1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <sys/dditypes.h> 53 #include <sys/ddi_impldefs.h> 54 #include <sys/sysmacros.h> 55 #include <sys/sysconf.h> 56 #include <sys/task.h> 57 #include <sys/project.h> 58 #include <sys/errorq_impl.h> 59 #include <sys/cred_impl.h> 60 #include <sys/zone.h> 61 #include <sys/panic.h> 62 #include <regex.h> 63 #include <sys/port_impl.h> 64 65 #include "avl.h" 66 #include "bio.h" 67 #include "bitset.h" 68 #include "combined.h" 69 #include "contract.h" 70 #include "cpupart_mdb.h" 71 #include "cred.h" 72 #include "ctxop.h" 73 #include "cyclic.h" 74 #include "damap.h" 75 #include "ddi_periodic.h" 76 #include "devinfo.h" 77 #include "dnlc.h" 78 #include "findstack.h" 79 #include "fm.h" 80 #include "gcore.h" 81 #include "group.h" 82 #include "irm.h" 83 #include "kgrep.h" 84 #include "kmem.h" 85 #include "ldi.h" 86 #include "leaky.h" 87 #include "lgrp.h" 88 #include "list.h" 89 #include "log.h" 90 #include "mdi.h" 91 #include "memory.h" 92 #include "mmd.h" 93 #include "modhash.h" 94 #include "ndievents.h" 95 #include "net.h" 96 #include "netstack.h" 97 #include "nvpair.h" 98 #include "pg.h" 99 #include "rctl.h" 100 #include "sobj.h" 101 #include "streams.h" 102 #include "sysevent.h" 103 #include "taskq.h" 104 #include "thread.h" 105 #include "tsd.h" 106 #include "tsol.h" 107 #include "typegraph.h" 108 #include "vfs.h" 109 #include "zone.h" 110 #include "hotplug.h" 111 112 /* 113 * Surely this is defined somewhere... 114 */ 115 #define NINTR 16 116 117 #define KILOS 10 118 #define MEGS 20 119 #define GIGS 30 120 121 #ifndef STACK_BIAS 122 #define STACK_BIAS 0 123 #endif 124 125 static char 126 pstat2ch(uchar_t state) 127 { 128 switch (state) { 129 case SSLEEP: return ('S'); 130 case SRUN: return ('R'); 131 case SZOMB: return ('Z'); 132 case SIDL: return ('I'); 133 case SONPROC: return ('O'); 134 case SSTOP: return ('T'); 135 case SWAIT: return ('W'); 136 default: return ('?'); 137 } 138 } 139 140 #define PS_PRTTHREADS 0x1 141 #define PS_PRTLWPS 0x2 142 #define PS_PSARGS 0x4 143 #define PS_TASKS 0x8 144 #define PS_PROJECTS 0x10 145 #define PS_ZONES 0x20 146 147 static int 148 ps_threadprint(uintptr_t addr, const void *data, void *private) 149 { 150 const kthread_t *t = (const kthread_t *)data; 151 uint_t prt_flags = *((uint_t *)private); 152 153 static const mdb_bitmask_t t_state_bits[] = { 154 { "TS_FREE", UINT_MAX, TS_FREE }, 155 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 156 { "TS_RUN", TS_RUN, TS_RUN }, 157 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 158 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 159 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 160 { "TS_WAIT", TS_WAIT, TS_WAIT }, 161 { NULL, 0, 0 } 162 }; 163 164 if (prt_flags & PS_PRTTHREADS) 165 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 166 167 if (prt_flags & PS_PRTLWPS) { 168 char desc[128] = ""; 169 170 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc)); 171 172 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc); 173 } 174 175 return (WALK_NEXT); 176 } 177 178 typedef struct mdb_pflags_proc { 179 struct pid *p_pidp; 180 ushort_t p_pidflag; 181 uint_t p_proc_flag; 182 uint_t p_flag; 183 } mdb_pflags_proc_t; 184 185 static int 186 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 187 { 188 mdb_pflags_proc_t pr; 189 struct pid pid; 190 191 static const mdb_bitmask_t p_flag_bits[] = { 192 { "SSYS", SSYS, SSYS }, 193 { "SEXITING", SEXITING, SEXITING }, 194 { "SITBUSY", SITBUSY, SITBUSY }, 195 { "SFORKING", SFORKING, SFORKING }, 196 { "SWATCHOK", SWATCHOK, SWATCHOK }, 197 { "SKILLED", SKILLED, SKILLED }, 198 { "SSCONT", SSCONT, SSCONT }, 199 { "SZONETOP", SZONETOP, SZONETOP }, 200 { "SEXTKILLED", SEXTKILLED, SEXTKILLED }, 201 { "SUGID", SUGID, SUGID }, 202 { "SEXECED", SEXECED, SEXECED }, 203 { "SJCTL", SJCTL, SJCTL }, 204 { "SNOWAIT", SNOWAIT, SNOWAIT }, 205 { "SVFORK", SVFORK, SVFORK }, 206 { "SVFWAIT", SVFWAIT, SVFWAIT }, 207 { "SEXITLWPS", SEXITLWPS, SEXITLWPS }, 208 { "SHOLDFORK", SHOLDFORK, SHOLDFORK }, 209 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 }, 210 { "SCOREDUMP", SCOREDUMP, SCOREDUMP }, 211 { "SMSACCT", SMSACCT, SMSACCT }, 212 { "SLWPWRAP", SLWPWRAP, SLWPWRAP }, 213 { "SAUTOLPG", SAUTOLPG, SAUTOLPG }, 214 { "SNOCD", SNOCD, SNOCD }, 215 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH }, 216 { "SMSFORK", SMSFORK, SMSFORK }, 217 { "SDOCORE", SDOCORE, SDOCORE }, 218 { NULL, 0, 0 } 219 }; 220 221 static const mdb_bitmask_t p_pidflag_bits[] = { 222 { "CLDPEND", CLDPEND, CLDPEND }, 223 { "CLDCONT", CLDCONT, CLDCONT }, 224 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD }, 225 { "CLDWAITPID", CLDWAITPID, CLDWAITPID }, 226 { NULL, 0, 0 } 227 }; 228 229 static const mdb_bitmask_t p_proc_flag_bits[] = { 230 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE }, 231 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE }, 232 { "P_PR_FORK", P_PR_FORK, P_PR_FORK }, 233 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK }, 234 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC }, 235 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC }, 236 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ }, 237 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL }, 238 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL }, 239 { NULL, 0, 0 } 240 }; 241 242 if (!(flags & DCMD_ADDRSPEC)) { 243 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) { 244 mdb_warn("can't walk 'proc'"); 245 return (DCMD_ERR); 246 } 247 return (DCMD_OK); 248 } 249 250 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 || 251 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) { 252 mdb_warn("cannot read proc_t or pid"); 253 return (DCMD_ERR); 254 } 255 256 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id); 257 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag, 258 p_flag_bits); 259 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag, 260 p_pidflag_bits); 261 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag, 262 p_proc_flag_bits); 263 264 return (DCMD_OK); 265 } 266 267 typedef struct mdb_ps_proc { 268 char p_stat; 269 struct pid *p_pidp; 270 struct pid *p_pgidp; 271 struct cred *p_cred; 272 struct sess *p_sessp; 273 struct task *p_task; 274 struct zone *p_zone; 275 pid_t p_ppid; 276 uint_t p_flag; 277 struct { 278 char u_comm[MAXCOMLEN + 1]; 279 char u_psargs[PSARGSZ]; 280 } p_user; 281 } mdb_ps_proc_t; 282 283 int 284 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 285 { 286 uint_t prt_flags = 0; 287 mdb_ps_proc_t pr; 288 struct pid pid, pgid, sid; 289 sess_t session; 290 cred_t cred; 291 task_t tk; 292 kproject_t pj; 293 zone_t zn; 294 295 if (!(flags & DCMD_ADDRSPEC)) { 296 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 297 mdb_warn("can't walk 'proc'"); 298 return (DCMD_ERR); 299 } 300 return (DCMD_OK); 301 } 302 303 if (mdb_getopts(argc, argv, 304 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 305 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 306 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 307 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 308 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 309 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 310 return (DCMD_USAGE); 311 312 if (DCMD_HDRSPEC(flags)) { 313 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 314 "S", "PID", "PPID", "PGID", "SID"); 315 if (prt_flags & PS_TASKS) 316 mdb_printf("%5s ", "TASK"); 317 if (prt_flags & PS_PROJECTS) 318 mdb_printf("%5s ", "PROJ"); 319 if (prt_flags & PS_ZONES) 320 mdb_printf("%5s ", "ZONE"); 321 mdb_printf("%6s %10s %?s %s%</u>\n", 322 "UID", "FLAGS", "ADDR", "NAME"); 323 } 324 325 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1) 326 return (DCMD_ERR); 327 328 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 329 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 330 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 331 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 332 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 333 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 334 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 335 if (prt_flags & PS_PROJECTS) 336 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 337 if (prt_flags & PS_ZONES) 338 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone); 339 340 mdb_printf("%c %6d %6d %6d %6d ", 341 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 342 sid.pid_id); 343 if (prt_flags & PS_TASKS) 344 mdb_printf("%5d ", tk.tk_tkid); 345 if (prt_flags & PS_PROJECTS) 346 mdb_printf("%5d ", pj.kpj_id); 347 if (prt_flags & PS_ZONES) 348 mdb_printf("%5d ", zn.zone_id); 349 mdb_printf("%6d 0x%08x %0?p %s\n", 350 cred.cr_uid, pr.p_flag, addr, 351 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 352 353 if (prt_flags & ~PS_PSARGS) 354 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 355 356 return (DCMD_OK); 357 } 358 359 #define PG_NEWEST 0x0001 360 #define PG_OLDEST 0x0002 361 #define PG_PIPE_OUT 0x0004 362 #define PG_EXACT_MATCH 0x0008 363 364 typedef struct pgrep_data { 365 uint_t pg_flags; 366 uint_t pg_psflags; 367 uintptr_t pg_xaddr; 368 hrtime_t pg_xstart; 369 const char *pg_pat; 370 #ifndef _KMDB 371 regex_t pg_reg; 372 #endif 373 } pgrep_data_t; 374 375 typedef struct mdb_pgrep_proc { 376 struct { 377 timestruc_t u_start; 378 char u_comm[MAXCOMLEN + 1]; 379 } p_user; 380 } mdb_pgrep_proc_t; 381 382 /*ARGSUSED*/ 383 static int 384 pgrep_cb(uintptr_t addr, const void *ignored, void *data) 385 { 386 mdb_pgrep_proc_t p; 387 pgrep_data_t *pgp = data; 388 #ifndef _KMDB 389 regmatch_t pmatch; 390 #endif 391 392 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1) 393 return (WALK_ERR); 394 395 /* 396 * kmdb doesn't have access to the reg* functions, so we fall back 397 * to strstr/strcmp. 398 */ 399 #ifdef _KMDB 400 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 401 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) : 402 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL)) 403 return (WALK_NEXT); 404 #else 405 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0) 406 return (WALK_NEXT); 407 408 if ((pgp->pg_flags & PG_EXACT_MATCH) && 409 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0')) 410 return (WALK_NEXT); 411 #endif 412 413 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 414 hrtime_t start; 415 416 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC + 417 p.p_user.u_start.tv_nsec; 418 419 if (pgp->pg_flags & PG_NEWEST) { 420 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) { 421 pgp->pg_xaddr = addr; 422 pgp->pg_xstart = start; 423 } 424 } else { 425 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) { 426 pgp->pg_xaddr = addr; 427 pgp->pg_xstart = start; 428 } 429 } 430 431 } else if (pgp->pg_flags & PG_PIPE_OUT) { 432 mdb_printf("%p\n", addr); 433 434 } else { 435 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 436 mdb_warn("can't invoke 'ps'"); 437 return (WALK_DONE); 438 } 439 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 440 } 441 442 return (WALK_NEXT); 443 } 444 445 /*ARGSUSED*/ 446 int 447 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 448 { 449 pgrep_data_t pg; 450 int i; 451 #ifndef _KMDB 452 int err; 453 #endif 454 455 if (flags & DCMD_ADDRSPEC) 456 return (DCMD_USAGE); 457 458 pg.pg_flags = 0; 459 pg.pg_xaddr = 0; 460 461 i = mdb_getopts(argc, argv, 462 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 463 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 464 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 465 NULL); 466 467 argc -= i; 468 argv += i; 469 470 if (argc != 1) 471 return (DCMD_USAGE); 472 473 /* 474 * -n and -o are mutually exclusive. 475 */ 476 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 477 return (DCMD_USAGE); 478 479 if (argv->a_type != MDB_TYPE_STRING) 480 return (DCMD_USAGE); 481 482 if (flags & DCMD_PIPE_OUT) 483 pg.pg_flags |= PG_PIPE_OUT; 484 485 pg.pg_pat = argv->a_un.a_str; 486 if (DCMD_HDRSPEC(flags)) 487 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 488 else 489 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 490 491 #ifndef _KMDB 492 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 493 size_t nbytes; 494 char *buf; 495 496 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 497 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 498 (void) regerror(err, &pg.pg_reg, buf, nbytes); 499 mdb_warn("%s\n", buf); 500 501 return (DCMD_ERR); 502 } 503 #endif 504 505 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 506 mdb_warn("can't walk 'proc'"); 507 return (DCMD_ERR); 508 } 509 510 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 511 if (pg.pg_flags & PG_PIPE_OUT) { 512 mdb_printf("%p\n", pg.pg_xaddr); 513 } else { 514 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 515 0, NULL) != 0) { 516 mdb_warn("can't invoke 'ps'"); 517 return (DCMD_ERR); 518 } 519 } 520 } 521 522 return (DCMD_OK); 523 } 524 525 int 526 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 527 { 528 task_t tk; 529 kproject_t pj; 530 531 if (!(flags & DCMD_ADDRSPEC)) { 532 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 533 mdb_warn("can't walk task_cache"); 534 return (DCMD_ERR); 535 } 536 return (DCMD_OK); 537 } 538 if (DCMD_HDRSPEC(flags)) { 539 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 540 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 541 } 542 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 543 mdb_warn("can't read task_t structure at %p", addr); 544 return (DCMD_ERR); 545 } 546 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 547 mdb_warn("can't read project_t structure at %p", addr); 548 return (DCMD_ERR); 549 } 550 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 551 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 552 tk.tk_flags); 553 return (DCMD_OK); 554 } 555 556 int 557 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 558 { 559 kproject_t pj; 560 561 if (!(flags & DCMD_ADDRSPEC)) { 562 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 563 mdb_warn("can't walk projects"); 564 return (DCMD_ERR); 565 } 566 return (DCMD_OK); 567 } 568 if (DCMD_HDRSPEC(flags)) { 569 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 570 "ADDR", "PROJID", "ZONEID", "REFCNT"); 571 } 572 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 573 mdb_warn("can't read kproject_t structure at %p", addr); 574 return (DCMD_ERR); 575 } 576 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 577 pj.kpj_count); 578 return (DCMD_OK); 579 } 580 581 /* walk callouts themselves, either by list or id hash. */ 582 int 583 callout_walk_init(mdb_walk_state_t *wsp) 584 { 585 if (wsp->walk_addr == 0) { 586 mdb_warn("callout doesn't support global walk"); 587 return (WALK_ERR); 588 } 589 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 590 return (WALK_NEXT); 591 } 592 593 #define CALLOUT_WALK_BYLIST 0 594 #define CALLOUT_WALK_BYID 1 595 596 /* the walker arg switches between walking by list (0) and walking by id (1). */ 597 int 598 callout_walk_step(mdb_walk_state_t *wsp) 599 { 600 int retval; 601 602 if (wsp->walk_addr == 0) { 603 return (WALK_DONE); 604 } 605 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 606 wsp->walk_addr) == -1) { 607 mdb_warn("failed to read callout at %p", wsp->walk_addr); 608 return (WALK_DONE); 609 } 610 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 611 wsp->walk_cbdata); 612 613 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 614 wsp->walk_addr = 615 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 616 } else { 617 wsp->walk_addr = 618 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 619 } 620 621 return (retval); 622 } 623 624 void 625 callout_walk_fini(mdb_walk_state_t *wsp) 626 { 627 mdb_free(wsp->walk_data, sizeof (callout_t)); 628 } 629 630 /* 631 * walker for callout lists. This is different from hashes and callouts. 632 * Thankfully, it's also simpler. 