 2502 smd_hash + hash * sizeof (uintptr_t)); 2503 return (DCMD_ERR); 2504 } 2505 2506 do { 2507 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2508 mdb_warn("couldn't read smap at %p", saddr); 2509 return (DCMD_ERR); 2510 } 2511 2512 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2513 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2514 addr, offset, saddr, ((saddr - smd_smap) / 2515 sizeof (smp)) * MAXBSIZE + seg.s_base); 2516 return (DCMD_OK); 2517 } 2518 2519 saddr = (uintptr_t)smp.sm_hash; 2520 } while (saddr != NULL); 2521 2522 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2523 return (DCMD_OK); 2524 } 2525 2526 /*ARGSUSED*/ 2527 int 2528 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2529 { 2530 uintptr_t kaddr; 2531 struct seg seg; 2532 struct segmap_data sd; 2533 2534 if (!(flags & DCMD_ADDRSPEC)) 2535 return (DCMD_USAGE); 2536 2537 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2538 mdb_warn("failed to read segkmap"); 2539 return (DCMD_ERR); 2540 } 2541 2542 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2543 mdb_warn("failed to read segkmap at %p", kaddr); 2544 return (DCMD_ERR); 2545 } 2546 2547 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2548 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2549 return (DCMD_ERR); 2550 } 2551 2552 mdb_printf("%p is smap %p\n", addr, 2553 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2554 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2555 2556 return (DCMD_OK); 2557 } 2558 2559 int 2560 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2561 { 2562 if (p->p_as == *asp) 2563 mdb_printf("%p\n", addr); 2564 return (WALK_NEXT); 2565 } 2566 2567 /*ARGSUSED*/ 2568 int 2569 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2570 { 2571 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2572 return (DCMD_USAGE); 2573 2574 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2575 mdb_warn("failed to walk proc"); 2576 return (DCMD_ERR); 2577 } 2578 2579 return (DCMD_OK); 2580 } 2581 2582 /*ARGSUSED*/ 2583 int 2584 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2585 { 2586 proc_t parent; 2587 int ident = 0; 2588 uintptr_t paddr; 2589 2590 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2591 mdb_vread(&parent, sizeof (parent), paddr); 2592 paddr = (uintptr_t)parent.p_parent; 2593 } 2594 2595 mdb_inc_indent(ident); 2596 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2597 mdb_dec_indent(ident); 2598 2599 return (WALK_NEXT); 2600 } 2601 2602 void 2603 ptree_ancestors(uintptr_t addr, uintptr_t start) 2604 { 2605 proc_t p; 2606 2607 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2608 mdb_warn("couldn't read ancestor at %p", addr); 2609 return; 2610 } 2611 2612 if (p.p_parent != NULL) 2613 ptree_ancestors((uintptr_t)p.p_parent, start); 2614 2615 if (addr != start) 2616 (void) ptree_walk(addr, &p, NULL); 2617 } 2618 2619 /*ARGSUSED*/ 2620 int 2621 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2622 { 2623 if (!(flags & DCMD_ADDRSPEC)) 2624 addr = NULL; 2625 else 2626 ptree_ancestors(addr, addr); 2627 2628 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2629 mdb_warn("couldn't walk 'proc'"); 2630 return (DCMD_ERR); 2631 } 2632 2633 return (DCMD_OK); 2634 } 2635 2636 /*ARGSUSED*/ 2637 static int 2638 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2639 { 2640 int fdnum; 2641 const mdb_arg_t *argp = &argv[0]; 2642 proc_t p; 2643 uf_entry_t uf; 2644 2645 if ((flags & DCMD_ADDRSPEC) == 0) { 2646 mdb_warn("fd doesn't give global information\n"); 2647 return (DCMD_ERR); 2648 } 2649 if (argc != 1) 2650 return (DCMD_USAGE); 2651 2652 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2653 fdnum = argp->a_un.a_val; 2654 else 2655 fdnum = mdb_strtoull(argp->a_un.a_str); 2656 2657 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2658 mdb_warn("couldn't read proc_t at %p", addr); 2659 return (DCMD_ERR); 2660 } 2661 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2662 mdb_warn("process %p only has %d files open.\n", 2663 addr, p.p_user.u_finfo.fi_nfiles); 2664 return (DCMD_ERR); 2665 } 2666 if (mdb_vread(&uf, sizeof (uf_entry_t), 2667 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2668 mdb_warn("couldn't read uf_entry_t at %p", 2669 &p.p_user.u_finfo.fi_list[fdnum]); 2670 return (DCMD_ERR); 2671 } 2672 2673 mdb_printf("%p\n", uf.uf_file); 2674 return (DCMD_OK); 2675 } 2676 2677 /*ARGSUSED*/ 2678 static int 2679 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2680 { 2681 pid_t pid = (pid_t)addr; 2682 2683 if (argc != 0) 2684 return (DCMD_USAGE); 2685 2686 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2687 mdb_warn("PID 0t%d not found\n", pid); 2688 return (DCMD_ERR); 2689 } 2690 2691 mdb_printf("%p\n", addr); 2692 return (DCMD_OK); 2693 } 2694 2695 static char *sysfile_cmd[] = { 2696 "exclude:", 2697 "include:", 2698 "forceload:", 2699 "rootdev:", 2700 "rootfs:", 2701 "swapdev:", 2702 "swapfs:", 2703 "moddir:", 2704 "set", 2705 "unknown", 2706 }; 2707 2708 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2709 2710 /*ARGSUSED*/ 2711 static int 2712 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2713 { 2714 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2715 *target = NULL; 2716 return (WALK_DONE); 2717 } 2718 return (WALK_NEXT); 2719 } 2720 2721 /*ARGSUSED*/ 2722 static int 2723 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2724 { 2725 struct sysparam *sysp, sys; 2726 char var[256]; 2727 char modname[256]; 2728 char val[256]; 2729 char strval[256]; 2730 vmem_t *mod_sysfile_arena; 2731 void *straddr; 2732 2733 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2734 mdb_warn("failed to read sysparam_hd"); 2735 return (DCMD_ERR); 2736 } 2737 2738 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2739 mdb_warn("failed to read mod_sysfile_arena"); 2740 return (DCMD_ERR); 2741 } 2742 2743 while (sysp != NULL) { 