1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <mdb/mdb_param.h> 30 #include <mdb/mdb_modapi.h> 31 #include <mdb/mdb_ks.h> 32 #include <mdb/mdb_ctf.h> 33 34 #include <sys/types.h> 35 #include <sys/thread.h> 36 #include <sys/session.h> 37 #include <sys/user.h> 38 #include <sys/proc.h> 39 #include <sys/var.h> 40 #include <sys/t_lock.h> 41 #include <sys/callo.h> 42 #include <sys/priocntl.h> 43 #include <sys/class.h> 44 #include <sys/regset.h> 45 #include <sys/stack.h> 46 #include <sys/cpuvar.h> 47 #include <sys/vnode.h> 48 #include <sys/vfs.h> 49 #include <sys/flock_impl.h> 50 #include <sys/kmem_impl.h> 51 #include <sys/vmem_impl.h> 52 #include <sys/kstat.h> 53 #include <vm/seg_vn.h> 54 #include <vm/anon.h> 55 #include <vm/as.h> 56 #include <vm/seg_map.h> 57 #include <sys/dditypes.h> 58 #include <sys/ddi_impldefs.h> 59 #include <sys/sysmacros.h> 60 #include <sys/sysconf.h> 61 #include <sys/task.h> 62 #include <sys/project.h> 63 #include <sys/taskq.h> 64 #include <sys/taskq_impl.h> 65 #include <sys/errorq_impl.h> 66 #include <sys/cred_impl.h> 67 #include <sys/zone.h> 68 #include <sys/panic.h> 69 #include <regex.h> 70 #include <sys/port_impl.h> 71 72 #include "avl.h" 73 #include "contract.h" 74 #include "cpupart_mdb.h" 75 #include "devinfo.h" 76 #include "leaky.h" 77 #include "lgrp.h" 78 #include "list.h" 79 #include "log.h" 80 #include "kgrep.h" 81 #include "kmem.h" 82 #include "bio.h" 83 #include "streams.h" 84 #include "cyclic.h" 85 #include "findstack.h" 86 #include "ndievents.h" 87 #include "mmd.h" 88 #include "net.h" 89 #include "nvpair.h" 90 #include "ctxop.h" 91 #include "tsd.h" 92 #include "thread.h" 93 #include "memory.h" 94 #include "sobj.h" 95 #include "sysevent.h" 96 #include "rctl.h" 97 #include "typegraph.h" 98 #include "ldi.h" 99 #include "vfs.h" 100 #include "zone.h" 101 #include "modhash.h" 102 103 /* 104 * Surely this is defined somewhere... 105 */ 106 #define NINTR 16 107 108 #ifndef STACK_BIAS 109 #define STACK_BIAS 0 110 #endif 111 112 static char 113 pstat2ch(uchar_t state) 114 { 115 switch (state) { 116 case SSLEEP: return ('S'); 117 case SRUN: return ('R'); 118 case SZOMB: return ('Z'); 119 case SIDL: return ('I'); 120 case SONPROC: return ('O'); 121 case SSTOP: return ('T'); 122 default: return ('?'); 123 } 124 } 125 126 #define PS_PRTTHREADS 0x1 127 #define PS_PRTLWPS 0x2 128 #define PS_PSARGS 0x4 129 #define PS_TASKS 0x8 130 #define PS_PROJECTS 0x10 131 #define PS_ZONES 0x20 132 133 static int 134 ps_threadprint(uintptr_t addr, const void *data, void *private) 135 { 136 const kthread_t *t = (const kthread_t *)data; 137 uint_t prt_flags = *((uint_t *)private); 138 139 static const mdb_bitmask_t t_state_bits[] = { 140 { "TS_FREE", UINT_MAX, TS_FREE }, 141 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 142 { "TS_RUN", TS_RUN, TS_RUN }, 143 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 144 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 145 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 146 { NULL, 0, 0 } 147 }; 148 149 if (prt_flags & PS_PRTTHREADS) 150 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 151 152 if (prt_flags & PS_PRTLWPS) 153 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 154 155 return (WALK_NEXT); 156 } 157 158 int 159 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 160 { 161 uint_t prt_flags = 0; 162 proc_t pr; 163 struct pid pid, pgid, sid; 164 sess_t session; 165 cred_t cred; 166 task_t tk; 167 kproject_t pj; 168 zone_t zn; 169 170 if (!(flags & DCMD_ADDRSPEC)) { 171 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 172 mdb_warn("can't walk 'proc'"); 173 return (DCMD_ERR); 174 } 175 return (DCMD_OK); 176 } 177 178 if (mdb_getopts(argc, argv, 179 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 180 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 181 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 182 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 183 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 184 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 185 return (DCMD_USAGE); 186 187 if (DCMD_HDRSPEC(flags)) { 188 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 189 "S", "PID", "PPID", "PGID", "SID"); 190 if (prt_flags & PS_TASKS) 191 mdb_printf("%5s ", "TASK"); 192 if (prt_flags & PS_PROJECTS) 193 mdb_printf("%5s ", "PROJ"); 194 if (prt_flags & PS_ZONES) 195 mdb_printf("%5s ", "ZONE"); 196 mdb_printf("%6s %10s %?s %s%</u>\n", 197 "UID", "FLAGS", "ADDR", "NAME"); 198 } 199 200 mdb_vread(&pr, sizeof (pr), addr); 201 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 202 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 203 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 204 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 205 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 206 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 207 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 208 if (prt_flags & PS_PROJECTS) 209 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 210 if (prt_flags & PS_ZONES) 211 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 212 213 mdb_printf("%c %6d %6d %6d %6d ", 214 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 215 sid.pid_id); 216 if (prt_flags & PS_TASKS) 217 mdb_printf("%5d ", tk.tk_tkid); 218 if (prt_flags & PS_PROJECTS) 219 mdb_printf("%5d ", pj.kpj_id); 220 if (prt_flags & PS_ZONES) 221 mdb_printf("%5d ", zn.zone_id); 222 mdb_printf("%6d 0x%08x %0?p %s\n", 223 cred.cr_uid, pr.p_flag, addr, 224 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 225 226 if (prt_flags & ~PS_PSARGS) 227 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 228 229 return (DCMD_OK); 230 } 231 232 #define PG_NEWEST 0x0001 233 #define PG_OLDEST 0x0002 234 #define PG_PIPE_OUT 0x0004 235 #define PG_EXACT_MATCH 0x0008 236 237 typedef struct pgrep_data { 238 uint_t pg_flags; 239 uint_t pg_psflags; 240 uintptr_t pg_xaddr; 241 hrtime_t pg_xstart; 242 const char *pg_pat; 243 #ifndef _KMDB 244 regex_t pg_reg; 245 #endif 246 } pgrep_data_t; 247 248 /*ARGSUSED*/ 249 static int 250 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 251 { 252 const proc_t *prp = pdata; 253 pgrep_data_t *pgp = data; 254 #ifndef _KMDB 255 regmatch_t pmatch; 256 #endif 257 258 /* 259 * kmdb doesn't have access to the reg* functions, so we fall back 260 * to strstr/strcmp. 261 */ 262 #ifdef _KMDB 263 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 264 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 265 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 266 return (WALK_NEXT); 267 #else 268 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 269 return (WALK_NEXT); 270 271 if ((pgp->pg_flags & PG_EXACT_MATCH) && 272 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 273 return (WALK_NEXT); 274 #endif 275 276 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 277 hrtime_t start; 278 279 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 280 prp->p_user.u_start.tv_nsec; 281 282 if (pgp->pg_flags & PG_NEWEST) { 283 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 284 pgp->pg_xaddr = addr; 285 pgp->pg_xstart = start; 286 } 287 } else { 288 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 289 pgp->pg_xaddr = addr; 290 pgp->pg_xstart = start; 291 } 292 } 293 294 } else if (pgp->pg_flags & PG_PIPE_OUT) { 295 mdb_printf("%p\n", addr); 296 297 } else { 298 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 299 mdb_warn("can't invoke 'ps'"); 300 return (WALK_DONE); 301 } 302 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 303 } 304 305 return (WALK_NEXT); 306 } 307 308 /*ARGSUSED*/ 309 int 310 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 311 { 312 pgrep_data_t pg; 313 int i; 314 #ifndef _KMDB 315 int err; 316 #endif 317 318 if (flags & DCMD_ADDRSPEC) 319 return (DCMD_USAGE); 320 321 pg.pg_flags = 0; 322 pg.pg_xaddr = 0; 323 324 i = mdb_getopts(argc, argv, 325 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 326 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 327 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 328 NULL); 329 330 argc -= i; 331 argv += i; 332 333 if (argc != 1) 334 return (DCMD_USAGE); 335 336 /* 337 * -n and -o are mutually exclusive. 338 */ 339 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 340 return (DCMD_USAGE); 341 342 if (argv->a_type != MDB_TYPE_STRING) 343 return (DCMD_USAGE); 344 345 if (flags & DCMD_PIPE_OUT) 346 pg.pg_flags |= PG_PIPE_OUT; 347 348 pg.pg_pat = argv->a_un.a_str; 349 if (DCMD_HDRSPEC(flags)) 350 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 351 else 352 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 353 354 #ifndef _KMDB 355 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 356 size_t nbytes; 357 char *buf; 358 359 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 360 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 361 (void) regerror(err, &pg.pg_reg, buf, nbytes); 362 mdb_warn("%s\n", buf); 363 364 return (DCMD_ERR); 365 } 366 #endif 367 368 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 369 mdb_warn("can't walk 'proc'"); 370 return (DCMD_ERR); 371 } 372 373 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 374 if (pg.pg_flags & PG_PIPE_OUT) { 375 mdb_printf("%p\n", pg.pg_xaddr); 376 } else { 377 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 378 0, NULL) != 0) { 379 mdb_warn("can't invoke 'ps'"); 380 return (DCMD_ERR); 381 } 382 } 383 } 384 385 return (DCMD_OK); 386 } 387 388 int 389 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 390 { 391 task_t tk; 392 kproject_t pj; 393 394 if (!(flags & DCMD_ADDRSPEC)) { 395 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 396 mdb_warn("can't walk task_cache"); 397 return (DCMD_ERR); 398 } 399 return (DCMD_OK); 400 } 401 if (DCMD_HDRSPEC(flags)) { 402 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 403 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 404 } 405 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 406 mdb_warn("can't read task_t structure at %p", addr); 407 return (DCMD_ERR); 408 } 409 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 410 mdb_warn("can't read project_t structure at %p", addr); 411 return (DCMD_ERR); 412 } 413 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 414 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 415 tk.tk_flags); 416 return (DCMD_OK); 417 } 418 419 int 420 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 421 { 422 kproject_t pj; 423 424 if (!(flags & DCMD_ADDRSPEC)) { 425 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 426 mdb_warn("can't walk projects"); 427 return (DCMD_ERR); 428 } 429 return (DCMD_OK); 430 } 431 if (DCMD_HDRSPEC(flags)) { 432 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 433 "ADDR", "PROJID", "ZONEID", "REFCNT"); 434 } 435 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 436 mdb_warn("can't read kproject_t structure at %p", addr); 437 return (DCMD_ERR); 438 } 439 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 440 pj.kpj_count); 441 return (DCMD_OK); 442 } 443 444 /*ARGSUSED*/ 445 int 446 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 447 { 448 callout_table_t *co_ktable[CALLOUT_TABLES]; 449 int co_kfanout; 450 callout_table_t co_table; 451 callout_t co_callout; 452 callout_t *co_ptr; 453 int co_id; 454 clock_t lbolt; 455 int i, j, k; 456 const char *lbolt_sym; 457 458 if ((flags & DCMD_ADDRSPEC) || argc != 0) 459 return (DCMD_USAGE); 460 461 if (mdb_prop_postmortem) 462 lbolt_sym = "panic_lbolt"; 463 else 464 lbolt_sym = "lbolt"; 465 466 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 467 mdb_warn("failed to read '%s'", lbolt_sym); 468 return (DCMD_ERR); 469 } 470 471 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 472 mdb_warn("failed to read callout_fanout"); 473 return (DCMD_ERR); 474 } 475 476 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 477 mdb_warn("failed to read callout_table"); 478 return (DCMD_ERR); 479 } 480 481 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 482 "FUNCTION", "ARGUMENT", "ID", "TIME"); 483 484 for (i = 0; i < CALLOUT_NTYPES; i++) { 485 for (j = 0; j < co_kfanout; j++) { 486 487 co_id = CALLOUT_TABLE(i, j); 488 489 if (mdb_vread(&co_table, sizeof (co_table), 490 (uintptr_t)co_ktable[co_id]) == -1) { 491 mdb_warn("failed to read table at %p", 492 (uintptr_t)co_ktable[co_id]); 493 continue; 494 } 495 496 for (k = 0; k < CALLOUT_BUCKETS; k++) { 497 co_ptr = co_table.ct_idhash[k]; 498 499 while (co_ptr != NULL) { 500 mdb_vread(&co_callout, 501 sizeof (co_callout), 502 (uintptr_t)co_ptr); 503 504 mdb_printf("%-24a %0?p %0?lx %?lx " 505 "(T%+ld)\n", co_callout.c_func, 506 co_callout.c_arg, co_callout.c_xid, 507 co_callout.c_runtime, 508 co_callout.c_runtime - lbolt); 509 510 co_ptr = co_callout.c_idnext; 511 } 512 } 513 } 514 } 515 516 return (DCMD_OK); 517 } 518 519 /*ARGSUSED*/ 520 int 521 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 522 { 523 long num_classes, i; 524 sclass_t *class_tbl; 525 GElf_Sym g_sclass; 526 char class_name[PC_CLNMSZ]; 527 size_t tbl_size; 528 529 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 530 mdb_warn("failed to find symbol sclass\n"); 531 return (DCMD_ERR); 532 } 533 534 tbl_size = (size_t)g_sclass.st_size; 535 num_classes = tbl_size / (sizeof (sclass_t)); 536 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 537 538 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 539 mdb_warn("failed to read sclass"); 540 return (DCMD_ERR); 541 } 542 543 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 544 "INIT FCN", "CLASS FCN"); 545 546 for (i = 0; i < num_classes; i++) { 547 if (mdb_vread(class_name, sizeof (class_name), 548 (uintptr_t)class_tbl[i].cl_name) == -1) 549 (void) strcpy(class_name, "???"); 550 551 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 552 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 553 } 554 555 return (DCMD_OK); 556 } 557 558 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 559 560 int 561 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 562 { 563 uintptr_t rootdir; 564 vnode_t vn; 565 char buf[MAXPATHLEN]; 566 567 uint_t opt_F = FALSE; 568 569 if (mdb_getopts(argc, argv, 570 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 571 return (DCMD_USAGE); 572 573 if (!