633 */ 634 int 635 callout_list_walk_init(mdb_walk_state_t *wsp) 636 { 637 if (wsp->walk_addr == 0) { 638 mdb_warn("callout list doesn't support global walk"); 639 return (WALK_ERR); 640 } 641 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 642 return (WALK_NEXT); 643 } 644 645 int 646 callout_list_walk_step(mdb_walk_state_t *wsp) 647 { 648 int retval; 649 650 if (wsp->walk_addr == 0) { 651 return (WALK_DONE); 652 } 653 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 654 wsp->walk_addr) != sizeof (callout_list_t)) { 655 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 656 return (WALK_ERR); 657 } 658 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 659 wsp->walk_cbdata); 660 661 wsp->walk_addr = (uintptr_t) 662 (((callout_list_t *)wsp->walk_data)->cl_next); 663 664 return (retval); 665 } 666 667 void 668 callout_list_walk_fini(mdb_walk_state_t *wsp) 669 { 670 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 671 } 672 673 /* routines/structs to walk callout table(s) */ 674 typedef struct cot_data { 675 callout_table_t *ct0; 676 callout_table_t ct; 677 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 678 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 679 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 680 int cotndx; 681 int cotsize; 682 } cot_data_t; 683 684 int 685 callout_table_walk_init(mdb_walk_state_t *wsp) 686 { 687 int max_ncpus; 688 cot_data_t *cot_walk_data; 689 690 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 691 692 if (wsp->walk_addr == 0) { 693 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 694 mdb_warn("failed to read 'callout_table'"); 695 return (WALK_ERR); 696 } 697 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 698 mdb_warn("failed to get callout_table array size"); 699 return (WALK_ERR); 700 } 701 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 702 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 703 } else { 704 /* not a global walk */ 705 cot_walk_data->cotsize = 1; 706 } 707 708 cot_walk_data->cotndx = 0; 709 wsp->walk_data = cot_walk_data; 710 711 return (WALK_NEXT); 712 } 713 714 int 715 callout_table_walk_step(mdb_walk_state_t *wsp) 716 { 717 int retval; 718 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 719 size_t size; 720 721 if (cotwd->cotndx >= cotwd->cotsize) { 722 return (WALK_DONE); 723 } 724 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 725 wsp->walk_addr) != sizeof (callout_table_t)) { 726 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 727 return (WALK_ERR); 728 } 729 730 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 731 if (cotwd->ct.ct_idhash != NULL) { 732 if (mdb_vread(cotwd->cot_idhash, size, 733 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 734 mdb_warn("failed to read id_hash at %p", 735 cotwd->ct.ct_idhash); 736 return (WALK_ERR); 737 } 738 } 739 if (cotwd->ct.ct_clhash != NULL) { 740 if (mdb_vread(&(cotwd->cot_clhash), size, 741 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 742 mdb_warn("failed to read cl_hash at %p", 743 cotwd->ct.ct_clhash); 744 return (WALK_ERR); 745 } 746 } 747 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 748 if (cotwd->ct.ct_kstat_data != NULL) { 749 if (mdb_vread(&(cotwd->ct_kstat_data), size, 750 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 751 mdb_warn("failed to read kstats at %p", 752 cotwd->ct.ct_kstat_data); 753 return (WALK_ERR); 754 } 755 } 756 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 757 wsp->walk_cbdata); 758 759 cotwd->cotndx++; 760 if (cotwd->cotndx >= cotwd->cotsize) { 761 return (WALK_DONE); 762 } 763 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 764 sizeof (callout_table_t)); 765 766 return (retval); 767 } 768 769 void 770 callout_table_walk_fini(mdb_walk_state_t *wsp) 771 { 772 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 773 } 774 775 static const char *co_typenames[] = { "R", "N" }; 776 777 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 778 779 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 780 781 /* callout flags, in no particular order */ 782 #define COF_REAL 0x00000001 783 #define COF_NORM 0x00000002 784 #define COF_LONG 0x00000004 785 #define COF_SHORT 0x00000008 786 #define COF_EMPTY 0x00000010 787 #define COF_TIME 0x00000020 788 #define COF_BEFORE 0x00000040 789 #define COF_AFTER 0x00000080 790 #define COF_SEQID 0x00000100 791 #define COF_FUNC 0x00000200 792 #define COF_ADDR 0x00000400 793 #define COF_EXEC 0x00000800 794 #define COF_HIRES 0x00001000 795 #define COF_ABS 0x00002000 796 #define COF_TABLE 0x00004000 797 #define COF_BYIDH 0x00008000 798 #define COF_FREE 0x00010000 799 #define COF_LIST 0x00020000 800 #define COF_EXPREL 0x00040000 801 #define COF_HDR 0x00080000 802 #define COF_VERBOSE 0x00100000 803 #define COF_LONGLIST 0x00200000 804 #define COF_THDR 0x00400000 805 #define COF_LHDR 0x00800000 806 #define COF_CHDR 0x01000000 807 #define COF_PARAM 0x02000000 808 #define COF_DECODE 0x04000000 809 #define COF_HEAP 0x08000000 810 #define COF_QUEUE 0x10000000 811 812 /* show real and normal, short and long, expired and unexpired. */ 813 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 814 815 #define COF_LIST_FLAGS \ 816 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 817 818 /* private callout data for callback functions */ 819 typedef struct callout_data { 820 uint_t flags; /* COF_* */ 821 cpu_t *cpu; /* cpu pointer if given */ 822 int seqid; /* cpu seqid, or -1 */ 823 hrtime_t time; /* expiration time value */ 824 hrtime_t atime; /* expiration before value */ 825 hrtime_t btime; /* expiration after value */ 826 uintptr_t funcaddr; /* function address or NULL */ 827 uintptr_t param; /* parameter to function or NULL */ 828 hrtime_t now; /* current system time */ 829 int nsec_per_tick; /* for conversions */ 830 ulong_t ctbits; /* for decoding xid */ 831 callout_table_t *co_table; /* top of callout table array */ 832 int ndx; /* table index. */ 833 int bucket; /* which list/id bucket are we in */ 834 hrtime_t exp; /* expire time */ 835 int list_flags; /* copy of cl_flags */ 836 } callout_data_t; 837 838 /* this callback does the actual callback itself (finally). */ 839 /*ARGSUSED*/ 840 static int 841 callouts_cb(uintptr_t addr, const void *data, void *priv) 842 { 843 callout_data_t *coargs = (callout_data_t *)priv; 844 callout_t *co = (callout_t *)data; 845 int tableid, list_flags; 846 callout_id_t coid; 847 848 if ((coargs == NULL) || (co == NULL)) { 849 return (WALK_ERR); 850 } 851 852 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 853 /* 854 * The callout must have been reallocated. No point in 855 * walking any more. 856 */ 857 return (WALK_DONE); 858 } 859 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 860 /* 861 * The callout must have been freed. No point in 862 * walking any more. 863 */ 864 return (WALK_DONE); 865 } 866 if ((coargs->flags & COF_FUNC) && 867 (coargs->funcaddr != (uintptr_t)co->c_func)) { 868 return (WALK_NEXT); 869 } 870 if ((coargs->flags & COF_PARAM) && 871 (coargs->param != (uintptr_t)co->c_arg)) { 872 return (WALK_NEXT); 873 } 874 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 875 return (WALK_NEXT); 876 } 877 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 878 return (WALK_NEXT); 879 } 880 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 881 return (WALK_NEXT); 882 } 883 /* it is possible we don't have the exp time or flags */ 884 if (coargs->flags & COF_BYIDH) { 885 if (!(coargs->flags & COF_FREE)) { 886 /* we have to fetch the expire time ourselves. */ 887 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 888 (uintptr_t)co->c_list + offsetof(callout_list_t, 889 cl_expiration)) == -1) { 890 mdb_warn("failed to read expiration " 891 "time from %p", co->c_list); 892 coargs->exp = 0; 893 } 894 /* and flags. */ 895 if (mdb_vread(&coargs->list_flags, sizeof (int), 896 (uintptr_t)co->c_list + offsetof(callout_list_t, 897 cl_flags)) == -1) { 898 mdb_warn("failed to read list flags" 899 "from %p", co->c_list); 900 coargs->list_flags = 0; 901 } 902 } else { 903 /* free callouts can't use list pointer. */ 904 coargs->exp = 0; 905 coargs->list_flags = 0; 906 } 907 if (coargs->exp != 0) { 908 if ((coargs->flags & COF_TIME) && 909 (coargs->exp != coargs->time)) { 910 return (WALK_NEXT); 911 } 912 if ((coargs->flags & COF_BEFORE) && 913 (coargs->exp > coargs->btime)) { 914 return (WALK_NEXT); 915 } 916 if ((coargs->flags & COF_AFTER) && 917 (coargs->exp < coargs->atime)) { 918 return (WALK_NEXT); 919 } 920 } 921 /* tricky part, since both HIRES and ABS can be set */ 922 list_flags = coargs->list_flags; 923 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 924 /* both flags are set, only skip "regular" ones */ 925 if (! (list_flags & COF_LIST_FLAGS)) { 926 return (WALK_NEXT); 927 } 928 } else { 929 /* individual flags, or no flags */ 930 if ((coargs->flags & COF_HIRES) && 931 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 932 return (WALK_NEXT); 933 } 934 if ((coargs->flags & COF_ABS) && 935 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 936 return (WALK_NEXT); 937 } 938 } 939 /* 940 * We do the checks for COF_HEAP and COF_QUEUE here only if we 941 * are traversing BYIDH. If the traversal is by callout list, 942 * we do this check in callout_list_cb() to be more 943 * efficient. 944 */ 945 if ((coargs->flags & COF_HEAP) && 946 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 947 return (WALK_NEXT); 948 } 949 950 if ((coargs->flags & COF_QUEUE) && 951 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 952 return (WALK_NEXT); 953 } 954 } 955 956 #define callout_table_mask ((1 << coargs->ctbits) - 1) 957 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 958 #undef callout_table_mask 959 coid = CO_PLAIN_ID(co->c_xid); 960 961 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 962 /* 963 * We need to print the headers. If walking by id, then 964 * the list header isn't printed, so we must include 965 * that info here. 966 */ 967 if (!(coargs->flags & COF_VERBOSE)) { 968 mdb_printf("%<u>%3s %-1s %-14s %</u>", 969 "SEQ", "T", "EXP"); 970 } else if (coargs->flags & COF_BYIDH) { 971 mdb_printf("%<u>%-14s %</u>", "EXP"); 972 } 973 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 974 "XHAL", "XID", "FUNC(ARG)"); 975 if (coargs->flags & COF_LONGLIST) { 976 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 977 "PREVID", "NEXTID", "PREVL", "NEXTL"); 978 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 979 "DONE", "UTOS", "THREAD"); 980 } 981 mdb_printf("\n"); 982 coargs->flags &= ~COF_CHDR; 983 coargs->flags |= (COF_THDR | COF_LHDR); 984 } 985 986 if (!(coargs->flags & COF_ADDR)) { 987 if (!(coargs->flags & COF_VERBOSE)) { 988 mdb_printf("%-3d %1s %-14llx ", 989 TABLE_TO_SEQID(tableid), 990 co_typenames[tableid & CALLOUT_TYPE_MASK], 991 (coargs->flags & COF_EXPREL) ? 992 coargs->exp - coargs->now : coargs->exp); 993 } else if (coargs->flags & COF_BYIDH) { 994 mdb_printf("%-14x ", 995 (coargs->flags & COF_EXPREL) ? 996 coargs->exp - coargs->now : coargs->exp); 997 } 998 list_flags = coargs->list_flags; 999 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 1000 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 1001 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 1002 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 1003 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 1004 (long long)coid, co->c_func, co->c_arg); 1005 if (coargs->flags & COF_LONGLIST) { 1006 mdb_printf(" %-?p %-?p %-?p %-?p", 1007 co->c_idprev, co->c_idnext, co->c_clprev, 1008 co->c_clnext); 1009 mdb_printf(" %-?p %-4d %-0?p", 1010 co->c_done, co->c_waiting, co->c_executor); 1011 } 1012 } else { 1013 /* address only */ 1014 mdb_printf("%-0p", addr); 1015 } 1016 mdb_printf("\n"); 1017 return (WALK_NEXT); 1018 } 1019 1020 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 1021 /*ARGSUSED*/ 1022 static int 1023 callout_list_cb(uintptr_t addr, const void *data, void *priv) 1024 { 1025 callout_data_t *coargs = (callout_data_t *)priv; 1026 callout_list_t *cl = (callout_list_t *)data; 1027 callout_t *coptr; 1028 int list_flags; 1029 1030 if ((coargs == NULL) || (cl == NULL)) { 1031 return (WALK_ERR); 1032 } 1033 1034 coargs->exp = cl->cl_expiration; 1035 coargs->list_flags = cl->cl_flags; 1036 if ((coargs->flags & COF_FREE) && 1037 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1038 /* 1039 * The callout list must have been reallocated. No point in 1040 * walking any more. 1041 */ 1042 return (WALK_DONE); 1043 } 1044 if (!(coargs->flags & COF_FREE) && 1045 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1046 /* 1047 * The callout list must have been freed. No point in 1048 * walking any more. 1049 */ 1050 return (WALK_DONE); 1051 } 1052 if ((coargs->flags & COF_TIME) && 1053 (cl->cl_expiration != coargs->time)) { 1054 return (WALK_NEXT); 1055 } 1056 if ((coargs->flags & COF_BEFORE) && 1057 (cl->cl_expiration > coargs->btime)) { 1058 return (WALK_NEXT); 1059 } 1060 if ((coargs->flags & COF_AFTER) && 1061 (cl->cl_expiration < coargs->atime)) { 1062 return (WALK_NEXT); 1063 } 1064 if (!(coargs->flags & COF_EMPTY) && 1065 (cl->cl_callouts.ch_head == NULL)) { 1066 return (WALK_NEXT); 1067 } 1068 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 1069 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1070 /* both flags are set, only skip "regular" ones */ 1071 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 1072 return (WALK_NEXT); 1073 } 1074 } else { 1075 if ((coargs->flags & COF_HIRES) && 1076 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1077 return (WALK_NEXT); 1078 } 1079 if ((coargs->flags & COF_ABS) && 1080 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1081 return (WALK_NEXT); 1082 } 1083 } 1084 1085 if ((coargs->flags & COF_HEAP) && 1086 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1087 return (WALK_NEXT); 1088 } 1089 1090 if ((coargs->flags & COF_QUEUE) && 1091 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1092 return (WALK_NEXT); 1093 } 1094 1095 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 1096 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 1097 if (!(coargs->flags & COF_VERBOSE)) { 1098 /* don't be redundant again */ 1099 mdb_printf("%<u>SEQ T %</u>"); 1100 } 1101 mdb_printf("%<u>EXP HA BUCKET " 1102 "CALLOUTS %</u>"); 1103 1104 if (coargs->flags & COF_LONGLIST) { 1105 mdb_printf("%<u> %-?s %-?s%</u>", 1106 "PREV", "NEXT"); 1107 } 1108 mdb_printf("\n"); 1109 coargs->flags &= ~COF_LHDR; 1110 coargs->flags |= (COF_THDR | COF_CHDR); 1111 } 1112 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 1113 if (!(coargs->flags & COF_ADDR)) { 1114 if (!(coargs->flags & COF_VERBOSE)) { 1115 mdb_printf("%3d %1s ", 1116 TABLE_TO_SEQID(coargs->ndx), 1117 co_typenames[coargs->ndx & 1118 CALLOUT_TYPE_MASK]); 1119 } 1120 1121 list_flags = coargs->list_flags; 1122 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 1123 (coargs->flags & COF_EXPREL) ? 1124 coargs->exp - coargs->now : coargs->exp, 1125 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1126 "H" : " ", 1127 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1128 "A" : " ", 1129 coargs->bucket, cl->cl_callouts.ch_head); 1130 1131 if (coargs->flags & COF_LONGLIST) { 1132 mdb_printf(" %-?p %-?p", 1133 cl->cl_prev, cl->cl_next); 1134 } 1135 } else { 1136 /* address only */ 1137 mdb_printf("%-0p", addr); 1138 } 1139 mdb_printf("\n"); 1140 if (coargs->flags & COF_LIST) { 1141 return (WALK_NEXT); 1142 } 1143 } 1144 /* yet another layer as we walk the actual callouts via list. */ 1145 if (cl->cl_callouts.ch_head == NULL) { 1146 return (WALK_NEXT); 1147 } 1148 /* free list structures do not have valid callouts off of them. */ 1149 if (coargs->flags & COF_FREE) { 1150 return (WALK_NEXT); 1151 } 1152 coptr = (callout_t *)cl->cl_callouts.ch_head; 1153 1154 if (coargs->flags & COF_VERBOSE) { 1155 mdb_inc_indent(4); 1156 } 1157 /* 1158 * walk callouts using yet another callback routine. 1159 * we use callouts_bytime because id hash is handled via 1160 * the callout_t_cb callback. 1161 */ 1162 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1163 (uintptr_t)coptr) == -1) { 1164 mdb_warn("cannot walk callouts at %p", coptr); 1165 return (WALK_ERR); 1166 } 1167 if (coargs->flags & COF_VERBOSE) { 1168 mdb_dec_indent(4); 1169 } 1170 1171 return (WALK_NEXT); 1172 } 1173 1174 /* this callback handles the details of callout table walking. */ 1175 static int 1176 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1177 { 1178 callout_data_t *coargs = (callout_data_t *)priv; 1179 cot_data_t *cotwd = (cot_data_t *)data; 1180 callout_table_t *ct = &(cotwd->ct); 1181 int index, seqid, cotype; 1182 int i; 1183 callout_list_t *clptr; 1184 callout_t *coptr; 1185 1186 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1187 return (WALK_ERR); 1188 } 1189 1190 index = ((char *)addr - (char *)coargs->co_table) / 1191 sizeof (callout_table_t); 1192 cotype = index & CALLOUT_TYPE_MASK; 1193 seqid = TABLE_TO_SEQID(index); 1194 1195 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1196 return (WALK_NEXT); 1197 } 1198 1199 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1200 return (WALK_NEXT); 1201 } 1202 1203 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1204 return (WALK_NEXT); 1205 } 1206 1207 if (!(coargs->flags & COF_EMPTY) && ( 1208 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) { 1209 return (WALK_NEXT); 1210 } 1211 1212 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1213 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1214 /* print table hdr */ 1215 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1216 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1217 coargs->flags &= ~COF_THDR; 1218 coargs->flags |= (COF_LHDR | COF_CHDR); 1219 if (coargs->flags & COF_LONGLIST) { 1220 /* more info! */ 1221 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1222 " %-?s %-?s %-?s%</u>", 1223 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1224 "PEND", "FREE", "LOCK"); 1225 } 1226 mdb_printf("\n"); 1227 } 1228 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1229 if (!(coargs->flags & COF_ADDR)) { 1230 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1231 seqid, co_typenames[cotype], 1232 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1233 ct->ct_heap); 1234 if (coargs->flags & COF_LONGLIST) { 1235 /* more info! */ 1236 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1237 " %-?lld %-?lld %-?p", 1238 ct->ct_heap_num, ct->ct_heap_max, 1239 ct->ct_taskq, ct->ct_expired.ch_head, 1240 ct->ct_queue.ch_head, 1241 cotwd->ct_timeouts_pending, 1242 cotwd->ct_allocations - 1243 cotwd->ct_timeouts_pending, 1244 ct->ct_mutex); 1245 } 1246 } else { 1247 /* address only */ 1248 mdb_printf("%-0?p", addr); 1249 } 1250 mdb_printf("\n"); 1251 if (coargs->flags & COF_TABLE) { 1252 return (WALK_NEXT); 1253 } 1254 } 1255 1256 coargs->ndx = index; 1257 if (coargs->flags & COF_VERBOSE) { 1258 mdb_inc_indent(4); 1259 } 1260 /* keep digging. */ 1261 if (!