1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 * Copyright 2022 Garrett D'Amore 27 * Copyright 2023 RackTop Systems, Inc. 28 * Copyright 2025 Oxide Computer Company 29 */ 30 31 #include <mdb/mdb_param.h> 32 #include <mdb/mdb_modapi.h> 33 #include <mdb/mdb_ks.h> 34 #include <mdb/mdb_ctf.h> 35 36 #include <sys/types.h> 37 #include <sys/thread.h> 38 #include <sys/session.h> 39 #include <sys/user.h> 40 #include <sys/proc.h> 41 #include <sys/var.h> 42 #include <sys/t_lock.h> 43 #include <sys/callo.h> 44 #include <sys/priocntl.h> 45 #include <sys/class.h> 46 #include <sys/regset.h> 47 #include <sys/stack.h> 48 #include <sys/cpuvar.h> 49 #include <sys/vnode.h> 50 #include <sys/vfs.h> 51 #include <sys/flock_impl.h> 52 #include <sys/kmem_impl.h> 53 #include <sys/vmem_impl.h> 54 #include <sys/kstat.h> 55 #include <sys/dditypes.h> 56 #include <sys/ddi_impldefs.h> 57 #include <sys/sysmacros.h> 58 #include <sys/sysconf.h> 59 #include <sys/task.h> 60 #include <sys/project.h> 61 #include <sys/errorq_impl.h> 62 #include <sys/cred_impl.h> 63 #include <sys/zone.h> 64 #include <sys/panic.h> 65 #include <regex.h> 66 #include <sys/port_impl.h> 67 #include <sys/contract/process_impl.h> 68 69 #include "avl.h" 70 #include "bio.h" 71 #include "bitset.h" 72 #include "combined.h" 73 #include "contract.h" 74 #include "cpupart_mdb.h" 75 #include "cred.h" 76 #include "ctxop.h" 77 #include "cyclic.h" 78 #include "damap.h" 79 #include "ddi_periodic.h" 80 #include "devinfo.h" 81 #include "dnlc.h" 82 #include "findstack.h" 83 #include "fm.h" 84 #include "gcore.h" 85 #include "group.h" 86 #include "irm.h" 87 #include "kgrep.h" 88 #include "kmem.h" 89 #include "ldi.h" 90 #include "leaky.h" 91 #include "lgrp.h" 92 #include "list.h" 93 #include "log.h" 94 #include "mdi.h" 95 #include "memory.h" 96 #include "modhash.h" 97 #include "ndievents.h" 98 #include "net.h" 99 #include "netstack.h" 100 #include "nvpair.h" 101 #include "pci.h" 102 #include "pg.h" 103 #include "rctl.h" 104 #include "sobj.h" 105 #include "streams.h" 106 #include "sysevent.h" 107 #include "taskq.h" 108 #include "thread.h" 109 #include "tsd.h" 110 #include "tsol.h" 111 #include "typegraph.h" 112 #include "vfs.h" 113 #include "zone.h" 114 #include "hotplug.h" 115 116 /* 117 * Surely this is defined somewhere... 118 */ 119 #define NINTR 16 120 121 #define KILOS 10 122 #define MEGS 20 123 #define GIGS 30 124 125 #ifndef STACK_BIAS 126 #define STACK_BIAS 0 127 #endif 128 129 static char 130 pstat2ch(uchar_t state) 131 { 132 switch (state) { 133 case SSLEEP: return ('S'); 134 case SRUN: return ('R'); 135 case SZOMB: return ('Z'); 136 case SIDL: return ('I'); 137 case SONPROC: return ('O'); 138 case SSTOP: return ('T'); 139 case SWAIT: return ('W'); 140 default: return ('?'); 141 } 142 } 143 144 #define PS_PRTTHREADS 0x1 145 #define PS_PRTLWPS 0x2 146 #define PS_PSARGS 0x4 147 #define PS_TASKS 0x8 148 #define PS_PROJECTS 0x10 149 #define PS_ZONES 0x20 150 #define PS_SERVICES 0x40 151 152 static int 153 ps_threadprint(uintptr_t addr, const void *data, void *private) 154 { 155 const kthread_t *t = (const kthread_t *)data; 156 uint_t prt_flags = *((uint_t *)private); 157 158 static const mdb_bitmask_t t_state_bits[] = { 159 { "TS_FREE", UINT_MAX, TS_FREE }, 160 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 161 { "TS_RUN", TS_RUN, TS_RUN }, 162 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 163 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 164 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 165 { "TS_WAIT", TS_WAIT, TS_WAIT }, 166 { NULL, 0, 0 } 167 }; 168 169 if (prt_flags & PS_PRTTHREADS) 170 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 171 172 if (prt_flags & PS_PRTLWPS) { 173 char desc[128] = ""; 174 175 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc)); 176 177 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc); 178 } 179 180 return (WALK_NEXT); 181 } 182 183 typedef struct mdb_pflags_proc { 184 struct pid *p_pidp; 185 ushort_t p_pidflag; 186 uint_t p_proc_flag; 187 uint_t p_flag; 188 } mdb_pflags_proc_t; 189 190 static int 191 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 192 { 193 mdb_pflags_proc_t pr; 194 struct pid pid; 195 196 static const mdb_bitmask_t p_flag_bits[] = { 197 { "SSYS", SSYS, SSYS }, 198 { "SEXITING", SEXITING, SEXITING }, 199 { "SITBUSY", SITBUSY, SITBUSY }, 200 { "SFORKING", SFORKING, SFORKING }, 201 { "SWATCHOK", SWATCHOK, SWATCHOK }, 202 { "SKILLED", SKILLED, SKILLED }, 203 { "SSCONT", SSCONT, SSCONT }, 204 { "SZONETOP", SZONETOP, SZONETOP }, 205 { "SEXTKILLED", SEXTKILLED, SEXTKILLED }, 206 { "SUGID", SUGID, SUGID }, 207 { "SEXECED", SEXECED, SEXECED }, 208 { "SJCTL", SJCTL, SJCTL }, 209 { "SNOWAIT", SNOWAIT, SNOWAIT }, 210 { "SVFORK", SVFORK, SVFORK }, 211 { "SVFWAIT", SVFWAIT, SVFWAIT }, 212 { "SEXITLWPS", SEXITLWPS, SEXITLWPS }, 213 { "SHOLDFORK", SHOLDFORK, SHOLDFORK }, 214 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 }, 215 { "SCOREDUMP", SCOREDUMP, SCOREDUMP }, 216 { "SMSACCT", SMSACCT, SMSACCT }, 217 { "SLWPWRAP", SLWPWRAP, SLWPWRAP }, 218 { "SAUTOLPG", SAUTOLPG, SAUTOLPG }, 219 { "SNOCD", SNOCD, SNOCD }, 220 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH }, 221 { "SMSFORK", SMSFORK, SMSFORK }, 222 { "SDOCORE", SDOCORE, SDOCORE }, 223 { NULL, 0, 0 } 224 }; 225 226 static const mdb_bitmask_t p_pidflag_bits[] = { 227 { "CLDPEND", CLDPEND, CLDPEND }, 228 { "CLDCONT", CLDCONT, CLDCONT }, 229 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD }, 230 { "CLDWAITPID", CLDWAITPID, CLDWAITPID }, 231 { NULL, 0, 0 } 232 }; 233 234 static const mdb_bitmask_t p_proc_flag_bits[] = { 235 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE }, 236 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE }, 237 { "P_PR_FORK", P_PR_FORK, P_PR_FORK }, 238 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK }, 239 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC }, 240 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC }, 241 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ }, 242 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL }, 243 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL }, 244 { NULL, 0, 0 } 245 }; 246 247 if (!(flags & DCMD_ADDRSPEC)) { 248 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) { 249 mdb_warn("can't walk 'proc'"); 250 return (DCMD_ERR); 251 } 252 return (DCMD_OK); 253 } 254 255 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 || 256 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) { 257 mdb_warn("cannot read proc_t or pid"); 258 return (DCMD_ERR); 259 } 260 261 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id); 262 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag, 263 p_flag_bits); 264 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag, 265 p_pidflag_bits); 266 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag, 267 p_proc_flag_bits); 268 269 return (DCMD_OK); 270 } 271 272 typedef struct mdb_ps_proc { 273 char p_stat; 274 struct pid *p_pidp; 275 struct pid *p_pgidp; 276 struct cred *p_cred; 277 struct sess *p_sessp; 278 struct task *p_task; 279 struct zone *p_zone; 280 struct cont_process *p_ct_process; 281 pid_t p_ppid; 282 uint_t p_flag; 283 struct { 284 char u_comm[MAXCOMLEN + 1]; 285 char u_psargs[PSARGSZ]; 286 } p_user; 287 } mdb_ps_proc_t; 288 289 /* 290 * A reasonable enough limit. Note that we purposefully let this column over-run 291 * if needed. 292 */ 293 #define FMRI_LEN (128) 294 295 int 296 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 297 { 298 uint_t prt_flags = 0; 299 mdb_ps_proc_t pr; 300 struct pid pid, pgid, sid; 301 sess_t session; 302 cred_t cred; 303 task_t tk; 304 kproject_t pj; 305 zone_t zn; 306 struct cont_process cp; 307 char fmri[FMRI_LEN] = ""; 308 309 if (!(flags & DCMD_ADDRSPEC)) { 310 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 311 mdb_warn("can't walk 'proc'"); 312 return (DCMD_ERR); 313 } 314 return (DCMD_OK); 315 } 316 317 if (mdb_getopts(argc, argv, 318 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 319 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 320 's', MDB_OPT_SETBITS, PS_SERVICES, &prt_flags, 321 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 322 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 323 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 324 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 325 return (DCMD_USAGE); 326 327 if (DCMD_HDRSPEC(flags)) { 328 mdb_printf("%<u>%-1s %-6s %-6s %-6s %-6s ", 329 "S", "PID", "PPID", "PGID", "SID"); 330 if (prt_flags & PS_TASKS) 331 mdb_printf("%-5s ", "TASK"); 332 if (prt_flags & PS_PROJECTS) 333 mdb_printf("%-5s ", "PROJ"); 334 if (prt_flags & PS_ZONES) 335 mdb_printf("%-5s ", "ZONE"); 336 if (prt_flags & PS_SERVICES) 337 mdb_printf("%-40s ", "SERVICE"); 338 mdb_printf("%-6s %-10s %-?s %-s%</u>\n", 339 "UID", "FLAGS", "ADDR", "NAME"); 340 } 341 342 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1) 343 return (DCMD_ERR); 344 345 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 346 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 347 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 348 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 349 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 350 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 351 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 352 if (prt_flags & PS_PROJECTS) 353 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 354 if (prt_flags & PS_ZONES) 355 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone); 356 if ((prt_flags & PS_SERVICES) && pr.p_ct_process != NULL) { 357 mdb_vread(&cp, sizeof (cp), (uintptr_t)pr.p_ct_process); 358 359 if (mdb_read_refstr((uintptr_t)cp.conp_svc_fmri, fmri, 360 sizeof (fmri)) <= 0) 361 (void) strlcpy(fmri, "?", sizeof (fmri)); 362 363 /* Strip any standard prefix and suffix. */ 364 if (strncmp(fmri, "svc:/", sizeof ("svc:/") - 1) == 0) { 365 char *i = fmri; 366 char *j = fmri + sizeof ("svc:/") - 1; 367 for (; *j != '\0'; i++, j++) { 368 if (strcmp(j, ":default") == 0) 369 break; 370 *i = *j; 371 } 372 373 *i = '\0'; 374 } 375 } 376 377 mdb_printf("%-c %-6d %-6d %-6d %-6d ", 378 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 379 sid.pid_id); 380 if (prt_flags & PS_TASKS) 381 mdb_printf("%-5d ", tk.tk_tkid); 382 if (prt_flags & PS_PROJECTS) 383 mdb_printf("%-5d ", pj.kpj_id); 384 if (prt_flags & PS_ZONES) 385 mdb_printf("%-5d ", zn.zone_id); 386 if (prt_flags & PS_SERVICES) 387 mdb_printf("%-40s ", fmri); 388 mdb_printf("%-6d 0x%08x %0?p %-s\n", 389 cred.cr_uid, pr.p_flag, addr, 390 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 391 392 if (prt_flags & ~PS_PSARGS) 393 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 394 395 return (DCMD_OK); 396 } 397 398 static void 399 ps_help(void) 400 { 401 mdb_printf("Display processes.\n\n" 402 "Options:\n" 403 " -f\tDisplay command arguments\n" 404 " -l\tDisplay LWPs\n" 405 " -T\tDisplay tasks\n" 406 " -P\tDisplay projects\n" 407 " -s\tDisplay SMF FMRI\n" 408 " -z\tDisplay zones\n" 409 " -t\tDisplay threads\n\n"); 410 411 mdb_printf("The resulting output is a table of the processes on the " 412 "system. The\n" 413 "columns in the output consist of a combination of the " 414 "following fields:\n\n"); 415 mdb_printf("S\tProcess state. Possible states are:\n" 416 "\tS\tSleeping (SSLEEP)\n" 417 "\tR\tRunnable (SRUN)\n" 418 "\tZ\tZombie (SZOMB)\n" 419 "\tI\tIdle (SIDL)\n" 420 "\tO\tOn Cpu (SONPROC)\n" 421 "\tT\tStopped (SSTOP)\n" 422 "\tW\tWaiting (SWAIT)\n"); 423 424 mdb_printf("PID\tProcess id.\n"); 425 mdb_printf("PPID\tParent process id.\n"); 426 mdb_printf("PGID\tProcess group id.\n"); 427 mdb_printf("SID\tProcess id of the session leader.\n"); 428 mdb_printf("TASK\tThe task id of the process.\n"); 429 mdb_printf("PROJ\tThe project id of the process.\n"); 430 mdb_printf("ZONE\tThe zone id of the process.\n"); 431 mdb_printf("SERVICE The SMF service FMRI of the process.\n"); 432 mdb_printf("UID\tThe user id of the process.\n"); 433 mdb_printf("FLAGS\tThe process flags (see ::pflags).\n"); 434 mdb_printf("ADDR\tThe kernel address of the proc_t structure of the " 435 "process\n"); 436 mdb_printf("NAME\tThe name (p_user.u_comm field) of the process. If " 437 "the -f flag\n" 438 "\tis specified, the arguments of the process are displayed.\n"); 439 } 440 441 #define PG_NEWEST 0x0001 442 #define PG_OLDEST 0x0002 443 #define PG_PIPE_OUT 0x0004 444 #define PG_EXACT_MATCH 0x0008 445 446 typedef struct pgrep_data { 447 uint_t pg_flags; 448 uint_t pg_psflags; 449 uintptr_t pg_xaddr; 450 hrtime_t pg_xstart; 451 const char *pg_pat; 452 #ifndef _KMDB 453 regex_t pg_reg; 454 #endif 455 } pgrep_data_t; 456 457 typedef struct mdb_pgrep_proc { 458 struct { 459 timestruc_t u_start; 460 char u_comm[MAXCOMLEN + 1]; 461 } p_user; 462 } mdb_pgrep_proc_t; 463 464 /*ARGSUSED*/ 465 static int 466 pgrep_cb(uintptr_t addr, const void *ignored, void *data) 467 { 468 mdb_pgrep_proc_t p; 469 pgrep_data_t *pgp = data; 470 #ifndef _KMDB 471 regmatch_t pmatch; 472 #endif 473 474 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1) 475 return (WALK_ERR); 476 477 /* 478 * kmdb doesn't have access to the reg* functions, so we fall back 479 * to strstr/strcmp. 