(flags & DCMD_ADDRSPEC)) { 574 mdb_warn("expected explicit vnode_t address before ::\n"); 575 return (DCMD_USAGE); 576 } 577 578 if (mdb_readvar(&rootdir, "rootdir") == -1) { 579 mdb_warn("failed to read rootdir"); 580 return (DCMD_ERR); 581 } 582 583 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 584 return (DCMD_ERR); 585 586 if (*buf == '\0') { 587 mdb_printf("??\n"); 588 return (DCMD_OK); 589 } 590 591 mdb_printf("%s", buf); 592 if (opt_F && buf[strlen(buf)-1] != '/' && 593 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 594 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 595 mdb_printf("\n"); 596 597 return (DCMD_OK); 598 } 599 600 int 601 ld_walk_init(mdb_walk_state_t *wsp) 602 { 603 wsp->walk_data = (void *)wsp->walk_addr; 604 return (WALK_NEXT); 605 } 606 607 int 608 ld_walk_step(mdb_walk_state_t *wsp) 609 { 610 int status; 611 lock_descriptor_t ld; 612 613 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 614 mdb_warn("couldn't read lock_descriptor_t at %p\n", 615 wsp->walk_addr); 616 return (WALK_ERR); 617 } 618 619 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 620 if (status == WALK_ERR) 621 return (WALK_ERR); 622 623 wsp->walk_addr = (uintptr_t)ld.l_next; 624 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 625 return (WALK_DONE); 626 627 return (status); 628 } 629 630 int 631 lg_walk_init(mdb_walk_state_t *wsp) 632 { 633 GElf_Sym sym; 634 635 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 636 mdb_warn("failed to find symbol 'lock_graph'\n"); 637 return (WALK_ERR); 638 } 639 640 wsp->walk_addr = (uintptr_t)sym.st_value; 641 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 642 643 return (WALK_NEXT); 644 } 645 646 typedef struct lg_walk_data { 647 uintptr_t startaddr; 648 mdb_walk_cb_t callback; 649 void *data; 650 } lg_walk_data_t; 651 652 /* 653 * We can't use ::walk lock_descriptor directly, because the head of each graph 654 * is really a dummy lock. Rather than trying to dynamically determine if this 655 * is a dummy node or not, we just filter out the initial element of the 656 * list. 657 */ 658 static int 659 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 660 { 661 lg_walk_data_t *lw = priv; 662 663 if (addr != lw->startaddr) 664 return (lw->callback(addr, data, lw->data)); 665 666 return (WALK_NEXT); 667 } 668 669 int 670 lg_walk_step(mdb_walk_state_t *wsp) 671 { 672 graph_t *graph; 673 lg_walk_data_t lw; 674 675 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 676 return (WALK_DONE); 677 678 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 679 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 680 return (WALK_ERR); 681 } 682 683 wsp->walk_addr += sizeof (graph); 684 685 if (graph == NULL) 686 return (WALK_NEXT); 687 688 lw.callback = wsp->walk_callback; 689 lw.data = wsp->walk_cbdata; 690 691 lw.startaddr = (uintptr_t)&(graph->active_locks); 692 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 693 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 694 return (WALK_ERR); 695 } 696 697 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 698 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 699 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 700 return (WALK_ERR); 701 } 702 703 return (WALK_NEXT); 704 } 705 706 /* 707 * The space available for the path corresponding to the locked vnode depends 708 * on whether we are printing 32- or 64-bit addresses. 709 */ 710 #ifdef _LP64 711 #define LM_VNPATHLEN 20 712 #else 713 #define LM_VNPATHLEN 30 714 #endif 715 716 /*ARGSUSED*/ 717 static int 718 lminfo_cb(uintptr_t addr, const void *data, void *priv) 719 { 720 const lock_descriptor_t *ld = data; 721 char buf[LM_VNPATHLEN]; 722 proc_t p; 723 724 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 725 addr, ld->l_type == F_RDLCK ? "RD" : 726 ld->l_type == F_WRLCK ? "WR" : "??", 727 ld->l_state, ld->l_flock.l_pid, 728 ld->l_flock.l_pid == 0 ? "<kernel>" : 729 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 730 "<defunct>" : p.p_user.u_comm, 731 ld->l_vnode); 732 733 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 734 sizeof (buf)); 735 mdb_printf("%s\n", buf); 736 737 return (WALK_NEXT); 738 } 739 740 /*ARGSUSED*/ 741 int 742 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 743 { 744 if (DCMD_HDRSPEC(flags)) 745 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 746 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 747 748 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 749 } 750 751 /*ARGSUSED*/ 752 int 753 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 754 { 755 struct seg s; 756 757 if (argc != 0) 758 return (DCMD_USAGE); 759 760 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 761 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 762 "SEG", "BASE", "SIZE", "DATA", "OPS"); 763 } 764 765 if (mdb_vread(&s, sizeof (s), addr) == -1) { 766 mdb_warn("failed to read seg at %p", addr); 767 return (DCMD_ERR); 768 } 769 770 mdb_printf("%?p %?p %?lx %?p %a\n", 771 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 772 773 return (DCMD_OK); 774 } 775 776 /*ARGSUSED*/ 777 static int 778 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 779 { 780 uintptr_t pp = 781 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 782 783 if (pp != NULL) 784 (*nres)++; 785 786 return (WALK_NEXT); 787 } 788 789 static int 790 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 791 { 792 793 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 794 795 if (segvn == (uintptr_t)seg->s_ops) { 796 struct segvn_data svn; 797 int nres = 0; 798 799 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 800 801 if (svn.amp == NULL) { 802 mdb_printf(" %8s", ""); 803 goto drive_on; 804 } 805 806 /* 807 * We've got an amp for this segment; walk through 808 * the amp, and determine mappings. 809 */ 810 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 811 &nres, (uintptr_t)svn.amp) == -1) 812 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 813 814 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 815 drive_on: 816 817 if (svn.vp != NULL) { 818 char buf[29]; 819 820 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 821 mdb_printf(" %s", buf); 822 } else 823 mdb_printf(" [ anon ]"); 824 } 825 826 mdb_printf("\n"); 827 return (WALK_NEXT); 828 } 829 830 static int 831 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 832 { 833 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 834 835 if (segvn == (uintptr_t)seg->s_ops) { 836 struct segvn_data svn; 837 838 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 839 840 if (svn.vp != NULL) { 841 mdb_printf(" %0?p", svn.vp); 842 } else { 843 mdb_printf(" [ anon ]"); 844 } 845 } 846 847 mdb_printf("\n"); 848 return (WALK_NEXT); 849 } 850 851 /*ARGSUSED*/ 852 int 853 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 854 { 855 uintptr_t segvn; 856 proc_t proc; 857 uint_t quick = FALSE; 858 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 859 860 GElf_Sym sym; 861 862 if (!(flags & DCMD_ADDRSPEC)) 863 return (DCMD_USAGE); 864 865 if (mdb_getopts(argc, argv, 866 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 867 return (DCMD_USAGE); 868 869 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 870 mdb_warn("failed to read proc at %p", addr); 871 return (DCMD_ERR); 872 } 873 874 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 875 segvn = (uintptr_t)sym.st_value; 876 else 877 segvn = NULL; 878 879 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 880 881 if (quick) { 882 mdb_printf("VNODE\n"); 883 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 884 } else { 885 mdb_printf("%8s %s\n", "RES", "PATH"); 886 } 887 888 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 889 mdb_warn("failed to walk segments of as %p", proc.p_as); 890 return (DCMD_ERR); 891 } 892 893 return (DCMD_OK); 894 } 895 896 typedef struct anon_walk_data { 897 uintptr_t *aw_levone; 898 uintptr_t *aw_levtwo; 899 int aw_nlevone; 900 int aw_levone_ndx; 901 int aw_levtwo_ndx; 902 struct anon_map aw_amp; 903 struct anon_hdr aw_ahp; 904 } anon_walk_data_t; 905 906 int 907 anon_walk_init(mdb_walk_state_t *wsp) 908 { 909 anon_walk_data_t *aw; 910 911 if (wsp->walk_addr == NULL) { 912 mdb_warn("anon walk doesn't support global walks\n"); 913 return (WALK_ERR); 914 } 915 916 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 917 918 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 919 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 920 mdb_free(aw, sizeof (anon_walk_data_t)); 921 return (WALK_ERR); 922 } 923 924 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 925 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 926 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 927 mdb_free(aw, sizeof (anon_walk_data_t)); 928 return (WALK_ERR); 929 } 930 931 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 932 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 933 aw->aw_nlevone = aw->aw_ahp.size; 934 aw->aw_levtwo = NULL; 935 } else { 936 aw->aw_nlevone = 937 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 938 aw->aw_levtwo = 939 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 940 } 941 942 aw->aw_levone = 943 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 944 945 aw->aw_levone_ndx = 0; 946 aw->aw_levtwo_ndx = 0; 947 948 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 949 (uintptr_t)aw->aw_ahp.array_chunk); 950 951 if (aw->aw_levtwo != NULL) { 952 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 953 aw->aw_levone_ndx++; 954 if (aw->aw_levone_ndx == aw->aw_nlevone) { 955 mdb_warn("corrupt anon; couldn't" 956 "find ptr to lev two map"); 957 goto out; 958 } 959 } 960 961 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 962 aw->aw_levone[aw->aw_levone_ndx]); 963 } 964 965 out: 966 wsp->walk_data = aw; 967 return (0); 968 } 969 970 int 971 anon_walk_step(mdb_walk_state_t *wsp) 972 { 973 int status; 974 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 975 struct anon anon; 976 uintptr_t anonptr; 977 978 again: 979 /* 980 * Once we've walked through level one, we're done. 981 */ 982 if (aw->aw_levone_ndx == aw->aw_nlevone) 983 return (WALK_DONE); 984 985 if (aw->aw_levtwo == NULL) { 986 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 987 aw->aw_levone_ndx++; 988 } else { 989 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 990 aw->aw_levtwo_ndx++; 991 992 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 993 aw->aw_levtwo_ndx = 0; 994 995 do { 996 aw->aw_levone_ndx++; 997 998 if (aw->aw_levone_ndx == aw->aw_nlevone) 999 return (WALK_DONE); 1000 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1001 1002 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1003 sizeof (uintptr_t), 1004 aw->aw_levone[aw->aw_levone_ndx]); 1005 } 1006 } 1007 1008 if (anonptr != NULL) { 1009 mdb_vread(&anon, sizeof (anon), anonptr); 1010 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1011 } else 1012 goto again; 1013 1014 return (status); 1015 } 1016 1017 void 1018 anon_walk_fini(mdb_walk_state_t *wsp) 1019 { 1020 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1021 1022 if (aw->aw_levtwo != NULL) 1023 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1024 1025 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1026 mdb_free(aw, sizeof (anon_walk_data_t)); 1027 } 1028 1029 /*ARGSUSED*/ 1030 int 1031 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1032 { 1033 if ((uintptr_t)f->f_vnode == *target) { 1034 mdb_printf("file %p\n", addr); 1035 *target = NULL; 1036 } 1037 1038 return (WALK_NEXT); 1039 } 1040 1041 /*ARGSUSED*/ 1042 int 1043 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1044 { 1045 uintptr_t t = *target; 1046 1047 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1048 mdb_warn("couldn't file walk proc %p", addr); 1049 return (WALK_ERR); 1050 } 1051 1052 if (t == NULL) 1053 mdb_printf("%p\n", addr); 1054 1055 return (WALK_NEXT); 1056 } 1057 1058 /*ARGSUSED*/ 1059 int 1060 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1061 { 1062 uintptr_t target = addr; 1063 1064 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1065 return (DCMD_USAGE); 1066 1067 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1068 mdb_warn("can't proc walk"); 1069 return (DCMD_ERR); 1070 } 1071 1072 return (DCMD_OK); 1073 } 1074 1075 typedef struct datafmt { 1076 char *hdr1; 1077 char *hdr2; 1078 char *dashes; 1079 char *fmt; 1080 } datafmt_t; 1081 1082 static datafmt_t kmemfmt[] = { 1083 { "cache ", "name ", 1084 "-------------------------", "%-25s " }, 1085 { " buf", " size", "------", "%6u " }, 1086 { " buf", "in use", "------", "%6u " }, 1087 { " buf", " total", "------", "%6u " }, 1088 { " memory", " in use", "---------", "%9u " }, 1089 { " alloc", " succeed", "---------", "%9u " }, 1090 { "alloc", " fail", "-----", "%5u " }, 1091 { NULL, NULL, NULL, NULL } 1092 }; 1093 1094 static datafmt_t vmemfmt[] = { 1095 { "vmem ", "name ", 1096 "-------------------------", "%-*s " }, 1097 { " memory", " in