(coargs->flags & COF_BYIDH)) { 1262 /* walk the list hash table */ 1263 if (coargs->flags & COF_FREE) { 1264 clptr = ct->ct_lfree; 1265 coargs->bucket = 0; 1266 if (clptr == NULL) { 1267 return (WALK_NEXT); 1268 } 1269 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1270 (uintptr_t)clptr) == -1) { 1271 mdb_warn("cannot walk callout free list at %p", 1272 clptr); 1273 return (WALK_ERR); 1274 } 1275 } else { 1276 /* first print the expired list. */ 1277 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1278 if (clptr != NULL) { 1279 coargs->bucket = -1; 1280 if (mdb_pwalk("callout_list", callout_list_cb, 1281 coargs, (uintptr_t)clptr) == -1) { 1282 mdb_warn("cannot walk callout_list" 1283 " at %p", clptr); 1284 return (WALK_ERR); 1285 } 1286 } 1287 /* then, print the callout queue */ 1288 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1289 if (clptr != NULL) { 1290 coargs->bucket = -1; 1291 if (mdb_pwalk("callout_list", callout_list_cb, 1292 coargs, (uintptr_t)clptr) == -1) { 1293 mdb_warn("cannot walk callout_list" 1294 " at %p", clptr); 1295 return (WALK_ERR); 1296 } 1297 } 1298 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1299 if (ct->ct_clhash == NULL) { 1300 /* nothing to do */ 1301 break; 1302 } 1303 if (cotwd->cot_clhash[i].ch_head == NULL) { 1304 continue; 1305 } 1306 clptr = (callout_list_t *) 1307 cotwd->cot_clhash[i].ch_head; 1308 coargs->bucket = i; 1309 /* walk list with callback routine. */ 1310 if (mdb_pwalk("callout_list", callout_list_cb, 1311 coargs, (uintptr_t)clptr) == -1) { 1312 mdb_warn("cannot walk callout_list" 1313 " at %p", clptr); 1314 return (WALK_ERR); 1315 } 1316 } 1317 } 1318 } else { 1319 /* walk the id hash table. */ 1320 if (coargs->flags & COF_FREE) { 1321 coptr = ct->ct_free; 1322 coargs->bucket = 0; 1323 if (coptr == NULL) { 1324 return (WALK_NEXT); 1325 } 1326 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1327 (uintptr_t)coptr) == -1) { 1328 mdb_warn("cannot walk callout id free list" 1329 " at %p", coptr); 1330 return (WALK_ERR); 1331 } 1332 } else { 1333 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1334 if (ct->ct_idhash == NULL) { 1335 break; 1336 } 1337 coptr = (callout_t *) 1338 cotwd->cot_idhash[i].ch_head; 1339 if (coptr == NULL) { 1340 continue; 1341 } 1342 coargs->bucket = i; 1343 1344 /* 1345 * walk callouts directly by id. For id 1346 * chain, the callout list is just a header, 1347 * so there's no need to walk it. 1348 */ 1349 if (mdb_pwalk("callouts_byid", callouts_cb, 1350 coargs, (uintptr_t)coptr) == -1) { 1351 mdb_warn("cannot walk callouts at %p", 1352 coptr); 1353 return (WALK_ERR); 1354 } 1355 } 1356 } 1357 } 1358 if (coargs->flags & COF_VERBOSE) { 1359 mdb_dec_indent(4); 1360 } 1361 return (WALK_NEXT); 1362 } 1363 1364 /* 1365 * initialize some common info for both callout dcmds. 1366 */ 1367 int 1368 callout_common_init(callout_data_t *coargs) 1369 { 1370 /* we need a couple of things */ 1371 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1372 mdb_warn("failed to read 'callout_table'"); 1373 return (DCMD_ERR); 1374 } 1375 /* need to get now in nsecs. Approximate with hrtime vars */ 1376 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1377 sizeof (hrtime_t)) { 1378 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1379 "hrtime_base") != sizeof (hrtime_t)) { 1380 mdb_warn("Could not determine current system time"); 1381 return (DCMD_ERR); 1382 } 1383 } 1384 1385 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1386 mdb_warn("failed to read 'callout_table_bits'"); 1387 return (DCMD_ERR); 1388 } 1389 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1390 mdb_warn("failed to read 'nsec_per_tick'"); 1391 return (DCMD_ERR); 1392 } 1393 return (DCMD_OK); 1394 } 1395 1396 /* 1397 * dcmd to print callouts. Optional addr limits to specific table. 1398 * Parses lots of options that get passed to callbacks for walkers. 1399 * Has it's own help function. 1400 */ 1401 /*ARGSUSED*/ 1402 int 1403 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1404 { 1405 callout_data_t coargs; 1406 /* getopts doesn't help much with stuff like this */ 1407 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1408 char *funcname = NULL; 1409 char *paramstr = NULL; 1410 uintptr_t Stmp, Ctmp; /* for getopt. */ 1411 int retval; 1412 1413 coargs.flags = COF_DEFAULT; 1414 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1415 coargs.seqid = -1; 1416 1417 if (mdb_getopts(argc, argv, 1418 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1419 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1420 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1421 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1422 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1423 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1424 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1425 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1426 'd', MDB_OPT_SETBITS, 1, &dflag, 1427 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1428 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1429 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1430 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1431 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1432 'k', MDB_OPT_SETBITS, 1, &kflag, 1433 'f', MDB_OPT_STR, &funcname, 1434 'p', MDB_OPT_STR, ¶mstr, 1435 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1436 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1437 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1438 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1439 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1440 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1441 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1442 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1443 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1444 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1445 NULL) != argc) { 1446 return (DCMD_USAGE); 1447 } 1448 1449 /* initialize from kernel variables */ 1450 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1451 return (retval); 1452 } 1453 1454 /* do some option post-processing */ 1455 if (kflag) { 1456 coargs.time *= coargs.nsec_per_tick; 1457 coargs.atime *= coargs.nsec_per_tick; 1458 coargs.btime *= coargs.nsec_per_tick; 1459 } 1460 1461 if (dflag) { 1462 coargs.time += coargs.now; 1463 coargs.atime += coargs.now; 1464 coargs.btime += coargs.now; 1465 } 1466 if (Sflag) { 1467 if (flags & DCMD_ADDRSPEC) { 1468 mdb_printf("-S option conflicts with explicit" 1469 " address\n"); 1470 return (DCMD_USAGE); 1471 } 1472 coargs.flags |= COF_SEQID; 1473 coargs.seqid = (int)Stmp; 1474 } 1475 if (Cflag) { 1476 if (flags & DCMD_ADDRSPEC) { 1477 mdb_printf("-C option conflicts with explicit" 1478 " address\n"); 1479 return (DCMD_USAGE); 1480 } 1481 if (coargs.flags & COF_SEQID) { 1482 mdb_printf("-C and -S are mutually exclusive\n"); 1483 return (DCMD_USAGE); 1484 } 1485 coargs.cpu = (cpu_t *)Ctmp; 1486 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1487 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1488 mdb_warn("failed to read cpu_t at %p", Ctmp); 1489 return (DCMD_ERR); 1490 } 1491 coargs.flags |= COF_SEQID; 1492 } 1493 /* avoid null outputs. */ 1494 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1495 coargs.flags |= COF_REAL | COF_NORM; 1496 } 1497 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1498 coargs.flags |= COF_LONG | COF_SHORT; 1499 } 1500 if (tflag) { 1501 if (aflag || bflag) { 1502 mdb_printf("-t and -a|b are mutually exclusive\n"); 1503 return (DCMD_USAGE); 1504 } 1505 coargs.flags |= COF_TIME; 1506 } 1507 if (aflag) { 1508 coargs.flags |= COF_AFTER; 1509 } 1510 if (bflag) { 1511 coargs.flags |= COF_BEFORE; 1512 } 1513 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1514 mdb_printf("value for -a must be earlier than the value" 1515 " for -b.\n"); 1516 return (DCMD_USAGE); 1517 } 1518 1519 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1520 mdb_printf("-H and -Q are mutually exclusive\n"); 1521 return (DCMD_USAGE); 1522 } 1523 1524 if (funcname != NULL) { 1525 GElf_Sym sym; 1526 1527 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1528 coargs.funcaddr = mdb_strtoull(funcname); 1529 } else { 1530 coargs.funcaddr = sym.st_value; 1531 } 1532 coargs.flags |= COF_FUNC; 1533 } 1534 1535 if (paramstr != NULL) { 1536 GElf_Sym sym; 1537 1538 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1539 coargs.param = mdb_strtoull(paramstr); 1540 } else { 1541 coargs.param = sym.st_value; 1542 } 1543 coargs.flags |= COF_PARAM; 1544 } 1545 1546 if (!(flags & DCMD_ADDRSPEC)) { 1547 /* don't pass "dot" if no addr. */ 1548 addr = 0; 1549 } 1550 if (addr != 0) { 1551 /* 1552 * a callout table was specified. Ignore -r|n option 1553 * to avoid null output. 1554 */ 1555 coargs.flags |= (COF_REAL | COF_NORM); 1556 } 1557 1558 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1559 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1560 } 1561 if (coargs.flags & COF_FREE) { 1562 coargs.flags |= COF_EMPTY; 1563 /* -F = free callouts, -FL = free lists */ 1564 if (!(coargs.flags & COF_LIST)) { 1565 coargs.flags |= COF_BYIDH; 1566 } 1567 } 1568 1569 /* walk table, using specialized callback routine. */ 1570 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1571 mdb_warn("cannot walk callout_table"); 1572 return (DCMD_ERR); 1573 } 1574 return (DCMD_OK); 1575 } 1576 1577 1578 /* 1579 * Given an extended callout id, dump its information. 1580 */ 1581 /*ARGSUSED*/ 1582 int 1583 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1584 { 1585 callout_data_t coargs; 1586 callout_table_t *ctptr; 1587 callout_table_t ct; 1588 callout_id_t coid; 1589 callout_t *coptr; 1590 int tableid; 1591 callout_id_t xid; 1592 ulong_t idhash; 1593 int i, retval; 1594 const mdb_arg_t *arg; 1595 size_t size; 1596 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1597 1598 coargs.flags = COF_DEFAULT | COF_BYIDH; 1599 i = mdb_getopts(argc, argv, 1600 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1601 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1602 NULL); 1603 argc -= i; 1604 argv += i; 1605 1606 if (argc != 1) { 1607 return (DCMD_USAGE); 1608 } 1609 arg = &argv[0]; 1610 1611 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1612 xid = arg->a_un.a_val; 1613 } else { 1614 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1615 } 1616 1617 if (DCMD_HDRSPEC(flags)) { 1618 coargs.flags |= COF_CHDR; 1619 } 1620 1621 1622 /* initialize from kernel variables */ 1623 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1624 return (retval); 1625 } 1626 1627 /* we must massage the environment so that the macros will play nice */ 1628 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1629 #define callout_table_bits coargs.ctbits 1630 #define nsec_per_tick coargs.nsec_per_tick 1631 tableid = CALLOUT_ID_TO_TABLE(xid); 1632 idhash = CALLOUT_IDHASH(xid); 1633 #undef callouts_table_bits 1634 #undef callout_table_mask 1635 #undef nsec_per_tick 1636 coid = CO_PLAIN_ID(xid); 1637 1638 if (flags & DCMD_ADDRSPEC) { 1639 mdb_printf("calloutid does not accept explicit address.\n"); 1640 return (DCMD_USAGE); 1641 } 1642 1643 if (coargs.flags & COF_DECODE) { 1644 if (DCMD_HDRSPEC(flags)) { 1645 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1646 "SEQ", "T", "XL", "XID", "IDHASH"); 1647 } 1648 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1649 TABLE_TO_SEQID(tableid), 1650 co_typenames[tableid & CALLOUT_TYPE_MASK], 1651 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1652 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1653 (long long)coid, idhash); 1654 return (DCMD_OK); 1655 } 1656 1657 /* get our table. Note this relies on the types being correct */ 1658 ctptr = coargs.co_table + tableid; 1659 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1660 mdb_warn("failed to read callout_table at %p", ctptr); 1661 return (DCMD_ERR); 1662 } 1663 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1664 if (ct.ct_idhash != NULL) { 1665 if (mdb_vread(&(cot_idhash), size, 1666 (uintptr_t)ct.ct_idhash) == -1) { 1667 mdb_warn("failed to read id_hash at %p", 1668 ct.ct_idhash); 1669 return (WALK_ERR); 1670 } 1671 } 1672 1673 /* callout at beginning of hash chain */ 1674 if (ct.ct_idhash == NULL) { 1675 mdb_printf("id hash chain for this xid is empty\n"); 1676 return (DCMD_ERR); 1677 } 1678 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1679 if (coptr == NULL) { 1680 mdb_printf("id hash chain for this xid is empty\n"); 1681 return (DCMD_ERR); 1682 } 1683 1684 coargs.ndx = tableid; 1685 coargs.bucket = idhash; 1686 1687 /* use the walker, luke */ 1688 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1689 (uintptr_t)coptr) == -1) { 1690 mdb_warn("cannot walk callouts at %p", coptr); 1691 return (WALK_ERR); 1692 } 1693 1694 return (DCMD_OK); 1695 } 1696 1697 void 1698 callout_help(void) 1699 { 1700 mdb_printf("callout: display callouts.\n" 1701 "Given a callout table address, display callouts from table.\n" 1702 "Without an address, display callouts from all tables.\n" 1703 "options:\n" 1704 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1705 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1706 " -x : limit display to callouts which are executing\n" 1707 " -h : limit display to callouts based on hrestime\n" 1708 " -B : limit display to callouts based on absolute time\n" 1709 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1710 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1711 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1712 " -d : interpret time option to -t|a|b as delta from current time\n" 1713 " -k : use ticks instead of nanoseconds as arguments to" 1714 " -t|a|b. Note that\n ticks are less accurate and may not" 1715 " match other tick times (ie: lbolt).\n" 1716 " -D : display exiration time as delta from current time\n" 1717 " -S seqid : limit display to callouts for this cpu sequence id\n" 1718 " -C addr : limit display to callouts for this cpu pointer\n" 1719 " -f name|addr : limit display to callouts with this function\n" 1720 " -p name|addr : limit display to callouts functions with this" 1721 " parameter\n" 1722 " -T : display the callout table itself, instead of callouts\n" 1723 " -L : display callout lists instead of callouts\n" 1724 " -E : with -T or L, display empty data structures.\n" 1725 " -i : traverse callouts by id hash instead of list hash\n" 1726 " -F : walk free callout list (free list with -i) instead\n" 1727 " -v : display more info for each item\n" 1728 " -V : show details of each level of info as it is traversed\n" 1729 " -H : limit display to callouts in the callout heap\n" 1730 " -Q : limit display to callouts in the callout queue\n" 1731 " -A : show only addresses. Useful for pipelines.\n"); 1732 } 1733 1734 void 1735 calloutid_help(void) 1736 { 1737 mdb_printf("calloutid: display callout by id.\n" 1738 "Given an extended callout id, display the callout infomation.\n" 1739 "options:\n" 1740 " -d : do not dereference callout, just decode the id.\n" 1741 " -v : verbose display more info about the callout\n"); 1742 } 1743 1744 /*ARGSUSED*/ 1745 int 1746 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1747 { 1748 long num_classes, i; 1749 sclass_t *class_tbl; 1750 GElf_Sym g_sclass; 1751 char class_name[PC_CLNMSZ]; 1752 size_t tbl_size; 1753 1754 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1755 mdb_warn("failed to find symbol sclass\n"); 1756 return (DCMD_ERR); 1757 } 1758 1759 tbl_size = (size_t)g_sclass.st_size; 1760 num_classes = tbl_size / (sizeof (sclass_t)); 1761 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1762 1763 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1764 mdb_warn("failed to read sclass"); 1765 return (DCMD_ERR); 1766 } 1767 1768 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1769 "INIT FCN", "CLASS FCN"); 1770 1771 for (i = 0; i < num_classes; i++) { 1772 if (mdb_vread(class_name, sizeof (class_name), 1773 (uintptr_t)class_tbl[i].cl_name) == -1) 1774 (void) strcpy(class_name, "???"); 1775 1776 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1777 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1778 } 1779 1780 return (DCMD_OK); 1781 } 1782 1783 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1784 1785 int 1786 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1787 { 1788 uintptr_t rootdir; 1789 vnode_t vn; 1790 char buf[MAXPATHLEN]; 1791 1792 uint_t opt_F = FALSE; 1793 1794 if (mdb_getopts(argc, argv, 1795 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1796 return (DCMD_USAGE); 1797 1798 if (!(flags & DCMD_ADDRSPEC)) { 1799 mdb_warn("expected explicit vnode_t address before ::\n"); 1800 return (DCMD_USAGE); 1801 } 1802 1803 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1804 mdb_warn("failed to read rootdir"); 1805 return (DCMD_ERR); 1806 } 1807 1808 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1809 return (DCMD_ERR); 1810 1811 if (*buf == '\0') { 1812 mdb_printf("??\n"); 1813 return (DCMD_OK); 1814 } 1815 1816 mdb_printf("%s", buf); 1817 if (opt_F && buf[strlen(buf)-1] != '/' && 1818 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1819 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1820 mdb_printf("\n"); 1821 1822 return (DCMD_OK); 1823 } 1824 1825 int 1826 ld_walk_init(mdb_walk_state_t *wsp) 1827 { 1828 wsp->walk_data = (void *)wsp->walk_addr; 1829 return (WALK_NEXT); 1830 } 1831 1832 int 1833 ld_walk_step(mdb_walk_state_t *wsp) 1834 { 1835 int status; 1836 lock_descriptor_t ld; 1837 1838 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1839 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1840 wsp->walk_addr); 1841 return (WALK_ERR); 1842 } 1843 1844 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1845 if (status == WALK_ERR) 1846 return (WALK_ERR); 1847 1848 wsp->walk_addr = (uintptr_t)ld.l_next; 1849 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1850 return (WALK_DONE); 1851 1852 return (status); 1853 } 1854 1855 int 1856 lg_walk_init(mdb_walk_state_t *wsp) 1857 { 1858 GElf_Sym sym; 1859 1860 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1861 mdb_warn("failed to find symbol 'lock_graph'\n"); 1862 return (WALK_ERR); 1863 } 1864 1865 wsp->walk_addr = (uintptr_t)sym.st_value; 1866 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1867 1868 return (WALK_NEXT); 1869 } 1870 1871 typedef struct lg_walk_data { 1872 uintptr_t startaddr; 1873 mdb_walk_cb_t callback; 1874 void *data; 1875 } lg_walk_data_t; 1876 1877 /* 1878 * We can't use ::walk lock_descriptor directly, because the head of each graph 1879 * is really a dummy lock. Rather than trying to dynamically determine if this 1880 * is a dummy node or not, we just filter out the initial element of the 1881 * list. 1882 */ 1883 static int 1884 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1885 { 1886 lg_walk_data_t *lw = priv; 1887 1888 if (addr != lw->startaddr) 1889 return (lw->callback(addr, data, lw->data)); 1890 1891 return (WALK_NEXT); 1892 } 1893 1894 int 1895 lg_walk_step(mdb_walk_state_t *wsp) 1896 { 1897 graph_t *graph; 1898 lg_walk_data_t lw; 1899 1900 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1901 return (WALK_DONE); 1902 1903 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1904 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1905 return (WALK_ERR); 1906 } 1907 1908 wsp->walk_addr += sizeof (graph); 1909 1910 if (graph == NULL) 1911 return (WALK_NEXT); 1912 1913 lw.callback = wsp->walk_callback; 1914 lw.data = wsp->walk_cbdata; 1915 1916 lw.startaddr = (uintptr_t)&(graph->active_locks); 1917 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1918 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1919 return (WALK_ERR); 1920 } 1921 1922 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1923 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1924 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1925 return (WALK_ERR); 1926 } 1927 1928 return (WALK_NEXT); 1929 } 1930 1931 /* 1932 * The space available for the path corresponding to the locked vnode depends 1933 * on whether we are printing 32- or 64-bit addresses. 