480 */ 481 #ifdef _KMDB 482 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 483 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) : 484 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL)) 485 return (WALK_NEXT); 486 #else 487 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0) 488 return (WALK_NEXT); 489 490 if ((pgp->pg_flags & PG_EXACT_MATCH) && 491 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0')) 492 return (WALK_NEXT); 493 #endif 494 495 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 496 hrtime_t start; 497 498 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC + 499 p.p_user.u_start.tv_nsec; 500 501 if (pgp->pg_flags & PG_NEWEST) { 502 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) { 503 pgp->pg_xaddr = addr; 504 pgp->pg_xstart = start; 505 } 506 } else { 507 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) { 508 pgp->pg_xaddr = addr; 509 pgp->pg_xstart = start; 510 } 511 } 512 513 } else if (pgp->pg_flags & PG_PIPE_OUT) { 514 mdb_printf("%p\n", addr); 515 516 } else { 517 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 518 mdb_warn("can't invoke 'ps'"); 519 return (WALK_DONE); 520 } 521 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 522 } 523 524 return (WALK_NEXT); 525 } 526 527 /*ARGSUSED*/ 528 int 529 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 530 { 531 pgrep_data_t pg; 532 int i; 533 #ifndef _KMDB 534 int err; 535 #endif 536 537 if (flags & DCMD_ADDRSPEC) 538 return (DCMD_USAGE); 539 540 pg.pg_flags = 0; 541 pg.pg_xaddr = 0; 542 543 i = mdb_getopts(argc, argv, 544 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 545 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 546 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 547 NULL); 548 549 argc -= i; 550 argv += i; 551 552 if (argc != 1) 553 return (DCMD_USAGE); 554 555 /* 556 * -n and -o are mutually exclusive. 557 */ 558 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 559 return (DCMD_USAGE); 560 561 if (argv->a_type != MDB_TYPE_STRING) 562 return (DCMD_USAGE); 563 564 if (flags & DCMD_PIPE_OUT) 565 pg.pg_flags |= PG_PIPE_OUT; 566 567 pg.pg_pat = argv->a_un.a_str; 568 if (DCMD_HDRSPEC(flags)) 569 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 570 else 571 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 572 573 #ifndef _KMDB 574 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 575 size_t nbytes; 576 char *buf; 577 578 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 579 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 580 (void) regerror(err, &pg.pg_reg, buf, nbytes); 581 mdb_warn("%s\n", buf); 582 583 return (DCMD_ERR); 584 } 585 #endif 586 587 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 588 mdb_warn("can't walk 'proc'"); 589 return (DCMD_ERR); 590 } 591 592 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 593 if (pg.pg_flags & PG_PIPE_OUT) { 594 mdb_printf("%p\n", pg.pg_xaddr); 595 } else { 596 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 597 0, NULL) != 0) { 598 mdb_warn("can't invoke 'ps'"); 599 return (DCMD_ERR); 600 } 601 } 602 } 603 604 return (DCMD_OK); 605 } 606 607 int 608 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 609 { 610 task_t tk; 611 kproject_t pj; 612 613 if (!(flags & DCMD_ADDRSPEC)) { 614 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 615 mdb_warn("can't walk task_cache"); 616 return (DCMD_ERR); 617 } 618 return (DCMD_OK); 619 } 620 if (DCMD_HDRSPEC(flags)) { 621 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 622 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 623 } 624 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 625 mdb_warn("can't read task_t structure at %p", addr); 626 return (DCMD_ERR); 627 } 628 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 629 mdb_warn("can't read project_t structure at %p", addr); 630 return (DCMD_ERR); 631 } 632 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 633 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 634 tk.tk_flags); 635 return (DCMD_OK); 636 } 637 638 int 639 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 640 { 641 kproject_t pj; 642 643 if (!(flags & DCMD_ADDRSPEC)) { 644 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 645 mdb_warn("can't walk projects"); 646 return (DCMD_ERR); 647 } 648 return (DCMD_OK); 649 } 650 if (DCMD_HDRSPEC(flags)) { 651 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 652 "ADDR", "PROJID", "ZONEID", "REFCNT"); 653 } 654 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 655 mdb_warn("can't read kproject_t structure at %p", addr); 656 return (DCMD_ERR); 657 } 658 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 659 pj.kpj_count); 660 return (DCMD_OK); 661 } 662 663 /* walk callouts themselves, either by list or id hash. */ 664 int 665 callout_walk_init(mdb_walk_state_t *wsp) 666 { 667 if (wsp->walk_addr == 0) { 668 mdb_warn("callout doesn't support global walk"); 669 return (WALK_ERR); 670 } 671 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 672 return (WALK_NEXT); 673 } 674 675 #define CALLOUT_WALK_BYLIST 0 676 #define CALLOUT_WALK_BYID 1 677 678 /* the walker arg switches between walking by list (0) and walking by id (1). */ 679 int 680 callout_walk_step(mdb_walk_state_t *wsp) 681 { 682 int retval; 683 684 if (wsp->walk_addr == 0) { 685 return (WALK_DONE); 686 } 687 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 688 wsp->walk_addr) == -1) { 689 mdb_warn("failed to read callout at %p", wsp->walk_addr); 690 return (WALK_DONE); 691 } 692 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 693 wsp->walk_cbdata); 694 695 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 696 wsp->walk_addr = 697 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 698 } else { 699 wsp->walk_addr = 700 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 701 } 702 703 return (retval); 704 } 705 706 void 707 callout_walk_fini(mdb_walk_state_t *wsp) 708 { 709 mdb_free(wsp->walk_data, sizeof (callout_t)); 710 } 711 712 /* 713 * walker for callout lists. This is different from hashes and callouts. 714 * Thankfully, it's also simpler. 715 */ 716 int 717 callout_list_walk_init(mdb_walk_state_t *wsp) 718 { 719 if (wsp->walk_addr == 0) { 720 mdb_warn("callout list doesn't support global walk"); 721 return (WALK_ERR); 722 } 723 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 724 return (WALK_NEXT); 725 } 726 727 int 728 callout_list_walk_step(mdb_walk_state_t *wsp) 729 { 730 int retval; 731 732 if (wsp->walk_addr == 0) { 733 return (WALK_DONE); 734 } 735 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 736 wsp->walk_addr) != sizeof (callout_list_t)) { 737 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 738 return (WALK_ERR); 739 } 740 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 741 wsp->walk_cbdata); 742 743 wsp->walk_addr = (uintptr_t) 744 (((callout_list_t *)wsp->walk_data)->cl_next); 745 746 return (retval); 747 } 748 749 void 750 callout_list_walk_fini(mdb_walk_state_t *wsp) 751 { 752 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 753 } 754 755 /* routines/structs to walk callout table(s) */ 756 typedef struct cot_data { 757 callout_table_t *ct0; 758 callout_table_t ct; 759 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 760 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 761 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 762 int cotndx; 763 int cotsize; 764 } cot_data_t; 765 766 int 767 callout_table_walk_init(mdb_walk_state_t *wsp) 768 { 769 int max_ncpus; 770 cot_data_t *cot_walk_data; 771 772 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 773 774 if (wsp->walk_addr == 0) { 775 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 776 mdb_warn("failed to read 'callout_table'"); 777 return (WALK_ERR); 778 } 779 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 780 mdb_warn("failed to get callout_table array size"); 781 return (WALK_ERR); 782 } 783 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 784 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 785 } else { 786 /* not a global walk */ 787 cot_walk_data->cotsize = 1; 788 } 789 790 cot_walk_data->cotndx = 0; 791 wsp->walk_data = cot_walk_data; 792 793 return (WALK_NEXT); 794 } 795 796 int 797 callout_table_walk_step(mdb_walk_state_t *wsp) 798 { 799 int retval; 800 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 801 size_t size; 802 803 if (cotwd->cotndx >= cotwd->cotsize) { 804 return (WALK_DONE); 805 } 806 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 807 wsp->walk_addr) != sizeof (callout_table_t)) { 808 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 809 return (WALK_ERR); 810 } 811 812 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 813 if (cotwd->ct.ct_idhash != NULL) { 814 if (mdb_vread(cotwd->cot_idhash, size, 815 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 816 mdb_warn("failed to read id_hash at %p", 817 cotwd->ct.ct_idhash); 818 return (WALK_ERR); 819 } 820 } 821 if (cotwd->ct.ct_clhash != NULL) { 822 if (mdb_vread(&(cotwd->cot_clhash), size, 823 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 824 mdb_warn("failed to read cl_hash at %p", 825 cotwd->ct.ct_clhash); 826 return (WALK_ERR); 827 } 828 } 829 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 830 if (cotwd->ct.ct_kstat_data != NULL) { 831 if (mdb_vread(&(cotwd->ct_kstat_data), size, 832 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 833 mdb_warn("failed to read kstats at %p", 834 cotwd->ct.ct_kstat_data); 835 return (WALK_ERR); 836 } 837 } 838 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 839 wsp->walk_cbdata); 840 841 cotwd->cotndx++; 842 if (cotwd->cotndx >= cotwd->cotsize) { 843 return (WALK_DONE); 844 } 845 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 846 sizeof (callout_table_t)); 847 848 return (retval); 849 } 850 851 void 852 callout_table_walk_fini(mdb_walk_state_t *wsp) 853 { 854 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 855 } 856 857 static const char *co_typenames[] = { "R", "N" }; 858 859 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 860 861 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 862 863 /* callout flags, in no particular order */ 864 #define COF_REAL 0x00000001 865 #define COF_NORM 0x00000002 866 #define COF_LONG 0x00000004 867 #define COF_SHORT 0x00000008 868 #define COF_EMPTY 0x00000010 869 #define COF_TIME 0x00000020 870 #define COF_BEFORE 0x00000040 871 #define COF_AFTER 0x00000080 872 #define COF_SEQID 0x00000100 873 #define COF_FUNC 0x00000200 874 #define COF_ADDR 0x00000400 875 #define COF_EXEC 0x00000800 876 #define COF_HIRES 0x00001000 877 #define COF_ABS 0x00002000 878 #define COF_TABLE 0x00004000 879 #define COF_BYIDH 0x00008000 880 #define COF_FREE 0x00010000 881 #define COF_LIST 0x00020000 882 #define COF_EXPREL 0x00040000 883 #define COF_HDR 0x00080000 884 #define COF_VERBOSE 0x00100000 885 #define COF_LONGLIST 0x00200000 886 #define COF_THDR 0x00400000 887 #define COF_LHDR 0x00800000 888 #define COF_CHDR 0x01000000 889 #define COF_PARAM 0x02000000 890 #define COF_DECODE 0x04000000 891 #define COF_HEAP 0x08000000 892 #define COF_QUEUE 0x10000000 893 894 /* show real and normal, short and long, expired and unexpired. */ 895 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 896 897 #define COF_LIST_FLAGS \ 898 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 899 900 /* private callout data for callback functions */ 901 typedef struct callout_data { 902 uint_t flags; /* COF_* */ 903 cpu_t *cpu; /* cpu pointer if given */ 904 int seqid; /* cpu seqid, or -1 */ 905 hrtime_t time; /* expiration time value */ 906 hrtime_t atime; /* expiration before value */ 907 hrtime_t btime; /* expiration after value */ 908 uintptr_t funcaddr; /* function address or NULL */ 909 uintptr_t param; /* parameter to function or NULL */ 910 hrtime_t now; /* current system time */ 911 int nsec_per_tick; /* for conversions */ 912 ulong_t ctbits; /* for decoding xid */ 913 callout_table_t *co_table; /* top of callout table array */ 914 int ndx; /* table index. */ 915 int bucket; /* which list/id bucket are we in */ 916 hrtime_t exp; /* expire time */ 917 int list_flags; /* copy of cl_flags */ 918 } callout_data_t; 919 920 /* this callback does the actual callback itself (finally). */ 921 /*ARGSUSED*/ 922 static int 923 callouts_cb(uintptr_t addr, const void *data, void *priv) 924 { 925 callout_data_t *coargs = (callout_data_t *)priv; 926 callout_t *co = (callout_t *)data; 927 int tableid, list_flags; 928 callout_id_t coid; 929 930 if ((coargs == NULL) || (co == NULL)) { 931 return (WALK_ERR); 932 } 933 934 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 935 /* 936 * The callout must have been reallocated. No point in 937 * walking any more. 938 */ 939 return (WALK_DONE); 940 } 941 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 942 /* 943 * The callout must have been freed. No point in 944 * walking any more. 945 */ 946 return (WALK_DONE); 947 } 948 if ((coargs->flags & COF_FUNC) && 949 (coargs->funcaddr != (uintptr_t)co->c_func)) { 950 return (WALK_NEXT); 951 } 952 if ((coargs->flags & COF_PARAM) && 953 (coargs->param != (uintptr_t)co->c_arg)) { 954 return (WALK_NEXT); 955 } 956 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 957 return (WALK_NEXT); 958 } 959 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 960 return (WALK_NEXT); 961 } 962 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 963 return (WALK_NEXT); 964 } 965 /* it is possible we don't have the exp time or flags */ 966 if (coargs->flags & COF_BYIDH) { 967 if (!