2744 var[0] = '\0'; 2745 val[0] = '\0'; 2746 modname[0] = '\0'; 2747 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2748 mdb_warn("couldn't read sysparam %p", sysp); 2749 return (DCMD_ERR); 2750 } 2751 if (sys.sys_modnam != NULL && 2752 mdb_readstr(modname, 256, 2753 (uintptr_t)sys.sys_modnam) == -1) { 2754 mdb_warn("couldn't read modname in %p", sysp); 2755 return (DCMD_ERR); 2756 } 2757 if (sys.sys_ptr != NULL && 2758 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2759 mdb_warn("couldn't read ptr in %p", sysp); 2760 return (DCMD_ERR); 2761 } 2762 if (sys.sys_op != SETOP_NONE) { 2763 /* 2764 * Is this an int or a string? We determine this 2765 * by checking whether straddr is contained in 2766 * mod_sysfile_arena. If so, the walker will set 2767 * straddr to NULL. 2768 */ 2769 straddr = (void *)(uintptr_t)sys.sys_info; 2770 if (sys.sys_op == SETOP_ASSIGN && 2771 sys.sys_info != 0 && 2772 mdb_pwalk("vmem_seg", 2773 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2774 (uintptr_t)mod_sysfile_arena) == 0 && 2775 straddr == NULL && 2776 mdb_readstr(strval, 256, 2777 (uintptr_t)sys.sys_info) != -1) { 2778 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2779 strval); 2780 } else { 2781 (void) mdb_snprintf(val, sizeof (val), 2782 "0x%llx [0t%llu]", sys.sys_info, 2783 sys.sys_info); 2784 } 2785 } 2786 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2787 modname, modname[0] == '\0' ? "" : ":", 2788 var, sysfile_ops[sys.sys_op], val); 2789 2790 sysp = sys.sys_next; 2791 } 2792 2793 return (DCMD_OK); 2794 } 2795 2796 /* 2797 * Dump a taskq_ent_t given its address. 2798 */ 2799 /*ARGSUSED*/ 2800 int 2801 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2802 { 2803 taskq_ent_t taskq_ent; 2804 GElf_Sym sym; 2805 char buf[MDB_SYM_NAMLEN+1]; 2806 2807 2808 if (!(flags & DCMD_ADDRSPEC)) { 2809 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2810 return (DCMD_USAGE); 2811 } 2812 2813 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2814 mdb_warn("failed to read taskq_ent_t at %p", addr); 2815 return (DCMD_ERR); 2816 } 2817 2818 if (DCMD_HDRSPEC(flags)) { 2819 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2820 "ENTRY", "ARG", "FUNCTION"); 2821 } 2822 2823 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2824 buf, sizeof (buf), &sym) == -1) { 2825 (void) strcpy(buf, "????"); 2826 } 2827 2828 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2829 2830 return (DCMD_OK); 2831 } 2832 2833 /* 2834 * Given the address of the (taskq_t) task queue head, walk the queue listing 2835 * the address of every taskq_ent_t. 2836 */ 2837 int 2838 taskq_walk_init(mdb_walk_state_t *wsp) 2839 { 2840 taskq_t tq_head; 2841 2842 2843 if (wsp->walk_addr == NULL) { 2844 mdb_warn("start address required\n"); 2845 return (WALK_ERR); 2846 } 2847 2848 2849 /* 2850 * Save the address of the list head entry. This terminates the list. 2851 */ 2852 wsp->walk_data = (void *) 2853 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2854 2855 2856 /* 2857 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2858 */ 2859 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2860 -1) { 2861 mdb_warn("failed to read taskq list head at %p", 2862 wsp->walk_addr); 2863 } 2864 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2865 2866 2867 /* 2868 * Check for null list (next=head) 2869 */ 2870 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2871 return (WALK_DONE); 2872 } 2873 2874 return (WALK_NEXT); 2875 } 2876 2877 2878 int 2879 taskq_walk_step(mdb_walk_state_t *wsp) 2880 { 2881 taskq_ent_t tq_ent; 2882 int status; 2883 2884 2885 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2886 -1) { 2887 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2888 return (DCMD_ERR); 2889 } 2890 2891 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2892 wsp->walk_cbdata); 2893 2894 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2895 2896 2897 /* Check if we're at the last element (next=head) */ 2898 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2899 return (WALK_DONE); 2900 } 2901 2902 return (status); 2903 } 2904 2905 int 2906 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2907 { 2908 2909 if (*didp == thr->t_did) { 2910 mdb_printf("%p\n", addr); 2911 return (WALK_DONE); 2912 } else 2913 return (WALK_NEXT); 2914 } 2915 2916 /*ARGSUSED*/ 2917 int 2918 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2919 { 2920 const mdb_arg_t *argp = &argv[0]; 2921 kt_did_t did; 2922 2923 if (argc != 1) 2924 return (DCMD_USAGE); 2925 2926 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2927 2928 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2929 mdb_warn("failed to walk thread"); 2930 return (DCMD_ERR); 2931 2932 } 2933 return (DCMD_OK); 2934 2935 } 2936 2937 static int 2938 errorq_walk_init(mdb_walk_state_t *wsp) 2939 { 2940 if (wsp->walk_addr == NULL && 2941 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2942 mdb_warn("failed to read errorq_list"); 2943 return (WALK_ERR); 2944 } 2945 2946 return (WALK_NEXT); 2947 } 2948 2949 static int 2950 errorq_walk_step(mdb_walk_state_t *wsp) 2951 { 2952 uintptr_t addr = wsp->walk_addr; 2953 errorq_t eq; 2954 2955 if (addr == NULL) 2956 return (WALK_DONE); 2957 2958 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2959 mdb_warn("failed to read errorq at %p", addr); 2960 return (WALK_ERR); 2961 } 2962 2963 wsp->walk_addr = (uintptr_t)eq.eq_next; 2964 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2965 } 2966 2967 typedef struct eqd_walk_data { 2968 uintptr_t *eqd_stack; 2969 void *eqd_buf; 2970 ulong_t eqd_qpos; 2971 ulong_t eqd_qlen; 2972 size_t eqd_size; 2973 } eqd_walk_data_t; 2974 2975 /* 2976 * In order to walk the list of pending error queue elements, we push the 2977 * addresses of the corresponding data buffers in to the eqd_stack array. 