1934 */ 1935 #ifdef _LP64 1936 #define LM_VNPATHLEN 20 1937 #else 1938 #define LM_VNPATHLEN 30 1939 #endif 1940 1941 typedef struct mdb_lminfo_proc { 1942 struct { 1943 char u_comm[MAXCOMLEN + 1]; 1944 } p_user; 1945 } mdb_lminfo_proc_t; 1946 1947 /*ARGSUSED*/ 1948 static int 1949 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1950 { 1951 const lock_descriptor_t *ld = data; 1952 char buf[LM_VNPATHLEN]; 1953 mdb_lminfo_proc_t p; 1954 uintptr_t paddr = 0; 1955 1956 if (ld->l_flock.l_pid != 0) 1957 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL); 1958 1959 if (paddr != 0) 1960 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0); 1961 1962 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1963 addr, ld->l_type == F_RDLCK ? "RD" : 1964 ld->l_type == F_WRLCK ? "WR" : "??", 1965 ld->l_state, ld->l_flock.l_pid, 1966 ld->l_flock.l_pid == 0 ? "<kernel>" : 1967 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode); 1968 1969 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1970 sizeof (buf)); 1971 mdb_printf("%s\n", buf); 1972 1973 return (WALK_NEXT); 1974 } 1975 1976 /*ARGSUSED*/ 1977 int 1978 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1979 { 1980 if (DCMD_HDRSPEC(flags)) 1981 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1982 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1983 1984 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0)); 1985 } 1986 1987 /*ARGSUSED*/ 1988 int 1989 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1990 { 1991 if ((uintptr_t)f->f_vnode == *target) { 1992 mdb_printf("file %p\n", addr); 1993 *target = 0; 1994 } 1995 1996 return (WALK_NEXT); 1997 } 1998 1999 /*ARGSUSED*/ 2000 int 2001 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 2002 { 2003 uintptr_t t = *target; 2004 2005 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 2006 mdb_warn("couldn't file walk proc %p", addr); 2007 return (WALK_ERR); 2008 } 2009 2010 if (t == 0) 2011 mdb_printf("%p\n", addr); 2012 2013 return (WALK_NEXT); 2014 } 2015 2016 /*ARGSUSED*/ 2017 int 2018 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2019 { 2020 uintptr_t target = addr; 2021 2022 if (!(flags & DCMD_ADDRSPEC) || addr == 0) 2023 return (DCMD_USAGE); 2024 2025 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 2026 mdb_warn("can't proc walk"); 2027 return (DCMD_ERR); 2028 } 2029 2030 return (DCMD_OK); 2031 } 2032 2033 typedef struct datafmt { 2034 char *hdr1; 2035 char *hdr2; 2036 char *dashes; 2037 char *fmt; 2038 } datafmt_t; 2039 2040 static datafmt_t kmemfmt[] = { 2041 { "cache ", "name ", 2042 "-------------------------", "%-25s " }, 2043 { " buf", " size", "------", "%6u " }, 2044 { " buf", "in use", "------", "%6u " }, 2045 { " buf", " total", "------", "%6u " }, 2046 { " memory", " in use", "----------", "%10lu%c " }, 2047 { " alloc", " succeed", "---------", "%9u " }, 2048 { "alloc", " fail", "-----", "%5u " }, 2049 { NULL, NULL, NULL, NULL } 2050 }; 2051 2052 static datafmt_t vmemfmt[] = { 2053 { "vmem ", "name ", 2054 "-------------------------", "%-*s " }, 2055 { " memory", " in use", "----------", "%9llu%c " }, 2056 { " memory", " total", "-----------", "%10llu%c " }, 2057 { " memory", " import", "----------", "%9llu%c " }, 2058 { " alloc", " succeed", "---------", "%9llu " }, 2059 { "alloc", " fail", "-----", "%5llu " }, 2060 { NULL, NULL, NULL, NULL } 2061 }; 2062 2063 /*ARGSUSED*/ 2064 static int 2065 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2066 { 2067 short rounds, prounds; 2068 2069 if (KMEM_DUMPCC(ccp)) { 2070 rounds = ccp->cc_dump_rounds; 2071 prounds = ccp->cc_dump_prounds; 2072 } else { 2073 rounds = ccp->cc_rounds; 2074 prounds = ccp->cc_prounds; 2075 } 2076 if (rounds > 0) 2077 *avail += rounds; 2078 if (prounds > 0) 2079 *avail += prounds; 2080 2081 return (WALK_NEXT); 2082 } 2083 2084 /*ARGSUSED*/ 2085 static int 2086 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2087 { 2088 *alloc += ccp->cc_alloc; 2089 2090 return (WALK_NEXT); 2091 } 2092 2093 /*ARGSUSED*/ 2094 static int 2095 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2096 { 2097 *avail += sp->slab_chunks - sp->slab_refcnt; 2098 2099 return (WALK_NEXT); 2100 } 2101 2102 typedef struct kmastat_vmem { 2103 uintptr_t kv_addr; 2104 struct kmastat_vmem *kv_next; 2105 size_t kv_meminuse; 2106 int kv_alloc; 2107 int kv_fail; 2108 } kmastat_vmem_t; 2109 2110 typedef struct kmastat_args { 2111 kmastat_vmem_t **ka_kvpp; 2112 uint_t ka_shift; 2113 } kmastat_args_t; 2114 2115 static int 2116 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2117 { 2118 kmastat_vmem_t **kvpp = kap->ka_kvpp; 2119 kmastat_vmem_t *kv; 2120 datafmt_t *dfp = kmemfmt; 2121 int magsize; 2122 2123 int avail, alloc, total; 2124 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2125 cp->cache_slabsize; 2126 2127 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2128 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2129 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2130 2131 magsize = kmem_get_magsize(cp); 2132 2133 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2134 avail = cp->cache_full.ml_total * magsize; 2135 total = cp->cache_buftotal; 2136 2137 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2138 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2139 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2140 2141 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2142 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2143 goto out; 2144 } 2145 2146 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2147 kv->kv_next = *kvpp; 2148 kv->kv_addr = (uintptr_t)cp->cache_arena; 2149 *kvpp = kv; 2150 out: 2151 kv->kv_meminuse += meminuse; 2152 kv->kv_alloc += alloc; 2153 kv->kv_fail += cp->cache_alloc_fail; 2154 2155 mdb_printf((dfp++)->fmt, cp->cache_name); 2156 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2157 mdb_printf((dfp++)->fmt, total - avail); 2158 mdb_printf((dfp++)->fmt, total); 2159 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2160 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2161 kap->ka_shift == KILOS ? 'K' : 'B'); 2162 mdb_printf((dfp++)->fmt, alloc); 2163 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2164 mdb_printf("\n"); 2165 2166 return (WALK_NEXT); 2167 } 2168 2169 static int 2170 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2171 { 2172 kmastat_vmem_t *kv = *kap->ka_kvpp; 2173 size_t len; 2174 2175 while (kv != NULL && kv->kv_addr != addr) 2176 kv = kv->kv_next; 2177 2178 if (kv == NULL || kv->kv_alloc == 0) 2179 return (WALK_NEXT); 2180 2181 len = MIN(17, strlen(v->vm_name)); 2182 2183 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2184 17 - len, "", "", "", "", 2185 kv->kv_meminuse >> kap->ka_shift, 2186 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2187 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2188 2189 return (WALK_NEXT); 2190 } 2191 2192 /*ARGSUSED*/ 2193 static int 2194 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2195 { 2196 datafmt_t *dfp = vmemfmt; 2197 const vmem_kstat_t *vkp = &v->vm_kstat; 2198 uintptr_t paddr; 2199 vmem_t parent; 2200 int ident = 0; 2201 2202 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) { 2203 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2204 mdb_warn("couldn't trace %p's ancestry", addr); 2205 ident = 0; 2206 break; 2207 } 2208 paddr = (uintptr_t)parent.vm_source; 2209 } 2210 2211 mdb_printf("%*s", ident, ""); 2212 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2213 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2214 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2215 *shiftp == KILOS ? 'K' : 'B'); 2216 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2217 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2218 *shiftp == KILOS ? 'K' : 'B'); 2219 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2220 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2221 *shiftp == KILOS ? 'K' : 'B'); 2222 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2223 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2224 2225 mdb_printf("\n"); 2226 2227 return (WALK_NEXT); 2228 } 2229 2230 /*ARGSUSED*/ 2231 int 2232 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2233 { 2234 kmastat_vmem_t *kv = NULL; 2235 datafmt_t *dfp; 2236 kmastat_args_t ka; 2237 2238 ka.ka_shift = 0; 2239 if (mdb_getopts(argc, argv, 2240 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2241 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2242 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2243 return (DCMD_USAGE); 2244 2245 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2246 mdb_printf("%s ", dfp->hdr1); 2247 mdb_printf("\n"); 2248 2249 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2250 mdb_printf("%s ", dfp->hdr2); 2251 mdb_printf("\n"); 2252 2253 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2254 mdb_printf("%s ", dfp->dashes); 2255 mdb_printf("\n"); 2256 2257 ka.ka_kvpp = &kv; 2258 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2259 mdb_warn("can't walk 'kmem_cache'"); 2260 return (DCMD_ERR); 2261 } 2262 2263 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2264 mdb_printf("%s ", dfp->dashes); 2265 mdb_printf("\n"); 2266 2267 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2268 mdb_warn("can't walk 'vmem'"); 2269 return (DCMD_ERR); 2270 } 2271 2272 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2273 mdb_printf("%s ", dfp->dashes); 2274 mdb_printf("\n"); 2275 2276 mdb_printf("\n"); 2277 2278 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2279 mdb_printf("%s ", dfp->hdr1); 2280 mdb_printf("\n"); 2281 2282 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2283 mdb_printf("%s ", dfp->hdr2); 2284 mdb_printf("\n"); 2285 2286 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2287 mdb_printf("%s ", dfp->dashes); 2288 mdb_printf("\n"); 2289 2290 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2291 mdb_warn("can't walk 'vmem'"); 2292 return (DCMD_ERR); 2293 } 2294 2295 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2296 mdb_printf("%s ", dfp->dashes); 2297 mdb_printf("\n"); 2298 return (DCMD_OK); 2299 } 2300 2301 /* 2302 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2303 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2304 * unfortunately, a few of the segs are both large and sparse, so we could 2305 * spend quite a bit of time scanning VAs which have no backing pages. 2306 * 2307 * So for the few very sparse segs, we skip the segment itself, and scan 2308 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2309 * Currently, we do this for: 2310 * 2311 * SEG VMEM ARENA 2312 * kvseg heap_arena 2313 * kvseg32 heap32_arena 2314 * kvseg_core heap_core_arena 2315 * 2316 * In addition, we skip the segkpm segment in its entirety, since it is very 2317 * sparse, and contains no new kernel data. 2318 */ 2319 typedef struct kgrep_walk_data { 2320 kgrep_cb_func *kg_cb; 2321 void *kg_cbdata; 2322 uintptr_t kg_kvseg; 2323 uintptr_t kg_kvseg32; 2324 uintptr_t kg_kvseg_core; 2325 uintptr_t kg_segkpm; 2326 uintptr_t kg_heap_lp_base; 2327 uintptr_t kg_heap_lp_end; 2328 } kgrep_walk_data_t; 2329 2330 static int 2331 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2332 { 2333 uintptr_t base = (uintptr_t)seg->s_base; 2334 2335 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2336 addr == kg->kg_kvseg_core) 2337 return (WALK_NEXT); 2338 2339 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2340 return (WALK_NEXT); 2341 2342 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2343 } 2344 2345 /*ARGSUSED*/ 2346 static int 2347 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2348 { 2349 /* 2350 * skip large page heap address range - it is scanned by walking 2351 * allocated vmem_segs in the heap_lp_arena 2352 */ 2353 if (seg->vs_start == kg->kg_heap_lp_base && 2354 seg->vs_end == kg->kg_heap_lp_end) 2355 return (WALK_NEXT); 2356 2357 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2358 } 2359 2360 /*ARGSUSED*/ 2361 static int 2362 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2363 { 2364 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2365 } 2366 2367 static int 2368 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2369 { 2370 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2371 2372 if (strcmp(vmem->vm_name, "heap") != 0 && 2373 strcmp(vmem->vm_name, "heap32") != 0 && 2374 strcmp(vmem->vm_name, "heap_core") != 0 && 2375 strcmp(vmem->vm_name, "heap_lp") != 0) 2376 return (WALK_NEXT); 2377 2378 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2379 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2380 2381 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2382 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2383 return (WALK_ERR); 2384 } 2385 2386 return (WALK_NEXT); 2387 } 2388 2389 int 2390 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2391 { 2392 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2393 kgrep_walk_data_t kg; 2394 2395 if (mdb_get_state() == MDB_STATE_RUNNING) { 2396 mdb_warn("kgrep can only be run on a system " 2397 "dump or under kmdb; see dumpadm(1M)\n"); 2398 return (DCMD_ERR); 2399 } 2400 2401 if (mdb_lookup_by_name("kas", &kas) == -1) { 2402 mdb_warn("failed to locate 'kas' symbol\n"); 2403 return (DCMD_ERR); 2404 } 2405 2406 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2407 mdb_warn("failed to locate 'kvseg' symbol\n"); 2408 return (DCMD_ERR); 2409 } 2410 2411 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2412 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2413 return (DCMD_ERR); 2414 } 2415 2416 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2417 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2418 return (DCMD_ERR); 2419 } 2420 2421 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2422 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2423 return (DCMD_ERR); 2424 } 2425 2426 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2427 mdb_warn("failed to read 'heap_lp_base'\n"); 2428 return (DCMD_ERR); 2429 } 2430 2431 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2432 mdb_warn("failed to read 'heap_lp_end'\n"); 2433 return (DCMD_ERR); 2434 } 2435 2436 kg.kg_cb = cb; 2437 kg.kg_cbdata = cbdata; 2438 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2439 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2440 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2441 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2442 2443 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2444 &kg, kas.st_value) == -1) { 2445 mdb_warn("failed to walk kas segments"); 2446 return (DCMD_ERR); 2447 } 2448 2449 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2450 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2451 return (DCMD_ERR); 2452 } 2453 2454 return (DCMD_OK); 2455 } 2456 2457 size_t 2458 kgrep_subr_pagesize(void) 2459 { 2460 return (PAGESIZE); 2461 } 2462 2463 typedef struct file_walk_data { 2464 struct uf_entry *fw_flist; 2465 int fw_flistsz; 2466 int fw_ndx; 2467 int fw_nofiles; 2468 } file_walk_data_t; 2469 2470 typedef struct mdb_file_proc { 2471 struct { 2472 struct { 2473 int fi_nfiles; 2474 uf_entry_t *volatile fi_list; 2475 } u_finfo; 2476 } p_user; 2477 } mdb_file_proc_t; 2478 2479 int 2480 file_walk_init(mdb_walk_state_t *wsp) 2481 { 2482 file_walk_data_t *fw; 2483 mdb_file_proc_t p; 2484 2485 if (wsp->walk_addr == 0) { 2486 mdb_warn("file walk doesn't support global walks\n"); 2487 return (WALK_ERR); 2488 } 2489 2490 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2491 2492 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t", 2493 wsp->walk_addr, 0) == -1) { 2494 mdb_free(fw, sizeof (file_walk_data_t)); 2495 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2496 return (WALK_ERR); 2497 } 2498 2499 if (p.p_user.u_finfo.fi_nfiles == 0) { 2500 mdb_free(fw, sizeof (file_walk_data_t)); 2501 return (WALK_DONE); 2502 } 2503 2504 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2505 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2506 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2507 2508 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2509 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2510 mdb_warn("failed to read file array at %p", 2511 p.p_user.u_finfo.fi_list); 2512 mdb_free(fw->fw_flist, fw->fw_flistsz); 2513 mdb_free(fw, sizeof (file_walk_data_t)); 2514 return (WALK_ERR); 2515 } 2516 2517 fw->fw_ndx = 0; 2518 wsp->walk_data = fw; 2519 2520 return (WALK_NEXT); 2521 } 2522 2523 int 2524 file_walk_step(mdb_walk_state_t *wsp) 2525 { 2526 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2527 struct file file; 2528 uintptr_t fp; 2529 2530 again: 2531 if (fw->fw_ndx == fw->fw_nofiles) 2532 return (WALK_DONE); 2533 2534 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0) 2535 goto again; 2536 2537 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2538 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2539 } 2540 2541 int 2542 allfile_walk_step(mdb_walk_state_t *wsp) 2543 { 2544 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2545 struct file file; 2546 uintptr_t fp; 2547 2548 if (fw->fw_ndx == fw->fw_nofiles) 2549 return (WALK_DONE); 2550 2551 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0) 2552 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2553 else 2554 bzero(&file, sizeof (file)); 2555 2556 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2557 } 2558 2559 