(coargs->flags & COF_FREE)) { 968 /* we have to fetch the expire time ourselves. */ 969 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 970 (uintptr_t)co->c_list + offsetof(callout_list_t, 971 cl_expiration)) == -1) { 972 mdb_warn("failed to read expiration " 973 "time from %p", co->c_list); 974 coargs->exp = 0; 975 } 976 /* and flags. */ 977 if (mdb_vread(&coargs->list_flags, sizeof (int), 978 (uintptr_t)co->c_list + offsetof(callout_list_t, 979 cl_flags)) == -1) { 980 mdb_warn("failed to read list flags" 981 "from %p", co->c_list); 982 coargs->list_flags = 0; 983 } 984 } else { 985 /* free callouts can't use list pointer. */ 986 coargs->exp = 0; 987 coargs->list_flags = 0; 988 } 989 if (coargs->exp != 0) { 990 if ((coargs->flags & COF_TIME) && 991 (coargs->exp != coargs->time)) { 992 return (WALK_NEXT); 993 } 994 if ((coargs->flags & COF_BEFORE) && 995 (coargs->exp > coargs->btime)) { 996 return (WALK_NEXT); 997 } 998 if ((coargs->flags & COF_AFTER) && 999 (coargs->exp < coargs->atime)) { 1000 return (WALK_NEXT); 1001 } 1002 } 1003 /* tricky part, since both HIRES and ABS can be set */ 1004 list_flags = coargs->list_flags; 1005 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1006 /* both flags are set, only skip "regular" ones */ 1007 if (! (list_flags & COF_LIST_FLAGS)) { 1008 return (WALK_NEXT); 1009 } 1010 } else { 1011 /* individual flags, or no flags */ 1012 if ((coargs->flags & COF_HIRES) && 1013 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1014 return (WALK_NEXT); 1015 } 1016 if ((coargs->flags & COF_ABS) && 1017 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1018 return (WALK_NEXT); 1019 } 1020 } 1021 /* 1022 * We do the checks for COF_HEAP and COF_QUEUE here only if we 1023 * are traversing BYIDH. If the traversal is by callout list, 1024 * we do this check in callout_list_cb() to be more 1025 * efficient. 1026 */ 1027 if ((coargs->flags & COF_HEAP) && 1028 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1029 return (WALK_NEXT); 1030 } 1031 1032 if ((coargs->flags & COF_QUEUE) && 1033 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1034 return (WALK_NEXT); 1035 } 1036 } 1037 1038 #define callout_table_mask ((1 << coargs->ctbits) - 1) 1039 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 1040 #undef callout_table_mask 1041 coid = CO_PLAIN_ID(co->c_xid); 1042 1043 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 1044 /* 1045 * We need to print the headers. If walking by id, then 1046 * the list header isn't printed, so we must include 1047 * that info here. 1048 */ 1049 if (!(coargs->flags & COF_VERBOSE)) { 1050 mdb_printf("%<u>%3s %-1s %-14s %</u>", 1051 "SEQ", "T", "EXP"); 1052 } else if (coargs->flags & COF_BYIDH) { 1053 mdb_printf("%<u>%-14s %</u>", "EXP"); 1054 } 1055 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 1056 "XHAL", "XID", "FUNC(ARG)"); 1057 if (coargs->flags & COF_LONGLIST) { 1058 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 1059 "PREVID", "NEXTID", "PREVL", "NEXTL"); 1060 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 1061 "DONE", "UTOS", "THREAD"); 1062 } 1063 mdb_printf("\n"); 1064 coargs->flags &= ~COF_CHDR; 1065 coargs->flags |= (COF_THDR | COF_LHDR); 1066 } 1067 1068 if (!(coargs->flags & COF_ADDR)) { 1069 if (!(coargs->flags & COF_VERBOSE)) { 1070 mdb_printf("%-3d %1s %-14llx ", 1071 TABLE_TO_SEQID(tableid), 1072 co_typenames[tableid & CALLOUT_TYPE_MASK], 1073 (coargs->flags & COF_EXPREL) ? 1074 coargs->exp - coargs->now : coargs->exp); 1075 } else if (coargs->flags & COF_BYIDH) { 1076 mdb_printf("%-14x ", 1077 (coargs->flags & COF_EXPREL) ? 1078 coargs->exp - coargs->now : coargs->exp); 1079 } 1080 list_flags = coargs->list_flags; 1081 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 1082 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 1083 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 1084 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 1085 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 1086 (long long)coid, co->c_func, co->c_arg); 1087 if (coargs->flags & COF_LONGLIST) { 1088 mdb_printf(" %-?p %-?p %-?p %-?p", 1089 co->c_idprev, co->c_idnext, co->c_clprev, 1090 co->c_clnext); 1091 mdb_printf(" %-?p %-4d %-0?p", 1092 co->c_done, co->c_waiting, co->c_executor); 1093 } 1094 } else { 1095 /* address only */ 1096 mdb_printf("%-0p", addr); 1097 } 1098 mdb_printf("\n"); 1099 return (WALK_NEXT); 1100 } 1101 1102 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 1103 /*ARGSUSED*/ 1104 static int 1105 callout_list_cb(uintptr_t addr, const void *data, void *priv) 1106 { 1107 callout_data_t *coargs = (callout_data_t *)priv; 1108 callout_list_t *cl = (callout_list_t *)data; 1109 callout_t *coptr; 1110 int list_flags; 1111 1112 if ((coargs == NULL) || (cl == NULL)) { 1113 return (WALK_ERR); 1114 } 1115 1116 coargs->exp = cl->cl_expiration; 1117 coargs->list_flags = cl->cl_flags; 1118 if ((coargs->flags & COF_FREE) && 1119 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1120 /* 1121 * The callout list must have been reallocated. No point in 1122 * walking any more. 1123 */ 1124 return (WALK_DONE); 1125 } 1126 if (!(coargs->flags & COF_FREE) && 1127 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1128 /* 1129 * The callout list must have been freed. No point in 1130 * walking any more. 1131 */ 1132 return (WALK_DONE); 1133 } 1134 if ((coargs->flags & COF_TIME) && 1135 (cl->cl_expiration != coargs->time)) { 1136 return (WALK_NEXT); 1137 } 1138 if ((coargs->flags & COF_BEFORE) && 1139 (cl->cl_expiration > coargs->btime)) { 1140 return (WALK_NEXT); 1141 } 1142 if ((coargs->flags & COF_AFTER) && 1143 (cl->cl_expiration < coargs->atime)) { 1144 return (WALK_NEXT); 1145 } 1146 if (!(coargs->flags & COF_EMPTY) && 1147 (cl->cl_callouts.ch_head == NULL)) { 1148 return (WALK_NEXT); 1149 } 1150 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 1151 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1152 /* both flags are set, only skip "regular" ones */ 1153 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 1154 return (WALK_NEXT); 1155 } 1156 } else { 1157 if ((coargs->flags & COF_HIRES) && 1158 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1159 return (WALK_NEXT); 1160 } 1161 if ((coargs->flags & COF_ABS) && 1162 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1163 return (WALK_NEXT); 1164 } 1165 } 1166 1167 if ((coargs->flags & COF_HEAP) && 1168 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1169 return (WALK_NEXT); 1170 } 1171 1172 if ((coargs->flags & COF_QUEUE) && 1173 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1174 return (WALK_NEXT); 1175 } 1176 1177 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 1178 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 1179 if (!(coargs->flags & COF_VERBOSE)) { 1180 /* don't be redundant again */ 1181 mdb_printf("%<u>SEQ T %</u>"); 1182 } 1183 mdb_printf("%<u>EXP HA BUCKET " 1184 "CALLOUTS %</u>"); 1185 1186 if (coargs->flags & COF_LONGLIST) { 1187 mdb_printf("%<u> %-?s %-?s%</u>", 1188 "PREV", "NEXT"); 1189 } 1190 mdb_printf("\n"); 1191 coargs->flags &= ~COF_LHDR; 1192 coargs->flags |= (COF_THDR | COF_CHDR); 1193 } 1194 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 1195 if (!(coargs->flags & COF_ADDR)) { 1196 if (!(coargs->flags & COF_VERBOSE)) { 1197 mdb_printf("%3d %1s ", 1198 TABLE_TO_SEQID(coargs->ndx), 1199 co_typenames[coargs->ndx & 1200 CALLOUT_TYPE_MASK]); 1201 } 1202 1203 list_flags = coargs->list_flags; 1204 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 1205 (coargs->flags & COF_EXPREL) ? 1206 coargs->exp - coargs->now : coargs->exp, 1207 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1208 "H" : " ", 1209 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1210 "A" : " ", 1211 coargs->bucket, cl->cl_callouts.ch_head); 1212 1213 if (coargs->flags & COF_LONGLIST) { 1214 mdb_printf(" %-?p %-?p", 1215 cl->cl_prev, cl->cl_next); 1216 } 1217 } else { 1218 /* address only */ 1219 mdb_printf("%-0p", addr); 1220 } 1221 mdb_printf("\n"); 1222 if (coargs->flags & COF_LIST) { 1223 return (WALK_NEXT); 1224 } 1225 } 1226 /* yet another layer as we walk the actual callouts via list. */ 1227 if (cl->cl_callouts.ch_head == NULL) { 1228 return (WALK_NEXT); 1229 } 1230 /* free list structures do not have valid callouts off of them. */ 1231 if (coargs->flags & COF_FREE) { 1232 return (WALK_NEXT); 1233 } 1234 coptr = (callout_t *)cl->cl_callouts.ch_head; 1235 1236 if (coargs->flags & COF_VERBOSE) { 1237 mdb_inc_indent(4); 1238 } 1239 /* 1240 * walk callouts using yet another callback routine. 1241 * we use callouts_bytime because id hash is handled via 1242 * the callout_t_cb callback. 1243 */ 1244 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1245 (uintptr_t)coptr) == -1) { 1246 mdb_warn("cannot walk callouts at %p", coptr); 1247 return (WALK_ERR); 1248 } 1249 if (coargs->flags & COF_VERBOSE) { 1250 mdb_dec_indent(4); 1251 } 1252 1253 return (WALK_NEXT); 1254 } 1255 1256 /* this callback handles the details of callout table walking. */ 1257 static int 1258 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1259 { 1260 callout_data_t *coargs = (callout_data_t *)priv; 1261 cot_data_t *cotwd = (cot_data_t *)data; 1262 callout_table_t *ct = &(cotwd->ct); 1263 int index, seqid, cotype; 1264 int i; 1265 callout_list_t *clptr; 1266 callout_t *coptr; 1267 1268 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1269 return (WALK_ERR); 1270 } 1271 1272 index = ((char *)addr - (char *)coargs->co_table) / 1273 sizeof (callout_table_t); 1274 cotype = index & CALLOUT_TYPE_MASK; 1275 seqid = TABLE_TO_SEQID(index); 1276 1277 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1278 return (WALK_NEXT); 1279 } 1280 1281 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1282 return (WALK_NEXT); 1283 } 1284 1285 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1286 return (WALK_NEXT); 1287 } 1288 1289 if (!(coargs->flags & COF_EMPTY) && ( 1290 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) { 1291 return (WALK_NEXT); 1292 } 1293 1294 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1295 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1296 /* print table hdr */ 1297 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1298 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1299 coargs->flags &= ~COF_THDR; 1300 coargs->flags |= (COF_LHDR | COF_CHDR); 1301 if (coargs->flags & COF_LONGLIST) { 1302 /* more info! */ 1303 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1304 " %-?s %-?s %-?s%</u>", 1305 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1306 "PEND", "FREE", "LOCK"); 1307 } 1308 mdb_printf("\n"); 1309 } 1310 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1311 if (!(coargs->flags & COF_ADDR)) { 1312 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1313 seqid, co_typenames[cotype], 1314 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1315 ct->ct_heap); 1316 if (coargs->flags & COF_LONGLIST) { 1317 /* more info! */ 1318 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1319 " %-?lld %-?lld %-?p", 1320 ct->ct_heap_num, ct->ct_heap_max, 1321 ct->ct_taskq, ct->ct_expired.ch_head, 1322 ct->ct_queue.ch_head, 1323 cotwd->ct_timeouts_pending, 1324 cotwd->ct_allocations - 1325 cotwd->ct_timeouts_pending, 1326 ct->ct_mutex); 1327 } 1328 } else { 1329 /* address only */ 1330 mdb_printf("%-0?p", addr); 1331 } 1332 mdb_printf("\n"); 1333 if (coargs->flags & COF_TABLE) { 1334 return (WALK_NEXT); 1335 } 1336 } 1337 1338 coargs->ndx = index; 1339 if (coargs->flags & COF_VERBOSE) { 1340 mdb_inc_indent(4); 1341 } 1342 /* keep digging. */ 1343 if (!