2978 * The error lists are in reverse chronological order when iterating using 2979 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2980 * walker client gets addresses in order from oldest error to newest error. 2981 */ 2982 static void 2983 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 2984 { 2985 errorq_elem_t eqe; 2986 2987 while (addr != NULL) { 2988 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 2989 mdb_warn("failed to read errorq element at %p", addr); 2990 break; 2991 } 2992 2993 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 2994 mdb_warn("errorq is overfull -- more than %lu " 2995 "elems found\n", eqdp->eqd_qlen); 2996 break; 2997 } 2998 2999 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3000 addr = (uintptr_t)eqe.eqe_prev; 3001 } 3002 } 3003 3004 static int 3005 eqd_walk_init(mdb_walk_state_t *wsp) 3006 { 3007 eqd_walk_data_t *eqdp; 3008 errorq_elem_t eqe, *addr; 3009 errorq_t eq; 3010 ulong_t i; 3011 3012 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3013 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3014 return (WALK_ERR); 3015 } 3016 3017 if (eq.eq_ptail != NULL && 3018 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3019 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3020 return (WALK_ERR); 3021 } 3022 3023 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3024 wsp->walk_data = eqdp; 3025 3026 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3027 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3028 eqdp->eqd_qlen = eq.eq_qlen; 3029 eqdp->eqd_qpos = 0; 3030 eqdp->eqd_size = eq.eq_size; 3031 3032 /* 3033 * The newest elements in the queue are on the pending list, so we 3034 * push those on to our stack first. 3035 */ 3036 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3037 3038 /* 3039 * If eq_ptail is set, it may point to a subset of the errors on the 3040 * pending list in the event a casptr() failed; if ptail's data is 3041 * already in our stack, NULL out eq_ptail and ignore it. 3042 */ 3043 if (eq.eq_ptail != NULL) { 3044 for (i = 0; i < eqdp->eqd_qpos; i++) { 3045 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3046 eq.eq_ptail = NULL; 3047 break; 3048 } 3049 } 3050 } 3051 3052 /* 3053 * If eq_phead is set, it has the processing list in order from oldest 3054 * to newest. Use this to recompute eq_ptail as best we can and then 3055 * we nicely fall into eqd_push_list() of eq_ptail below. 3056 */ 3057 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3058 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3059 eq.eq_ptail = addr; 3060 3061 /* 3062 * The oldest elements in the queue are on the processing list, subject 3063 * to machinations in the if-clauses above. Push any such elements. 3064 */ 3065 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3066 return (WALK_NEXT); 3067 } 3068 3069 static int 3070 eqd_walk_step(mdb_walk_state_t *wsp) 3071 { 3072 eqd_walk_data_t *eqdp = wsp->walk_data; 3073 uintptr_t addr; 3074 3075 if (eqdp->eqd_qpos == 0) 3076 return (WALK_DONE); 3077 3078 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3079 3080 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3081 mdb_warn("failed to read errorq data at %p", addr); 3082 return (WALK_ERR); 3083 } 3084 3085 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3086 } 3087 3088 static void 3089 eqd_walk_fini(mdb_walk_state_t *wsp) 3090 { 3091 eqd_walk_data_t *eqdp = wsp->walk_data; 3092 3093 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3094 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3095 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3096 } 3097 3098 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3099 3100 static int 3101 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3102 { 3103 int i; 3104 errorq_t eq; 3105 uint_t opt_v = FALSE; 3106 3107 if (!(flags & DCMD_ADDRSPEC)) { 3108 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3109 mdb_warn("can't walk 'errorq'"); 3110 return (DCMD_ERR); 3111 } 3112 return (DCMD_OK); 3113 } 3114 3115 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3116 argc -= i; 3117 argv += i; 3118 3119 if (argc != 0) 3120 return (DCMD_USAGE); 3121 3122 if (opt_v || DCMD_HDRSPEC(flags)) { 3123 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3124 "ADDR", "NAME", "S", "V", "N"); 3125 if (!opt_v) { 3126 mdb_printf("%7s %7s %7s%</u>\n", 3127 "ACCEPT", "DROP", "LOG"); 3128 } else { 3129 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3130 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3131 } 3132 } 3133 3134 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3135 mdb_warn("failed to read errorq at %p", addr); 3136 return (DCMD_ERR); 3137 } 3138 3139 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3140 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3141 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3142 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3143 3144 if (!opt_v) { 3145 mdb_printf("%7llu %7llu %7llu\n", 3146 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3147 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3148 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3149 } else { 3150 mdb_printf("%5s %6lu %6lu %3u %a\n", 3151 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3152 mdb_printf("%38s\n%41s" 3153 "%12s %llu\n" 3154 "%53s %llu\n" 3155 "%53s %llu\n" 3156 "%53s %llu\n" 3157 "%53s %llu\n" 3158 "%53s %llu\n" 3159 "%53s %llu\n" 3160 "%53s %llu\n\n", 3161 "|", "+-> ", 3162 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3163 "DROPPED", EQKSVAL(eq, eqk_dropped), 3164 "LOGGED", EQKSVAL(eq, eqk_logged), 3165 "RESERVED", EQKSVAL(eq, eqk_reserved), 3166 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3167 "COMMITTED", EQKSVAL(eq, eqk_committed), 3168 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3169 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3170 } 3171 3172 return (DCMD_OK); 3173 } 3174 3175 /*ARGSUSED*/ 3176 