use", "---------", "%9llu " }, 1098 { " memory", " total", "----------", "%10llu " }, 1099 { " memory", " import", "---------", "%9llu " }, 1100 { " alloc", " succeed", "---------", "%9llu " }, 1101 { "alloc", " fail", "-----", "%5llu " }, 1102 { NULL, NULL, NULL, NULL } 1103 }; 1104 1105 /*ARGSUSED*/ 1106 static int 1107 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1108 { 1109 if (ccp->cc_rounds > 0) 1110 *avail += ccp->cc_rounds; 1111 if (ccp->cc_prounds > 0) 1112 *avail += ccp->cc_prounds; 1113 1114 return (WALK_NEXT); 1115 } 1116 1117 /*ARGSUSED*/ 1118 static int 1119 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1120 { 1121 *alloc += ccp->cc_alloc; 1122 1123 return (WALK_NEXT); 1124 } 1125 1126 /*ARGSUSED*/ 1127 static int 1128 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1129 { 1130 *avail += sp->slab_chunks - sp->slab_refcnt; 1131 1132 return (WALK_NEXT); 1133 } 1134 1135 typedef struct kmastat_vmem { 1136 uintptr_t kv_addr; 1137 struct kmastat_vmem *kv_next; 1138 int kv_meminuse; 1139 int kv_alloc; 1140 int kv_fail; 1141 } kmastat_vmem_t; 1142 1143 static int 1144 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvp) 1145 { 1146 kmastat_vmem_t *kv; 1147 datafmt_t *dfp = kmemfmt; 1148 int magsize; 1149 1150 int avail, alloc, total; 1151 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1152 cp->cache_slabsize; 1153 1154 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1155 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1156 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1157 1158 magsize = kmem_get_magsize(cp); 1159 1160 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1161 avail = cp->cache_full.ml_total * magsize; 1162 total = cp->cache_buftotal; 1163 1164 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1165 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1166 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1167 1168 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1169 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1170 goto out; 1171 } 1172 1173 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1174 kv->kv_next = *kvp; 1175 kv->kv_addr = (uintptr_t)cp->cache_arena; 1176 *kvp = kv; 1177 out: 1178 kv->kv_meminuse += meminuse; 1179 kv->kv_alloc += alloc; 1180 kv->kv_fail += cp->cache_alloc_fail; 1181 1182 mdb_printf((dfp++)->fmt, cp->cache_name); 1183 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1184 mdb_printf((dfp++)->fmt, total - avail); 1185 mdb_printf((dfp++)->fmt, total); 1186 mdb_printf((dfp++)->fmt, meminuse); 1187 mdb_printf((dfp++)->fmt, alloc); 1188 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1189 mdb_printf("\n"); 1190 1191 return (WALK_NEXT); 1192 } 1193 1194 static int 1195 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv) 1196 { 1197 size_t len; 1198 1199 while (kv != NULL && kv->kv_addr != addr) 1200 kv = kv->kv_next; 1201 1202 if (kv == NULL || kv->kv_alloc == 0) 1203 return (WALK_NEXT); 1204 1205 len = MIN(17, strlen(v->vm_name)); 1206 1207 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1208 17 - len, "", "", "", "", 1209 kv->kv_meminuse, kv->kv_alloc, kv->kv_fail); 1210 1211 return (WALK_NEXT); 1212 } 1213 1214 /*ARGSUSED*/ 1215 static int 1216 kmastat_vmem(uintptr_t addr, const vmem_t *v, void *ignored) 1217 { 1218 datafmt_t *dfp = vmemfmt; 1219 const vmem_kstat_t *vkp = &v->vm_kstat; 1220 uintptr_t paddr; 1221 vmem_t parent; 1222 int ident = 0; 1223 1224 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1225 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1226 mdb_warn("couldn't trace %p's ancestry", addr); 1227 ident = 0; 1228 break; 1229 } 1230 paddr = (uintptr_t)parent.vm_source; 1231 } 1232 1233 mdb_printf("%*s", ident, ""); 1234 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1235 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1236 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1237 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64); 1238 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1239 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1240 1241 mdb_printf("\n"); 1242 1243 return (WALK_NEXT); 1244 } 1245 1246 /*ARGSUSED*/ 1247 int 1248 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1249 { 1250 kmastat_vmem_t *kv = NULL; 1251 datafmt_t *dfp; 1252 1253 if (argc != 0) 1254 return (DCMD_USAGE); 1255 1256 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1257 mdb_printf("%s ", dfp->hdr1); 1258 mdb_printf("\n"); 1259 1260 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1261 mdb_printf("%s ", dfp->hdr2); 1262 mdb_printf("\n"); 1263 1264 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1265 mdb_printf("%s ", dfp->dashes); 1266 mdb_printf("\n"); 1267 1268 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) { 1269 mdb_warn("can't walk 'kmem_cache'"); 1270 return (DCMD_ERR); 1271 } 1272 1273 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1274 mdb_printf("%s ", dfp->dashes); 1275 mdb_printf("\n"); 1276 1277 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) { 1278 mdb_warn("can't walk 'vmem'"); 1279 return (DCMD_ERR); 1280 } 1281 1282 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1283 mdb_printf("%s ", dfp->dashes); 1284 mdb_printf("\n"); 1285 1286 mdb_printf("\n"); 1287 1288 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1289 mdb_printf("%s ", dfp->hdr1); 1290 mdb_printf("\n"); 1291 1292 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1293 mdb_printf("%s ", dfp->hdr2); 1294 mdb_printf("\n"); 1295 1296 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1297 mdb_printf("%s ", dfp->dashes); 1298 mdb_printf("\n"); 1299 1300 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) { 1301 mdb_warn("can't walk 'vmem'"); 1302 return (DCMD_ERR); 1303 } 1304 1305 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1306 mdb_printf("%s ", dfp->dashes); 1307 mdb_printf("\n"); 1308 return (DCMD_OK); 1309 } 1310 1311 /* 1312 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1313 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1314 * unfortunately, a few of the segs are both large and sparse, so we could 1315 * spend quite a bit of time scanning VAs which have no backing pages. 1316 * 1317 * So for the few very sparse segs, we skip the segment itself, and scan 1318 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1319 * Currently, we do this for: 1320 * 1321 * SEG VMEM ARENA 1322 * kvseg heap_arena 1323 * kvseg32 heap32_arena 1324 * kvseg_core heap_core_arena 1325 * 1326 * In addition, we skip the segkpm segment in its entirety, since it is very 1327 * sparse, and contains no new kernel data. 1328 */ 1329 typedef struct kgrep_walk_data { 1330 kgrep_cb_func *kg_cb; 1331 void *kg_cbdata; 1332 uintptr_t kg_kvseg; 1333 uintptr_t kg_kvseg32; 1334 uintptr_t kg_kvseg_core; 1335 uintptr_t kg_segkpm; 1336 uintptr_t kg_heap_lp_base; 1337 uintptr_t kg_heap_lp_end; 1338 } kgrep_walk_data_t; 1339 1340 static int 1341 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1342 { 1343 uintptr_t base = (uintptr_t)seg->s_base; 1344 1345 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1346 addr == kg->kg_kvseg_core) 1347 return (WALK_NEXT); 1348 1349 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1350 return (WALK_NEXT); 1351 1352 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1353 } 1354 1355 /*ARGSUSED*/ 1356 static int 1357 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1358 { 1359 /* 1360 * skip large page heap address range - it is scanned by walking 1361 * allocated vmem_segs in the heap_lp_arena 1362 */ 1363 if (seg->vs_start == kg->kg_heap_lp_base && 1364 seg->vs_end == kg->kg_heap_lp_end) 1365 return (WALK_NEXT); 1366 1367 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1368 } 1369 1370 /*ARGSUSED*/ 1371 static int 1372 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1373 { 1374 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1375 } 1376 1377 static int 1378 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1379 { 1380 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1381 1382 if (strcmp(vmem->vm_name, "heap") != 0 && 1383 strcmp(vmem->vm_name, "heap32") != 0 && 1384 strcmp(vmem->vm_name, "heap_core") != 0 && 1385 strcmp(vmem->vm_name, "heap_lp") != 0) 1386 return (WALK_NEXT); 1387 1388 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1389 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1390 1391 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1392 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1393 return (WALK_ERR); 1394 } 1395 1396 return (WALK_NEXT); 1397 } 1398 1399 int 1400 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1401 { 1402 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1403 kgrep_walk_data_t kg; 1404 1405 if (mdb_get_state() == MDB_STATE_RUNNING) { 1406 mdb_warn("kgrep can only be run on a system " 1407 "dump or under kmdb; see dumpadm(1M)\n"); 1408 return (DCMD_ERR); 1409 } 1410 1411 if (mdb_lookup_by_name("kas", &kas) == -1) { 1412 mdb_warn("failed to locate 'kas' symbol\n"); 1413 return (DCMD_ERR); 1414 } 1415 1416 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1417 mdb_warn("failed to locate 'kvseg' symbol\n"); 1418 return (DCMD_ERR); 1419 } 1420 1421 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1422 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1423 return (DCMD_ERR); 1424 } 1425 1426 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1427 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1428 return (DCMD_ERR); 1429 } 1430 1431 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1432 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1433 return (DCMD_ERR); 1434 } 1435 1436 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1437 mdb_warn("failed to read 'heap_lp_base'\n"); 1438 return (DCMD_ERR); 1439 } 1440 1441 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1442 mdb_warn("failed to read 'heap_lp_end'\n"); 1443 return (DCMD_ERR); 1444 } 1445 1446 kg.kg_cb = cb; 1447 kg.kg_cbdata = cbdata; 1448 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1449 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1450 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1451 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1452 1453 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1454 &kg, kas.st_value) == -1) { 1455 mdb_warn("failed to walk kas segments"); 1456 return (DCMD_ERR); 1457 } 1458 1459 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1460 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1461 return (DCMD_ERR); 1462 } 1463 1464 return (DCMD_OK); 1465 } 1466 1467 size_t 1468 kgrep_subr_pagesize(void) 1469 { 1470 return (PAGESIZE); 1471 } 1472 1473 typedef struct file_walk_data { 1474 struct uf_entry *fw_flist; 1475 int fw_flistsz; 1476 int fw_ndx; 1477 int fw_nofiles; 1478 } file_walk_data_t; 1479 1480 int 1481 file_walk_init(mdb_walk_state_t *wsp) 1482 { 1483 file_walk_data_t *fw; 1484 proc_t p; 1485 1486 if (wsp->walk_addr == NULL) { 1487 mdb_warn("file walk doesn't support global walks\n"); 1488 return (WALK_ERR); 1489 } 1490 1491 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1492 1493 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1494 mdb_free(fw, sizeof (file_walk_data_t)); 1495 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1496 return (WALK_ERR); 1497 } 1498 1499 if (p.p_user.u_finfo.fi_nfiles == 0) { 1500 mdb_free(fw, sizeof (file_walk_data_t)); 1501 return (WALK_DONE); 1502 } 1503 1504 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1505 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1506 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1507 1508 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1509 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1510 mdb_warn("failed to read file array at %p", 1511 p.p_user.u_finfo.fi_list); 1512 mdb_free(fw->fw_flist, fw->fw_flistsz); 1513 mdb_free(fw, sizeof (file_walk_data_t)); 1514 return (WALK_ERR); 1515 } 1516 1517 fw->fw_ndx = 0; 1518 wsp->walk_data = fw; 1519 1520 return (WALK_NEXT); 1521 } 1522 1523 int 1524 file_walk_step(mdb_walk_state_t *wsp) 1525 { 1526 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1527 struct file file; 1528 uintptr_t fp; 1529 1530 again: 1531 if (fw->fw_ndx == fw->fw_nofiles) 1532 return (WALK_DONE); 1533 1534 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1535 goto again; 1536 1537 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1538 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1539 } 1540 1541 int 1542 allfile_walk_step(mdb_walk_state_t *wsp) 1543 { 1544 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1545 struct file file; 1546 uintptr_t fp; 1547 1548 if (fw->fw_ndx == fw->fw_nofiles) 1549 return (WALK_DONE); 1550 1551 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1552 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1553 else 1554 bzero(&file, sizeof (file)); 1555 1556 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1557 } 1558 1559 void 1560 file_walk_fini(mdb_walk_state_t *wsp) 1561 { 1562 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1563 1564 mdb_free(fw->fw_flist, fw->fw_flistsz); 1565 mdb_free(fw, sizeof (file_walk_data_t)); 1566 } 1567 1568 int 1569 port_walk_init(mdb_walk_state_t *wsp) 1570 { 1571 if (wsp->walk_addr == NULL) { 1572 mdb_warn("port walk doesn't support global walks\n"); 1573 return (WALK_ERR); 1574 } 1575 1576 if (mdb_layered_walk("file", wsp) == -1) { 1577 mdb_warn("couldn't walk 'file'"); 1578 return (WALK_ERR); 1579 } 1580 return (WALK_NEXT); 1581 } 1582 1583 int 1584 port_walk_step(mdb_walk_state_t *wsp) 1585 { 1586 struct vnode vn; 