(coargs->flags & COF_BYIDH)) { 1344 /* walk the list hash table */ 1345 if (coargs->flags & COF_FREE) { 1346 clptr = ct->ct_lfree; 1347 coargs->bucket = 0; 1348 if (clptr == NULL) { 1349 return (WALK_NEXT); 1350 } 1351 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1352 (uintptr_t)clptr) == -1) { 1353 mdb_warn("cannot walk callout free list at %p", 1354 clptr); 1355 return (WALK_ERR); 1356 } 1357 } else { 1358 /* first print the expired list. */ 1359 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1360 if (clptr != NULL) { 1361 coargs->bucket = -1; 1362 if (mdb_pwalk("callout_list", callout_list_cb, 1363 coargs, (uintptr_t)clptr) == -1) { 1364 mdb_warn("cannot walk callout_list" 1365 " at %p", clptr); 1366 return (WALK_ERR); 1367 } 1368 } 1369 /* then, print the callout queue */ 1370 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1371 if (clptr != NULL) { 1372 coargs->bucket = -1; 1373 if (mdb_pwalk("callout_list", callout_list_cb, 1374 coargs, (uintptr_t)clptr) == -1) { 1375 mdb_warn("cannot walk callout_list" 1376 " at %p", clptr); 1377 return (WALK_ERR); 1378 } 1379 } 1380 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1381 if (ct->ct_clhash == NULL) { 1382 /* nothing to do */ 1383 break; 1384 } 1385 if (cotwd->cot_clhash[i].ch_head == NULL) { 1386 continue; 1387 } 1388 clptr = (callout_list_t *) 1389 cotwd->cot_clhash[i].ch_head; 1390 coargs->bucket = i; 1391 /* walk list with callback routine. */ 1392 if (mdb_pwalk("callout_list", callout_list_cb, 1393 coargs, (uintptr_t)clptr) == -1) { 1394 mdb_warn("cannot walk callout_list" 1395 " at %p", clptr); 1396 return (WALK_ERR); 1397 } 1398 } 1399 } 1400 } else { 1401 /* walk the id hash table. */ 1402 if (coargs->flags & COF_FREE) { 1403 coptr = ct->ct_free; 1404 coargs->bucket = 0; 1405 if (coptr == NULL) { 1406 return (WALK_NEXT); 1407 } 1408 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1409 (uintptr_t)coptr) == -1) { 1410 mdb_warn("cannot walk callout id free list" 1411 " at %p", coptr); 1412 return (WALK_ERR); 1413 } 1414 } else { 1415 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1416 if (ct->ct_idhash == NULL) { 1417 break; 1418 } 1419 coptr = (callout_t *) 1420 cotwd->cot_idhash[i].ch_head; 1421 if (coptr == NULL) { 1422 continue; 1423 } 1424 coargs->bucket = i; 1425 1426 /* 1427 * walk callouts directly by id. For id 1428 * chain, the callout list is just a header, 1429 * so there's no need to walk it. 1430 */ 1431 if (mdb_pwalk("callouts_byid", callouts_cb, 1432 coargs, (uintptr_t)coptr) == -1) { 1433 mdb_warn("cannot walk callouts at %p", 1434 coptr); 1435 return (WALK_ERR); 1436 } 1437 } 1438 } 1439 } 1440 if (coargs->flags & COF_VERBOSE) { 1441 mdb_dec_indent(4); 1442 } 1443 return (WALK_NEXT); 1444 } 1445 1446 /* 1447 * initialize some common info for both callout dcmds. 1448 */ 1449 int 1450 callout_common_init(callout_data_t *coargs) 1451 { 1452 /* we need a couple of things */ 1453 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1454 mdb_warn("failed to read 'callout_table'"); 1455 return (DCMD_ERR); 1456 } 1457 /* need to get now in nsecs. Approximate with hrtime vars */ 1458 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1459 sizeof (hrtime_t)) { 1460 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1461 "hrtime_base") != sizeof (hrtime_t)) { 1462 mdb_warn("Could not determine current system time"); 1463 return (DCMD_ERR); 1464 } 1465 } 1466 1467 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1468 mdb_warn("failed to read 'callout_table_bits'"); 1469 return (DCMD_ERR); 1470 } 1471 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1472 mdb_warn("failed to read 'nsec_per_tick'"); 1473 return (DCMD_ERR); 1474 } 1475 return (DCMD_OK); 1476 } 1477 1478 /* 1479 * dcmd to print callouts. Optional addr limits to specific table. 1480 * Parses lots of options that get passed to callbacks for walkers. 1481 * Has it's own help function. 1482 */ 1483 /*ARGSUSED*/ 1484 int 1485 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1486 { 1487 callout_data_t coargs; 1488 /* getopts doesn't help much with stuff like this */ 1489 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1490 char *funcname = NULL; 1491 char *paramstr = NULL; 1492 uintptr_t Stmp, Ctmp; /* for getopt. */ 1493 int retval; 1494 1495 coargs.flags = COF_DEFAULT; 1496 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1497 coargs.seqid = -1; 1498 1499 if (mdb_getopts(argc, argv, 1500 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1501 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1502 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1503 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1504 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1505 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1506 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1507 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1508 'd', MDB_OPT_SETBITS, 1, &dflag, 1509 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1510 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1511 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1512 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1513 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1514 'k', MDB_OPT_SETBITS, 1, &kflag, 1515 'f', MDB_OPT_STR, &funcname, 1516 'p', MDB_OPT_STR, ¶mstr, 1517 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1518 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1519 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1520 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1521 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1522 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1523 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1524 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1525 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1526 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1527 NULL) != argc) { 1528 return (DCMD_USAGE); 1529 } 1530 1531 /* initialize from kernel variables */ 1532 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1533 return (retval); 1534 } 1535 1536 /* do some option post-processing */ 1537 if (kflag) { 1538 coargs.time *= coargs.nsec_per_tick; 1539 coargs.atime *= coargs.nsec_per_tick; 1540 coargs.btime *= coargs.nsec_per_tick; 1541 } 1542 1543 if (dflag) { 1544 coargs.time += coargs.now; 1545 coargs.atime += coargs.now; 1546 coargs.btime += coargs.now; 1547 } 1548 if (Sflag) { 1549 if (flags & DCMD_ADDRSPEC) { 1550 mdb_printf("-S option conflicts with explicit" 1551 " address\n"); 1552 return (DCMD_USAGE); 1553 } 1554 coargs.flags |= COF_SEQID; 1555 coargs.seqid = (int)Stmp; 1556 } 1557 if (Cflag) { 1558 if (flags & DCMD_ADDRSPEC) { 1559 mdb_printf("-C option conflicts with explicit" 1560 " address\n"); 1561 return (DCMD_USAGE); 1562 } 1563 if (coargs.flags & COF_SEQID) { 1564 mdb_printf("-C and -S are mutually exclusive\n"); 1565 return (DCMD_USAGE); 1566 } 1567 coargs.cpu = (cpu_t *)Ctmp; 1568 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1569 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1570 mdb_warn("failed to read cpu_t at %p", Ctmp); 1571 return (DCMD_ERR); 1572 } 1573 coargs.flags |= COF_SEQID; 1574 } 1575 /* avoid null outputs. */ 1576 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1577 coargs.flags |= COF_REAL | COF_NORM; 1578 } 1579 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1580 coargs.flags |= COF_LONG | COF_SHORT; 1581 } 1582 if (tflag) { 1583 if (aflag || bflag) { 1584 mdb_printf("-t and -a|b are mutually exclusive\n"); 1585 return (DCMD_USAGE); 1586 } 1587 coargs.flags |= COF_TIME; 1588 } 1589 if (aflag) { 1590 coargs.flags |= COF_AFTER; 1591 } 1592 if (bflag) { 1593 coargs.flags |= COF_BEFORE; 1594 } 1595 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1596 mdb_printf("value for -a must be earlier than the value" 1597 " for -b.\n"); 1598 return (DCMD_USAGE); 1599 } 1600 1601 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1602 mdb_printf("-H and -Q are mutually exclusive\n"); 1603 return (DCMD_USAGE); 1604 } 1605 1606 if (funcname != NULL) { 1607 GElf_Sym sym; 1608 1609 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1610 coargs.funcaddr = mdb_strtoull(funcname); 1611 } else { 1612 coargs.funcaddr = sym.st_value; 1613 } 1614 coargs.flags |= COF_FUNC; 1615 } 1616 1617 if (paramstr != NULL) { 1618 GElf_Sym sym; 1619 1620 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1621 coargs.param = mdb_strtoull(paramstr); 1622 } else { 1623 coargs.param = sym.st_value; 1624 } 1625 coargs.flags |= COF_PARAM; 1626 } 1627 1628 if (!(flags & DCMD_ADDRSPEC)) { 1629 /* don't pass "dot" if no addr. */ 1630 addr = 0; 1631 } 1632 if (addr != 0) { 1633 /* 1634 * a callout table was specified. Ignore -r|n option 1635 * to avoid null output. 1636 */ 1637 coargs.flags |= (COF_REAL | COF_NORM); 1638 } 1639 1640 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1641 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1642 } 1643 if (coargs.flags & COF_FREE) { 1644 coargs.flags |= COF_EMPTY; 1645 /* -F = free callouts, -FL = free lists */ 1646 if (!(coargs.flags & COF_LIST)) { 1647 coargs.flags |= COF_BYIDH; 1648 } 1649 } 1650 1651 /* walk table, using specialized callback routine. */ 1652 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1653 mdb_warn("cannot walk callout_table"); 1654 return (DCMD_ERR); 1655 } 1656 return (DCMD_OK); 1657 } 1658 1659 1660 /* 1661 * Given an extended callout id, dump its information. 1662 */ 1663 /*ARGSUSED*/ 1664 int 1665 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1666 { 1667 callout_data_t coargs; 1668 callout_table_t *ctptr; 1669 callout_table_t ct; 1670 callout_id_t coid; 1671 callout_t *coptr; 1672 int tableid; 1673 callout_id_t xid; 1674 ulong_t idhash; 1675 int i, retval; 1676 const mdb_arg_t *arg; 1677 size_t size; 1678 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1679 1680 coargs.flags = COF_DEFAULT | COF_BYIDH; 1681 i = mdb_getopts(argc, argv, 1682 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1683 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1684 NULL); 1685 argc -= i; 1686 argv += i; 1687 1688 if (argc != 1) { 1689 return (DCMD_USAGE); 1690 } 1691 arg = &argv[0]; 1692 1693 xid = (callout_id_t)mdb_argtoull(arg); 1694 1695 if (DCMD_HDRSPEC(flags)) { 1696 coargs.flags |= COF_CHDR; 1697 } 1698 1699 1700 /* initialize from kernel variables */ 1701 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1702 return (retval); 1703 } 1704 1705 /* we must massage the environment so that the macros will play nice */ 1706 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1707 #define callout_table_bits coargs.ctbits 1708 #define nsec_per_tick coargs.nsec_per_tick 1709 tableid = CALLOUT_ID_TO_TABLE(xid); 1710 idhash = CALLOUT_IDHASH(xid); 1711 #undef callouts_table_bits 1712 #undef callout_table_mask 1713 #undef nsec_per_tick 1714 coid = CO_PLAIN_ID(xid); 1715 1716 if (flags & DCMD_ADDRSPEC) { 1717 mdb_printf("calloutid does not accept explicit address.\n"); 1718 return (DCMD_USAGE); 1719 } 1720 1721 if (coargs.flags & COF_DECODE) { 1722 if (DCMD_HDRSPEC(flags)) { 1723 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1724 "SEQ", "T", "XL", "XID", "IDHASH"); 1725 } 1726 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1727 TABLE_TO_SEQID(tableid), 1728 co_typenames[tableid & CALLOUT_TYPE_MASK], 1729 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1730 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1731 (long long)coid, idhash); 1732 return (DCMD_OK); 1733 } 1734 1735 /* get our table. Note this relies on the types being correct */ 1736 ctptr = coargs.co_table + tableid; 1737 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1738 mdb_warn("failed to read callout_table at %p", ctptr); 1739 return (DCMD_ERR); 1740 } 1741 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1742 if (ct.ct_idhash != NULL) { 1743 if (mdb_vread(&(cot_idhash), size, 1744 (uintptr_t)ct.ct_idhash) == -1) { 1745 mdb_warn("failed to read id_hash at %p", 1746 ct.ct_idhash); 1747 return (WALK_ERR); 1748 } 1749 } 1750 1751 /* callout at beginning of hash chain */ 1752 if (ct.ct_idhash == NULL) { 1753 mdb_printf("id hash chain for this xid is empty\n"); 1754 return (DCMD_ERR); 1755 } 1756 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1757 if (coptr == NULL) { 1758 mdb_printf("id hash chain for this xid is empty\n"); 1759 return (DCMD_ERR); 1760 } 1761 1762 coargs.ndx = tableid; 1763 coargs.bucket = idhash; 1764 1765 /* use the walker, luke */ 1766 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1767 (uintptr_t)coptr) == -1) { 1768 mdb_warn("cannot walk callouts at %p", coptr); 1769 return (WALK_ERR); 1770 } 1771 1772 return (DCMD_OK); 1773 } 1774 1775 void 1776 callout_help(void) 1777 { 1778 mdb_printf("callout: display callouts.\n" 1779 "Given a callout table address, display callouts from table.\n" 1780 "Without an address, display callouts from all tables.\n" 1781 "options:\n" 1782 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1783 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1784 " -x : limit display to callouts which are executing\n" 1785 " -h : limit display to callouts based on hrestime\n" 1786 " -B : limit display to callouts based on absolute time\n" 1787 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1788 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1789 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1790 " -d : interpret time option to -t|a|b as delta from current time\n" 1791 " -k : use ticks instead of nanoseconds as arguments to" 1792 " -t|a|b. Note that\n ticks are less accurate and may not" 1793 " match other tick times (ie: lbolt).\n" 1794 " -D : display exiration time as delta from current time\n" 1795 " -S seqid : limit display to callouts for this cpu sequence id\n" 1796 " -C addr : limit display to callouts for this cpu pointer\n" 1797 " -f name|addr : limit display to callouts with this function\n" 1798 " -p name|addr : limit display to callouts functions with this" 1799 " parameter\n" 1800 " -T : display the callout table itself, instead of callouts\n" 1801 " -L : display callout lists instead of callouts\n" 1802 " -E : with -T or L, display empty data structures.