static int 3177 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3178 { 3179 cpu_t panic_cpu; 3180 kthread_t *panic_thread; 3181 void *panicbuf; 3182 panic_data_t *pd; 3183 int i, n; 3184 3185 if (!mdb_prop_postmortem) { 3186 mdb_warn("panicinfo can only be run on a system " 3187 "dump; see dumpadm(1M)\n"); 3188 return (DCMD_ERR); 3189 } 3190 3191 if (flags & DCMD_ADDRSPEC || argc != 0) 3192 return (DCMD_USAGE); 3193 3194 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3195 mdb_warn("failed to read 'panic_cpu'"); 3196 else 3197 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3198 3199 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3200 mdb_warn("failed to read 'panic_thread'"); 3201 else 3202 mdb_printf("%16s %?p\n", "thread", panic_thread); 3203 3204 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3205 pd = (panic_data_t *)panicbuf; 3206 3207 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3208 pd->pd_version != PANICBUFVERS) { 3209 mdb_warn("failed to read 'panicbuf'"); 3210 mdb_free(panicbuf, PANICBUFSIZE); 3211 return (DCMD_ERR); 3212 } 3213 3214 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3215 3216 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3217 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3218 3219 for (i = 0; i < n; i++) 3220 mdb_printf("%16s %?llx\n", 3221 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3222 3223 mdb_free(panicbuf, PANICBUFSIZE); 3224 return (DCMD_OK); 3225 } 3226 3227 static const mdb_dcmd_t dcmds[] = { 3228 3229 /* from genunix.c */ 3230 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3231 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3232 { "binding_hash_entry", ":", "print driver names hash table entry", 3233 binding_hash_entry }, 3234 { "callout", NULL, "print callout table", callout }, 3235 { "class", NULL, "print process scheduler classes", class }, 3236 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3237 { "did2thread", "? kt_did", "find kernel thread for this id", 3238 did2thread }, 3239 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3240 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3241 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3242 { "lminfo", NULL, "print lock manager information", lminfo }, 3243 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3244 { "panicinfo", NULL, "print panic information", panicinfo }, 3245 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3246 { "pmap", ":[-q]", "print process memory map", pmap }, 3247 { "project", NULL, "display kernel project(s)", project }, 3248 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3249 { "pgrep", "[-x] [-n | -o] pattern", 3250 "pattern match against all processes", pgrep }, 3251 { "ptree", NULL, "print process tree", ptree }, 3252 { "seg", ":", "print address space segment", seg }, 3253 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3254 sysevent}, 3255 { "sysevent_channel", "?", "print sysevent channel database", 3256 sysevent_channel}, 3257 { "sysevent_class_list", ":", "print sysevent class list", 3258 sysevent_class_list}, 3259 { "sysevent_subclass_list", ":", 3260 "print sysevent subclass list", sysevent_subclass_list}, 3261 { "system", NULL, "print contents of /etc/system file", sysfile }, 3262 { "task", NULL, "display kernel task(s)", task }, 3263 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3264 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3265 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3266 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3267 whereopen }, 3268 3269 /* from zone.c */ 3270 { "zone", "?", "display kernel zone(s)", zoneprt }, 3271 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3272 3273 /* from bio.c */ 3274 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3275 3276 /* from contract.c */ 3277 { "contract", "?", "display a contract", cmd_contract }, 3278 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3279 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3280 3281 /* from cpupart.c */ 3282 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3283 3284 /* from cyclic.c */ 3285 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3286 { "cycid", "?", "dump a cyclic id", cycid }, 3287 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3288 { "cyclic", ":", "developer information", cyclic }, 3289 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3290 3291 /* from devinfo.c */ 3292 { "devbindings", "?[-qs] [device-name | major-num]", 3293 "print devinfo nodes bound to device-name or major-num", 3294 devbindings, devinfo_help }, 3295 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3296 devinfo_help }, 3297 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3298 devinfo_audit }, 3299 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3300 devinfo_audit_log }, 3301 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3302 devinfo_audit_node }, 3303 { "devinfo2driver", ":", "find driver name for this devinfo node", 3304 devinfo2driver }, 3305 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3306 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3307 dev2major }, 3308 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3309 dev2minor }, 3310 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3311 devt }, 3312 { "major2name", "?