void 2560 file_walk_fini(mdb_walk_state_t *wsp) 2561 { 2562 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2563 2564 mdb_free(fw->fw_flist, fw->fw_flistsz); 2565 mdb_free(fw, sizeof (file_walk_data_t)); 2566 } 2567 2568 int 2569 port_walk_init(mdb_walk_state_t *wsp) 2570 { 2571 if (wsp->walk_addr == 0) { 2572 mdb_warn("port walk doesn't support global walks\n"); 2573 return (WALK_ERR); 2574 } 2575 2576 if (mdb_layered_walk("file", wsp) == -1) { 2577 mdb_warn("couldn't walk 'file'"); 2578 return (WALK_ERR); 2579 } 2580 return (WALK_NEXT); 2581 } 2582 2583 int 2584 port_walk_step(mdb_walk_state_t *wsp) 2585 { 2586 struct vnode vn; 2587 uintptr_t vp; 2588 uintptr_t pp; 2589 struct port port; 2590 2591 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2592 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2593 mdb_warn("failed to read vnode_t at %p", vp); 2594 return (WALK_ERR); 2595 } 2596 if (vn.v_type != VPORT) 2597 return (WALK_NEXT); 2598 2599 pp = (uintptr_t)vn.v_data; 2600 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2601 mdb_warn("failed to read port_t at %p", pp); 2602 return (WALK_ERR); 2603 } 2604 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2605 } 2606 2607 typedef struct portev_walk_data { 2608 list_node_t *pev_node; 2609 list_node_t *pev_last; 2610 size_t pev_offset; 2611 } portev_walk_data_t; 2612 2613 int 2614 portev_walk_init(mdb_walk_state_t *wsp) 2615 { 2616 portev_walk_data_t *pevd; 2617 struct port port; 2618 struct vnode vn; 2619 struct list *list; 2620 uintptr_t vp; 2621 2622 if (wsp->walk_addr == 0) { 2623 mdb_warn("portev walk doesn't support global walks\n"); 2624 return (WALK_ERR); 2625 } 2626 2627 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2628 2629 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2630 mdb_free(pevd, sizeof (portev_walk_data_t)); 2631 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2632 return (WALK_ERR); 2633 } 2634 2635 vp = (uintptr_t)port.port_vnode; 2636 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2637 mdb_free(pevd, sizeof (portev_walk_data_t)); 2638 mdb_warn("failed to read vnode_t at %p", vp); 2639 return (WALK_ERR); 2640 } 2641 2642 if (vn.v_type != VPORT) { 2643 mdb_free(pevd, sizeof (portev_walk_data_t)); 2644 mdb_warn("input address (%p) does not point to an event port", 2645 wsp->walk_addr); 2646 return (WALK_ERR); 2647 } 2648 2649 if (port.port_queue.portq_nent == 0) { 2650 mdb_free(pevd, sizeof (portev_walk_data_t)); 2651 return (WALK_DONE); 2652 } 2653 list = &port.port_queue.portq_list; 2654 pevd->pev_offset = list->list_offset; 2655 pevd->pev_last = list->list_head.list_prev; 2656 pevd->pev_node = list->list_head.list_next; 2657 wsp->walk_data = pevd; 2658 return (WALK_NEXT); 2659 } 2660 2661 int 2662 portev_walk_step(mdb_walk_state_t *wsp) 2663 { 2664 portev_walk_data_t *pevd; 2665 struct port_kevent ev; 2666 uintptr_t evp; 2667 2668 pevd = (portev_walk_data_t *)wsp->walk_data; 2669 2670 if (pevd->pev_last == NULL) 2671 return (WALK_DONE); 2672 if (pevd->pev_node == pevd->pev_last) 2673 pevd->pev_last = NULL; /* last round */ 2674 2675 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2676 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2677 mdb_warn("failed to read port_kevent at %p", evp); 2678 return (WALK_DONE); 2679 } 2680 pevd->pev_node = ev.portkev_node.list_next; 2681 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2682 } 2683 2684 void 2685 portev_walk_fini(mdb_walk_state_t *wsp) 2686 { 2687 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2688 2689 if (pevd != NULL) 2690 mdb_free(pevd, sizeof (portev_walk_data_t)); 2691 } 2692 2693 typedef struct proc_walk_data { 2694 uintptr_t *pw_stack; 2695 int pw_depth; 2696 int pw_max; 2697 } proc_walk_data_t; 2698 2699 int 2700 proc_walk_init(mdb_walk_state_t *wsp) 2701 { 2702 GElf_Sym sym; 2703 proc_walk_data_t *pw; 2704 2705 if (wsp->walk_addr == 0) { 2706 if (mdb_lookup_by_name("p0", &sym) == -1) { 2707 mdb_warn("failed to read 'practive'"); 2708 return (WALK_ERR); 2709 } 2710 wsp->walk_addr = (uintptr_t)sym.st_value; 2711 } 2712 2713 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2714 2715 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2716 mdb_warn("failed to read 'nproc'"); 2717 mdb_free(pw, sizeof (pw)); 2718 return (WALK_ERR); 2719 } 2720 2721 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2722 wsp->walk_data = pw; 2723 2724 return (WALK_NEXT); 2725 } 2726 2727 typedef struct mdb_walk_proc { 2728 struct proc *p_child; 2729 struct proc *p_sibling; 2730 } mdb_walk_proc_t; 2731 2732 int 2733 proc_walk_step(mdb_walk_state_t *wsp) 2734 { 2735 proc_walk_data_t *pw = wsp->walk_data; 2736 uintptr_t addr = wsp->walk_addr; 2737 uintptr_t cld, sib; 2738 int status; 2739 mdb_walk_proc_t pr; 2740 2741 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2742 addr, 0) == -1) { 2743 mdb_warn("failed to read proc at %p", addr); 2744 return (WALK_DONE); 2745 } 2746 2747 cld = (uintptr_t)pr.p_child; 2748 sib = (uintptr_t)pr.p_sibling; 2749 2750 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2751 pw->pw_depth--; 2752 goto sib; 2753 } 2754 2755 /* 2756 * Always pass NULL as the local copy pointer. Consumers 2757 * should use mdb_ctf_vread() to read their own minimal 2758 * version of proc_t. Thus minimizing the chance of breakage 2759 * with older crash dumps. 2760 */ 2761 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata); 2762 2763 if (status != WALK_NEXT) 2764 return (status); 2765 2766 if ((wsp->walk_addr = cld) != 0) { 2767 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2768 cld, 0) == -1) { 2769 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2770 addr, cld); 2771 goto sib; 2772 } 2773 2774 pw->pw_stack[pw->pw_depth++] = addr; 2775 2776 if (pw->pw_depth == pw->pw_max) { 2777 mdb_warn("depth %d exceeds max depth; try again\n", 2778 pw->pw_depth); 2779 return (WALK_DONE); 2780 } 2781 return (WALK_NEXT); 2782 } 2783 2784 sib: 2785 /* 2786 * We know that p0 has no siblings, and if another starting proc 2787 * was given, we don't want to walk its siblings anyway. 2788 */ 2789 if (pw->pw_depth == 0) 2790 return (WALK_DONE); 2791 2792 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2793 sib, 0) == -1) { 2794 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2795 addr, sib); 2796 sib = 0; 2797 } 2798 2799 if ((wsp->walk_addr = sib) == 0) { 2800 if (pw->pw_depth > 0) { 2801 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2802 return (WALK_NEXT); 2803 } 2804 return (WALK_DONE); 2805 } 2806 2807 return (WALK_NEXT); 2808 } 2809 2810 void 2811 proc_walk_fini(mdb_walk_state_t *wsp) 2812 { 2813 proc_walk_data_t *pw = wsp->walk_data; 2814 2815 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2816 mdb_free(pw, sizeof (proc_walk_data_t)); 2817 } 2818 2819 int 2820 task_walk_init(mdb_walk_state_t *wsp) 2821 { 2822 task_t task; 2823 2824 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2825 mdb_warn("failed to read task at %p", wsp->walk_addr); 2826 return (WALK_ERR); 2827 } 2828 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2829 wsp->walk_data = task.tk_memb_list; 2830 return (WALK_NEXT); 2831 } 2832 2833 typedef struct mdb_task_proc { 2834 struct proc *p_tasknext; 2835 } mdb_task_proc_t; 2836 2837 int 2838 task_walk_step(mdb_walk_state_t *wsp) 2839 { 2840 mdb_task_proc_t proc; 2841 int status; 2842 2843 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t", 2844 wsp->walk_addr, 0) == -1) { 2845 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2846 return (WALK_DONE); 2847 } 2848 2849 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2850 2851 if (proc.p_tasknext == wsp->walk_data) 2852 return (WALK_DONE); 2853 2854 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2855 return (status); 2856 } 2857 2858 int 2859 project_walk_init(mdb_walk_state_t *wsp) 2860 { 2861 if (wsp->walk_addr == 0) { 2862 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2863 mdb_warn("failed to read 'proj0p'"); 2864 return (WALK_ERR); 2865 } 2866 } 2867 wsp->walk_data = (void *)wsp->walk_addr; 2868 return (WALK_NEXT); 2869 } 2870 2871 int 2872 project_walk_step(mdb_walk_state_t *wsp) 2873 { 2874 uintptr_t addr = wsp->walk_addr; 2875 kproject_t pj; 2876 int status; 2877 2878 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2879 mdb_warn("failed to read project at %p", addr); 2880 return (WALK_DONE); 2881 } 2882 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2883 if (status != WALK_NEXT) 2884 return (status); 2885 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2886 if ((void *)wsp->walk_addr == wsp->walk_data) 2887 return (WALK_DONE); 2888 return (WALK_NEXT); 2889 } 2890 2891 static int 2892 generic_walk_step(mdb_walk_state_t *wsp) 2893 { 2894 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2895 wsp->walk_cbdata)); 2896 } 2897 2898 static int 2899 cpu_walk_cmp(const void *l, const void *r) 2900 { 2901 uintptr_t lhs = *((uintptr_t *)l); 2902 uintptr_t rhs = *((uintptr_t *)r); 2903 cpu_t lcpu, rcpu; 2904 2905 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2906 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2907 2908 if (lcpu.cpu_id < rcpu.cpu_id) 2909 return (-1); 2910 2911 if (lcpu.cpu_id > rcpu.cpu_id) 2912 return (1); 2913 2914 return (0); 2915 } 2916 2917 typedef struct cpu_walk { 2918 uintptr_t *cw_array; 2919 int cw_ndx; 2920 } cpu_walk_t; 2921 2922 int 2923 cpu_walk_init(mdb_walk_state_t *wsp) 2924 { 2925 cpu_walk_t *cw; 2926 int max_ncpus, i = 0; 2927 uintptr_t current, first; 2928 cpu_t cpu, panic_cpu; 2929 uintptr_t panicstr, addr; 2930 GElf_Sym sym; 2931 2932 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2933 2934 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2935 mdb_warn("failed to read 'max_ncpus'"); 2936 return (WALK_ERR); 2937 } 2938 2939 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2940 mdb_warn("failed to read 'panicstr'"); 2941 return (WALK_ERR); 2942 } 2943 2944 if (panicstr != 0) { 2945 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2946 mdb_warn("failed to find 'panic_cpu'"); 2947 return (WALK_ERR); 2948 } 2949 2950 addr = (uintptr_t)sym.st_value; 2951 2952 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2953 mdb_warn("failed to read 'panic_cpu'"); 2954 return (WALK_ERR); 2955 } 2956 } 2957 2958 /* 2959 * Unfortunately, there is no platform-independent way to walk 2960 * CPUs in ID order. We therefore loop through in cpu_next order, 2961 * building an array of CPU pointers which will subsequently be 2962 * sorted. 2963 */ 2964 cw->cw_array = 2965 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2966 2967 if (mdb_readvar(&first, "cpu_list") == -1) { 2968 mdb_warn("failed to read 'cpu_list'"); 2969 return (WALK_ERR); 2970 } 2971 2972 current = first; 2973 do { 2974 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2975 mdb_warn("failed to read cpu at %p", current); 2976 return (WALK_ERR); 2977 } 2978 2979 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) { 2980 cw->cw_array[i++] = addr; 2981 } else { 2982 cw->cw_array[i++] = current; 2983 } 2984 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2985 2986 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2987 wsp->walk_data = cw; 2988 2989 return (WALK_NEXT); 2990 } 2991 2992 int 2993 cpu_walk_step(mdb_walk_state_t *wsp) 2994 { 2995 cpu_walk_t *cw = wsp->walk_data; 2996 cpu_t cpu; 2997 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2998 2999 if (addr == 0) 3000 return (WALK_DONE); 3001 3002 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 3003 mdb_warn("failed to read cpu at %p", addr); 3004 return (WALK_DONE); 3005 } 3006 3007 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 3008 } 3009 3010 typedef struct cpuinfo_data { 3011 intptr_t cid_cpu; 3012 uintptr_t **cid_ithr; 3013 char cid_print_head; 3014 char cid_print_thr; 3015 char cid_print_ithr; 3016 char cid_print_flags; 3017 } cpuinfo_data_t; 3018 3019 int 3020 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 3021 { 3022 cpu_t c; 3023 int id; 3024 uint8_t pil; 3025 3026 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3027 return (WALK_NEXT); 3028 3029 if (thr->t_bound_cpu == NULL) { 3030 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3031 return (WALK_NEXT); 3032 } 3033 3034 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3035 3036 if ((id = c.cpu_id) >= NCPU) { 3037 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3038 thr->t_bound_cpu, id, NCPU); 3039 return (WALK_NEXT); 3040 } 3041 3042 if ((pil = thr->t_pil) >= NINTR) { 3043 mdb_warn("thread %p has pil (%d) greater than %d\n", 3044 addr, pil, NINTR); 3045 return (WALK_NEXT); 3046 } 3047 3048 if (cid->cid_ithr[id][pil] != 0) { 3049 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3050 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3051 return (WALK_NEXT); 3052 } 3053 3054 cid->cid_ithr[id][pil] = addr; 3055 3056 return (WALK_NEXT); 3057 } 3058 3059 #define CPUINFO_IDWIDTH 3 3060 #define CPUINFO_FLAGWIDTH 9 3061 3062 #ifdef _LP64 3063 #if defined(__amd64) 3064 #define CPUINFO_TWIDTH 16 3065 #define CPUINFO_CPUWIDTH 16 3066 #else 3067 #define CPUINFO_CPUWIDTH 11 3068 #define CPUINFO_TWIDTH 11 3069 #endif 3070 #else 3071 #define CPUINFO_CPUWIDTH 8 3072 #define CPUINFO_TWIDTH 8 3073 #endif 3074 3075 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3076 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3077 #define CPUINFO_ITHRDELT 4 3078 3079 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3080 flagline < nflaglines ? flagbuf[flagline++] : "") 3081 3082 typedef struct mdb_cpuinfo_proc { 3083 struct { 3084 char u_comm[MAXCOMLEN + 1]; 3085 } p_user; 3086 } mdb_cpuinfo_proc_t; 3087 3088 int 3089 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3090 { 3091 kthread_t t; 3092 disp_t disp; 3093 mdb_cpuinfo_proc_t p; 3094 uintptr_t pinned; 3095 char **flagbuf; 3096 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3097 3098 const char *flags[] = { 3099 "RUNNING", "READY", "QUIESCED", "EXISTS", 3100 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3101 "SPARE", "FAULTED", "DISABLED", NULL 3102 }; 3103 3104 if (cid->cid_cpu != -1) { 3105 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3106 return (WALK_NEXT); 3107 3108 /* 3109 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3110 */ 3111 cid->cid_cpu = -1; 3112 rval = WALK_DONE; 3113 } 3114 3115 if (cid->cid_print_head) { 3116 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3117 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3118 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3119 "PROC"); 3120 cid->cid_print_head = FALSE; 3121 } 3122 3123 bspl = cpu->cpu_base_spl; 3124 3125 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3126 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3127 return (WALK_ERR); 3128 } 3129 3130 mdb_printf("%3d %0*p %3x %4d %4d ", 3131 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3132 disp.disp_nrunnable, bspl); 3133 3134 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3135 mdb_printf("%3d ", t.t_pri); 3136 } else { 3137 mdb_printf("%3s ", "-"); 3138 } 3139 3140 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3141 cpu->cpu_kprunrun ? "yes" : "no"); 3142 3143 if (cpu->cpu_last_swtch) { 3144 mdb_printf("t-%-4d ", 3145 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 3146 } else { 3147 mdb_printf("%-6s ", "-"); 3148 } 3149 3150 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3151 3152 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3153 mdb_printf(" (idle)\n"); 3154 else if (cpu->cpu_thread == NULL) 3155 mdb_printf(" -\n"); 3156 else { 3157 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3158 (uintptr_t)t.t_procp, 0) != -1) { 3159 mdb_printf(" %s\n", p.p_user.u_comm); 3160 } else { 3161 mdb_printf(" ?\n"); 3162 } 3163 } 3164 3165 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3166 3167 if (cid->cid_print_flags) { 3168 int first = 1, i, j, k; 3169 char *s; 3170 3171 cid->cid_print_head = TRUE; 3172 3173 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3174 if (!