1587 uintptr_t vp; 1588 uintptr_t pp; 1589 struct port port; 1590 1591 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1592 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1593 mdb_warn("failed to read vnode_t at %p", vp); 1594 return (WALK_ERR); 1595 } 1596 if (vn.v_type != VPORT) 1597 return (WALK_NEXT); 1598 1599 pp = (uintptr_t)vn.v_data; 1600 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1601 mdb_warn("failed to read port_t at %p", pp); 1602 return (WALK_ERR); 1603 } 1604 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1605 } 1606 1607 typedef struct portev_walk_data { 1608 list_node_t *pev_node; 1609 list_node_t *pev_last; 1610 size_t pev_offset; 1611 } portev_walk_data_t; 1612 1613 int 1614 portev_walk_init(mdb_walk_state_t *wsp) 1615 { 1616 portev_walk_data_t *pevd; 1617 struct port port; 1618 struct vnode vn; 1619 struct list *list; 1620 uintptr_t vp; 1621 1622 if (wsp->walk_addr == NULL) { 1623 mdb_warn("portev walk doesn't support global walks\n"); 1624 return (WALK_ERR); 1625 } 1626 1627 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1628 1629 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1630 mdb_free(pevd, sizeof (portev_walk_data_t)); 1631 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1632 return (WALK_ERR); 1633 } 1634 1635 vp = (uintptr_t)port.port_vnode; 1636 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1637 mdb_free(pevd, sizeof (portev_walk_data_t)); 1638 mdb_warn("failed to read vnode_t at %p", vp); 1639 return (WALK_ERR); 1640 } 1641 1642 if (vn.v_type != VPORT) { 1643 mdb_free(pevd, sizeof (portev_walk_data_t)); 1644 mdb_warn("input address (%p) does not point to an event port", 1645 wsp->walk_addr); 1646 return (WALK_ERR); 1647 } 1648 1649 if (port.port_queue.portq_nent == 0) { 1650 mdb_free(pevd, sizeof (portev_walk_data_t)); 1651 return (WALK_DONE); 1652 } 1653 list = &port.port_queue.portq_list; 1654 pevd->pev_offset = list->list_offset; 1655 pevd->pev_last = list->list_head.list_prev; 1656 pevd->pev_node = list->list_head.list_next; 1657 wsp->walk_data = pevd; 1658 return (WALK_NEXT); 1659 } 1660 1661 int 1662 portev_walk_step(mdb_walk_state_t *wsp) 1663 { 1664 portev_walk_data_t *pevd; 1665 struct port_kevent ev; 1666 uintptr_t evp; 1667 1668 pevd = (portev_walk_data_t *)wsp->walk_data; 1669 1670 if (pevd->pev_last == NULL) 1671 return (WALK_DONE); 1672 if (pevd->pev_node == pevd->pev_last) 1673 pevd->pev_last = NULL; /* last round */ 1674 1675 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1676 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1677 mdb_warn("failed to read port_kevent at %p", evp); 1678 return (WALK_DONE); 1679 } 1680 pevd->pev_node = ev.portkev_node.list_next; 1681 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1682 } 1683 1684 void 1685 portev_walk_fini(mdb_walk_state_t *wsp) 1686 { 1687 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1688 1689 if (pevd != NULL) 1690 mdb_free(pevd, sizeof (portev_walk_data_t)); 1691 } 1692 1693 typedef struct proc_walk_data { 1694 uintptr_t *pw_stack; 1695 int pw_depth; 1696 int pw_max; 1697 } proc_walk_data_t; 1698 1699 int 1700 proc_walk_init(mdb_walk_state_t *wsp) 1701 { 1702 GElf_Sym sym; 1703 proc_walk_data_t *pw; 1704 1705 if (wsp->walk_addr == NULL) { 1706 if (mdb_lookup_by_name("p0", &sym) == -1) { 1707 mdb_warn("failed to read 'practive'"); 1708 return (WALK_ERR); 1709 } 1710 wsp->walk_addr = (uintptr_t)sym.st_value; 1711 } 1712 1713 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1714 1715 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1716 mdb_warn("failed to read 'nproc'"); 1717 mdb_free(pw, sizeof (pw)); 1718 return (WALK_ERR); 1719 } 1720 1721 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1722 wsp->walk_data = pw; 1723 1724 return (WALK_NEXT); 1725 } 1726 1727 int 1728 proc_walk_step(mdb_walk_state_t *wsp) 1729 { 1730 proc_walk_data_t *pw = wsp->walk_data; 1731 uintptr_t addr = wsp->walk_addr; 1732 uintptr_t cld, sib; 1733 1734 int status; 1735 proc_t pr; 1736 1737 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1738 mdb_warn("failed to read proc at %p", addr); 1739 return (WALK_DONE); 1740 } 1741 1742 cld = (uintptr_t)pr.p_child; 1743 sib = (uintptr_t)pr.p_sibling; 1744 1745 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1746 pw->pw_depth--; 1747 goto sib; 1748 } 1749 1750 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1751 1752 if (status != WALK_NEXT) 1753 return (status); 1754 1755 if ((wsp->walk_addr = cld) != NULL) { 1756 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1757 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1758 addr, cld); 1759 goto sib; 1760 } 1761 1762 pw->pw_stack[pw->pw_depth++] = addr; 1763 1764 if (pw->pw_depth == pw->pw_max) { 1765 mdb_warn("depth %d exceeds max depth; try again\n", 1766 pw->pw_depth); 1767 return (WALK_DONE); 1768 } 1769 return (WALK_NEXT); 1770 } 1771 1772 sib: 1773 /* 1774 * We know that p0 has no siblings, and if another starting proc 1775 * was given, we don't want to walk its siblings anyway. 1776 */ 1777 if (pw->pw_depth == 0) 1778 return (WALK_DONE); 1779 1780 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1781 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1782 addr, sib); 1783 sib = NULL; 1784 } 1785 1786 if ((wsp->walk_addr = sib) == NULL) { 1787 if (pw->pw_depth > 0) { 1788 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1789 return (WALK_NEXT); 1790 } 1791 return (WALK_DONE); 1792 } 1793 1794 return (WALK_NEXT); 1795 } 1796 1797 void 1798 proc_walk_fini(mdb_walk_state_t *wsp) 1799 { 1800 proc_walk_data_t *pw = wsp->walk_data; 1801 1802 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1803 mdb_free(pw, sizeof (proc_walk_data_t)); 1804 } 1805 1806 int 1807 task_walk_init(mdb_walk_state_t *wsp) 1808 { 1809 task_t task; 1810 1811 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1812 mdb_warn("failed to read task at %p", wsp->walk_addr); 1813 return (WALK_ERR); 1814 } 1815 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1816 wsp->walk_data = task.tk_memb_list; 1817 return (WALK_NEXT); 1818 } 1819 1820 int 1821 task_walk_step(mdb_walk_state_t *wsp) 1822 { 1823 proc_t proc; 1824 int status; 1825 1826 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1827 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1828 return (WALK_DONE); 1829 } 1830 1831 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1832 1833 if (proc.p_tasknext == wsp->walk_data) 1834 return (WALK_DONE); 1835 1836 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1837 return (status); 1838 } 1839 1840 int 1841 project_walk_init(mdb_walk_state_t *wsp) 1842 { 1843 if (wsp->walk_addr == NULL) { 1844 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1845 mdb_warn("failed to read 'proj0p'"); 1846 return (WALK_ERR); 1847 } 1848 } 1849 wsp->walk_data = (void *)wsp->walk_addr; 1850 return (WALK_NEXT); 1851 } 1852 1853 int 1854 project_walk_step(mdb_walk_state_t *wsp) 1855 { 1856 uintptr_t addr = wsp->walk_addr; 1857 kproject_t pj; 1858 int status; 1859 1860 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1861 mdb_warn("failed to read project at %p", addr); 1862 return (WALK_DONE); 1863 } 1864 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1865 if (status != WALK_NEXT) 1866 return (status); 1867 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1868 if ((void *)wsp->walk_addr == wsp->walk_data) 1869 return (WALK_DONE); 1870 return (WALK_NEXT); 1871 } 1872 1873 static int 1874 generic_walk_step(mdb_walk_state_t *wsp) 1875 { 1876 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1877 wsp->walk_cbdata)); 1878 } 1879 1880 int 1881 seg_walk_init(mdb_walk_state_t *wsp) 1882 { 1883 if (wsp->walk_addr == NULL) { 1884 mdb_warn("seg walk must begin at struct as *\n"); 1885 return (WALK_ERR); 1886 } 1887 1888 /* 1889 * this is really just a wrapper to AVL tree walk 1890 */ 1891 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1892 return (avl_walk_init(wsp)); 1893 } 1894 1895 static int 1896 cpu_walk_cmp(const void *l, const void *r) 1897 { 1898 uintptr_t lhs = *((uintptr_t *)l); 1899 uintptr_t rhs = *((uintptr_t *)r); 1900 cpu_t lcpu, rcpu; 1901 1902 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1903 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1904 1905 if (lcpu.cpu_id < rcpu.cpu_id) 1906 return (-1); 1907 1908 if (lcpu.cpu_id > rcpu.cpu_id) 1909 return (1); 1910 1911 return (0); 1912 } 1913 1914 typedef struct cpu_walk { 1915 uintptr_t *cw_array; 1916 int cw_ndx; 1917 } cpu_walk_t; 1918 1919 int 1920 cpu_walk_init(mdb_walk_state_t *wsp) 1921 { 1922 cpu_walk_t *cw; 1923 int max_ncpus, i = 0; 1924 uintptr_t current, first; 1925 cpu_t cpu, panic_cpu; 1926 uintptr_t panicstr, addr; 1927 GElf_Sym sym; 1928 1929 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1930 1931 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1932 mdb_warn("failed to read 'max_ncpus'"); 1933 return (WALK_ERR); 1934 } 1935 1936 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1937 mdb_warn("failed to read 'panicstr'"); 1938 return (WALK_ERR); 1939 } 1940 1941 if (panicstr != NULL) { 1942 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1943 mdb_warn("failed to find 'panic_cpu'"); 1944 return (WALK_ERR); 1945 } 1946 1947 addr = (uintptr_t)sym.st_value; 1948 1949 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1950 mdb_warn("failed to read 'panic_cpu'"); 1951 return (WALK_ERR); 1952 } 1953 } 1954 1955 /* 1956 * Unfortunately, there is no platform-independent way to walk 1957 * CPUs in ID order. We therefore loop through in cpu_next order, 1958 * building an array of CPU pointers which will subsequently be 1959 * sorted. 1960 */ 1961 cw->cw_array = 1962 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1963 1964 if (mdb_readvar(&first, "cpu_list") == -1) { 1965 mdb_warn("failed to read 'cpu_list'"); 1966 return (WALK_ERR); 1967 } 1968 1969 current = first; 1970 do { 1971 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 1972 mdb_warn("failed to read cpu at %p", current); 1973 return (WALK_ERR); 1974 } 1975 1976 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 1977 cw->cw_array[i++] = addr; 1978 } else { 1979 cw->cw_array[i++] = current; 1980 } 1981 } while ((current = (uintptr_t)cpu.cpu_next) != first); 1982 1983 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 1984 wsp->walk_data = cw; 1985 1986 return (WALK_NEXT); 1987 } 1988 1989 int 1990 cpu_walk_step(mdb_walk_state_t *wsp) 1991 { 1992 cpu_walk_t *cw = wsp->walk_data; 1993 cpu_t cpu; 1994 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 1995 1996 if (addr == NULL) 1997 return (WALK_DONE); 1998 1999 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2000 mdb_warn("failed to read cpu at %p", addr); 2001 return (WALK_DONE); 2002 } 2003 2004 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2005 } 2006 2007 typedef struct cpuinfo_data { 2008 intptr_t cid_cpu; 2009 uintptr_t cid_lbolt; 2010 uintptr_t **cid_ithr; 2011 char cid_print_head; 2012 char cid_print_thr; 2013 char cid_print_ithr; 2014 char cid_print_flags; 2015 } cpuinfo_data_t; 2016 2017 int 2018 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2019 { 2020 cpu_t c; 2021 int id; 2022 uint8_t pil; 2023 2024 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2025 return (WALK_NEXT); 2026 2027 if (thr->t_bound_cpu == NULL) { 2028 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2029 return (WALK_NEXT); 2030 } 2031 2032 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2033 2034 if ((id = c.cpu_id) >= NCPU) { 2035 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2036 thr->t_bound_cpu, id, NCPU); 2037 return (WALK_NEXT); 2038 } 2039 2040 if ((pil = thr->t_pil) >= NINTR) { 2041 mdb_warn("thread %p has pil (%d) greater than %d\n", 2042 addr, pil, NINTR); 2043 return (WALK_NEXT); 2044 } 2045 2046 if (cid->cid_ithr[id][pil] != NULL) { 2047 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2048 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2049 return (WALK_NEXT); 2050 } 2051 2052 cid->cid_ithr[id][pil] = addr; 2053 2054 return (WALK_NEXT); 2055 } 2056 2057 #define CPUINFO_IDWIDTH 3 2058 #define CPUINFO_FLAGWIDTH 9 2059 2060 #ifdef _LP64 2061 #if defined(__amd64) 2062 #define CPUINFO_TWIDTH 16 2063 #define CPUINFO_CPUWIDTH 16 2064 #else 2065 #define CPUINFO_CPUWIDTH 11 2066 #define CPUINFO_TWIDTH 11 2067 #endif 2068 #else 2069 #define CPUINFO_CPUWIDTH 8 2070 #define CPUINFO_TWIDTH 8 2071 #endif 2072 2073 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2074 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2075 #define CPUINFO_ITHRDELT 4 2076 2077 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2078 flagline < nflaglines ? flagbuf[flagline++] : "") 2079 2080 int 2081 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2082 { 2083 kthread_t t; 2084 disp_t disp; 2085 proc_t p; 2086 uintptr_t pinned; 2087 char **flagbuf; 2088 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2089 2090 const char *flags[] = { 2091 "RUNNING", "READY", "QUIESCED", "EXISTS", 2092 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2093 "SPARE", "FAULTED", NULL 2094 }; 2095 2096 if (cid->cid_cpu != -1) { 2097 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2098 return (WALK_NEXT); 2099 2100 /* 2101 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2102 */ 2103 cid->cid_cpu = -1; 2104 rval = WALK_DONE; 2105 } 2106 2107 if (cid->cid_print_head) { 2108 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2109 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2110 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2111 "PROC"); 2112 cid->cid_print_head = FALSE; 2113 } 2114 2115 bspl = cpu->cpu_base_spl; 2116 2117 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2118 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2119 return (WALK_ERR); 2120 } 2121 2122 mdb_printf("%3d %0*p %3x %4d %4d ", 2123 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2124 disp.disp_nrunnable, bspl); 2125 2126 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2127 mdb_printf("%3d ", t.t_pri); 2128 } else { 2129 mdb_printf("%3s ", "-"); 2130 } 2131 2132 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2133 cpu->cpu_kprunrun ? "yes" : "no"); 2134 2135 if (cpu->cpu_last_swtch) { 2136 clock_t lbolt; 2137 2138 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2139 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2140 return (WALK_ERR); 2141 } 2142 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2143 } else { 2144 mdb_printf("%-6s ", "-"); 2145 } 2146 2147 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2148 2149 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2150 mdb_printf(" (idle)\n"); 2151 else if (cpu->cpu_thread == NULL) 2152 mdb_printf(" -\n"); 2153 else { 2154 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2155 mdb_printf(" %s\n", p.p_user.u_comm); 2156 } else { 2157 mdb_printf(" ?