<major-num>", "convert major number to dev name", 3313 major2name }, 3314 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3315 minornodes }, 3316 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3317 modctl2devinfo }, 3318 { "name2major", "<dev-name>", "convert dev name to major number", 3319 name2major }, 3320 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3321 { "softstate", ":<instance>", "retrieve soft-state pointer", 3322 softstate }, 3323 { "devinfo_fm", ":", "devinfo fault managment configuration", 3324 devinfo_fm }, 3325 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3326 devinfo_fmce}, 3327 3328 /* from fm.c */ 3329 { "ereport", "[-v]", "print ereports logged in dump", 3330 ereport }, 3331 3332 /* from findstack.c */ 3333 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3334 { "findstack_debug", NULL, "toggle findstack debugging", 3335 findstack_debug }, 3336 3337 /* from kgrep.c + genunix.c */ 3338 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3339 kgrep_help }, 3340 3341 /* from kmem.c */ 3342 { "allocdby", ":", "given a thread, print its allocated buffers", 3343 allocdby }, 3344 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3345 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3346 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3347 { "kmalog", "?[ fail | slab ]", 3348 "display kmem transaction log and stack traces", kmalog }, 3349 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3350 kmastat }, 3351 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3352 "of the kmem allocator", kmausers, kmausers_help }, 3353 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3354 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3355 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3356 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3357 kmem_verify }, 3358 { "vmem", "?", "print a vmem_t", vmem }, 3359 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3360 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3361 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3362 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3363 whatis_help }, 3364 { "whatthread", ":[-v]", "print threads whose stack contains the " 3365 "given address", whatthread }, 3366 3367 /* from ldi.c */ 3368 { "ldi_handle", "?[-i]", "display a layered driver handle", 3369 ldi_handle, ldi_handle_help }, 3370 { "ldi_ident", NULL, "display a layered driver identifier", 3371 ldi_ident, ldi_ident_help }, 3372 3373 /* from leaky.c + leaky_subr.c */ 3374 { "findleaks", FINDLEAKS_USAGE, 3375 "search for potential kernel memory leaks", findleaks, 3376 findleaks_help }, 3377 3378 /* from lgrp.c */ 3379 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3380 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3381 3382 /* from log.c */ 3383 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3384 3385 /* from memory.c */ 3386 { "page", "?", "display a summarized page_t", page }, 3387 { "memstat", NULL, "display memory usage summary", memstat }, 3388 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3389 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3390 3391 /* from mmd.c */ 3392 { "multidata", ":[-sv]", "display a summarized multidata_t", 3393 multidata }, 3394 { "pattbl", ":", "display a summarized multidata attribute table", 3395 pattbl }, 3396 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3397 pattr2multidata }, 3398 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3399 pdesc2slab }, 3400 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3401 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3402 slab2multidata }, 3403 3404 /* from modhash.c */ 3405 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3406 "display information about one or all mod_hash structures", 3407 modhash, modhash_help }, 3408 { "modent", ":[-k | -v | -t type]", 3409 "display information about a mod_hash_entry", modent, 3410 modent_help }, 3411 3412 /* from net.c */ 3413 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3414 mi }, 3415 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 3416 "show network statistics", netstat }, 3417 { "sonode", "?[-f inet | inet6 | unix | #] " 3418 "[-t stream | dgram | raw | #] [-p #]", 3419 "filter and display sonode", sonode }, 3420 3421 /* from nvpair.c */ 3422 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3423 nvpair_print }, 3424 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3425 print_nvlist }, 3426 3427 /* from pg.c */ 3428 { "pg", "?[-q]", "display a pg", pg}, 3429 /* from group.c */ 3430 { "group", "?[-q]", "display a group", group}, 3431 3432 /* from log.c */ 3433 /* from rctl.c */ 3434 { "rctl_dict", "?", "print systemwide default rctl definitions", 3435 rctl_dict }, 3436 { "rctl_list", ":[handle]", "print rctls for the given proc", 3437 rctl_list }, 3438 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3439 rctl }, 3440 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3441 "sequence", rctl_validate }, 3442 3443 /* from sobj.c */ 3444 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3445 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3446 mutex_help }, 3447 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3448 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3449 { "turnstile", "?", "display a turnstile", turnstile }, 3450 3451 /* from stream.c */ 3452 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3453 "print an mblk", mblk_prt, mblk_help }, 3454 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3455 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3456 mblk2dblk }, 3457 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3458 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3459 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3460 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3461 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3462 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3463 "filter and display STREAM queue", queue, queue_help }, 3464 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3465 "filter and display STREAM head", stdata, stdata_help }, 3466 { "str2mate", ":", "print mate of this stream", str2mate }, 3467 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3468 { "stream", ":", "display STREAM", stream }, 3469 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3470 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3471 "filter and display STREAM sync queue", syncq, syncq_help }, 3472 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3473 3474 /* from thread.c */ 3475 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3476 thread_help }, 3477 { "threadlist", "?