(cpu->cpu_flags & i)) 3175 continue; 3176 3177 if (first) { 3178 s = mdb_alloc(CPUINFO_THRDELT + 1, 3179 UM_GC | UM_SLEEP); 3180 3181 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3182 "%*s|%*s", CPUINFO_FLAGDELT, "", 3183 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3184 flagbuf[nflaglines++] = s; 3185 } 3186 3187 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3188 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3189 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3190 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3191 first ? "<--+" : ""); 3192 3193 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3194 s[k] = ' '; 3195 s[k] = '\0'; 3196 3197 flagbuf[nflaglines++] = s; 3198 first = 0; 3199 } 3200 } 3201 3202 if (cid->cid_print_ithr) { 3203 int i, found_one = FALSE; 3204 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3205 3206 for (i = NINTR - 1; i >= 0; i--) { 3207 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3208 3209 if (iaddr == 0) 3210 continue; 3211 3212 if (!found_one) { 3213 found_one = TRUE; 3214 3215 CPUINFO_INDENT; 3216 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3217 CPUINFO_ITHRDELT, ""); 3218 3219 CPUINFO_INDENT; 3220 mdb_printf("%c%*s+--> %3s %s\n", 3221 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3222 "", "PIL", "THREAD"); 3223 } 3224 3225 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3226 mdb_warn("failed to read kthread_t at %p", 3227 iaddr); 3228 return (WALK_ERR); 3229 } 3230 3231 CPUINFO_INDENT; 3232 mdb_printf("%c%*s %3d %0*p\n", 3233 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3234 t.t_pil, CPUINFO_TWIDTH, iaddr); 3235 3236 pinned = (uintptr_t)t.t_intr; 3237 } 3238 3239 if (found_one && pinned != 0) { 3240 cid->cid_print_head = TRUE; 3241 (void) strcpy(p.p_user.u_comm, "?"); 3242 3243 if (mdb_vread(&t, sizeof (t), 3244 (uintptr_t)pinned) == -1) { 3245 mdb_warn("failed to read kthread_t at %p", 3246 pinned); 3247 return (WALK_ERR); 3248 } 3249 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3250 (uintptr_t)t.t_procp, 0) == -1) { 3251 mdb_warn("failed to read proc_t at %p", 3252 t.t_procp); 3253 return (WALK_ERR); 3254 } 3255 3256 CPUINFO_INDENT; 3257 mdb_printf("%c%*s %3s %0*p %s\n", 3258 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3259 CPUINFO_TWIDTH, pinned, 3260 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3261 "(idle)" : p.p_user.u_comm); 3262 } 3263 } 3264 3265 if (disp.disp_nrunnable && cid->cid_print_thr) { 3266 dispq_t *dq; 3267 3268 int i, npri = disp.disp_npri; 3269 3270 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3271 3272 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3273 (uintptr_t)disp.disp_q) == -1) { 3274 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3275 return (WALK_ERR); 3276 } 3277 3278 CPUINFO_INDENT; 3279 mdb_printf("|\n"); 3280 3281 CPUINFO_INDENT; 3282 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3283 CPUINFO_TWIDTH, "THREAD", "PROC"); 3284 3285 for (i = npri - 1; i >= 0; i--) { 3286 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3287 3288 while (taddr != 0) { 3289 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3290 mdb_warn("failed to read kthread_t " 3291 "at %p", taddr); 3292 return (WALK_ERR); 3293 } 3294 if (mdb_ctf_vread(&p, "proc_t", 3295 "mdb_cpuinfo_proc_t", 3296 (uintptr_t)t.t_procp, 0) == -1) { 3297 mdb_warn("failed to read proc_t at %p", 3298 t.t_procp); 3299 return (WALK_ERR); 3300 } 3301 3302 CPUINFO_INDENT; 3303 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3304 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3305 3306 taddr = (uintptr_t)t.t_link; 3307 } 3308 } 3309 cid->cid_print_head = TRUE; 3310 } 3311 3312 while (flagline < nflaglines) 3313 mdb_printf("%s\n", flagbuf[flagline++]); 3314 3315 if (cid->cid_print_head) 3316 mdb_printf("\n"); 3317 3318 return (rval); 3319 } 3320 3321 int 3322 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3323 { 3324 uint_t verbose = FALSE; 3325 cpuinfo_data_t cid; 3326 3327 cid.cid_print_ithr = FALSE; 3328 cid.cid_print_thr = FALSE; 3329 cid.cid_print_flags = FALSE; 3330 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3331 cid.cid_cpu = -1; 3332 3333 if (flags & DCMD_ADDRSPEC) 3334 cid.cid_cpu = addr; 3335 3336 if (mdb_getopts(argc, argv, 3337 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3338 return (DCMD_USAGE); 3339 3340 if (verbose) { 3341 cid.cid_print_ithr = TRUE; 3342 cid.cid_print_thr = TRUE; 3343 cid.cid_print_flags = TRUE; 3344 cid.cid_print_head = TRUE; 3345 } 3346 3347 if (cid.cid_print_ithr) { 3348 int i; 3349 3350 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3351 * NCPU, UM_SLEEP | UM_GC); 3352 3353 for (i = 0; i < NCPU; i++) 3354 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3355 NINTR, UM_SLEEP | UM_GC); 3356 3357 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3358 &cid) == -1) { 3359 mdb_warn("couldn't walk thread"); 3360 return (DCMD_ERR); 3361 } 3362 } 3363 3364 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3365 mdb_warn("can't walk cpus"); 3366 return (DCMD_ERR); 3367 } 3368 3369 if (cid.cid_cpu != -1) { 3370 /* 3371 * We didn't find this CPU when we walked through the CPUs 3372 * (i.e. the address specified doesn't show up in the "cpu" 3373 * walk). However, the specified address may still correspond 3374 * to a valid cpu_t (for example, if the specified address is 3375 * the actual panicking cpu_t and not the cached panic_cpu). 3376 * Point is: even if we didn't find it, we still want to try 3377 * to print the specified address as a cpu_t. 3378 */ 3379 cpu_t cpu; 3380 3381 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3382 mdb_warn("%p is neither a valid CPU ID nor a " 3383 "valid cpu_t address\n", cid.cid_cpu); 3384 return (DCMD_ERR); 3385 } 3386 3387 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3388 } 3389 3390 return (DCMD_OK); 3391 } 3392 3393 /*ARGSUSED*/ 3394 int 3395 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3396 { 3397 int i; 3398 3399 if (!(flags & DCMD_ADDRSPEC)) 3400 return (DCMD_USAGE); 3401 3402 for (i = 0; i < sizeof (addr) * NBBY; i++) 3403 mdb_printf("%p\n", addr ^ (1UL << i)); 3404 3405 return (DCMD_OK); 3406 } 3407 3408 typedef struct mdb_as2proc_proc { 3409 struct as *p_as; 3410 } mdb_as2proc_proc_t; 3411 3412 /*ARGSUSED*/ 3413 int 3414 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp) 3415 { 3416 mdb_as2proc_proc_t p; 3417 3418 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0); 3419 3420 if (p.p_as == *asp) 3421 mdb_printf("%p\n", addr); 3422 return (WALK_NEXT); 3423 } 3424 3425 /*ARGSUSED*/ 3426 int 3427 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3428 { 3429 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3430 return (DCMD_USAGE); 3431 3432 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3433 mdb_warn("failed to walk proc"); 3434 return (DCMD_ERR); 3435 } 3436 3437 return (DCMD_OK); 3438 } 3439 3440 typedef struct mdb_ptree_proc { 3441 struct proc *p_parent; 3442 struct { 3443 char u_comm[MAXCOMLEN + 1]; 3444 } p_user; 3445 } mdb_ptree_proc_t; 3446 3447 /*ARGSUSED*/ 3448 int 3449 ptree_walk(uintptr_t addr, const void *ignored, void *data) 3450 { 3451 mdb_ptree_proc_t proc; 3452 mdb_ptree_proc_t parent; 3453 int ident = 0; 3454 uintptr_t paddr; 3455 3456 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0); 3457 3458 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) { 3459 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0); 3460 paddr = (uintptr_t)parent.p_parent; 3461 } 3462 3463 mdb_inc_indent(ident); 3464 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm); 3465 mdb_dec_indent(ident); 3466 3467 return (WALK_NEXT); 3468 } 3469 3470 void 3471 ptree_ancestors(uintptr_t addr, uintptr_t start) 3472 { 3473 mdb_ptree_proc_t p; 3474 3475 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) { 3476 mdb_warn("couldn't read ancestor at %p", addr); 3477 return; 3478 } 3479 3480 if (p.p_parent != NULL) 3481 ptree_ancestors((uintptr_t)p.p_parent, start); 3482 3483 if (addr != start) 3484 (void) ptree_walk(addr, &p, NULL); 3485 } 3486 3487 /*ARGSUSED*/ 3488 int 3489 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3490 { 3491 if (!(flags & DCMD_ADDRSPEC)) 3492 addr = 0; 3493 else 3494 ptree_ancestors(addr, addr); 3495 3496 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3497 mdb_warn("couldn't walk 'proc'"); 3498 return (DCMD_ERR); 3499 } 3500 3501 return (DCMD_OK); 3502 } 3503 3504 typedef struct mdb_fd_proc { 3505 struct { 3506 struct { 3507 int fi_nfiles; 3508 uf_entry_t *volatile fi_list; 3509 } u_finfo; 3510 } p_user; 3511 } mdb_fd_proc_t; 3512 3513 /*ARGSUSED*/ 3514 static int 3515 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3516 { 3517 int fdnum; 3518 const mdb_arg_t *argp = &argv[0]; 3519 mdb_fd_proc_t p; 3520 uf_entry_t uf; 3521 3522 if ((flags & DCMD_ADDRSPEC) == 0) { 3523 mdb_warn("fd doesn't give global information\n"); 3524 return (DCMD_ERR); 3525 } 3526 if (argc != 1) 3527 return (DCMD_USAGE); 3528 3529 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3530 fdnum = argp->a_un.a_val; 3531 else 3532 fdnum = mdb_strtoull(argp->a_un.a_str); 3533 3534 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) { 3535 mdb_warn("couldn't read proc_t at %p", addr); 3536 return (DCMD_ERR); 3537 } 3538 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3539 mdb_warn("process %p only has %d files open.\n", 3540 addr, p.p_user.u_finfo.fi_nfiles); 3541 return (DCMD_ERR); 3542 } 3543 if (mdb_vread(&uf, sizeof (uf_entry_t), 3544 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3545 mdb_warn("couldn't read uf_entry_t at %p", 3546 &p.p_user.u_finfo.fi_list[fdnum]); 3547 return (DCMD_ERR); 3548 } 3549 3550 mdb_printf("%p\n", uf.uf_file); 3551 return (DCMD_OK); 3552 } 3553 3554 /*ARGSUSED*/ 3555 static int 3556 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3557 { 3558 pid_t pid = (pid_t)addr; 3559 3560 if (argc != 0) 3561 return (DCMD_USAGE); 3562 3563 if ((addr = mdb_pid2proc(pid, NULL)) == 0) { 3564 mdb_warn("PID 0t%d not found\n", pid); 3565 return (DCMD_ERR); 3566 } 3567 3568 mdb_printf("%p\n", addr); 3569 return (DCMD_OK); 3570 } 3571 3572 static char *sysfile_cmd[] = { 3573 "exclude:", 3574 "include:", 3575 "forceload:", 3576 "rootdev:", 3577 "rootfs:", 3578 "swapdev:", 3579 "swapfs:", 3580 "moddir:", 3581 "set", 3582 "unknown", 3583 }; 3584 3585 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3586 3587 /*ARGSUSED*/ 3588 static int 3589 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3590 { 3591 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3592 *target = NULL; 3593 return (WALK_DONE); 3594 } 3595 return (WALK_NEXT); 3596 } 3597 3598 /*ARGSUSED*/ 3599 static int 3600 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3601 { 3602 struct sysparam *sysp, sys; 3603 char var[256]; 3604 char modname[256]; 3605 char val[256]; 3606 char strval[256]; 3607 vmem_t *mod_sysfile_arena; 3608 void *straddr; 3609 3610 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3611 mdb_warn("failed to read sysparam_hd"); 3612 return (DCMD_ERR); 3613 } 3614 3615 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3616 mdb_warn("failed to read mod_sysfile_arena"); 3617 return (DCMD_ERR); 3618 } 3619 3620 while (sysp != NULL) { 3621 var[0] = '\0'; 3622 val[0] = '\0'; 3623 modname[0] = '\0'; 3624 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3625 mdb_warn("couldn't read sysparam %p", sysp); 3626 return (DCMD_ERR); 3627 } 3628 if (sys.sys_modnam != NULL && 3629 mdb_readstr(modname, 256, 3630 (uintptr_t)sys.sys_modnam) == -1) { 3631 mdb_warn("couldn't read modname in %p", sysp); 3632 return (DCMD_ERR); 3633 } 3634 if (sys.sys_ptr != NULL && 3635 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3636 mdb_warn("couldn't read ptr in %p", sysp); 3637 return (DCMD_ERR); 3638 } 3639 if (sys.sys_op != SETOP_NONE) { 3640 /* 3641 * Is this an int or a string? We determine this 3642 * by checking whether straddr is contained in 3643 * mod_sysfile_arena. If so, the walker will set 3644 * straddr to NULL. 3645 */ 3646 straddr = (void *)(uintptr_t)sys.sys_info; 3647 if (sys.sys_op == SETOP_ASSIGN && 3648 sys.sys_info != 0 && 3649 mdb_pwalk("vmem_seg", 3650 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3651 (uintptr_t)mod_sysfile_arena) == 0 && 3652 straddr == NULL && 3653 mdb_readstr(strval, 256, 3654 (uintptr_t)sys.sys_info) != -1) { 3655 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3656 strval); 3657 } else { 3658 (void) mdb_snprintf(val, sizeof (val), 3659 "0x%llx [0t%llu]", sys.sys_info, 3660 sys.sys_info); 3661 } 3662 } 3663 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3664 modname, modname[0] == '\0' ? "" : ":", 3665 var, sysfile_ops[sys.sys_op], val); 3666 3667 sysp = sys.sys_next; 3668 } 3669 3670 return (DCMD_OK); 3671 } 3672 3673 int 3674 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3675 { 3676 3677 if (*didp == thr->t_did) { 3678 mdb_printf("%p\n", addr); 3679 return (WALK_DONE); 3680 } else 3681 return (WALK_NEXT); 3682 } 3683 3684 /*ARGSUSED*/ 3685 int 3686 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3687 { 3688 const mdb_arg_t *argp = &argv[0]; 3689 kt_did_t did; 3690 3691 if (argc != 1) 3692 return (DCMD_USAGE); 3693 3694 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3695 3696 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3697 mdb_warn("failed to walk thread"); 3698 return (DCMD_ERR); 3699 3700 } 3701 return (DCMD_OK); 3702 3703 } 3704 3705 static int 3706 errorq_walk_init(mdb_walk_state_t *wsp) 3707 { 3708 if (wsp->walk_addr == 0 && 3709 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3710 mdb_warn("failed to read errorq_list"); 3711 return (WALK_ERR); 3712 } 3713 3714 return (WALK_NEXT); 3715 } 3716 3717 static int 3718 errorq_walk_step(mdb_walk_state_t *wsp) 3719 { 3720 uintptr_t addr = wsp->walk_addr; 3721 errorq_t eq; 3722 3723 if (addr == 0) 3724 return (WALK_DONE); 3725 3726 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3727 mdb_warn("failed to read errorq at %p", addr); 3728 return (WALK_ERR); 3729 } 3730 3731 wsp->walk_addr = (uintptr_t)eq.eq_next; 3732 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3733 } 3734 3735 typedef struct eqd_walk_data { 3736 uintptr_t *eqd_stack; 3737 void *eqd_buf; 3738 ulong_t eqd_qpos; 3739 ulong_t eqd_qlen; 3740 size_t eqd_size; 3741 } eqd_walk_data_t; 3742 3743 /* 3744 * In order to walk the list of pending error queue elements, we push the 3745 * addresses of the corresponding data buffers in to the eqd_stack array. 3746 * The error lists are in reverse chronological order when iterating using 3747 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3748 * walker client gets addresses in order from oldest error to newest error. 3749 */ 3750 static void 3751 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3752 { 3753 errorq_elem_t eqe; 3754 3755 while (addr != 0) { 3756 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3757 mdb_warn("failed to read errorq element at %p", addr); 3758 break; 3759 } 3760 3761 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3762 mdb_warn("errorq is overfull -- more than %lu " 3763 "elems found\n", eqdp->eqd_qlen); 3764 break; 3765 } 3766 3767 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3768 addr = (uintptr_t)eqe.eqe_prev; 3769 } 3770 } 3771 3772 static int 3773 eqd_walk_init(mdb_walk_state_t *wsp) 3774 { 3775 eqd_walk_data_t *eqdp; 3776 errorq_elem_t eqe, *addr; 3777 errorq_t eq; 3778 ulong_t i; 3779 3780 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3781 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3782 return (WALK_ERR); 3783 } 3784 3785 if (eq.eq_ptail != NULL && 3786 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3787 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3788 return (WALK_ERR); 3789 } 3790 3791 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3792 wsp->walk_data = eqdp; 3793 3794 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3795 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3796 eqdp->eqd_qlen = eq.eq_qlen; 3797 eqdp->eqd_qpos = 0; 3798 eqdp->eqd_size = eq.eq_size; 3799 3800 /* 3801 * The newest elements in the queue are on the pending list, so we 3802 * push those on to our stack first. 3803 */ 3804 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3805 3806 /* 3807 * If eq_ptail is set, it may point to a subset of the errors on the 3808 * pending list in the event a atomic_cas_ptr() failed; if ptail's 3809 * data is already in our stack, NULL out eq_ptail and ignore it. 3810 */ 3811 if (eq.eq_ptail != NULL) { 3812 for (i = 0; i < eqdp->eqd_qpos; i++) { 3813 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3814 eq.eq_ptail = NULL; 3815 break; 3816 } 3817 } 3818 } 3819 3820 /* 3821 * If eq_phead is set, it has the processing list in order from oldest 3822 * to newest. Use this to recompute eq_ptail as best we can and then 3823 * we nicely fall into eqd_push_list() of eq_ptail below. 3824 */ 3825 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3826 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3827 eq.eq_ptail = addr; 3828 3829 /* 3830 * The oldest elements in the queue are on the processing list, subject 3831 * to machinations in the if-clauses above. Push any such elements. 3832 */ 3833 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3834 return (WALK_NEXT); 3835 } 3836 3837 static int 3838 eqd_walk_step(mdb_walk_state_t *wsp) 3839 { 3840 eqd_walk_data_t *eqdp = wsp->walk_data; 3841 uintptr_t addr; 3842 3843 if (eqdp->eqd_qpos == 0) 3844 return (WALK_DONE); 3845 3846 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3847 3848 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3849 mdb_warn("failed to read errorq data at %p", addr); 3850 return (WALK_ERR); 3851 } 3852 3853 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3854 } 3855 3856 static void 3857 eqd_walk_fini(mdb_walk_state_t *wsp) 3858 { 3859 eqd_walk_data_t *eqdp = wsp->walk_data; 3860 3861 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3862 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3863 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3864 } 3865 3866 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3867 3868 static int 3869 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3870 { 3871 int i; 3872 errorq_t eq; 3873 uint_t opt_v = FALSE; 3874 3875 if (!