\n"); 2158 } 2159 } 2160 2161 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2162 2163 if (cid->cid_print_flags) { 2164 int first = 1, i, j, k; 2165 char *s; 2166 2167 cid->cid_print_head = TRUE; 2168 2169 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2170 if (!(cpu->cpu_flags & i)) 2171 continue; 2172 2173 if (first) { 2174 s = mdb_alloc(CPUINFO_THRDELT + 1, 2175 UM_GC | UM_SLEEP); 2176 2177 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2178 "%*s|%*s", CPUINFO_FLAGDELT, "", 2179 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2180 flagbuf[nflaglines++] = s; 2181 } 2182 2183 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2184 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2185 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2186 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2187 first ? "<--+" : ""); 2188 2189 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2190 s[k] = ' '; 2191 s[k] = '\0'; 2192 2193 flagbuf[nflaglines++] = s; 2194 first = 0; 2195 } 2196 } 2197 2198 if (cid->cid_print_ithr) { 2199 int i, found_one = FALSE; 2200 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2201 2202 for (i = NINTR - 1; i >= 0; i--) { 2203 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2204 2205 if (iaddr == NULL) 2206 continue; 2207 2208 if (!found_one) { 2209 found_one = TRUE; 2210 2211 CPUINFO_INDENT; 2212 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2213 CPUINFO_ITHRDELT, ""); 2214 2215 CPUINFO_INDENT; 2216 mdb_printf("%c%*s+--> %3s %s\n", 2217 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2218 "", "PIL", "THREAD"); 2219 } 2220 2221 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2222 mdb_warn("failed to read kthread_t at %p", 2223 iaddr); 2224 return (WALK_ERR); 2225 } 2226 2227 CPUINFO_INDENT; 2228 mdb_printf("%c%*s %3d %0*p\n", 2229 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2230 t.t_pil, CPUINFO_TWIDTH, iaddr); 2231 2232 pinned = (uintptr_t)t.t_intr; 2233 } 2234 2235 if (found_one && pinned != NULL) { 2236 cid->cid_print_head = TRUE; 2237 (void) strcpy(p.p_user.u_comm, "?"); 2238 2239 if (mdb_vread(&t, sizeof (t), 2240 (uintptr_t)pinned) == -1) { 2241 mdb_warn("failed to read kthread_t at %p", 2242 pinned); 2243 return (WALK_ERR); 2244 } 2245 if (mdb_vread(&p, sizeof (p), 2246 (uintptr_t)t.t_procp) == -1) { 2247 mdb_warn("failed to read proc_t at %p", 2248 t.t_procp); 2249 return (WALK_ERR); 2250 } 2251 2252 CPUINFO_INDENT; 2253 mdb_printf("%c%*s %3s %0*p %s\n", 2254 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2255 CPUINFO_TWIDTH, pinned, 2256 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2257 "(idle)" : p.p_user.u_comm); 2258 } 2259 } 2260 2261 if (disp.disp_nrunnable && cid->cid_print_thr) { 2262 dispq_t *dq; 2263 2264 int i, npri = disp.disp_npri; 2265 2266 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2267 2268 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2269 (uintptr_t)disp.disp_q) == -1) { 2270 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2271 return (WALK_ERR); 2272 } 2273 2274 CPUINFO_INDENT; 2275 mdb_printf("|\n"); 2276 2277 CPUINFO_INDENT; 2278 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2279 CPUINFO_TWIDTH, "THREAD", "PROC"); 2280 2281 for (i = npri - 1; i >= 0; i--) { 2282 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2283 2284 while (taddr != NULL) { 2285 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2286 mdb_warn("failed to read kthread_t " 2287 "at %p", taddr); 2288 return (WALK_ERR); 2289 } 2290 if (mdb_vread(&p, sizeof (p), 2291 (uintptr_t)t.t_procp) == -1) { 2292 mdb_warn("failed to read proc_t at %p", 2293 t.t_procp); 2294 return (WALK_ERR); 2295 } 2296 2297 CPUINFO_INDENT; 2298 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2299 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2300 2301 taddr = (uintptr_t)t.t_link; 2302 } 2303 } 2304 cid->cid_print_head = TRUE; 2305 } 2306 2307 while (flagline < nflaglines) 2308 mdb_printf("%s\n", flagbuf[flagline++]); 2309 2310 if (cid->cid_print_head) 2311 mdb_printf("\n"); 2312 2313 return (rval); 2314 } 2315 2316 int 2317 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2318 { 2319 uint_t verbose = FALSE; 2320 cpuinfo_data_t cid; 2321 GElf_Sym sym; 2322 clock_t lbolt; 2323 2324 cid.cid_print_ithr = FALSE; 2325 cid.cid_print_thr = FALSE; 2326 cid.cid_print_flags = FALSE; 2327 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2328 cid.cid_cpu = -1; 2329 2330 if (flags & DCMD_ADDRSPEC) 2331 cid.cid_cpu = addr; 2332 2333 if (mdb_getopts(argc, argv, 2334 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2335 return (DCMD_USAGE); 2336 2337 if (verbose) { 2338 cid.cid_print_ithr = TRUE; 2339 cid.cid_print_thr = TRUE; 2340 cid.cid_print_flags = TRUE; 2341 cid.cid_print_head = TRUE; 2342 } 2343 2344 if (cid.cid_print_ithr) { 2345 int i; 2346 2347 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2348 * NCPU, UM_SLEEP | UM_GC); 2349 2350 for (i = 0; i < NCPU; i++) 2351 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2352 NINTR, UM_SLEEP | UM_GC); 2353 2354 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2355 &cid) == -1) { 2356 mdb_warn("couldn't walk thread"); 2357 return (DCMD_ERR); 2358 } 2359 } 2360 2361 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2362 mdb_warn("failed to find panic_lbolt"); 2363 return (DCMD_ERR); 2364 } 2365 2366 cid.cid_lbolt = (uintptr_t)sym.st_value; 2367 2368 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2369 mdb_warn("failed to read panic_lbolt"); 2370 return (DCMD_ERR); 2371 } 2372 2373 if (lbolt == 0) { 2374 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2375 mdb_warn("failed to find lbolt"); 2376 return (DCMD_ERR); 2377 } 2378 cid.cid_lbolt = (uintptr_t)sym.st_value; 2379 } 2380 2381 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2382 mdb_warn("can't walk cpus"); 2383 return (DCMD_ERR); 2384 } 2385 2386 if (cid.cid_cpu != -1) { 2387 /* 2388 * We didn't find this CPU when we walked through the CPUs 2389 * (i.e. the address specified doesn't show up in the "cpu" 2390 * walk). However, the specified address may still correspond 2391 * to a valid cpu_t (for example, if the specified address is 2392 * the actual panicking cpu_t and not the cached panic_cpu). 2393 * Point is: even if we didn't find it, we still want to try 2394 * to print the specified address as a cpu_t. 2395 */ 2396 cpu_t cpu; 2397 2398 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2399 mdb_warn("%p is neither a valid CPU ID nor a " 2400 "valid cpu_t address\n", cid.cid_cpu); 2401 return (DCMD_ERR); 2402 } 2403 2404 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2405 } 2406 2407 return (DCMD_OK); 2408 } 2409 2410 /*ARGSUSED*/ 2411 int 2412 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2413 { 2414 int i; 2415 2416 if (!(flags & DCMD_ADDRSPEC)) 2417 return (DCMD_USAGE); 2418 2419 for (i = 0; i < sizeof (addr) * NBBY; i++) 2420 mdb_printf("%p\n", addr ^ (1UL << i)); 2421 2422 return (DCMD_OK); 2423 } 2424 2425 /* 2426 * Grumble, grumble. 2427 */ 2428 #define SMAP_HASHFUNC(vp, off) \ 2429 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2430 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2431 2432 int 2433 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2434 { 2435 long smd_hashmsk; 2436 int hash; 2437 uintptr_t offset = 0; 2438 struct smap smp; 2439 uintptr_t saddr, kaddr; 2440 uintptr_t smd_hash, smd_smap; 2441 struct seg seg; 2442 2443 if (!(flags & DCMD_ADDRSPEC)) 2444 return (DCMD_USAGE); 2445 2446 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2447 mdb_warn("failed to read smd_hashmsk"); 2448 return (DCMD_ERR); 2449 } 2450 2451 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2452 mdb_warn("failed to read smd_hash"); 2453 return (DCMD_ERR); 2454 } 2455 2456 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2457 mdb_warn("failed to read smd_hash"); 2458 return (DCMD_ERR); 2459 } 2460 2461 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2462 mdb_warn("failed to read segkmap"); 2463 return (DCMD_ERR); 2464 } 2465 2466 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2467 mdb_warn("failed to read segkmap at %p", kaddr); 2468 return (DCMD_ERR); 2469 } 2470 2471 if (argc != 0) { 2472 const mdb_arg_t *arg = &argv[0]; 2473 2474 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2475 offset = arg->a_un.a_val; 2476 else 2477 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2478 } 2479 2480 hash = SMAP_HASHFUNC(addr, offset); 2481 2482 if (mdb_vread(&saddr, sizeof (saddr), 2483 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2484 mdb_warn("couldn't read smap at %p", 2485 smd_hash + hash * sizeof (uintptr_t)); 2486 return (DCMD_ERR); 2487 } 2488 2489 do { 2490 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2491 mdb_warn("couldn't read smap at %p", saddr); 2492 return (DCMD_ERR); 2493 } 2494 2495 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2496 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2497 addr, offset, saddr, ((saddr - smd_smap) / 2498 sizeof (smp)) * MAXBSIZE + seg.s_base); 2499 return (DCMD_OK); 2500 } 2501 2502 saddr = (uintptr_t)smp.sm_hash; 2503 } while (saddr != NULL); 2504 2505 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2506 return (DCMD_OK); 2507 } 2508 2509 /*ARGSUSED*/ 2510 int 2511 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2512 { 2513 uintptr_t kaddr; 2514 struct seg seg; 2515 struct segmap_data sd; 2516 2517 if (!(flags & DCMD_ADDRSPEC)) 2518 return (DCMD_USAGE); 2519 2520 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2521 mdb_warn("failed to read segkmap"); 2522 return (DCMD_ERR); 2523 } 2524 2525 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2526 mdb_warn("failed to read segkmap at %p", kaddr); 2527 return (DCMD_ERR); 2528 } 2529 2530 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2531 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2532 return (DCMD_ERR); 2533 } 2534 2535 mdb_printf("%p is smap %p\n", addr, 2536 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2537 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2538 2539 return (DCMD_OK); 2540 } 2541 2542 int 2543 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2544 { 2545 if (p->p_as == *asp) 2546 mdb_printf("%p\n", addr); 2547 return (WALK_NEXT); 2548 } 2549 2550 /*ARGSUSED*/ 2551 int 2552 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2553 { 2554 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2555 return (DCMD_USAGE); 2556 2557 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2558 mdb_warn("failed to walk proc"); 2559 return (DCMD_ERR); 2560 } 2561 2562 return (DCMD_OK); 2563 } 2564 2565 /*ARGSUSED*/ 2566 int 2567 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2568 { 2569 proc_t parent; 2570 int ident = 0; 2571 uintptr_t paddr; 2572 2573 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2574 mdb_vread(&parent, sizeof (parent), paddr); 2575 paddr = (uintptr_t)parent.p_parent; 2576 } 2577 2578 mdb_inc_indent(ident); 2579 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2580 mdb_dec_indent(ident); 2581 2582 return (WALK_NEXT); 2583 } 2584 2585 void 2586 ptree_ancestors(uintptr_t addr, uintptr_t start) 2587 { 2588 proc_t p; 2589 2590 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2591 mdb_warn("couldn't read ancestor at %p", addr); 2592 return; 2593 } 2594 2595 if (p.p_parent != NULL) 2596 ptree_ancestors((uintptr_t)p.p_parent, start); 2597 2598 if (addr != start) 2599 (void) ptree_walk(addr, &p, NULL); 2600 } 2601 2602 /*ARGSUSED*/ 2603 int 2604 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2605 { 2606 if (!(flags & DCMD_ADDRSPEC)) 2607 addr = NULL; 2608 else 2609 ptree_ancestors(addr, addr); 2610 2611 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2612 mdb_warn("couldn't walk 'proc'"); 2613 return (DCMD_ERR); 2614 } 2615 2616 return (DCMD_OK); 2617 } 2618 2619 /*ARGSUSED*/ 2620 static int 2621 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2622 { 2623 int fdnum; 2624 const mdb_arg_t *argp = &argv[0]; 2625 proc_t p; 2626 uf_entry_t uf; 2627 2628 if ((flags & DCMD_ADDRSPEC) == 0) { 2629 mdb_warn("fd doesn't give global information\n"); 2630 return (DCMD_ERR); 2631 } 2632 if (argc != 1) 2633 return (DCMD_USAGE); 2634 2635 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2636 fdnum = argp->a_un.a_val; 2637 else 2638 fdnum = mdb_strtoull(argp->a_un.a_str); 2639 2640 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2641 mdb_warn("couldn't read proc_t at %p", addr); 2642 return (DCMD_ERR); 2643 } 2644 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2645 mdb_warn("process %p only has %d files open.