\n" 1803 " -i : traverse callouts by id hash instead of list hash\n" 1804 " -F : walk free callout list (free list with -i) instead\n" 1805 " -v : display more info for each item\n" 1806 " -V : show details of each level of info as it is traversed\n" 1807 " -H : limit display to callouts in the callout heap\n" 1808 " -Q : limit display to callouts in the callout queue\n" 1809 " -A : show only addresses. Useful for pipelines.\n"); 1810 } 1811 1812 void 1813 calloutid_help(void) 1814 { 1815 mdb_printf("calloutid: display callout by id.\n" 1816 "Given an extended callout id, display the callout infomation.\n" 1817 "options:\n" 1818 " -d : do not dereference callout, just decode the id.\n" 1819 " -v : verbose display more info about the callout\n"); 1820 } 1821 1822 /*ARGSUSED*/ 1823 int 1824 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1825 { 1826 long num_classes, i; 1827 sclass_t *class_tbl; 1828 GElf_Sym g_sclass; 1829 char class_name[PC_CLNMSZ]; 1830 size_t tbl_size; 1831 1832 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1833 mdb_warn("failed to find symbol sclass\n"); 1834 return (DCMD_ERR); 1835 } 1836 1837 tbl_size = (size_t)g_sclass.st_size; 1838 num_classes = tbl_size / (sizeof (sclass_t)); 1839 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1840 1841 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1842 mdb_warn("failed to read sclass"); 1843 return (DCMD_ERR); 1844 } 1845 1846 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1847 "INIT FCN", "CLASS FCN"); 1848 1849 for (i = 0; i < num_classes; i++) { 1850 if (mdb_vread(class_name, sizeof (class_name), 1851 (uintptr_t)class_tbl[i].cl_name) == -1) 1852 (void) strcpy(class_name, "???"); 1853 1854 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1855 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1856 } 1857 1858 return (DCMD_OK); 1859 } 1860 1861 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1862 1863 int 1864 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1865 { 1866 uintptr_t rootdir; 1867 vnode_t vn; 1868 char buf[MAXPATHLEN]; 1869 1870 uint_t opt_F = FALSE; 1871 1872 if (mdb_getopts(argc, argv, 1873 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1874 return (DCMD_USAGE); 1875 1876 if (!(flags & DCMD_ADDRSPEC)) { 1877 mdb_warn("expected explicit vnode_t address before ::\n"); 1878 return (DCMD_USAGE); 1879 } 1880 1881 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1882 mdb_warn("failed to read rootdir"); 1883 return (DCMD_ERR); 1884 } 1885 1886 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1887 return (DCMD_ERR); 1888 1889 if (*buf == '\0') { 1890 mdb_printf("??\n"); 1891 return (DCMD_OK); 1892 } 1893 1894 mdb_printf("%s", buf); 1895 if (opt_F && buf[strlen(buf)-1] != '/' && 1896 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1897 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1898 mdb_printf("\n"); 1899 1900 return (DCMD_OK); 1901 } 1902 1903 int 1904 ld_walk_init(mdb_walk_state_t *wsp) 1905 { 1906 wsp->walk_data = (void *)wsp->walk_addr; 1907 return (WALK_NEXT); 1908 } 1909 1910 int 1911 ld_walk_step(mdb_walk_state_t *wsp) 1912 { 1913 int status; 1914 lock_descriptor_t ld; 1915 1916 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1917 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1918 wsp->walk_addr); 1919 return (WALK_ERR); 1920 } 1921 1922 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1923 if (status == WALK_ERR) 1924 return (WALK_ERR); 1925 1926 wsp->walk_addr = (uintptr_t)ld.l_next; 1927 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1928 return (WALK_DONE); 1929 1930 return (status); 1931 } 1932 1933 int 1934 lg_walk_init(mdb_walk_state_t *wsp) 1935 { 1936 GElf_Sym sym; 1937 1938 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1939 mdb_warn("failed to find symbol 'lock_graph'\n"); 1940 return (WALK_ERR); 1941 } 1942 1943 wsp->walk_addr = (uintptr_t)sym.st_value; 1944 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1945 1946 return (WALK_NEXT); 1947 } 1948 1949 typedef struct lg_walk_data { 1950 uintptr_t startaddr; 1951 mdb_walk_cb_t callback; 1952 void *data; 1953 } lg_walk_data_t; 1954 1955 /* 1956 * We can't use ::walk lock_descriptor directly, because the head of each graph 1957 * is really a dummy lock. Rather than trying to dynamically determine if this 1958 * is a dummy node or not, we just filter out the initial element of the 1959 * list. 1960 */ 1961 static int 1962 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1963 { 1964 lg_walk_data_t *lw = priv; 1965 1966 if (addr != lw->startaddr) 1967 return (lw->callback(addr, data, lw->data)); 1968 1969 return (WALK_NEXT); 1970 } 1971 1972 int 1973 lg_walk_step(mdb_walk_state_t *wsp) 1974 { 1975 graph_t *graph; 1976 lg_walk_data_t lw; 1977 1978 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1979 return (WALK_DONE); 1980 1981 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1982 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1983 return (WALK_ERR); 1984 } 1985 1986 wsp->walk_addr += sizeof (graph); 1987 1988 if (graph == NULL) 1989 return (WALK_NEXT); 1990 1991 lw.callback = wsp->walk_callback; 1992 lw.data = wsp->walk_cbdata; 1993 1994 lw.startaddr = (uintptr_t)&(graph->active_locks); 1995 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1996 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1997 return (WALK_ERR); 1998 } 1999 2000 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 2001 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 2002 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 2003 return (WALK_ERR); 2004 } 2005 2006 return (WALK_NEXT); 2007 } 2008 2009 /* 2010 * The space available for the path corresponding to the locked vnode depends 2011 * on whether we are printing 32- or 64-bit addresses. 2012 */ 2013 #ifdef _LP64 2014 #define LM_VNPATHLEN 20 2015 #else 2016 #define LM_VNPATHLEN 30 2017 #endif 2018 2019 typedef struct mdb_lminfo_proc { 2020 struct { 2021 char u_comm[MAXCOMLEN + 1]; 2022 } p_user; 2023 } mdb_lminfo_proc_t; 2024 2025 /*ARGSUSED*/ 2026 static int 2027 lminfo_cb(uintptr_t addr, const void *data, void *priv) 2028 { 2029 const lock_descriptor_t *ld = data; 2030 char buf[LM_VNPATHLEN]; 2031 mdb_lminfo_proc_t p; 2032 uintptr_t paddr = 0; 2033 2034 if (ld->l_flock.l_pid != 0) 2035 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL); 2036 2037 if (paddr != 0) 2038 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0); 2039 2040 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 2041 addr, ld->l_type == F_RDLCK ? "RD" : 2042 ld->l_type == F_WRLCK ? "WR" : "??", 2043 ld->l_state, ld->l_flock.l_pid, 2044 ld->l_flock.l_pid == 0 ? "<kernel>" : 2045 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode); 2046 2047 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 2048 sizeof (buf)); 2049 mdb_printf("%s\n", buf); 2050 2051 return (WALK_NEXT); 2052 } 2053 2054 /*ARGSUSED*/ 2055 int 2056 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2057 { 2058 if (DCMD_HDRSPEC(flags)) 2059 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 2060 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 2061 2062 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0)); 2063 } 2064 2065 typedef struct mdb_whereopen { 2066 uint_t mwo_flags; 2067 uintptr_t mwo_target; 2068 boolean_t mwo_found; 2069 } mdb_whereopen_t; 2070 2071 /*ARGSUSED*/ 2072 int 2073 whereopen_fwalk(uintptr_t addr, const void *farg, void *arg) 2074 { 2075 const struct file *f = farg; 2076 mdb_whereopen_t *mwo = arg; 2077 2078 if ((uintptr_t)f->f_vnode == mwo->mwo_target) { 2079 if ((mwo->mwo_flags & DCMD_PIPE_OUT) == 0 && 2080 !mwo->mwo_found) { 2081 mdb_printf("file %p\n", addr); 2082 } 2083 mwo->mwo_found = B_TRUE; 2084 } 2085 2086 return (WALK_NEXT); 2087 } 2088 2089 /*ARGSUSED*/ 2090 int 2091 whereopen_pwalk(uintptr_t addr, const void *ignored, void *arg) 2092 { 2093 mdb_whereopen_t *mwo = arg; 2094 2095 mwo->mwo_found = B_FALSE; 2096 if (mdb_pwalk("file", whereopen_fwalk, mwo, addr) == -1) { 2097 mdb_warn("couldn't file walk proc %p", addr); 2098 return (WALK_ERR); 2099 } 2100 2101 if (mwo->mwo_found) { 2102 mdb_printf("%p\n", addr); 2103 } 2104 2105 return (WALK_NEXT); 2106 } 2107 2108 /*ARGSUSED*/ 2109 int 2110 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2111 { 2112 mdb_whereopen_t mwo; 2113 2114 if (!(flags & DCMD_ADDRSPEC) || addr == 0) 2115 return (DCMD_USAGE); 2116 2117 mwo.mwo_flags = flags; 2118 mwo.mwo_target = addr; 2119 mwo.mwo_found = B_FALSE; 2120 2121 if (mdb_walk("proc", whereopen_pwalk, &mwo) == -1) { 2122 mdb_warn("can't proc walk"); 2123 return (DCMD_ERR); 2124 } 2125 2126 return (DCMD_OK); 2127 } 2128 2129 typedef struct datafmt { 2130 char *hdr1; 2131 char *hdr2; 2132 char *dashes; 2133 char *fmt; 2134 } datafmt_t; 2135 2136 static datafmt_t kmemfmt[] = { 2137 { "cache ", "name ", 2138 "-------------------------", "%-25s " }, 2139 { " buf", " size", "------", "%6u " }, 2140 { " buf", "in use", "------", "%6u " }, 2141 { " buf", " total", "------", "%6u " }, 2142 { " memory", " in use", "----------", "%10lu%c " }, 2143 { " alloc", " succeed", "---------", "%9u " }, 2144 { "alloc", " fail", "-----", "%5u " }, 2145 { NULL, NULL, NULL, NULL } 2146 }; 2147 2148 static datafmt_t vmemfmt[] = { 2149 { "vmem ", "name ", 2150 "-------------------------", "%-*s " }, 2151 { " memory", " in use", "----------", "%9llu%c " }, 2152 { " memory", " total", "-----------", "%10llu%c " }, 2153 { " memory", " import", "----------", "%9llu%c " }, 2154 { " alloc", " succeed", "---------", "%9llu " }, 2155 { "alloc", " fail", "-----", "%5llu " }, 2156 { NULL, NULL, NULL, NULL } 2157 }; 2158 2159 /*ARGSUSED*/ 2160 static int 2161 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2162 { 2163 short rounds, prounds; 2164 2165 if (KMEM_DUMPCC(ccp)) { 2166 rounds = ccp->cc_dump_rounds; 2167 prounds = ccp->cc_dump_prounds; 2168 } else { 2169 rounds = ccp->cc_rounds; 2170 prounds = ccp->cc_prounds; 2171 } 2172 if (rounds > 0) 2173 *avail += rounds; 2174 if (prounds > 0) 2175 *avail += prounds; 2176 2177 return (WALK_NEXT); 2178 } 2179 2180 /*ARGSUSED*/ 2181 static int 2182 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2183 { 2184 *alloc += ccp->cc_alloc; 2185 2186 return (WALK_NEXT); 2187 } 2188 2189 /*ARGSUSED*/ 2190 static int 2191 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2192 { 2193 *avail += sp->slab_chunks - sp->slab_refcnt; 2194 2195 return (WALK_NEXT); 2196 } 2197 2198 typedef struct kmastat_vmem { 2199 uintptr_t kv_addr; 2200 struct kmastat_vmem *kv_next; 2201 size_t kv_meminuse; 2202 int kv_alloc; 2203 int kv_fail; 2204 } kmastat_vmem_t; 2205 2206 typedef struct kmastat_args { 2207 kmastat_vmem_t **ka_kvpp; 2208 uint_t ka_shift; 2209 } kmastat_args_t; 2210 2211 static int 2212 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2213 { 2214 kmastat_vmem_t **kvpp = kap->ka_kvpp; 2215 kmastat_vmem_t *kv; 2216 datafmt_t *dfp = kmemfmt; 2217 int magsize; 2218 2219 int avail, alloc, total; 2220 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2221 cp->cache_slabsize; 2222 2223 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2224 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2225 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2226 2227 magsize = kmem_get_magsize(cp); 2228 2229 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2230 avail = cp->cache_full.ml_total * magsize; 2231 total = cp->cache_buftotal; 2232 2233 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2234 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2235 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2236 2237 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2238 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2239 goto out; 2240 } 2241 2242 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2243 kv->kv_next = *kvpp; 2244 kv->kv_addr = (uintptr_t)cp->cache_arena; 2245 *kvpp = kv; 2246 out: 2247 kv->kv_meminuse += meminuse; 2248 kv->kv_alloc += alloc; 2249 kv->kv_fail += cp->cache_alloc_fail; 2250 2251 mdb_printf((dfp++)->fmt, cp->cache_name); 2252 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2253 mdb_printf((dfp++)->fmt, total - avail); 2254 mdb_printf((dfp++)->fmt, total); 2255 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2256 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2257 kap->ka_shift == KILOS ? 