(flags & DCMD_ADDRSPEC)) { 3876 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3877 mdb_warn("can't walk 'errorq'"); 3878 return (DCMD_ERR); 3879 } 3880 return (DCMD_OK); 3881 } 3882 3883 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3884 argc -= i; 3885 argv += i; 3886 3887 if (argc != 0) 3888 return (DCMD_USAGE); 3889 3890 if (opt_v || DCMD_HDRSPEC(flags)) { 3891 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3892 "ADDR", "NAME", "S", "V", "N"); 3893 if (!opt_v) { 3894 mdb_printf("%7s %7s %7s%</u>\n", 3895 "ACCEPT", "DROP", "LOG"); 3896 } else { 3897 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3898 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3899 } 3900 } 3901 3902 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3903 mdb_warn("failed to read errorq at %p", addr); 3904 return (DCMD_ERR); 3905 } 3906 3907 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3908 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3909 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3910 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3911 3912 if (!opt_v) { 3913 mdb_printf("%7llu %7llu %7llu\n", 3914 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3915 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3916 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3917 } else { 3918 mdb_printf("%5s %6lu %6lu %3u %a\n", 3919 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3920 mdb_printf("%38s\n%41s" 3921 "%12s %llu\n" 3922 "%53s %llu\n" 3923 "%53s %llu\n" 3924 "%53s %llu\n" 3925 "%53s %llu\n" 3926 "%53s %llu\n" 3927 "%53s %llu\n" 3928 "%53s %llu\n\n", 3929 "|", "+-> ", 3930 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3931 "DROPPED", EQKSVAL(eq, eqk_dropped), 3932 "LOGGED", EQKSVAL(eq, eqk_logged), 3933 "RESERVED", EQKSVAL(eq, eqk_reserved), 3934 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3935 "COMMITTED", EQKSVAL(eq, eqk_committed), 3936 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3937 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3938 } 3939 3940 return (DCMD_OK); 3941 } 3942 3943 /*ARGSUSED*/ 3944 static int 3945 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3946 { 3947 cpu_t panic_cpu; 3948 kthread_t *panic_thread; 3949 void *buf; 3950 panic_data_t *pd; 3951 int i, n; 3952 3953 if (!mdb_prop_postmortem) { 3954 mdb_warn("panicinfo can only be run on a system " 3955 "dump; see dumpadm(1M)\n"); 3956 return (DCMD_ERR); 3957 } 3958 3959 if (flags & DCMD_ADDRSPEC || argc != 0) 3960 return (DCMD_USAGE); 3961 3962 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3963 mdb_warn("failed to read 'panic_cpu'"); 3964 else 3965 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3966 3967 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3968 mdb_warn("failed to read 'panic_thread'"); 3969 else 3970 mdb_printf("%16s %?p\n", "thread", panic_thread); 3971 3972 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3973 pd = (panic_data_t *)buf; 3974 3975 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3976 pd->pd_version != PANICBUFVERS) { 3977 mdb_warn("failed to read 'panicbuf'"); 3978 mdb_free(buf, PANICBUFSIZE); 3979 return (DCMD_ERR); 3980 } 3981 3982 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3983 3984 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3985 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3986 3987 for (i = 0; i < n; i++) 3988 mdb_printf("%16s %?llx\n", 3989 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3990 3991 mdb_free(buf, PANICBUFSIZE); 3992 return (DCMD_OK); 3993 } 3994 3995 /* 3996 * ::time dcmd, which will print a hires timestamp of when we entered the 3997 * debugger, or the lbolt value if used with the -l option. 3998 * 3999 */ 4000 /*ARGSUSED*/ 4001 static int 4002 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4003 { 4004 uint_t opt_dec = FALSE; 4005 uint_t opt_lbolt = FALSE; 4006 uint_t opt_hex = FALSE; 4007 const char *fmt; 4008 hrtime_t result; 4009 4010 if (mdb_getopts(argc, argv, 4011 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 4012 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 4013 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 4014 NULL) != argc) 4015 return (DCMD_USAGE); 4016 4017 if (opt_dec && opt_hex) 4018 return (DCMD_USAGE); 4019 4020 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 4021 fmt = 4022 opt_hex ? "0x%llx\n" : 4023 opt_dec ? "0t%lld\n" : "%#llr\n"; 4024 4025 mdb_printf(fmt, result); 4026 return (DCMD_OK); 4027 } 4028 4029 void 4030 time_help(void) 4031 { 4032 mdb_printf("Prints the system time in nanoseconds.\n\n" 4033 "::time will return the timestamp at which we dropped into, \n" 4034 "if called from, kmdb(1); the core dump's high resolution \n" 4035 "time if inspecting one; or the running hires time if we're \n" 4036 "looking at a live system.\n\n" 4037 "Switches:\n" 4038 " -d report times in decimal\n" 4039 " -l prints the number of clock ticks since system boot\n" 4040 " -x report times in hexadecimal\n"); 4041 } 4042 4043 static const mdb_dcmd_t dcmds[] = { 4044 4045 /* from genunix.c */ 4046 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4047 { "binding_hash_entry", ":", "print driver names hash table entry", 4048 binding_hash_entry }, 4049 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 4050 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4051 " [-FivVA]", 4052 "display callouts", callout, callout_help }, 4053 { "calloutid", "[-d|v] xid", "print callout by extended id", 4054 calloutid, calloutid_help }, 4055 { "class", NULL, "print process scheduler classes", class }, 4056 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4057 { "did2thread", "? kt_did", "find kernel thread for this id", 4058 did2thread }, 4059 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4060 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4061 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4062 { "lminfo", NULL, "print lock manager information", lminfo }, 4063 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4064 { "panicinfo", NULL, "print panic information", panicinfo }, 4065 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4066 { "project", NULL, "display kernel project(s)", project }, 4067 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 4068 { "pflags", NULL, "display various proc_t flags", pflags }, 4069 { "pgrep", "[-x] [-n | -o] pattern", 4070 "pattern match against all processes", pgrep }, 4071 { "ptree", NULL, "print process tree", ptree }, 4072 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4073 sysevent}, 4074 { "sysevent_channel", "?", "print sysevent channel database", 4075 sysevent_channel}, 4076 { "sysevent_class_list", ":", "print sysevent class list", 4077 sysevent_class_list}, 4078 { "sysevent_subclass_list", ":", 4079 "print sysevent subclass list", sysevent_subclass_list}, 4080 { "system", NULL, "print contents of /etc/system file", sysfile }, 4081 { "task", NULL, "display kernel task(s)", task }, 4082 { "time", "[-dlx]", "display system time", time, time_help }, 4083 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4084 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4085 whereopen }, 4086 4087 /* from bio.c */ 4088 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4089 4090 /* from bitset.c */ 4091 { "bitset", ":", "display a bitset", bitset, bitset_help }, 4092 4093 /* from contract.c */ 4094 { "contract", "?", "display a contract", cmd_contract }, 4095 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4096 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4097 4098 /* from cpupart.c */ 4099 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4100 4101 /* from cred.c */ 4102 { "cred", ":[-v]", "display a credential", cmd_cred }, 4103 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 4104 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 4105 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 4106 4107 /* from cyclic.c */ 4108 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4109 { "cycid", "?", "dump a cyclic id", cycid }, 4110 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4111 { "cyclic", ":", "developer information", cyclic }, 4112 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4113 4114 /* from damap.c */ 4115 { "damap", ":", "display a damap_t", damap, damap_help }, 4116 4117 /* from ddi_periodic.c */ 4118 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 4119 4120 /* from devinfo.c */ 4121 { "devbindings", "?[-qs] [device-name | major-num]", 4122 "print devinfo nodes bound to device-name or major-num", 4123 devbindings, devinfo_help }, 4124 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 4125 devinfo_help }, 4126 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4127 devinfo_audit }, 4128 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4129 devinfo_audit_log }, 4130 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4131 devinfo_audit_node }, 4132 { "devinfo2driver", ":", "find driver name for this devinfo node", 4133 devinfo2driver }, 4134 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4135 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4136 dev2major }, 4137 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4138 dev2minor }, 4139 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4140 devt }, 4141 { "major2name", "?<major-num>", "convert major number to dev name", 4142 major2name }, 4143 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4144 minornodes }, 4145 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4146 modctl2devinfo }, 4147 { "name2major", "<dev-name>", "convert dev name to major number", 4148 name2major }, 4149 { "prtconf", "?[-vpc] [-d driver]", "print devinfo tree", prtconf, 4150 prtconf_help }, 4151 { "softstate", ":<instance>", "retrieve soft-state pointer", 4152 softstate }, 4153 { "devinfo_fm", ":", "devinfo fault managment configuration", 4154 devinfo_fm }, 4155 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4156 devinfo_fmce}, 4157 4158 /* from findstack.c */ 4159 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4160 { "findstack_debug", NULL, "toggle findstack debugging", 4161 findstack_debug }, 4162 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4163 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4164 "print unique kernel thread stacks", 4165 stacks, stacks_help }, 4166 4167 /* from fm.c */ 4168 { "ereport", "[-v]", "print ereports logged in dump", 4169 ereport }, 4170 4171 /* from group.c */ 4172 { "group", "?[-q]", "display a group", group}, 4173 4174 /* from hotplug.c */ 4175 { "hotplug", "?[-p]", "display a registered hotplug attachment", 4176 hotplug, hotplug_help }, 4177 4178 /* from irm.c */ 4179 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4180 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4181 irmreqs_dcmd }, 4182 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4183 4184 /* from kgrep.c + genunix.c */ 4185 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4186 kgrep_help }, 4187 4188 /* from kmem.c */ 4189 { "allocdby", ":", "given a thread, print its allocated buffers", 4190 allocdby }, 4191 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4192 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4193 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4194 { "kmalog", "?[ fail | slab ]", 4195 "display kmem transaction log and stack traces", kmalog }, 4196 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4197 kmastat }, 4198 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4199 "of the kmem allocator", kmausers, kmausers_help }, 4200 { "kmem_cache", "?[-n name]", 4201 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4202 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4203 "[-B minbinsize]", "display slab usage per kmem cache", 4204 kmem_slabs, kmem_slabs_help }, 4205 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4206 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4207 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4208 kmem_verify }, 4209 { "vmem", "?", "print a vmem_t", vmem }, 4210 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4211 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4212 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4213 { "whatthread", ":[-v]", "print threads whose stack contains the " 4214 "given address", whatthread }, 4215 4216 /* from ldi.c */ 4217 { "ldi_handle", "?[-i]", "display a layered driver handle", 4218 ldi_handle, ldi_handle_help }, 4219 { "ldi_ident", NULL, "display a layered driver identifier", 4220 ldi_ident, ldi_ident_help }, 4221 4222 /* from leaky.c + leaky_subr.c */ 4223 { "findleaks", FINDLEAKS_USAGE, 4224 "search for potential kernel memory leaks", findleaks, 4225 findleaks_help }, 4226 4227 /* from lgrp.c */ 4228 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4229 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4230 4231 /* from log.c */ 4232 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4233 4234 /* from mdi.c */ 4235 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4236 "and detailed pi_prop list", mdipi }, 4237 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4238 mdiprops }, 4239 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4240 "list all paths", mdiphci }, 4241 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4242 "all phcis", mdivhci }, 4243 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4244 "client links", mdiclient_paths }, 4245 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4246 "phci links", mdiphci_paths }, 4247 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4248 mdiphcis }, 4249 4250 /* from memory.c */ 4251 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4252 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4253 { "memstat", NULL, "display memory usage summary", memstat }, 4254 { "page", "?", "display a summarized page_t", page }, 4255 { "pagelookup", "?[-v vp] [-o offset]", 4256 "find the page_t with the name {vp, offset}", 4257 pagelookup, pagelookup_help }, 4258 { "page_num2pp", ":", "find the page_t for a given page frame number", 4259 page_num2pp }, 4260 { "pmap", ":[-q]", "print process memory map", pmap }, 4261 { "seg", ":", "print address space segment", seg }, 4262 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4263 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4264 4265 /* from mmd.c */ 4266 { "multidata", ":[-sv]", "display a summarized multidata_t", 4267 multidata }, 4268 { "pattbl", ":", "display a summarized multidata attribute table", 4269 pattbl }, 4270 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4271 pattr2multidata }, 4272 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4273 pdesc2slab }, 4274 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4275 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4276 slab2multidata }, 4277 4278 /* from modhash.c */ 4279 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4280 "display information about one or all mod_hash structures", 4281 modhash, modhash_help }, 4282 { "modent", ":[-k | -v | -t type]", 4283 "display information about a mod_hash_entry", modent, 4284 modent_help }, 4285 4286 /* from net.c */ 4287 { "dladm", "?<sub-command> [flags]", "show data link information", 4288 dladm, dladm_help }, 4289 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4290 mi }, 4291 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4292 "show network statistics", netstat }, 4293 { "sonode", "?[-f inet | inet6 | unix | #] " 4294 "[-t stream | dgram | raw | #] [-p #]", 4295 "filter and display sonode", sonode }, 4296 4297 /* from netstack.c */ 4298 { "netstack", "", "show stack instances", netstack }, 4299 { "netstackid2netstack", ":", 4300 "translate a netstack id to its netstack_t", 4301 netstackid2netstack }, 4302 4303 /* from nvpair.c */ 4304 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4305 nvpair_print }, 4306 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4307 print_nvlist }, 4308 4309 /* from pg.c */ 4310 { "pg", "?[-q]", "display a pg", pg}, 4311 4312 /* from rctl.c */ 4313 { "rctl_dict", "?", "print systemwide default rctl definitions", 4314 rctl_dict }, 4315 { "rctl_list", ":[handle]", "print rctls for the given proc", 4316 rctl_list }, 4317 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4318 rctl }, 4319 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4320 "sequence", rctl_validate }, 4321 4322 /* from sobj.c */ 4323 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4324 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4325 mutex_help }, 4326 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4327 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4328 { "turnstile", "?", "display a turnstile", turnstile }, 4329 4330 /* from stream.c */ 4331 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4332 "print an mblk", mblk_prt, mblk_help }, 4333 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4334 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4335 mblk2dblk }, 4336 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4337 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4338 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4339 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4340 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4341 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4342 "filter and display STREAM queue", queue, queue_help }, 4343 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4344 "filter and display STREAM head", stdata, stdata_help }, 4345 { "str2mate", ":", "print mate of this stream", str2mate }, 4346 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4347 { "stream", ":", "display STREAM", stream }, 4348 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4349 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4350 "filter and display STREAM sync queue", syncq, syncq_help }, 4351 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4352 4353 /* from taskq.c */ 4354 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4355 "display a taskq", taskq, taskq_help }, 4356 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4357 4358 /* from thread.c */ 4359 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4360 thread_help }, 4361 { "threadlist", "?[-t] [-v [count]]", 4362 "display threads and associated C stack traces", threadlist, 4363 threadlist_help }, 4364 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4365 stackinfo_help }, 4366 4367 /* from tsd.c */ 4368 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4369 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4370 4371 /* 4372 * typegraph does not work under kmdb, as it requires too much memory 4373 * for its internal data structures. 