\n", 2646 addr, p.p_user.u_finfo.fi_nfiles); 2647 return (DCMD_ERR); 2648 } 2649 if (mdb_vread(&uf, sizeof (uf_entry_t), 2650 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2651 mdb_warn("couldn't read uf_entry_t at %p", 2652 &p.p_user.u_finfo.fi_list[fdnum]); 2653 return (DCMD_ERR); 2654 } 2655 2656 mdb_printf("%p\n", uf.uf_file); 2657 return (DCMD_OK); 2658 } 2659 2660 /*ARGSUSED*/ 2661 static int 2662 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2663 { 2664 pid_t pid = (pid_t)addr; 2665 2666 if (argc != 0) 2667 return (DCMD_USAGE); 2668 2669 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2670 mdb_warn("PID 0t%d not found\n", pid); 2671 return (DCMD_ERR); 2672 } 2673 2674 mdb_printf("%p\n", addr); 2675 return (DCMD_OK); 2676 } 2677 2678 static char *sysfile_cmd[] = { 2679 "exclude:", 2680 "include:", 2681 "forceload:", 2682 "rootdev:", 2683 "rootfs:", 2684 "swapdev:", 2685 "swapfs:", 2686 "moddir:", 2687 "set", 2688 "unknown", 2689 }; 2690 2691 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2692 2693 /*ARGSUSED*/ 2694 static int 2695 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2696 { 2697 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2698 *target = NULL; 2699 return (WALK_DONE); 2700 } 2701 return (WALK_NEXT); 2702 } 2703 2704 /*ARGSUSED*/ 2705 static int 2706 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2707 { 2708 struct sysparam *sysp, sys; 2709 char var[256]; 2710 char modname[256]; 2711 char val[256]; 2712 char strval[256]; 2713 vmem_t *mod_sysfile_arena; 2714 void *straddr; 2715 2716 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2717 mdb_warn("failed to read sysparam_hd"); 2718 return (DCMD_ERR); 2719 } 2720 2721 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2722 mdb_warn("failed to read mod_sysfile_arena"); 2723 return (DCMD_ERR); 2724 } 2725 2726 while (sysp != NULL) { 2727 var[0] = '\0'; 2728 val[0] = '\0'; 2729 modname[0] = '\0'; 2730 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2731 mdb_warn("couldn't read sysparam %p", sysp); 2732 return (DCMD_ERR); 2733 } 2734 if (sys.sys_modnam != NULL && 2735 mdb_readstr(modname, 256, 2736 (uintptr_t)sys.sys_modnam) == -1) { 2737 mdb_warn("couldn't read modname in %p", sysp); 2738 return (DCMD_ERR); 2739 } 2740 if (sys.sys_ptr != NULL && 2741 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2742 mdb_warn("couldn't read ptr in %p", sysp); 2743 return (DCMD_ERR); 2744 } 2745 if (sys.sys_op != SETOP_NONE) { 2746 /* 2747 * Is this an int or a string? We determine this 2748 * by checking whether straddr is contained in 2749 * mod_sysfile_arena. If so, the walker will set 2750 * straddr to NULL. 2751 */ 2752 straddr = (void *)(uintptr_t)sys.sys_info; 2753 if (sys.sys_op == SETOP_ASSIGN && 2754 sys.sys_info != 0 && 2755 mdb_pwalk("vmem_seg", 2756 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2757 (uintptr_t)mod_sysfile_arena) == 0 && 2758 straddr == NULL && 2759 mdb_readstr(strval, 256, 2760 (uintptr_t)sys.sys_info) != -1) { 2761 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2762 strval); 2763 } else { 2764 (void) mdb_snprintf(val, sizeof (val), 2765 "0x%llx [0t%llu]", sys.sys_info, 2766 sys.sys_info); 2767 } 2768 } 2769 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2770 modname, modname[0] == '\0' ? "" : ":", 2771 var, sysfile_ops[sys.sys_op], val); 2772 2773 sysp = sys.sys_next; 2774 } 2775 2776 return (DCMD_OK); 2777 } 2778 2779 /* 2780 * Dump a taskq_ent_t given its address. 2781 */ 2782 /*ARGSUSED*/ 2783 int 2784 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2785 { 2786 taskq_ent_t taskq_ent; 2787 GElf_Sym sym; 2788 char buf[MDB_SYM_NAMLEN+1]; 2789 2790 2791 if (!(flags & DCMD_ADDRSPEC)) { 2792 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2793 return (DCMD_USAGE); 2794 } 2795 2796 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2797 mdb_warn("failed to read taskq_ent_t at %p", addr); 2798 return (DCMD_ERR); 2799 } 2800 2801 if (DCMD_HDRSPEC(flags)) { 2802 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2803 "ENTRY", "ARG", "FUNCTION"); 2804 } 2805 2806 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2807 buf, sizeof (buf), &sym) == -1) { 2808 (void) strcpy(buf, "????"); 2809 } 2810 2811 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2812 2813 return (DCMD_OK); 2814 } 2815 2816 /* 2817 * Given the address of the (taskq_t) task queue head, walk the queue listing 2818 * the address of every taskq_ent_t. 2819 */ 2820 int 2821 taskq_walk_init(mdb_walk_state_t *wsp) 2822 { 2823 taskq_t tq_head; 2824 2825 2826 if (wsp->walk_addr == NULL) { 2827 mdb_warn("start address required\n"); 2828 return (WALK_ERR); 2829 } 2830 2831 2832 /* 2833 * Save the address of the list head entry. This terminates the list. 2834 */ 2835 wsp->walk_data = (void *) 2836 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2837 2838 2839 /* 2840 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2841 */ 2842 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2843 -1) { 2844 mdb_warn("failed to read taskq list head at %p", 2845 wsp->walk_addr); 2846 } 2847 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2848 2849 2850 /* 2851 * Check for null list (next=head) 2852 */ 2853 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2854 return (WALK_DONE); 2855 } 2856 2857 return (WALK_NEXT); 2858 } 2859 2860 2861 int 2862 taskq_walk_step(mdb_walk_state_t *wsp) 2863 { 2864 taskq_ent_t tq_ent; 2865 int status; 2866 2867 2868 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2869 -1) { 2870 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2871 return (DCMD_ERR); 2872 } 2873 2874 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2875 wsp->walk_cbdata); 2876 2877 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2878 2879 2880 /* Check if we're at the last element (next=head) */ 2881 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2882 return (WALK_DONE); 2883 } 2884 2885 return (status); 2886 } 2887 2888 int 2889 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2890 { 2891 2892 if (*didp == thr->t_did) { 2893 mdb_printf("%p\n", addr); 2894 return (WALK_DONE); 2895 } else 2896 return (WALK_NEXT); 2897 } 2898 2899 /*ARGSUSED*/ 2900 int 2901 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2902 { 2903 const mdb_arg_t *argp = &argv[0]; 2904 kt_did_t did; 2905 2906 if (argc != 1) 2907 return (DCMD_USAGE); 2908 2909 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2910 2911 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2912 mdb_warn("failed to walk thread"); 2913 return (DCMD_ERR); 2914 2915 } 2916 return (DCMD_OK); 2917 2918 } 2919 2920 static int 2921 errorq_walk_init(mdb_walk_state_t *wsp) 2922 { 2923 if (wsp->walk_addr == NULL && 2924 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2925 mdb_warn("failed to read errorq_list"); 2926 return (WALK_ERR); 2927 } 2928 2929 return (WALK_NEXT); 2930 } 2931 2932 static int 2933 errorq_walk_step(mdb_walk_state_t *wsp) 2934 { 2935 uintptr_t addr = wsp->walk_addr; 2936 errorq_t eq; 2937 2938 if (addr == NULL) 2939 return (WALK_DONE); 2940 2941 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2942 mdb_warn("failed to read errorq at %p", addr); 2943 return (WALK_ERR); 2944 } 2945 2946 wsp->walk_addr = (uintptr_t)eq.eq_next; 2947 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2948 } 2949 2950 typedef struct eqd_walk_data { 2951 uintptr_t *eqd_stack; 2952 void *eqd_buf; 2953 ulong_t eqd_qpos; 2954 ulong_t eqd_qlen; 2955 size_t eqd_size; 2956 } eqd_walk_data_t; 2957 2958 /* 2959 * In order to walk the list of pending error queue elements, we push the 2960 * addresses of the corresponding data buffers in to the eqd_stack array. 2961 * The error lists are in reverse chronological order when iterating using 2962 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2963 * walker client gets addresses in order from oldest error to newest error. 2964 */ 2965 static void 2966 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 2967 { 2968 errorq_elem_t eqe; 2969 2970 while (addr != NULL) { 2971 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 2972 mdb_warn("failed to read errorq element at %p", addr); 2973 break; 2974 } 2975 2976 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 2977 mdb_warn("errorq is overfull -- more than %lu " 2978 "elems found\n", eqdp->eqd_qlen); 2979 break; 2980 } 2981 2982 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 2983 addr = (uintptr_t)eqe.eqe_prev; 2984 } 2985 } 2986 2987 static int 2988 eqd_walk_init(mdb_walk_state_t *wsp) 2989 { 2990 eqd_walk_data_t *eqdp; 2991 errorq_elem_t eqe, *addr; 2992 errorq_t eq; 2993 ulong_t i; 2994 2995 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 2996 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 2997 return (WALK_ERR); 2998 } 2999 3000 if (eq.eq_ptail != NULL && 3001 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3002 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3003 return (WALK_ERR); 3004 } 3005 3006 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3007 wsp->walk_data = eqdp; 3008 3009 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3010 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3011 eqdp->eqd_qlen = eq.eq_qlen; 3012 eqdp->eqd_qpos = 0; 3013 eqdp->eqd_size = eq.eq_size; 3014 3015 /* 3016 * The newest elements in the queue are on the pending list, so we 3017 * push those on to our stack first. 3018 */ 3019 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3020 3021 /* 3022 * If eq_ptail is set, it may point to a subset of the errors on the 3023 * pending list in the event a casptr() failed; if ptail's data is 3024 * already in our stack, NULL out eq_ptail and ignore it. 3025 */ 3026 if (eq.eq_ptail != NULL) { 3027 for (i = 0; i < eqdp->eqd_qpos; i++) { 3028 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3029 eq.eq_ptail = NULL; 3030 break; 3031 } 3032 } 3033 } 3034 3035 /* 3036 * If eq_phead is set, it has the processing list in order from oldest 3037 * to newest. Use this to recompute eq_ptail as best we can and then 3038 * we nicely fall into eqd_push_list() of eq_ptail below. 3039 */ 3040 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3041 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3042 eq.eq_ptail = addr; 3043 3044 /* 3045 * The oldest elements in the queue are on the processing list, subject 3046 * to machinations in the if-clauses above. Push any such elements. 3047 */ 3048 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3049 return (WALK_NEXT); 3050 } 3051 3052 static int 3053 eqd_walk_step(mdb_walk_state_t *wsp) 3054 { 3055 eqd_walk_data_t *eqdp = wsp->walk_data; 3056 uintptr_t addr; 3057 3058 if (eqdp->eqd_qpos == 0) 3059 return (WALK_DONE); 3060 3061 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3062 3063 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3064 mdb_warn("failed to read errorq data at %p", addr); 3065 return (WALK_ERR); 3066 } 3067 3068 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3069 } 3070 3071 static void 3072 eqd_walk_fini(mdb_walk_state_t *wsp) 3073 { 3074 eqd_walk_data_t *eqdp = wsp->walk_data; 3075 3076 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3077 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3078 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3079 } 3080 3081 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3082 3083 static int 3084 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3085 { 3086 int i; 3087 errorq_t eq; 3088 uint_t opt_v = FALSE; 3089 3090 if (!