'K' : 'B'); 2258 mdb_printf((dfp++)->fmt, alloc); 2259 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2260 mdb_printf("\n"); 2261 2262 return (WALK_NEXT); 2263 } 2264 2265 static int 2266 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2267 { 2268 kmastat_vmem_t *kv = *kap->ka_kvpp; 2269 size_t len; 2270 2271 while (kv != NULL && kv->kv_addr != addr) 2272 kv = kv->kv_next; 2273 2274 if (kv == NULL || kv->kv_alloc == 0) 2275 return (WALK_NEXT); 2276 2277 len = MIN(17, strlen(v->vm_name)); 2278 2279 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2280 17 - len, "", "", "", "", 2281 kv->kv_meminuse >> kap->ka_shift, 2282 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2283 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2284 2285 return (WALK_NEXT); 2286 } 2287 2288 /*ARGSUSED*/ 2289 static int 2290 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2291 { 2292 datafmt_t *dfp = vmemfmt; 2293 const vmem_kstat_t *vkp = &v->vm_kstat; 2294 uintptr_t paddr; 2295 vmem_t parent; 2296 int ident = 0; 2297 2298 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) { 2299 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2300 mdb_warn("couldn't trace %p's ancestry", addr); 2301 ident = 0; 2302 break; 2303 } 2304 paddr = (uintptr_t)parent.vm_source; 2305 } 2306 2307 mdb_printf("%*s", ident, ""); 2308 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2309 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2310 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2311 *shiftp == KILOS ? 'K' : 'B'); 2312 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2313 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2314 *shiftp == KILOS ? 'K' : 'B'); 2315 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2316 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2317 *shiftp == KILOS ? 'K' : 'B'); 2318 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2319 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2320 2321 mdb_printf("\n"); 2322 2323 return (WALK_NEXT); 2324 } 2325 2326 /*ARGSUSED*/ 2327 int 2328 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2329 { 2330 kmastat_vmem_t *kv = NULL; 2331 datafmt_t *dfp; 2332 kmastat_args_t ka; 2333 2334 ka.ka_shift = 0; 2335 if (mdb_getopts(argc, argv, 2336 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2337 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2338 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2339 return (DCMD_USAGE); 2340 2341 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2342 mdb_printf("%s ", dfp->hdr1); 2343 mdb_printf("\n"); 2344 2345 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2346 mdb_printf("%s ", dfp->hdr2); 2347 mdb_printf("\n"); 2348 2349 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2350 mdb_printf("%s ", dfp->dashes); 2351 mdb_printf("\n"); 2352 2353 ka.ka_kvpp = &kv; 2354 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2355 mdb_warn("can't walk 'kmem_cache'"); 2356 return (DCMD_ERR); 2357 } 2358 2359 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2360 mdb_printf("%s ", dfp->dashes); 2361 mdb_printf("\n"); 2362 2363 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2364 mdb_warn("can't walk 'vmem'"); 2365 return (DCMD_ERR); 2366 } 2367 2368 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2369 mdb_printf("%s ", dfp->dashes); 2370 mdb_printf("\n"); 2371 2372 mdb_printf("\n"); 2373 2374 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2375 mdb_printf("%s ", dfp->hdr1); 2376 mdb_printf("\n"); 2377 2378 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2379 mdb_printf("%s ", dfp->hdr2); 2380 mdb_printf("\n"); 2381 2382 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2383 mdb_printf("%s ", dfp->dashes); 2384 mdb_printf("\n"); 2385 2386 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2387 mdb_warn("can't walk 'vmem'"); 2388 return (DCMD_ERR); 2389 } 2390 2391 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2392 mdb_printf("%s ", dfp->dashes); 2393 mdb_printf("\n"); 2394 return (DCMD_OK); 2395 } 2396 2397 /* 2398 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2399 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2400 * unfortunately, a few of the segs are both large and sparse, so we could 2401 * spend quite a bit of time scanning VAs which have no backing pages. 2402 * 2403 * So for the few very sparse segs, we skip the segment itself, and scan 2404 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2405 * Currently, we do this for: 2406 * 2407 * SEG VMEM ARENA 2408 * kvseg heap_arena 2409 * kvseg32 heap32_arena 2410 * kvseg_core heap_core_arena 2411 * 2412 * In addition, we skip the segkpm segment in its entirety, since it is very 2413 * sparse, and contains no new kernel data. 2414 */ 2415 typedef struct kgrep_walk_data { 2416 kgrep_cb_func *kg_cb; 2417 void *kg_cbdata; 2418 uintptr_t kg_kvseg; 2419 uintptr_t kg_kvseg32; 2420 uintptr_t kg_kvseg_core; 2421 uintptr_t kg_segkpm; 2422 uintptr_t kg_heap_lp_base; 2423 uintptr_t kg_heap_lp_end; 2424 } kgrep_walk_data_t; 2425 2426 static int 2427 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2428 { 2429 uintptr_t base = (uintptr_t)seg->s_base; 2430 2431 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2432 addr == kg->kg_kvseg_core) 2433 return (WALK_NEXT); 2434 2435 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2436 return (WALK_NEXT); 2437 2438 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2439 } 2440 2441 /*ARGSUSED*/ 2442 static int 2443 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2444 { 2445 /* 2446 * skip large page heap address range - it is scanned by walking 2447 * allocated vmem_segs in the heap_lp_arena 2448 */ 2449 if (seg->vs_start == kg->kg_heap_lp_base && 2450 seg->vs_end == kg->kg_heap_lp_end) 2451 return (WALK_NEXT); 2452 2453 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2454 } 2455 2456 /*ARGSUSED*/ 2457 static int 2458 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2459 { 2460 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2461 } 2462 2463 static int 2464 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2465 { 2466 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2467 2468 if (strcmp(vmem->vm_name, "heap") != 0 && 2469 strcmp(vmem->vm_name, "heap32") != 0 && 2470 strcmp(vmem->vm_name, "heap_core") != 0 && 2471 strcmp(vmem->vm_name, "heap_lp") != 0) 2472 return (WALK_NEXT); 2473 2474 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2475 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2476 2477 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2478 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2479 return (WALK_ERR); 2480 } 2481 2482 return (WALK_NEXT); 2483 } 2484 2485 int 2486 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2487 { 2488 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2489 kgrep_walk_data_t kg; 2490 2491 if (mdb_get_state() == MDB_STATE_RUNNING) { 2492 mdb_warn("kgrep can only be run on a system " 2493 "dump or under kmdb; see dumpadm(8)\n"); 2494 return (DCMD_ERR); 2495 } 2496 2497 if (mdb_lookup_by_name("kas", &kas) == -1) { 2498 mdb_warn("failed to locate 'kas' symbol\n"); 2499 return (DCMD_ERR); 2500 } 2501 2502 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2503 mdb_warn("failed to locate 'kvseg' symbol\n"); 2504 return (DCMD_ERR); 2505 } 2506 2507 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2508 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2509 return (DCMD_ERR); 2510 } 2511 2512 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2513 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2514 return (DCMD_ERR); 2515 } 2516 2517 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2518 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2519 return (DCMD_ERR); 2520 } 2521 2522 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2523 mdb_warn("failed to read 'heap_lp_base'\n"); 2524 return (DCMD_ERR); 2525 } 2526 2527 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2528 mdb_warn("failed to read 'heap_lp_end'\n"); 2529 return (DCMD_ERR); 2530 } 2531 2532 kg.kg_cb = cb; 2533 kg.kg_cbdata = cbdata; 2534 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2535 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2536 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2537 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2538 2539 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2540 &kg, kas.st_value) == -1) { 2541 mdb_warn("failed to walk kas segments"); 2542 return (DCMD_ERR); 2543 } 2544 2545 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2546 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2547 return (DCMD_ERR); 2548 } 2549 2550 return (DCMD_OK); 2551 } 2552 2553 size_t 2554 kgrep_subr_pagesize(void) 2555 { 2556 return (PAGESIZE); 2557 } 2558 2559 typedef struct file_walk_data { 2560 struct uf_entry *fw_flist; 2561 int fw_flistsz; 2562 int fw_ndx; 2563 int fw_nofiles; 2564 } file_walk_data_t; 2565 2566 typedef struct mdb_file_proc { 2567 struct { 2568 struct { 2569 int fi_nfiles; 2570 uf_entry_t *volatile fi_list; 2571 } u_finfo; 2572 } p_user; 2573 } mdb_file_proc_t; 2574 2575 int 2576 file_walk_init(mdb_walk_state_t *wsp) 2577 { 2578 file_walk_data_t *fw; 2579 mdb_file_proc_t p; 2580 2581 if (wsp->walk_addr == 0) { 2582 mdb_warn("file walk doesn't support global walks\n"); 2583 return (WALK_ERR); 2584 } 2585 2586 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2587 2588 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t", 2589 wsp->walk_addr, 0) == -1) { 2590 mdb_free(fw, sizeof (file_walk_data_t)); 2591 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2592 return (WALK_ERR); 2593 } 2594 2595 if (p.p_user.u_finfo.fi_nfiles == 0) { 2596 mdb_free(fw, sizeof (file_walk_data_t)); 2597 return (WALK_DONE); 2598 } 2599 2600 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2601 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2602 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2603 2604 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2605 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2606 mdb_warn("failed to read file array at %p", 2607 p.p_user.u_finfo.fi_list); 2608 mdb_free(fw->fw_flist, fw->fw_flistsz); 2609 mdb_free(fw, sizeof (file_walk_data_t)); 2610 return (WALK_ERR); 2611 } 2612 2613 fw->fw_ndx = 0; 2614 wsp->walk_data = fw; 2615 2616 return (WALK_NEXT); 2617 } 2618 2619 int 2620 file_walk_step(mdb_walk_state_t *wsp) 2621 { 2622 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2623 struct file file; 2624 uintptr_t fp; 2625 2626 again: 2627 if (fw->fw_ndx == fw->fw_nofiles) 2628 return (WALK_DONE); 2629 2630 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0) 2631 goto again; 2632 2633 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2634 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2635 } 2636 2637 int 2638 allfile_walk_step(mdb_walk_state_t *wsp) 2639 { 2640 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2641 struct file file; 2642 uintptr_t fp; 2643 2644 if (fw->fw_ndx == fw->fw_nofiles) 2645 return (WALK_DONE); 2646 2647 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0) 2648 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2649 else 2650 bzero(&file, sizeof (file)); 2651 2652 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2653 } 2654 2655 void 2656 file_walk_fini(mdb_walk_state_t *wsp) 2657 { 2658 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2659 2660 mdb_free(fw->fw_flist, fw->fw_flistsz); 2661 mdb_free(fw, sizeof (file_walk_data_t)); 2662 } 2663 2664 int 2665 port_walk_init(mdb_walk_state_t *wsp) 2666 { 2667 if (wsp->walk_addr == 0) { 2668 mdb_warn("port walk doesn't support global walks\n"); 2669 return (WALK_ERR); 2670 } 2671 2672 if (mdb_layered_walk("file", wsp) == -1) { 2673 mdb_warn("couldn't walk 'file'"); 2674 return (WALK_ERR); 2675 } 2676 return (WALK_NEXT); 2677 } 2678 2679 int 2680 port_walk_step(mdb_walk_state_t *wsp) 2681 { 2682 struct vnode vn; 2683 uintptr_t vp; 2684 uintptr_t pp; 2685 struct port port; 2686 2687 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2688 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2689 mdb_warn("failed to read vnode_t at %p", vp); 2690 return (WALK_ERR); 2691 } 2692 if (vn.v_type != VPORT) 2693 return (WALK_NEXT); 2694 2695 pp = (uintptr_t)vn.v_data; 2696 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2697 mdb_warn("failed to read port_t at %p", pp); 2698 return (WALK_ERR); 2699 } 2700 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2701 } 2702 2703 typedef struct portev_walk_data { 2704 list_node_t *pev_node; 2705 list_node_t *pev_last; 2706 size_t pev_offset; 2707 } portev_walk_data_t; 2708 2709 int 2710 portev_walk_init(mdb_walk_state_t *wsp) 2711 { 2712 portev_walk_data_t *pevd; 2713 struct port port; 2714 struct vnode vn; 2715 struct list *list; 2716 uintptr_t vp; 2717 2718 if (wsp->walk_addr == 0) { 2719 mdb_warn("portev walk doesn't support global walks\n"); 2720 return (WALK_ERR); 2721 } 2722 2723 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2724 2725 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2726 mdb_free(pevd, sizeof (portev_walk_data_t)); 2727 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2728 return (WALK_ERR); 2729 } 2730 2731 vp = (uintptr_t)port.port_vnode; 2732 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2733 mdb_free(pevd, sizeof (portev_walk_data_t)); 2734 mdb_warn("failed to read vnode_t at %p", vp); 2735 return (WALK_ERR); 2736 } 2737 2738 if (vn.v_type != VPORT) { 2739 mdb_free(pevd, sizeof (portev_walk_data_t)); 2740 mdb_warn("input address (%p) does not point to an event port", 2741 wsp->walk_addr); 2742 return (WALK_ERR); 2743 } 2744 2745 if (port.port_queue.portq_nent == 0) { 2746 mdb_free(pevd, sizeof (portev_walk_data_t)); 2747 return (WALK_DONE); 2748 } 2749 list = &port.port_queue.portq_list; 2750 pevd->pev_offset = list->list_offset; 2751 pevd->pev_last = list->list_head.list_prev; 2752 pevd->pev_node = list->list_head.list_next; 2753 wsp->walk_data = pevd; 2754 return (WALK_NEXT); 2755 } 2756 2757 int 2758 portev_walk_step(mdb_walk_state_t *wsp) 2759 { 2760 portev_walk_data_t *pevd; 2761 struct port_kevent ev; 2762 uintptr_t evp; 2763 2764 pevd = (portev_walk_data_t *)wsp->walk_data; 2765 2766 if (pevd->pev_last == NULL) 2767 return (WALK_DONE); 2768 if (pevd->pev_node == pevd->pev_last) 2769 pevd->pev_last = NULL; /* last round */ 2770 2771 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2772 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2773 mdb_warn("failed to read port_kevent at %p", evp); 2774 return (WALK_DONE); 2775 } 2776 pevd->pev_node = ev.portkev_node.list_next; 2777 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2778 } 2779 2780 void 2781 portev_walk_fini(mdb_walk_state_t *wsp) 2782 { 2783 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2784 2785 if (pevd != NULL) 2786 mdb_free(pevd, sizeof (portev_walk_data_t)); 2787 } 2788 2789 typedef struct proc_walk_data { 2790 uintptr_t *pw_stack; 2791 int pw_depth; 2792 int pw_max; 2793 } proc_walk_data_t; 2794 2795 int 2796 proc_walk_init(mdb_walk_state_t *wsp) 2797 { 2798 GElf_Sym sym; 2799 proc_walk_data_t *pw; 2800 2801 if (wsp->walk_addr == 0) { 2802 if (mdb_lookup_by_name("p0", &sym) == -1) { 2803 mdb_warn("failed to read 'practive'"); 2804 return (WALK_ERR); 2805 } 2806 wsp->walk_addr = (uintptr_t)sym.st_value; 2807 } 2808 2809 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2810 2811 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2812 mdb_warn("failed to read 'nproc'"); 2813 mdb_free(pw, sizeof (pw)); 2814 return (WALK_ERR); 2815 } 2816 2817 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2818 wsp->walk_data = pw; 2819 2820 return (WALK_NEXT); 2821 } 2822 2823 typedef struct mdb_walk_proc { 2824 struct proc *p_child; 2825 struct proc *p_sibling; 2826 } mdb_walk_proc_t; 2827 2828 int 2829 proc_walk_step(mdb_walk_state_t *wsp) 2830 { 2831 proc_walk_data_t *pw = wsp->walk_data; 2832 uintptr_t addr = wsp->walk_addr; 2833 uintptr_t cld, sib; 2834 int status; 2835 mdb_walk_proc_t pr; 2836 2837 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2838 addr, 0) == -1) { 2839 mdb_warn("failed to read proc at %p", addr); 2840 return (WALK_DONE); 2841 } 2842 2843 cld = (uintptr_t)pr.p_child; 2844 sib = (uintptr_t)pr.p_sibling; 2845 2846 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2847 pw->pw_depth--; 2848 goto sib; 2849 } 2850 2851 /* 2852 * Always pass NULL as the local copy pointer. Consumers 2853 * should use mdb_ctf_vread() to read their own minimal 2854 * version of proc_t. Thus minimizing the chance of breakage 2855 * with older crash dumps. 2856 */ 2857 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata); 2858 2859 if (status != WALK_NEXT) 2860 return (status); 2861 2862 if ((wsp->walk_addr = cld) != 0) { 2863 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2864 cld, 0) == -1) { 2865 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2866 addr, cld); 2867 goto sib; 2868 } 2869 2870 pw->pw_stack[pw->pw_depth++] = addr; 2871 2872 if (pw->pw_depth == pw->pw_max) { 2873 mdb_warn("depth %d exceeds max depth; try again\n", 2874 pw->pw_depth); 2875 return (WALK_DONE); 2876 } 2877 return (WALK_NEXT); 2878 } 2879 2880 sib: 2881 /* 2882 * We know that p0 has no siblings, and if another starting proc 2883 * was given, we don't want to walk its siblings anyway. 2884 */ 2885 if (pw->pw_depth == 0) 2886 return (WALK_DONE); 2887 2888 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2889 sib, 0) == -1) { 2890 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2891 addr, sib); 2892 sib = 0; 2893 } 2894 2895 if ((wsp->walk_addr = sib) == 0) { 2896 if (pw->pw_depth > 0) { 2897 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2898 return (WALK_NEXT); 2899 } 2900 return (WALK_DONE); 2901 } 2902 2903 return (WALK_NEXT); 2904 } 2905 2906 void 2907 proc_walk_fini(mdb_walk_state_t *wsp) 2908 { 2909 proc_walk_data_t *pw = wsp->walk_data; 2910 2911 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2912 mdb_free(pw, sizeof (proc_walk_data_t)); 2913 } 2914 2915 int 2916 task_walk_init(mdb_walk_state_t *wsp) 2917 { 2918 task_t task; 2919 2920 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2921 mdb_warn("failed to read task at %p", wsp->walk_addr); 2922 return (WALK_ERR); 2923 } 2924 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2925 wsp->walk_data = task.tk_memb_list; 2926 return (WALK_NEXT); 2927 } 2928 2929 typedef struct mdb_task_proc { 2930 struct proc *p_tasknext; 2931 } mdb_task_proc_t; 2932 2933 int 2934 task_walk_step(mdb_walk_state_t *wsp) 2935 { 2936 mdb_task_proc_t proc; 2937 int status; 2938 2939 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t", 2940 wsp->walk_addr, 0) == -1) { 2941 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2942 return (WALK_DONE); 2943 } 2944 2945 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2946 2947 if (proc.p_tasknext == wsp->walk_data) 2948 return (WALK_DONE); 2949 2950 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2951 return (status); 2952 } 2953 2954 int 2955 project_walk_init(mdb_walk_state_t *wsp) 2956 { 2957 if (wsp->walk_addr == 0) { 2958 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2959 mdb_warn("failed to read 'proj0p'"); 2960 return (WALK_ERR); 2961 } 2962 } 2963 wsp->walk_data = (void *)wsp->walk_addr; 2964 return (WALK_NEXT); 2965 } 2966 2967 int 2968 project_walk_step(mdb_walk_state_t *wsp) 2969 { 2970 uintptr_t addr = wsp->walk_addr; 2971 kproject_t pj; 2972 int status; 2973 2974 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2975 mdb_warn("failed to read project at %p", addr); 2976 return (WALK_DONE); 2977 } 2978 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2979 if (status != WALK_NEXT) 2980 return (status); 2981 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2982 if ((void *)wsp->walk_addr == wsp->walk_data) 2983 return (WALK_DONE); 2984 return (WALK_NEXT); 2985 } 2986 2987 static int 2988 generic_walk_step(mdb_walk_state_t *wsp) 2989 { 2990 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2991 wsp->walk_cbdata)); 2992 } 2993 2994 static int 2995 cpu_walk_cmp(const void *l, const void *r) 2996 { 2997 uintptr_t lhs = *((uintptr_t *)l); 2998 uintptr_t rhs = *((uintptr_t *)r); 2999 cpu_t lcpu, rcpu; 3000 3001 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 3002 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 3003 3004 if (lcpu.cpu_id < rcpu.cpu_id) 3005 return (-1); 3006 3007 if (lcpu.cpu_id > rcpu.cpu_id) 3008 return (1); 3009 3010 return (0); 3011 } 3012 3013 typedef struct cpu_walk { 3014 uintptr_t *cw_array; 3015 int cw_ndx; 3016 } cpu_walk_t; 3017 3018 int 3019 cpu_walk_init(mdb_walk_state_t *wsp) 3020 { 3021 cpu_walk_t *cw; 3022 int max_ncpus, i = 0; 3023 uintptr_t current, first; 3024 cpu_t cpu, panic_cpu; 3025 uintptr_t panicstr, addr = 0; 3026 GElf_Sym sym; 3027 3028 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 3029 3030 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 3031 mdb_warn("failed to read 'max_ncpus'"); 3032 return (WALK_ERR); 3033 } 3034 3035 if (mdb_readvar(&panicstr, "panicstr") == -1) { 3036 mdb_warn("failed to read 'panicstr'"); 3037 return (WALK_ERR); 3038 } 3039 3040 if (panicstr != 0) { 3041 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 3042 mdb_warn("failed to find 'panic_cpu'"); 3043 return (WALK_ERR); 3044 } 3045 3046 addr = (uintptr_t)sym.st_value; 3047 3048 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 3049 mdb_warn("failed to read 'panic_cpu'"); 3050 return (WALK_ERR); 3051 } 3052 } 3053 3054 /* 3055 * Unfortunately, there is no platform-independent way to walk 3056 * CPUs in ID order. We therefore loop through in cpu_next order, 3057 * building an array of CPU pointers which will subsequently be 3058 * sorted. 3059 */ 3060 cw->cw_array = 3061 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 3062 3063 if (mdb_readvar(&first, "cpu_list") == -1) { 3064 mdb_warn("failed to read 'cpu_list'"); 3065 return (WALK_ERR); 3066 } 3067 3068 current = first; 3069 do { 3070 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 3071 mdb_warn("failed to read cpu at %p", current); 3072 return (WALK_ERR); 3073 } 3074 3075 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) { 3076 cw->cw_array[i++] = addr; 3077 } else { 3078 cw->cw_array[i++] = current; 3079 } 3080 } while ((current = (uintptr_t)cpu.cpu_next) != first); 3081 3082 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 3083 wsp->walk_data = cw; 3084 3085 return (WALK_NEXT); 3086 } 3087 3088 int 3089 cpu_walk_step(mdb_walk_state_t *wsp) 3090 { 3091 cpu_walk_t *cw = wsp->walk_data; 3092 cpu_t cpu; 3093 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 3094 3095 if (addr == 0) 3096 return (WALK_DONE); 3097 3098 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 3099 mdb_warn("failed to read cpu at %p", addr); 3100 return (WALK_DONE); 3101 } 3102 3103 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 3104 } 3105 3106 typedef struct cpuinfo_data { 3107 intptr_t cid_cpu; 3108 uintptr_t **cid_ithr; 3109 char cid_print_head; 3110 char cid_print_thr; 3111 char cid_print_ithr; 3112 char cid_print_flags; 3113 } cpuinfo_data_t; 3114 3115 int 3116 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 3117 { 3118 cpu_t c; 3119 int id; 3120 uint8_t pil; 3121 3122 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3123 return (WALK_NEXT); 3124 3125 if (thr->t_bound_cpu == NULL) { 3126 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3127 return (WALK_NEXT); 3128 } 3129 3130 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3131 3132 if ((id = c.cpu_id) >= NCPU) { 3133 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3134 thr->t_bound_cpu, id, NCPU); 3135 return (WALK_NEXT); 3136 } 3137 3138 if ((pil = thr->t_pil) >= NINTR) { 3139 mdb_warn("thread %p has pil (%d) greater than %d\n", 3140 addr, pil, NINTR); 3141 return (WALK_NEXT); 3142 } 3143 3144 if (cid->cid_ithr[id][pil] != 0) { 3145 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3146 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3147 return (WALK_NEXT); 3148 } 3149 3150 cid->cid_ithr[id][pil] = addr; 3151 3152 return (WALK_NEXT); 3153 } 3154 3155 #define CPUINFO_IDWIDTH 3 3156 #define CPUINFO_FLAGWIDTH 9 3157 3158 #ifdef _LP64 3159 #if defined(__amd64) 3160 #define CPUINFO_TWIDTH 16 3161 #define CPUINFO_CPUWIDTH 16 3162 #else 3163 #define CPUINFO_CPUWIDTH 11 3164 #define CPUINFO_TWIDTH 11 3165 #endif 3166 #else 3167 #define CPUINFO_CPUWIDTH 8 3168 #define CPUINFO_TWIDTH 8 3169 #endif 3170 3171 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3172 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3173 #define CPUINFO_ITHRDELT 4 3174 3175 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3176 flagline < nflaglines ? flagbuf[flagline++] : "") 3177 3178 typedef struct mdb_cpuinfo_proc { 3179 struct { 3180 char u_comm[MAXCOMLEN + 1]; 3181 } p_user; 3182 } mdb_cpuinfo_proc_t; 3183 3184 int 3185 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3186 { 3187 kthread_t t; 3188 disp_t disp; 3189 mdb_cpuinfo_proc_t p; 3190 uintptr_t pinned = 0; 3191 char **flagbuf; 3192 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3193 3194 const char *flags[] = { 3195 "RUNNING", "READY", "QUIESCED", "EXISTS", 3196 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3197 "SPARE", "FAULTED", "DISABLED", NULL 3198 }; 3199 3200 if (cid->cid_cpu != -1) { 3201 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3202 return (WALK_NEXT); 3203 3204 /* 3205 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3206 */ 3207 cid->cid_cpu = -1; 3208 rval = WALK_DONE; 3209 } 3210 3211 if (cid->cid_print_head) { 3212 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3213 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3214 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3215 "PROC"); 3216 cid->cid_print_head = FALSE; 3217 } 3218 3219 bspl = cpu->cpu_base_spl; 3220 3221 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3222 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3223 return (WALK_ERR); 3224 } 3225 3226 mdb_printf("%3d %0*p %3x %4d %4d ", 3227 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3228 disp.disp_nrunnable, bspl); 3229 3230 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3231 mdb_printf("%3d ", t.t_pri); 3232 } else { 3233 mdb_printf("%3s ", "-"); 3234 } 3235 3236 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3237 cpu->cpu_kprunrun ? "yes" : "no"); 3238 3239 if (cpu->cpu_last_swtch) { 3240 mdb_printf("t-%-4d ", 3241 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 3242 } else { 3243 mdb_printf("%-6s ", "-"); 3244 } 3245 3246 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3247 3248 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3249 mdb_printf(" (idle)\n"); 3250 else if (cpu->cpu_thread == NULL) 3251 mdb_printf(" -\n"); 3252 else { 3253 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3254 (uintptr_t)t.t_procp, 0) != -1) { 3255 mdb_printf(" %s\n", p.p_user.u_comm); 3256 } else { 3257 mdb_printf(" ?