4374 */ 4375 #ifndef _KMDB 4376 /* from typegraph.c */ 4377 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4378 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4379 findfalse }, 4380 { "typegraph", NULL, "build type graph", typegraph }, 4381 { "istype", ":type", "manually set object type", istype }, 4382 { "notype", ":", "manually clear object type", notype }, 4383 { "whattype", ":", "determine object type", whattype }, 4384 #endif 4385 4386 /* from vfs.c */ 4387 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4388 { "pfiles", ":[-fp]", "print process file information", pfiles, 4389 pfiles_help }, 4390 4391 /* from zone.c */ 4392 { "zid2zone", ":", "find the zone_t with the given zone id", 4393 zid2zone }, 4394 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4395 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4396 "selected zones", zsd }, 4397 4398 #ifndef _KMDB 4399 { "gcore", NULL, "generate a user core for the given process", 4400 gcore_dcmd }, 4401 #endif 4402 4403 { NULL } 4404 }; 4405 4406 static const mdb_walker_t walkers[] = { 4407 4408 /* from genunix.c */ 4409 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4410 callout_walk_init, callout_walk_step, callout_walk_fini, 4411 (void *)CALLOUT_WALK_BYLIST }, 4412 { "callouts_byid", "walk callouts by id hash chain", 4413 callout_walk_init, callout_walk_step, callout_walk_fini, 4414 (void *)CALLOUT_WALK_BYID }, 4415 { "callout_list", "walk a callout list", callout_list_walk_init, 4416 callout_list_walk_step, callout_list_walk_fini }, 4417 { "callout_table", "walk callout table array", callout_table_walk_init, 4418 callout_table_walk_step, callout_table_walk_fini }, 4419 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4420 { "dnlc", "walk dnlc entries", 4421 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini }, 4422 { "ereportq_dump", "walk list of ereports in dump error queue", 4423 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4424 { "ereportq_pend", "walk list of ereports in pending error queue", 4425 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4426 { "errorq", "walk list of system error queues", 4427 errorq_walk_init, errorq_walk_step, NULL }, 4428 { "errorq_data", "walk pending error queue data buffers", 4429 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4430 { "allfile", "given a proc pointer, list all file pointers", 4431 file_walk_init, allfile_walk_step, file_walk_fini }, 4432 { "file", "given a proc pointer, list of open file pointers", 4433 file_walk_init, file_walk_step, file_walk_fini }, 4434 { "lock_descriptor", "walk lock_descriptor_t structures", 4435 ld_walk_init, ld_walk_step, NULL }, 4436 { "lock_graph", "walk lock graph", 4437 lg_walk_init, lg_walk_step, NULL }, 4438 { "port", "given a proc pointer, list of created event ports", 4439 port_walk_init, port_walk_step, NULL }, 4440 { "portev", "given a port pointer, list of events in the queue", 4441 portev_walk_init, portev_walk_step, portev_walk_fini }, 4442 { "proc", "list of active proc_t structures", 4443 proc_walk_init, proc_walk_step, proc_walk_fini }, 4444 { "projects", "walk a list of kernel projects", 4445 project_walk_init, project_walk_step, NULL }, 4446 { "sysevent_pend", "walk sysevent pending queue", 4447 sysevent_pend_walk_init, sysevent_walk_step, 4448 sysevent_walk_fini}, 4449 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4450 sysevent_walk_step, sysevent_walk_fini}, 4451 { "sysevent_channel", "walk sysevent channel subscriptions", 4452 sysevent_channel_walk_init, sysevent_channel_walk_step, 4453 sysevent_channel_walk_fini}, 4454 { "sysevent_class_list", "walk sysevent subscription's class list", 4455 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4456 sysevent_class_list_walk_fini}, 4457 { "sysevent_subclass_list", 4458 "walk sysevent subscription's subclass list", 4459 sysevent_subclass_list_walk_init, 4460 sysevent_subclass_list_walk_step, 4461 sysevent_subclass_list_walk_fini}, 4462 { "task", "given a task pointer, walk its processes", 4463 task_walk_init, task_walk_step, NULL }, 4464 4465 /* from avl.c */ 4466 { AVL_WALK_NAME, AVL_WALK_DESC, 4467 avl_walk_init, avl_walk_step, avl_walk_fini }, 4468 4469 /* from bio.c */ 4470 { "buf", "walk the bio buf hash", 4471 buf_walk_init, buf_walk_step, buf_walk_fini }, 4472 4473 /* from contract.c */ 4474 { "contract", "walk all contracts, or those of the specified type", 4475 ct_walk_init, generic_walk_step, NULL }, 4476 { "ct_event", "walk events on a contract event queue", 4477 ct_event_walk_init, generic_walk_step, NULL }, 4478 { "ct_listener", "walk contract event queue listeners", 4479 ct_listener_walk_init, generic_walk_step, NULL }, 4480 4481 /* from cpupart.c */ 4482 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4483 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4484 NULL }, 4485 { "cpupart_walk", "walk the set of cpu partitions", 4486 cpupart_walk_init, cpupart_walk_step, NULL }, 4487 4488 /* from ctxop.c */ 4489 { "ctxop", "walk list of context ops on a thread", 4490 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4491 4492 /* from cyclic.c */ 4493 { "cyccpu", "walk per-CPU cyc_cpu structures", 4494 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4495 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4496 cycomni_walk_init, cycomni_walk_step, NULL }, 4497 { "cyctrace", "walk cyclic trace buffer", 4498 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4499 4500 /* from devinfo.c */ 4501 { "binding_hash", "walk all entries in binding hash table", 4502 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4503 { "devinfo", "walk devinfo tree or subtree", 4504 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4505 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4506 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4507 devinfo_audit_log_walk_fini}, 4508 { "devinfo_audit_node", "walk per-devinfo audit history", 4509 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4510 devinfo_audit_node_walk_fini}, 4511 { "devinfo_children", "walk children of devinfo node", 4512 devinfo_children_walk_init, devinfo_children_walk_step, 4513 devinfo_children_walk_fini }, 4514 { "devinfo_parents", "walk ancestors of devinfo node", 4515 devinfo_parents_walk_init, devinfo_parents_walk_step, 4516 devinfo_parents_walk_fini }, 4517 { "devinfo_siblings", "walk siblings of devinfo node", 4518 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4519 { "devi_next", "walk devinfo list", 4520 NULL, devi_next_walk_step, NULL }, 4521 { "devnames", "walk devnames array", 4522 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4523 { "minornode", "given a devinfo node, walk minor nodes", 4524 minornode_walk_init, minornode_walk_step, NULL }, 4525 { "softstate", 4526 "given an i_ddi_soft_state*, list all in-use driver stateps", 4527 soft_state_walk_init, soft_state_walk_step, 4528 NULL, NULL }, 4529 { "softstate_all", 4530 "given an i_ddi_soft_state*, list all driver stateps", 4531 soft_state_walk_init, soft_state_all_walk_step, 4532 NULL, NULL }, 4533 { "devinfo_fmc", 4534 "walk a fault management handle cache active list", 4535 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4536 4537 /* from group.c */ 4538 { "group", "walk all elements of a group", 4539 group_walk_init, group_walk_step, NULL }, 4540 4541 /* from irm.c */ 4542 { "irmpools", "walk global list of interrupt pools", 4543 irmpools_walk_init, list_walk_step, list_walk_fini }, 4544 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4545 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4546 4547 /* from kmem.c */ 4548 { "allocdby", "given a thread, walk its allocated bufctls", 4549 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4550 { "bufctl", "walk a kmem cache's bufctls", 4551 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4552 { "bufctl_history", "walk the available history of a bufctl", 4553 bufctl_history_walk_init, bufctl_history_walk_step, 4554 bufctl_history_walk_fini }, 4555 { "freedby", "given a thread, walk its freed bufctls", 4556 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4557 { "freectl", "walk a kmem cache's free bufctls", 4558 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4559 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4560 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4561 { "freemem", "walk a kmem cache's free memory", 4562 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4563 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4564 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4565 { "kmem", "walk a kmem cache", 4566 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4567 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4568 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4569 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4570 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4571 { "kmem_log", "walk the kmem transaction log", 4572 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4573 { "kmem_slab", "given a kmem cache, walk its slabs", 4574 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4575 { "kmem_slab_partial", 4576 "given a kmem cache, walk its partially allocated slabs (min 1)", 4577 kmem_slab_walk_partial_init, combined_walk_step, 4578 combined_walk_fini }, 4579 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4580 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4581 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4582 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4583 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4584 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4585 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4586 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4587 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4588 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4589 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4590 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4591 4592 /* from ldi.c */ 4593 { "ldi_handle", "walk the layered driver handle hash", 4594 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4595 { "ldi_ident", "walk the layered driver identifier hash", 4596 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4597 4598 /* from leaky.c + leaky_subr.c */ 4599 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4600 "stack trace", 4601 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4602 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4603 "leaks w/ same stack trace", 4604 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4605 4606 /* from lgrp.c */ 4607 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4608 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4609 { "lgrptbl", "walk lgroup table", 4610 lgrp_walk_init, lgrp_walk_step, NULL }, 4611 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4612 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4613 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4614 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4615 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4616 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4617 4618 /* from list.c */ 4619 { LIST_WALK_NAME, LIST_WALK_DESC, 4620 list_walk_init, list_walk_step, list_walk_fini }, 4621 4622 /* from mdi.c */ 4623 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4624 mdi_pi_client_link_walk_init, 4625 mdi_pi_client_link_walk_step, 4626 mdi_pi_client_link_walk_fini }, 4627 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4628 mdi_pi_phci_link_walk_init, 4629 mdi_pi_phci_link_walk_step, 4630 mdi_pi_phci_link_walk_fini }, 4631 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4632 mdi_phci_ph_next_walk_init, 4633 mdi_phci_ph_next_walk_step, 4634 mdi_phci_ph_next_walk_fini }, 4635 4636 /* from memory.c */ 4637 { "allpages", "walk all pages, including free pages", 4638 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4639 { "anon", "given an amp, list allocated anon structures", 4640 anon_walk_init, anon_walk_step, anon_walk_fini, 4641 ANON_WALK_ALLOC }, 4642 { "anon_all", "given an amp, list contents of all anon slots", 4643 anon_walk_init, anon_walk_step, anon_walk_fini, 4644 ANON_WALK_ALL }, 4645 { "memlist", "walk specified memlist", 4646 NULL, memlist_walk_step, NULL }, 4647 { "page", "walk all pages, or those from the specified vnode", 4648 page_walk_init, page_walk_step, page_walk_fini }, 4649 { "seg", "given an as, list of segments", 4650 seg_walk_init, avl_walk_step, avl_walk_fini }, 4651 { "segvn_anon", 4652 "given a struct segvn_data, list allocated anon structures", 4653 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4654 ANON_WALK_ALLOC }, 4655 { "segvn_anon_all", 4656 "given a struct segvn_data, list contents of all anon slots", 4657 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4658 ANON_WALK_ALL }, 4659 { "segvn_pages", 4660 "given a struct segvn_data, list resident pages in " 4661 "offset order", 4662 segvn_pages_walk_init, segvn_pages_walk_step, 4663 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4664 { "segvn_pages_all", 4665 "for each offset in a struct segvn_data, give page_t pointer " 4666 "(if resident), or NULL.", 4667 segvn_pages_walk_init, segvn_pages_walk_step, 4668 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4669 { "swapinfo", "walk swapinfo structures", 4670 swap_walk_init, swap_walk_step, NULL }, 4671 4672 /* from mmd.c */ 4673 { "pattr", "walk pattr_t structures", pattr_walk_init, 4674 mmdq_walk_step, mmdq_walk_fini }, 4675 { "pdesc", "walk pdesc_t structures", 4676 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4677 { "pdesc_slab", "walk pdesc_slab_t structures", 4678 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4679 4680 /* from modhash.c */ 4681 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4682 modhash_walk_step, NULL }, 4683 { "modent", "walk list of entries in a given mod_hash", 4684 modent_walk_init, modent_walk_step, modent_walk_fini }, 4685 { "modchain", "walk list of entries in a given mod_hash_entry", 4686 NULL, modchain_walk_step, NULL }, 4687 4688 /* from net.c */ 4689 { "icmp", "walk ICMP control structures using MI for all stacks", 4690 mi_payload_walk_init, mi_payload_walk_step, NULL, 4691 &mi_icmp_arg }, 4692 { "mi", "given a MI_O, walk the MI", 4693 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4694 { "sonode", "given a sonode, walk its children", 4695 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4696 { "icmp_stacks", "walk all the icmp_stack_t", 4697 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4698 { "tcp_stacks", "walk all the tcp_stack_t", 4699 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4700 { "udp_stacks", "walk all the udp_stack_t", 4701 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4702 4703 /* from netstack.c */ 4704 { "netstack", "walk a list of kernel netstacks", 4705 netstack_walk_init, netstack_walk_step, NULL }, 4706 4707 /* from nvpair.c */ 4708 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4709 nvpair_walk_init, nvpair_walk_step, NULL }, 4710 4711 /* from rctl.c */ 4712 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4713 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4714 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4715 rctl_set_walk_step, NULL }, 4716 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4717 rctl_val_walk_init, rctl_val_walk_step }, 4718 4719 /* from sobj.c */ 4720 { "blocked", "walk threads blocked on a given sobj", 4721 blocked_walk_init, blocked_walk_step, NULL }, 4722 { "wchan", "given a wchan, list of blocked threads", 4723 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4724 4725 /* from stream.c */ 4726 { "b_cont", "walk mblk_t list using b_cont", 4727 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4728 { "b_next", "walk mblk_t list using b_next", 4729 mblk_walk_init, b_next_step, mblk_walk_fini }, 4730 { "qlink", "walk queue_t list using q_link", 4731 queue_walk_init, queue_link_step, queue_walk_fini }, 4732 { "qnext", "walk queue_t list using q_next", 4733 queue_walk_init, queue_next_step, queue_walk_fini }, 4734 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4735 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4736 { "readq", "walk read queue side of stdata", 4737 str_walk_init, strr_walk_step, str_walk_fini }, 4738 { "writeq", "walk write queue side of stdata", 4739 str_walk_init, strw_walk_step, str_walk_fini }, 4740 4741 /* from taskq.c */ 4742 { "taskq_thread", "given a taskq_t, list all of its threads", 4743 taskq_thread_walk_init, 4744 taskq_thread_walk_step, 4745 taskq_thread_walk_fini }, 4746 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4747 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4748 4749 /* from thread.c */ 4750 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4751 deathrow_walk_init, deathrow_walk_step, NULL }, 4752 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4753 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4754 { "cpupart_dispq", 4755 "given a cpupart_t, walk threads in dispatcher queues", 4756 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4757 { "lwp_deathrow", "walk lwp_deathrow", 4758 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4759 { "thread", "global or per-process kthread_t structures", 4760 thread_walk_init, thread_walk_step, thread_walk_fini }, 4761 { "thread_deathrow", "walk threads on thread_deathrow", 4762 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4763 4764 /* from tsd.c */ 4765 { "tsd", "walk list of thread-specific data", 4766 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4767 4768 /* from tsol.c */ 4769 { "tnrh", "walk remote host cache structures", 4770 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4771 { "tnrhtp", "walk remote host template structures", 4772 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4773 4774 /* 4775 * typegraph does not work under kmdb, as it requires too much memory 4776 * for its internal data structures. 4777 */ 4778 #ifndef _KMDB 4779 /* from typegraph.c */ 4780 { "typeconflict", "walk buffers with conflicting type inferences", 4781 typegraph_walk_init, typeconflict_walk_step }, 4782 { "typeunknown", "walk buffers with unknown types", 4783 typegraph_walk_init, typeunknown_walk_step }, 4784 #endif 4785 4786 /* from vfs.c */ 4787 { "vfs", "walk file system list", 4788 vfs_walk_init, vfs_walk_step }, 4789 4790 /* from zone.c */ 4791 { "zone", "walk a list of kernel zones", 4792 zone_walk_init, zone_walk_step, NULL }, 4793 { "zsd", "walk list of zsd entries for a zone", 4794 zsd_walk_init, zsd_walk_step, NULL }, 4795 4796 { NULL } 4797 }; 4798 4799 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4800 4801 /*ARGSUSED*/ 4802 static void 4803 genunix_statechange_cb(void *ignored) 4804 { 4805 /* 4806 * Force ::findleaks and ::stacks to let go any cached state. 4807 */ 4808 leaky_cleanup(1); 4809 stacks_cleanup(1); 4810 4811 kmem_statechange(); /* notify kmem */ 4812 } 4813 4814 const mdb_modinfo_t * 4815 _mdb_init(void) 4816 { 4817 kmem_init(); 4818 4819 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4820 genunix_statechange_cb, NULL); 4821 4822 #ifndef _KMDB 4823 gcore_init(); 4824 #endif 4825 4826 return (&modinfo); 4827 } 4828 4829 void 4830 _mdb_fini(void) 4831 { 4832 leaky_cleanup(1); 4833 stacks_cleanup(1); 4834 } 4835