(flags & DCMD_ADDRSPEC)) { 3091 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3092 mdb_warn("can't walk 'errorq'"); 3093 return (DCMD_ERR); 3094 } 3095 return (DCMD_OK); 3096 } 3097 3098 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3099 argc -= i; 3100 argv += i; 3101 3102 if (argc != 0) 3103 return (DCMD_USAGE); 3104 3105 if (opt_v || DCMD_HDRSPEC(flags)) { 3106 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3107 "ADDR", "NAME", "S", "V", "N"); 3108 if (!opt_v) { 3109 mdb_printf("%7s %7s %7s%</u>\n", 3110 "ACCEPT", "DROP", "LOG"); 3111 } else { 3112 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3113 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3114 } 3115 } 3116 3117 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3118 mdb_warn("failed to read errorq at %p", addr); 3119 return (DCMD_ERR); 3120 } 3121 3122 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3123 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3124 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3125 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3126 3127 if (!opt_v) { 3128 mdb_printf("%7llu %7llu %7llu\n", 3129 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3130 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3131 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3132 } else { 3133 mdb_printf("%5s %6lu %6lu %3u %a\n", 3134 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3135 mdb_printf("%38s\n%41s" 3136 "%12s %llu\n" 3137 "%53s %llu\n" 3138 "%53s %llu\n" 3139 "%53s %llu\n" 3140 "%53s %llu\n" 3141 "%53s %llu\n" 3142 "%53s %llu\n" 3143 "%53s %llu\n\n", 3144 "|", "+-> ", 3145 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3146 "DROPPED", EQKSVAL(eq, eqk_dropped), 3147 "LOGGED", EQKSVAL(eq, eqk_logged), 3148 "RESERVED", EQKSVAL(eq, eqk_reserved), 3149 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3150 "COMMITTED", EQKSVAL(eq, eqk_committed), 3151 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3152 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3153 } 3154 3155 return (DCMD_OK); 3156 } 3157 3158 /*ARGSUSED*/ 3159 static int 3160 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3161 { 3162 cpu_t panic_cpu; 3163 kthread_t *panic_thread; 3164 void *panicbuf; 3165 panic_data_t *pd; 3166 int i, n; 3167 3168 if (!mdb_prop_postmortem) { 3169 mdb_warn("panicinfo can only be run on a system " 3170 "dump; see dumpadm(1M)\n"); 3171 return (DCMD_ERR); 3172 } 3173 3174 if (flags & DCMD_ADDRSPEC || argc != 0) 3175 return (DCMD_USAGE); 3176 3177 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3178 mdb_warn("failed to read 'panic_cpu'"); 3179 else 3180 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3181 3182 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3183 mdb_warn("failed to read 'panic_thread'"); 3184 else 3185 mdb_printf("%16s %?p\n", "thread", panic_thread); 3186 3187 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3188 pd = (panic_data_t *)panicbuf; 3189 3190 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3191 pd->pd_version != PANICBUFVERS) { 3192 mdb_warn("failed to read 'panicbuf'"); 3193 mdb_free(panicbuf, PANICBUFSIZE); 3194 return (DCMD_ERR); 3195 } 3196 3197 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3198 3199 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3200 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3201 3202 for (i = 0; i < n; i++) 3203 mdb_printf("%16s %?llx\n", 3204 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3205 3206 mdb_free(panicbuf, PANICBUFSIZE); 3207 return (DCMD_OK); 3208 } 3209 3210 static const mdb_dcmd_t dcmds[] = { 3211 3212 /* from genunix.c */ 3213 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3214 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3215 { "binding_hash_entry", ":", "print driver names hash table entry", 3216 binding_hash_entry }, 3217 { "callout", NULL, "print callout table", callout }, 3218 { "class", NULL, "print process scheduler classes", class }, 3219 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3220 { "did2thread", "? kt_did", "find kernel thread for this id", 3221 did2thread }, 3222 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3223 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3224 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3225 { "lminfo", NULL, "print lock manager information", lminfo }, 3226 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3227 { "panicinfo", NULL, "print panic information", panicinfo }, 3228 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3229 { "pmap", ":[-q]", "print process memory map", pmap }, 3230 { "project", NULL, "display kernel project(s)", project }, 3231 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3232 { "pgrep", "[-x] [-n | -o] pattern", 3233 "pattern match against all processes", pgrep }, 3234 { "ptree", NULL, "print process tree", ptree }, 3235 { "seg", ":", "print address space segment", seg }, 3236 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3237 sysevent}, 3238 { "sysevent_channel", "?", "print sysevent channel database", 3239 sysevent_channel}, 3240 { "sysevent_class_list", ":", "print sysevent class list", 3241 sysevent_class_list}, 3242 { "sysevent_subclass_list", ":", 3243 "print sysevent subclass list", sysevent_subclass_list}, 3244 { "system", NULL, "print contents of /etc/system file", sysfile }, 3245 { "task", NULL, "display kernel task(s)", task }, 3246 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3247 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3248 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3249 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3250 whereopen }, 3251 3252 /* from zone.c */ 3253 { "zone", "?", "display kernel zone(s)", zoneprt }, 3254 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3255 3256 /* from bio.c */ 3257 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3258 3259 /* from contract.c */ 3260 { "contract", "?", "display a contract", cmd_contract }, 3261 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3262 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3263 3264 /* from cpupart.c */ 3265 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3266 3267 /* from cyclic.c */ 3268 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3269 { "cycid", "?", "dump a cyclic id", cycid }, 3270 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3271 { "cyclic", ":", "developer information", cyclic }, 3272 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3273 3274 /* from devinfo.c */ 3275 { "devbindings", "?[-qs] [device-name | major-num]", 3276 "print devinfo nodes bound to device-name or major-num", 3277 devbindings, devinfo_help }, 3278 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3279 devinfo_help }, 3280 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3281 devinfo_audit }, 3282 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3283 devinfo_audit_log }, 3284 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3285 devinfo_audit_node }, 3286 { "devinfo2driver", ":", "find driver name for this devinfo node", 3287 devinfo2driver }, 3288 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3289 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3290 dev2major }, 3291 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3292 dev2minor }, 3293 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3294 devt }, 3295 { "major2name", "?<major-num>", "convert major number to dev name", 3296 major2name }, 3297 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3298 minornodes }, 3299 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3300 modctl2devinfo }, 3301 { "name2major", "<dev-name>", "convert dev name to major number", 3302 name2major }, 3303 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3304 { "softstate", ":<instance>", "retrieve soft-state pointer", 3305 softstate }, 3306 { "devinfo_fm", ":", "devinfo fault managment configuration", 3307 devinfo_fm }, 3308 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3309 devinfo_fmce}, 3310 3311 /* from findstack.c */ 3312 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3313 { "findstack_debug", NULL, "toggle findstack debugging", 3314 findstack_debug }, 3315 3316 /* from kgrep.c + genunix.c */ 3317 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep }, 3318 3319 /* from kmem.c */ 3320 { "allocdby", ":", "given a thread, print its allocated buffers", 3321 allocdby }, 3322 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3323 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3324 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3325 { "kmalog", "?[ fail | slab ]", 3326 "display kmem transaction log and stack traces", kmalog }, 3327 { "kmastat", NULL, "kernel memory allocator stats", kmastat }, 3328 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3329 "of the kmem allocator", kmausers, kmausers_help }, 3330 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3331 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3332 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3333 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3334 kmem_verify }, 3335 { "vmem", "?", "print a vmem_t", vmem }, 3336 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3337 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3338 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3339 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3340 whatis_help }, 3341 { "whatthread", ":[-v]", "print threads whose stack contains the " 3342 "given address", whatthread }, 3343 3344 /* from ldi.c */ 3345 { "ldi_handle", "?[-i]", "display a layered driver handle", 3346 ldi_handle, ldi_handle_help }, 3347 { "ldi_ident", NULL, "display a layered driver identifier", 3348 ldi_ident, ldi_ident_help }, 3349 3350 /* from leaky.c + leaky_subr.c */ 3351 { "findleaks", FINDLEAKS_USAGE, 3352 "search for potential kernel memory leaks", findleaks, 3353 findleaks_help }, 3354 3355 /* from lgrp.c */ 3356 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3357 3358 /* from log.c */ 3359 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3360 3361 /* from memory.c */ 3362 { "page", "?", "display a summarized page_t", page }, 3363 { "memstat", NULL, "display memory usage summary", memstat }, 3364 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3365 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3366 3367 /* from mmd.c */ 3368 { "multidata", ":[-sv]", "display a summarized multidata_t", 3369 multidata }, 3370 { "pattbl", ":", "display a summarized multidata attribute table", 3371 pattbl }, 3372 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3373 pattr2multidata }, 3374 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3375 pdesc2slab }, 3376 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3377 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3378 slab2multidata }, 3379 3380 /* from modhash.c */ 3381 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3382 "display information about one or all mod_hash structures", 3383 modhash, modhash_help }, 3384 { "modent", ":[-k | -v | -t type]", 3385 "display information about a mod_hash_entry", modent, 3386 modent_help }, 3387 3388 /* from net.c */ 3389 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3390 mi }, 3391 { "netstat", "[-av] [-f inet | inet6 | unix] [-P tcp | udp]", 3392 "show network statistics", netstat }, 3393 { "sonode", "?[-f inet | inet6 | unix | #] " 3394 "[-t stream | dgram | raw | #] [-p #]", 3395 "filter and display sonode", sonode }, 3396 3397 /* from nvpair.c */ 3398 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3399 nvpair_print }, 3400 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3401 nvlist_print }, 3402 3403 /* from rctl.c */ 3404 { "rctl_dict", "?", "print systemwide default rctl definitions", 3405 rctl_dict }, 3406 { "rctl_list", ":[handle]", "print rctls for the given proc", 3407 rctl_list }, 3408 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3409 rctl }, 3410 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3411 "sequence", rctl_validate }, 3412 3413 /* from sobj.c */ 3414 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3415 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3416 mutex_help }, 3417 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3418 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3419 { "turnstile", "?", "display a turnstile", turnstile }, 3420 3421 /* from stream.c */ 3422 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3423 "print an mblk", mblk_prt, mblk_help }, 3424 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3425 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3426 mblk2dblk }, 3427 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3428 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3429 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3430 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3431 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3432 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3433 "filter and display STREAM queue", queue, queue_help }, 3434 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3435 "filter and display STREAM head", stdata, stdata_help }, 3436 { "str2mate", ":", "print mate of this stream", str2mate }, 3437 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3438 { "stream", ":", "display STREAM", stream }, 3439 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3440 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3441 "filter and display STREAM sync queue", syncq, syncq_help }, 3442 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3443 3444 /* from thread.c */ 3445 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3446 thread_help }, 3447 { "threadlist", "?[-v [count]]", 3448 "display threads and associated C stack traces", threadlist, 3449 threadlist_help }, 3450 3451 /* from tsd.c */ 3452 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3453 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3454 3455 /* 3456 * typegraph does not work under kmdb, as it requires too much memory 3457 * for its internal data structures. 