[-v [count]]", 3478 "display threads and associated C stack traces", threadlist, 3479 threadlist_help }, 3480 3481 /* from tsd.c */ 3482 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3483 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3484 3485 /* 3486 * typegraph does not work under kmdb, as it requires too much memory 3487 * for its internal data structures. 3488 */ 3489 #ifndef _KMDB 3490 /* from typegraph.c */ 3491 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3492 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3493 findfalse }, 3494 { "typegraph", NULL, "build type graph", typegraph }, 3495 { "istype", ":type", "manually set object type", istype }, 3496 { "notype", ":", "manually clear object type", notype }, 3497 { "whattype", ":", "determine object type", whattype }, 3498 #endif 3499 3500 /* from vfs.c */ 3501 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3502 { "pfiles", ":[-fp]", "print process file information", pfiles, 3503 pfiles_help }, 3504 3505 /* from mdi.c */ 3506 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3507 "and detailed pi_prop list", mdipi }, 3508 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3509 mdiprops }, 3510 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3511 "list all paths", mdiphci }, 3512 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3513 "all phcis", mdivhci }, 3514 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3515 "client links", mdiclient_paths }, 3516 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3517 "phci links", mdiphci_paths }, 3518 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3519 mdiphcis }, 3520 3521 { NULL } 3522 }; 3523 3524 static const mdb_walker_t walkers[] = { 3525 3526 /* from genunix.c */ 3527 { "anon", "given an amp, list of anon structures", 3528 anon_walk_init, anon_walk_step, anon_walk_fini }, 3529 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3530 { "ereportq_dump", "walk list of ereports in dump error queue", 3531 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 3532 { "ereportq_pend", "walk list of ereports in pending error queue", 3533 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 3534 { "errorq", "walk list of system error queues", 3535 errorq_walk_init, errorq_walk_step, NULL }, 3536 { "errorq_data", "walk pending error queue data buffers", 3537 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3538 { "allfile", "given a proc pointer, list all file pointers", 3539 file_walk_init, allfile_walk_step, file_walk_fini }, 3540 { "file", "given a proc pointer, list of open file pointers", 3541 file_walk_init, file_walk_step, file_walk_fini }, 3542 { "lock_descriptor", "walk lock_descriptor_t structures", 3543 ld_walk_init, ld_walk_step, NULL }, 3544 { "lock_graph", "walk lock graph", 3545 lg_walk_init, lg_walk_step, NULL }, 3546 { "port", "given a proc pointer, list of created event ports", 3547 port_walk_init, port_walk_step, NULL }, 3548 { "portev", "given a port pointer, list of events in the queue", 3549 portev_walk_init, portev_walk_step, portev_walk_fini }, 3550 { "proc", "list of active proc_t structures", 3551 proc_walk_init, proc_walk_step, proc_walk_fini }, 3552 { "projects", "walk a list of kernel projects", 3553 project_walk_init, project_walk_step, NULL }, 3554 { "seg", "given an as, list of segments", 3555 seg_walk_init, avl_walk_step, avl_walk_fini }, 3556 { "sysevent_pend", "walk sysevent pending queue", 3557 sysevent_pend_walk_init, sysevent_walk_step, 3558 sysevent_walk_fini}, 3559 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3560 sysevent_walk_step, sysevent_walk_fini}, 3561 { "sysevent_channel", "walk sysevent channel subscriptions", 3562 sysevent_channel_walk_init, sysevent_channel_walk_step, 3563 sysevent_channel_walk_fini}, 3564 { "sysevent_class_list", "walk sysevent subscription's class list", 3565 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3566 sysevent_class_list_walk_fini}, 3567 { "sysevent_subclass_list", 3568 "walk sysevent subscription's subclass list", 3569 sysevent_subclass_list_walk_init, 3570 sysevent_subclass_list_walk_step, 3571 sysevent_subclass_list_walk_fini}, 3572 { "task", "given a task pointer, walk its processes", 3573 task_walk_init, task_walk_step, NULL }, 3574 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3575 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3576 3577 /* from avl.c */ 3578 { AVL_WALK_NAME, AVL_WALK_DESC, 3579 avl_walk_init, avl_walk_step, avl_walk_fini }, 3580 3581 /* from zone.c */ 3582 { "zone", "walk a list of kernel zones", 3583 zone_walk_init, zone_walk_step, NULL }, 3584 { "zsd", "walk list of zsd entries for a zone", 3585 zsd_walk_init, zsd_walk_step, NULL }, 3586 3587 /* from bio.c */ 3588 { "buf", "walk the bio buf hash", 3589 buf_walk_init, buf_walk_step, buf_walk_fini }, 3590 3591 /* from contract.c */ 3592 { "contract", "walk all contracts, or those of the specified type", 3593 ct_walk_init, generic_walk_step, NULL }, 3594 { "ct_event", "walk events on a contract event queue", 3595 ct_event_walk_init, generic_walk_step, NULL }, 3596 { "ct_listener", "walk contract event queue listeners", 3597 ct_listener_walk_init, generic_walk_step, NULL }, 3598 3599 /* from cpupart.c */ 3600 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3601 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3602 NULL }, 3603 { "cpupart_walk", "walk the set of cpu partitions", 3604 cpupart_walk_init, cpupart_walk_step, NULL }, 3605 3606 /* from ctxop.c */ 3607 { "ctxop", "walk list of context ops on a thread", 3608 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3609 3610 /* from cyclic.c */ 3611 { "cyccpu", "walk