3458 */ 3459 #ifndef _KMDB 3460 /* from typegraph.c */ 3461 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3462 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3463 findfalse }, 3464 { "typegraph", NULL, "build type graph", typegraph }, 3465 { "istype", ":type", "manually set object type", istype }, 3466 { "notype", ":", "manually clear object type", notype }, 3467 { "whattype", ":", "determine object type", whattype }, 3468 #endif 3469 3470 /* from vfs.c */ 3471 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3472 { "pfiles", ":[-fp]", "print process file information", pfiles, 3473 pfiles_help }, 3474 3475 { NULL } 3476 }; 3477 3478 static const mdb_walker_t walkers[] = { 3479 3480 /* from genunix.c */ 3481 { "anon", "given an amp, list of anon structures", 3482 anon_walk_init, anon_walk_step, anon_walk_fini }, 3483 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3484 { "errorq", "walk list of system error queues", 3485 errorq_walk_init, errorq_walk_step, NULL }, 3486 { "errorq_data", "walk pending error queue data buffers", 3487 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3488 { "allfile", "given a proc pointer, list all file pointers", 3489 file_walk_init, allfile_walk_step, file_walk_fini }, 3490 { "file", "given a proc pointer, list of open file pointers", 3491 file_walk_init, file_walk_step, file_walk_fini }, 3492 { "lock_descriptor", "walk lock_descriptor_t structures", 3493 ld_walk_init, ld_walk_step, NULL }, 3494 { "lock_graph", "walk lock graph", 3495 lg_walk_init, lg_walk_step, NULL }, 3496 { "port", "given a proc pointer, list of created event ports", 3497 port_walk_init, port_walk_step, NULL }, 3498 { "portev", "given a port pointer, list of events in the queue", 3499 portev_walk_init, portev_walk_step, portev_walk_fini }, 3500 { "proc", "list of active proc_t structures", 3501 proc_walk_init, proc_walk_step, proc_walk_fini }, 3502 { "projects", "walk a list of kernel projects", 3503 project_walk_init, project_walk_step, NULL }, 3504 { "seg", "given an as, list of segments", 3505 seg_walk_init, avl_walk_step, avl_walk_fini }, 3506 { "sysevent_pend", "walk sysevent pending queue", 3507 sysevent_pend_walk_init, sysevent_walk_step, 3508 sysevent_walk_fini}, 3509 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3510 sysevent_walk_step, sysevent_walk_fini}, 3511 { "sysevent_channel", "walk sysevent channel subscriptions", 3512 sysevent_channel_walk_init, sysevent_channel_walk_step, 3513 sysevent_channel_walk_fini}, 3514 { "sysevent_class_list", "walk sysevent subscription's class list", 3515 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3516 sysevent_class_list_walk_fini}, 3517 { "sysevent_subclass_list", 3518 "walk sysevent subscription's subclass list", 3519 sysevent_subclass_list_walk_init, 3520 sysevent_subclass_list_walk_step, 3521 sysevent_subclass_list_walk_fini}, 3522 { "task", "given a task pointer, walk its processes", 3523 task_walk_init, task_walk_step, NULL }, 3524 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3525 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3526 3527 /* from avl.c */ 3528 { AVL_WALK_NAME, AVL_WALK_DESC, 3529 avl_walk_init, avl_walk_step, avl_walk_fini }, 3530 3531 /* from zone.c */ 3532 { "zone", "walk a list of kernel zones", 3533 zone_walk_init, zone_walk_step, NULL }, 3534 { "zsd", "walk list of zsd entries for a zone", 3535 zsd_walk_init, zsd_walk_step, NULL }, 3536 3537 /* from bio.c */ 3538 { "buf", "walk the bio buf hash", 3539 buf_walk_init, buf_walk_step, buf_walk_fini }, 3540 3541 /* from contract.c */ 3542 { "contract", "walk all contracts, or those of the specified type", 3543 ct_walk_init, generic_walk_step, NULL }, 3544 { "ct_event", "walk events on a contract event queue", 3545 ct_event_walk_init, generic_walk_step, NULL }, 3546 { "ct_listener", "walk contract event queue listeners", 3547 ct_listener_walk_init, generic_walk_step, NULL }, 3548 3549 /* from cpupart.c */ 3550 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3551 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3552 NULL }, 3553 { "cpupart_walk", "walk the set of cpu partitions", 3554 cpupart_walk_init, cpupart_walk_step, NULL }, 3555 3556 /* from ctxop.c */ 3557 { "ctxop", "walk list of context ops on a thread", 3558 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3559 3560 /* from cyclic.c */ 3561 { "cyccpu", "walk per-CPU cyc_cpu structures", 3562 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3563 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3564 cycomni_walk_init, cycomni_walk_step, NULL }, 3565 { "cyctrace", "walk cyclic trace buffer", 3566 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3567 3568 /* from devinfo.c */ 3569 { "binding_hash", "walk all entries in binding hash table", 3570 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3571 { "devinfo", "walk devinfo tree or subtree", 3572 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3573 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3574 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3575 devinfo_audit_log_walk_fini}, 3576 { "devinfo_audit_node", "walk per-devinfo audit history", 3577 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3578 devinfo_audit_node_walk_fini}, 3579 { "devinfo_children", "walk children of devinfo node", 3580 devinfo_children_walk_init, devinfo_children_walk_step, 3581 devinfo_children_walk_fini }, 3582 { "devinfo_parents", "walk ancestors of devinfo node", 3583 devinfo_parents_walk_init, devinfo_parents_walk_step, 3584 devinfo_parents_walk_fini }, 3585 { "devinfo_siblings", "walk siblings of devinfo node", 3586 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3587 { "devi_next", "walk devinfo list", 3588 NULL, devi_next_walk_step, NULL }, 3589 { "devnames", "walk devnames array", 3590 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3591 { "minornode", "given a devinfo node, walk minor nodes", 3592 minornode_walk_init, minornode_walk_step, NULL }, 3593 { "softstate", 3594 "given an i_ddi_soft_state*, list all in-use driver stateps", 3595 soft_state_walk_init, soft_state_walk_step, 3596 NULL, NULL }, 3597 { "softstate_all", 3598 "given an i_ddi_soft_state*, list all driver stateps", 3599 soft_state_walk_init, soft_state_all_walk_step, 3600 NULL, NULL }, 3601 { "devinfo_fmc", 3602 "walk a fault management handle cache active list", 3603 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3604 3605 /* from kmem.c */ 3606 { "allocdby", "given a thread, walk its allocated bufctls", 3607 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3608 { "bufctl", "walk a kmem cache's bufctls", 3609 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3610 { "bufctl_history", "walk the available history of a bufctl", 3611 bufctl_history_walk_init, bufctl_history_walk_step, 3612 bufctl_history_walk_fini }, 3613 { "freedby", "given a thread, walk its freed bufctls", 3614 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3615 { "freectl", "walk a kmem cache's free bufctls", 3616 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3617 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3618 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3619 { "freemem", "walk a kmem cache's free memory", 3620 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3621 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3622 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3623 { "kmem", "walk a kmem cache", 3624 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3625 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3626 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3627 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3628 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3629 { "kmem_log", "walk the kmem transaction log", 3630 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3631 { "kmem_slab", "given a kmem cache, walk its slabs", 3632 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3633 { "kmem_slab_partial", 3634 "given a kmem cache, walk its partially allocated slabs (min 1)", 3635 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3636 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3637 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3638 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3639 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3640 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3641 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3642 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3643 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3644 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3645 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3646 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3647 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3648 3649 /* from ldi.c */ 3650 { "ldi_handle", "walk the layered driver handle hash", 3651 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3652 { "ldi_ident", "walk the layered driver identifier hash", 3653 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3654 3655 /* from leaky.c + leaky_subr.c */ 3656 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3657 "stack trace", 3658 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3659 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3660 "leaks w/ same stack trace", 3661 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3662 3663 /* from lgrp.c */ 3664 { "lgrp_cpulist", "given an lgrp, walk cpus", 3665 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, 3666 NULL }, 3667 { "lgrptbl", "walk the lgrp table", 3668 lgrp_walk_init, lgrp_walk_step, NULL }, 3669 3670 /* from list.c */ 3671 { LIST_WALK_NAME, LIST_WALK_DESC, 3672 list_walk_init, list_walk_step, list_walk_fini }, 3673 3674 /* from memory.c */ 3675 { "page", "walk all pages, or those from the specified vnode", 3676 page_walk_init, page_walk_step, page_walk_fini }, 3677 { "memlist", "walk specified memlist", 3678 NULL, memlist_walk_step, NULL }, 3679 { "swapinfo", "walk swapinfo structures", 3680 swap_walk_init, swap_walk_step, NULL }, 3681 3682 /* from mmd.c */ 3683 { "pattr", "walk pattr_t structures", pattr_walk_init, 3684 mmdq_walk_step, mmdq_walk_fini }, 3685 { "pdesc", "walk pdesc_t structures", 3686 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3687 { "pdesc_slab", "walk pdesc_slab_t structures", 3688 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3689 3690 /* from modhash.c */ 3691 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3692 modhash_walk_step, NULL }, 3693 { "modent", "walk list of entries in a given mod_hash", 3694 modent_walk_init, modent_walk_step, modent_walk_fini }, 3695 { "modchain", "walk list of entries in a given mod_hash_entry", 3696 NULL, modchain_walk_step, NULL }, 3697 3698 /* from net.c */ 3699 { "ar", "walk ar_t structures using MI", 3700 mi_payload_walk_init, mi_payload_walk_step, 3701 mi_payload_walk_fini, &mi_ar_arg }, 3702 { "icmp", "walk ICMP control structures using MI", 3703 mi_payload_walk_init, mi_payload_walk_step, 3704 mi_payload_walk_fini, &mi_icmp_arg }, 3705 { "ill", "walk ill_t structures using MI", 3706 mi_payload_walk_init, mi_payload_walk_step, 3707 mi_payload_walk_fini, &mi_ill_arg }, 3708 { "mi", "given a MI_O, walk the MI", 3709 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3710 { "sonode", "given a sonode, walk its children", 3711 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3712 3713 /* from nvpair.c */ 3714 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3715 nvpair_walk_init, nvpair_walk_step, NULL }, 3716 3717 /* from rctl.c */ 3718 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3719 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3720 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3721 rctl_set_walk_step, NULL }, 3722 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3723 rctl_val_walk_init, rctl_val_walk_step }, 3724 3725 /* from sobj.c */ 3726 { "blocked", "walk threads blocked on a given sobj", 3727 blocked_walk_init, blocked_walk_step, NULL }, 3728 { "wchan", "given a wchan, list of blocked threads", 3729 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3730 3731 /* from stream.c */ 3732 { "b_cont", "walk mblk_t list using b_cont", 3733 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3734 { "b_next", "walk mblk_t list using b_next", 3735 mblk_walk_init, b_next_step, mblk_walk_fini }, 3736 { "qlink", "walk queue_t list using q_link", 3737 queue_walk_init, queue_link_step, queue_walk_fini }, 3738 { "qnext", "walk queue_t list using q_next", 3739 queue_walk_init, queue_next_step, queue_walk_fini }, 3740 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3741 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3742 { "readq", "walk read queue side of stdata", 3743 str_walk_init, strr_walk_step, str_walk_fini }, 3744 { "writeq", "walk write queue side of stdata", 3745 str_walk_init, strw_walk_step, str_walk_fini }, 3746 3747 /* from thread.c */ 3748 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3749 deathrow_walk_init, deathrow_walk_step, NULL }, 3750 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3751 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3752 { "cpupart_dispq", 3753 "given a cpupart_t, walk threads in dispatcher queues", 3754 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3755 { "lwp_deathrow", "walk lwp_deathrow", 3756 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3757 { "thread", "global or per-process kthread_t structures", 3758 thread_walk_init, thread_walk_step, thread_walk_fini }, 3759 { "thread_deathrow", "walk threads on thread_deathrow", 3760 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3761 3762 /* from tsd.c */ 3763 { "tsd", "walk list of thread-specific data", 3764 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3765 3766 /* 3767 * typegraph does not work under kmdb, as it requires too much memory 3768 * for its internal data structures. 3769 */ 3770 #ifndef _KMDB 3771 /* from typegraph.c */ 3772 { "typeconflict", "walk buffers with conflicting type inferences", 3773 typegraph_walk_init, typeconflict_walk_step }, 3774 { "typeunknown", "walk buffers with unknown types", 3775 typegraph_walk_init, typeunknown_walk_step }, 3776 #endif 3777 3778 /* from vfs.c */ 3779 { "vfs", "walk file system list", 3780 vfs_walk_init, vfs_walk_step }, 3781 { NULL } 3782 }; 3783 3784 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3785 3786 const mdb_modinfo_t * 3787 _mdb_init(void) 3788 { 3789 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3790 mdb_warn("failed to read 'top_devinfo'"); 3791 return (NULL); 3792 } 3793 3794 if (findstack_init() != DCMD_OK) 3795 return (NULL); 3796 3797 kmem_init(); 3798 3799 return (&modinfo); 3800 } 3801 3802 void 3803 _mdb_fini(void) 3804 { 3805 /* 3806 * Force ::findleaks to let go any cached memory 3807 */ 3808 leaky_cleanup(1); 3809 } 3810