per-CPU cyc_cpu structures", 3612 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3613 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3614 cycomni_walk_init, cycomni_walk_step, NULL }, 3615 { "cyctrace", "walk cyclic trace buffer", 3616 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3617 3618 /* from devinfo.c */ 3619 { "binding_hash", "walk all entries in binding hash table", 3620 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3621 { "devinfo", "walk devinfo tree or subtree", 3622 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3623 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3624 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3625 devinfo_audit_log_walk_fini}, 3626 { "devinfo_audit_node", "walk per-devinfo audit history", 3627 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3628 devinfo_audit_node_walk_fini}, 3629 { "devinfo_children", "walk children of devinfo node", 3630 devinfo_children_walk_init, devinfo_children_walk_step, 3631 devinfo_children_walk_fini }, 3632 { "devinfo_parents", "walk ancestors of devinfo node", 3633 devinfo_parents_walk_init, devinfo_parents_walk_step, 3634 devinfo_parents_walk_fini }, 3635 { "devinfo_siblings", "walk siblings of devinfo node", 3636 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3637 { "devi_next", "walk devinfo list", 3638 NULL, devi_next_walk_step, NULL }, 3639 { "devnames", "walk devnames array", 3640 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3641 { "minornode", "given a devinfo node, walk minor nodes", 3642 minornode_walk_init, minornode_walk_step, NULL }, 3643 { "softstate", 3644 "given an i_ddi_soft_state*, list all in-use driver stateps", 3645 soft_state_walk_init, soft_state_walk_step, 3646 NULL, NULL }, 3647 { "softstate_all", 3648 "given an i_ddi_soft_state*, list all driver stateps", 3649 soft_state_walk_init, soft_state_all_walk_step, 3650 NULL, NULL }, 3651 { "devinfo_fmc", 3652 "walk a fault management handle cache active list", 3653 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3654 3655 /* from kmem.c */ 3656 { "allocdby", "given a thread, walk its allocated bufctls", 3657 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3658 { "bufctl", "walk a kmem cache's bufctls", 3659 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3660 { "bufctl_history", "walk the available history of a bufctl", 3661 bufctl_history_walk_init, bufctl_history_walk_step, 3662 bufctl_history_walk_fini }, 3663 { "freedby", "given a thread, walk its freed bufctls", 3664 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3665 { "freectl", "walk a kmem cache's free bufctls", 3666 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3667 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3668 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3669 { "freemem", "walk a kmem cache's free memory", 3670 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3671 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3672 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3673 { "kmem", "walk a kmem cache", 3674 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3675 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3676 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3677 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3678 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3679 { "kmem_log", "walk the kmem transaction log", 3680 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3681 { "kmem_slab", "given a kmem cache, walk its slabs", 3682 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3683 { "kmem_slab_partial", 3684 "given a kmem cache, walk its partially allocated slabs (min 1)", 3685 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3686 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3687 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3688 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3689 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3690 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3691 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3692 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3693 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3694 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3695 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3696 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3697 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3698 3699 /* from ldi.c */ 3700 { "ldi_handle", "walk the layered driver handle hash", 3701 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3702 { "ldi_ident", "walk the layered driver identifier hash", 3703 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3704 3705 /* from leaky.c + leaky_subr.c */ 3706 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3707 "stack trace", 3708 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3709 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3710 "leaks w/ same stack trace", 3711 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3712 3713 /* from lgrp.c */ 3714 { "lgrp_cpulist", "walk CPUs in a given lgroup", 3715 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 3716 { "lgrptbl", "walk lgroup table", 3717 lgrp_walk_init, lgrp_walk_step, NULL }, 3718 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 3719 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 3720 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 3721 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 3722 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 3723 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 3724 3725 /* from group.c */ 3726 { "group", "walk all elements of a group", 3727 group_walk_init, group_walk_step, NULL }, 3728 3729 /* from list.c */ 3730 { LIST_WALK_NAME, LIST_WALK_DESC, 3731 list_walk_init, list_walk_step, list_walk_fini }, 3732 3733 /* from memory.c */ 3734 { "page", "walk all pages, or those from the specified vnode", 3735 page_walk_init, page_walk_step, page_walk_fini }, 3736 { "memlist", "walk specified memlist", 3737 NULL, memlist_walk_step, NULL }, 3738 { "swapinfo", "walk swapinfo structures", 3739 swap_walk_init, swap_walk_step, NULL }, 3740 3741 /* from mmd.c */ 3742 { "pattr", "walk pattr_t structures", pattr_walk_init, 3743 mmdq_walk_step, mmdq_walk_fini }, 3744 { "pdesc", "walk pdesc_t structures", 3745 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3746 { "pdesc_slab", "walk pdesc_slab_t structures", 3747 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3748 3749 /* from modhash.c */ 3750 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3751 modhash_walk_step, NULL }, 3752 { "modent", "walk list of entries in a given mod_hash", 3753 modent_walk_init, modent_walk_step, modent_walk_fini }, 3754 { "modchain", "walk list of entries in a given mod_hash_entry", 3755 NULL, modchain_walk_step, NULL }, 3756 3757 /* from net.c */ 3758 { "ar", "walk ar_t structures using MI", 3759 mi_payload_walk_init, mi_payload_walk_step, 3760 mi_payload_walk_fini, &mi_ar_arg }, 3761 { "icmp", "walk ICMP control structures using MI", 3762 mi_payload_walk_init, mi_payload_walk_step, 3763 mi_payload_walk_fini, &mi_icmp_arg }, 3764 { "ill", "walk ill_t structures using MI", 3765 mi_payload_walk_init, mi_payload_walk_step, 3766 mi_payload_walk_fini, &mi_ill_arg }, 3767 { "mi", "given a MI_O, walk the MI", 3768 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3769 { "sonode", "given a sonode, walk its children", 3770 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3771 3772 /* from nvpair.c */ 3773 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3774 nvpair_walk_init, nvpair_walk_step, NULL }, 3775 3776 /* from rctl.c */ 3777 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3778 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3779 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3780 rctl_set_walk_step, NULL }, 3781 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3782 rctl_val_walk_init, rctl_val_walk_step }, 3783 3784 /* from sobj.c */ 3785 { "blocked", "walk threads blocked on a given sobj", 3786 blocked_walk_init, blocked_walk_step, NULL }, 3787 { "wchan", "given a wchan, list of blocked threads", 3788 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3789 3790 /* from stream.c */ 3791 { "b_cont", "walk mblk_t list using b_cont", 3792 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3793 { "b_next", "walk mblk_t list using b_next", 3794 mblk_walk_init, b_next_step, mblk_walk_fini }, 3795 { "qlink", "walk queue_t list using q_link", 3796 queue_walk_init, queue_link_step, queue_walk_fini }, 3797 { "qnext", "walk queue_t list using q_next", 3798 queue_walk_init, queue_next_step, queue_walk_fini }, 3799 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3800 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3801 { "readq", "walk read queue side of stdata", 3802 str_walk_init, strr_walk_step, str_walk_fini }, 3803 { "writeq", "walk write queue side of stdata", 3804 str_walk_init, strw_walk_step, str_walk_fini }, 3805 3806 /* from thread.c */ 3807 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3808 deathrow_walk_init, deathrow_walk_step, NULL }, 3809 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3810 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3811 { "cpupart_dispq", 3812 "given a cpupart_t, walk threads in dispatcher queues", 3813 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3814 { "lwp_deathrow", "walk lwp_deathrow", 3815 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3816 { "thread", "global or per-process kthread_t structures", 3817 thread_walk_init, thread_walk_step, thread_walk_fini }, 3818 { "thread_deathrow", "walk threads on thread_deathrow", 3819 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3820 3821 /* from tsd.c */ 3822 { "tsd", "walk list of thread-specific data", 3823 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3824 3825 /* from tsol.c */ 3826 { "tnrh", "walk remote host cache structures", 3827 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 3828 { "tnrhtp", "walk remote host template structures", 3829 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 3830 3831 /* 3832 * typegraph does not work under kmdb, as it requires too much memory 3833 * for its internal data structures. 3834 */ 3835 #ifndef _KMDB 3836 /* from typegraph.c */ 3837 { "typeconflict", "walk buffers with conflicting type inferences", 3838 typegraph_walk_init, typeconflict_walk_step }, 3839 { "typeunknown", "walk buffers with unknown types", 3840 typegraph_walk_init, typeunknown_walk_step }, 3841 #endif 3842 3843 /* from vfs.c */ 3844 { "vfs", "walk file system list", 3845 vfs_walk_init, vfs_walk_step }, 3846 3847 /* from mdi.c */ 3848 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 3849 mdi_pi_client_link_walk_init, 3850 mdi_pi_client_link_walk_step, 3851 mdi_pi_client_link_walk_fini }, 3852 3853 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 3854 mdi_pi_phci_link_walk_init, 3855 mdi_pi_phci_link_walk_step, 3856 mdi_pi_phci_link_walk_fini }, 3857 3858 { "mdiphci_list", "Walker for mdi_phci ph_next link", 3859 mdi_phci_ph_next_walk_init, 3860 mdi_phci_ph_next_walk_step, 3861 mdi_phci_ph_next_walk_fini }, 3862 3863 { NULL } 3864 }; 3865 3866 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3867 3868 const mdb_modinfo_t * 3869 _mdb_init(void) 3870 { 3871 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3872 mdb_warn("failed to read 'top_devinfo'"); 3873 return (NULL); 3874 } 3875 3876 if (findstack_init() != DCMD_OK) 3877 return (NULL); 3878 3879 kmem_init(); 3880 3881 return (&modinfo); 3882 } 3883 3884 void 3885 _mdb_fini(void) 3886 { 3887 /* 3888 * Force ::findleaks to let go any cached memory 3889 */ 3890 leaky_cleanup(1); 3891 } 3892