\n"); 3258 } 3259 } 3260 3261 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3262 3263 if (cid->cid_print_flags) { 3264 int first = 1, i, j, k; 3265 char *s; 3266 3267 cid->cid_print_head = TRUE; 3268 3269 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3270 if (!(cpu->cpu_flags & i)) 3271 continue; 3272 3273 if (first) { 3274 s = mdb_alloc(CPUINFO_THRDELT + 1, 3275 UM_GC | UM_SLEEP); 3276 3277 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3278 "%*s|%*s", CPUINFO_FLAGDELT, "", 3279 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3280 flagbuf[nflaglines++] = s; 3281 } 3282 3283 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3284 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3285 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3286 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3287 first ? "<--+" : ""); 3288 3289 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3290 s[k] = ' '; 3291 s[k] = '\0'; 3292 3293 flagbuf[nflaglines++] = s; 3294 first = 0; 3295 } 3296 } 3297 3298 if (cid->cid_print_ithr) { 3299 int i, found_one = FALSE; 3300 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3301 3302 for (i = NINTR - 1; i >= 0; i--) { 3303 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3304 3305 if (iaddr == 0) 3306 continue; 3307 3308 if (!found_one) { 3309 found_one = TRUE; 3310 3311 CPUINFO_INDENT; 3312 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3313 CPUINFO_ITHRDELT, ""); 3314 3315 CPUINFO_INDENT; 3316 mdb_printf("%c%*s+--> %3s %s\n", 3317 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3318 "", "PIL", "THREAD"); 3319 } 3320 3321 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3322 mdb_warn("failed to read kthread_t at %p", 3323 iaddr); 3324 return (WALK_ERR); 3325 } 3326 3327 CPUINFO_INDENT; 3328 mdb_printf("%c%*s %3d %0*p\n", 3329 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3330 t.t_pil, CPUINFO_TWIDTH, iaddr); 3331 3332 pinned = (uintptr_t)t.t_intr; 3333 } 3334 3335 if (found_one && pinned != 0) { 3336 cid->cid_print_head = TRUE; 3337 (void) strcpy(p.p_user.u_comm, "?"); 3338 3339 if (mdb_vread(&t, sizeof (t), 3340 (uintptr_t)pinned) == -1) { 3341 mdb_warn("failed to read kthread_t at %p", 3342 pinned); 3343 return (WALK_ERR); 3344 } 3345 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3346 (uintptr_t)t.t_procp, 0) == -1) { 3347 mdb_warn("failed to read proc_t at %p", 3348 t.t_procp); 3349 return (WALK_ERR); 3350 } 3351 3352 CPUINFO_INDENT; 3353 mdb_printf("%c%*s %3s %0*p %s\n", 3354 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3355 CPUINFO_TWIDTH, pinned, 3356 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3357 "(idle)" : p.p_user.u_comm); 3358 } 3359 } 3360 3361 if (disp.disp_nrunnable && cid->cid_print_thr) { 3362 dispq_t *dq; 3363 3364 int i, npri = disp.disp_npri; 3365 3366 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3367 3368 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3369 (uintptr_t)disp.disp_q) == -1) { 3370 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3371 return (WALK_ERR); 3372 } 3373 3374 CPUINFO_INDENT; 3375 mdb_printf("|\n"); 3376 3377 CPUINFO_INDENT; 3378 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3379 CPUINFO_TWIDTH, "THREAD", "PROC"); 3380 3381 for (i = npri - 1; i >= 0; i--) { 3382 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3383 3384 while (taddr != 0) { 3385 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3386 mdb_warn("failed to read kthread_t " 3387 "at %p", taddr); 3388 return (WALK_ERR); 3389 } 3390 if (mdb_ctf_vread(&p, "proc_t", 3391 "mdb_cpuinfo_proc_t", 3392 (uintptr_t)t.t_procp, 0) == -1) { 3393 mdb_warn("failed to read proc_t at %p", 3394 t.t_procp); 3395 return (WALK_ERR); 3396 } 3397 3398 CPUINFO_INDENT; 3399 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3400 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3401 3402 taddr = (uintptr_t)t.t_link; 3403 } 3404 } 3405 cid->cid_print_head = TRUE; 3406 } 3407 3408 while (flagline < nflaglines) 3409 mdb_printf("%s\n", flagbuf[flagline++]); 3410 3411 if (cid->cid_print_head) 3412 mdb_printf("\n"); 3413 3414 return (rval); 3415 } 3416 3417 int 3418 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3419 { 3420 uint_t verbose = FALSE; 3421 cpuinfo_data_t cid; 3422 3423 cid.cid_print_ithr = FALSE; 3424 cid.cid_print_thr = FALSE; 3425 cid.cid_print_flags = FALSE; 3426 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3427 cid.cid_cpu = -1; 3428 3429 if (flags & DCMD_ADDRSPEC) 3430 cid.cid_cpu = addr; 3431 3432 if (mdb_getopts(argc, argv, 3433 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3434 return (DCMD_USAGE); 3435 3436 if (verbose) { 3437 cid.cid_print_ithr = TRUE; 3438 cid.cid_print_thr = TRUE; 3439 cid.cid_print_flags = TRUE; 3440 cid.cid_print_head = TRUE; 3441 } 3442 3443 if (cid.cid_print_ithr) { 3444 int i; 3445 3446 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3447 * NCPU, UM_SLEEP | UM_GC); 3448 3449 for (i = 0; i < NCPU; i++) 3450 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3451 NINTR, UM_SLEEP | UM_GC); 3452 3453 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3454 &cid) == -1) { 3455 mdb_warn("couldn't walk thread"); 3456 return (DCMD_ERR); 3457 } 3458 } 3459 3460 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3461 mdb_warn("can't walk cpus"); 3462 return (DCMD_ERR); 3463 } 3464 3465 if (cid.cid_cpu != -1) { 3466 /* 3467 * We didn't find this CPU when we walked through the CPUs 3468 * (i.e. the address specified doesn't show up in the "cpu" 3469 * walk). However, the specified address may still correspond 3470 * to a valid cpu_t (for example, if the specified address is 3471 * the actual panicking cpu_t and not the cached panic_cpu). 3472 * Point is: even if we didn't find it, we still want to try 3473 * to print the specified address as a cpu_t. 3474 */ 3475 cpu_t cpu; 3476 3477 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3478 mdb_warn("%p is neither a valid CPU ID nor a " 3479 "valid cpu_t address\n", cid.cid_cpu); 3480 return (DCMD_ERR); 3481 } 3482 3483 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3484 } 3485 3486 return (DCMD_OK); 3487 } 3488 3489 /*ARGSUSED*/ 3490 int 3491 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3492 { 3493 int i; 3494 3495 if (!(flags & DCMD_ADDRSPEC)) 3496 return (DCMD_USAGE); 3497 3498 for (i = 0; i < sizeof (addr) * NBBY; i++) 3499 mdb_printf("%p\n", addr ^ (1UL << i)); 3500 3501 return (DCMD_OK); 3502 } 3503 3504 typedef struct mdb_as2proc_proc { 3505 struct as *p_as; 3506 } mdb_as2proc_proc_t; 3507 3508 /*ARGSUSED*/ 3509 int 3510 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp) 3511 { 3512 mdb_as2proc_proc_t p; 3513 3514 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0); 3515 3516 if (p.p_as == *asp) 3517 mdb_printf("%p\n", addr); 3518 return (WALK_NEXT); 3519 } 3520 3521 /*ARGSUSED*/ 3522 int 3523 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3524 { 3525 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3526 return (DCMD_USAGE); 3527 3528 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3529 mdb_warn("failed to walk proc"); 3530 return (DCMD_ERR); 3531 } 3532 3533 return (DCMD_OK); 3534 } 3535 3536 typedef struct mdb_ptree_proc { 3537 struct proc *p_parent; 3538 struct { 3539 char u_comm[MAXCOMLEN + 1]; 3540 } p_user; 3541 } mdb_ptree_proc_t; 3542 3543 /*ARGSUSED*/ 3544 int 3545 ptree_walk(uintptr_t addr, const void *ignored, void *data) 3546 { 3547 mdb_ptree_proc_t proc; 3548 mdb_ptree_proc_t parent; 3549 int ident = 0; 3550 uintptr_t paddr; 3551 3552 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0); 3553 3554 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) { 3555 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0); 3556 paddr = (uintptr_t)parent.p_parent; 3557 } 3558 3559 mdb_inc_indent(ident); 3560 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm); 3561 mdb_dec_indent(ident); 3562 3563 return (WALK_NEXT); 3564 } 3565 3566 void 3567 ptree_ancestors(uintptr_t addr, uintptr_t start) 3568 { 3569 mdb_ptree_proc_t p; 3570 3571 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) { 3572 mdb_warn("couldn't read ancestor at %p", addr); 3573 return; 3574 } 3575 3576 if (p.p_parent != NULL) 3577 ptree_ancestors((uintptr_t)p.p_parent, start); 3578 3579 if (addr != start) 3580 (void) ptree_walk(addr, &p, NULL); 3581 } 3582 3583 /*ARGSUSED*/ 3584 int 3585 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3586 { 3587 if (!(flags & DCMD_ADDRSPEC)) 3588 addr = 0; 3589 else 3590 ptree_ancestors(addr, addr); 3591 3592 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3593 mdb_warn("couldn't walk 'proc'"); 3594 return (DCMD_ERR); 3595 } 3596 3597 return (DCMD_OK); 3598 } 3599 3600 typedef struct mdb_fd_proc { 3601 struct { 3602 struct { 3603 int fi_nfiles; 3604 uf_entry_t *volatile fi_list; 3605 } u_finfo; 3606 } p_user; 3607 } mdb_fd_proc_t; 3608 3609 /*ARGSUSED*/ 3610 static int 3611 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3612 { 3613 int fdnum; 3614 const mdb_arg_t *argp = &argv[0]; 3615 mdb_fd_proc_t p; 3616 uf_entry_t uf; 3617 3618 if ((flags & DCMD_ADDRSPEC) == 0) { 3619 mdb_warn("fd doesn't give global information\n"); 3620 return (DCMD_ERR); 3621 } 3622 if (argc != 1) 3623 return (DCMD_USAGE); 3624 3625 fdnum = (int)mdb_argtoull(argp); 3626 3627 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) { 3628 mdb_warn("couldn't read proc_t at %p", addr); 3629 return (DCMD_ERR); 3630 } 3631 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3632 mdb_warn("process %p only has %d files open.\n", 3633 addr, p.p_user.u_finfo.fi_nfiles); 3634 return (DCMD_ERR); 3635 } 3636 if (mdb_vread(&uf, sizeof (uf_entry_t), 3637 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3638 mdb_warn("couldn't read uf_entry_t at %p", 3639 &p.p_user.u_finfo.fi_list[fdnum]); 3640 return (DCMD_ERR); 3641 } 3642 3643 mdb_printf("%p\n", uf.uf_file); 3644 return (DCMD_OK); 3645 } 3646 3647 /*ARGSUSED*/ 3648 static int 3649 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3650 { 3651 pid_t pid = (pid_t)addr; 3652 3653 if (argc != 0) 3654 return (DCMD_USAGE); 3655 3656 if ((addr = mdb_pid2proc(pid, NULL)) == 0) { 3657 mdb_warn("PID 0t%d not found\n", pid); 3658 return (DCMD_ERR); 3659 } 3660 3661 mdb_printf("%p\n", addr); 3662 return (DCMD_OK); 3663 } 3664 3665 static char *sysfile_cmd[] = { 3666 "exclude:", 3667 "include:", 3668 "forceload:", 3669 "rootdev:", 3670 "rootfs:", 3671 "swapdev:", 3672 "swapfs:", 3673 "moddir:", 3674 "set", 3675 "unknown", 3676 }; 3677 3678 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3679 3680 /*ARGSUSED*/ 3681 static int 3682 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3683 { 3684 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3685 *target = NULL; 3686 return (WALK_DONE); 3687 } 3688 return (WALK_NEXT); 3689 } 3690 3691 /*ARGSUSED*/ 3692 static int 3693 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3694 { 3695 struct sysparam *sysp, sys; 3696 char var[256]; 3697 char modname[256]; 3698 char val[256]; 3699 char strval[256]; 3700 vmem_t *mod_sysfile_arena; 3701 void *straddr; 3702 3703 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3704 mdb_warn("failed to read sysparam_hd"); 3705 return (DCMD_ERR); 3706 } 3707 3708 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3709 mdb_warn("failed to read mod_sysfile_arena"); 3710 return (DCMD_ERR); 3711 } 3712 3713 while (sysp != NULL) { 3714 var[0] = '\0'; 3715 val[0] = '\0'; 3716 modname[0] = '\0'; 3717 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3718 mdb_warn("couldn't read sysparam %p", sysp); 3719 return (DCMD_ERR); 3720 } 3721 if (sys.sys_modnam != NULL && 3722 mdb_readstr(modname, 256, 3723 (uintptr_t)sys.sys_modnam) == -1) { 3724 mdb_warn("couldn't read modname in %p", sysp); 3725 return (DCMD_ERR); 3726 } 3727 if (sys.sys_ptr != NULL && 3728 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3729 mdb_warn("couldn't read ptr in %p", sysp); 3730 return (DCMD_ERR); 3731 } 3732 if (sys.sys_op != SETOP_NONE) { 3733 /* 3734 * Is this an int or a string? We determine this 3735 * by checking whether straddr is contained in 3736 * mod_sysfile_arena. If so, the walker will set 3737 * straddr to NULL. 3738 */ 3739 straddr = (void *)(uintptr_t)sys.sys_info; 3740 if (sys.sys_op == SETOP_ASSIGN && 3741 sys.sys_info != 0 && 3742 mdb_pwalk("vmem_seg", 3743 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3744 (uintptr_t)mod_sysfile_arena) == 0 && 3745 straddr == NULL && 3746 mdb_readstr(strval, 256, 3747 (uintptr_t)sys.sys_info) != -1) { 3748 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3749 strval); 3750 } else { 3751 (void) mdb_snprintf(val, sizeof (val), 3752 "0x%llx [0t%llu]", sys.sys_info, 3753 sys.sys_info); 3754 } 3755 } 3756 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3757 modname, modname[0] == '\0' ? "" : ":", 3758 var, sysfile_ops[sys.sys_op], val); 3759 3760 sysp = sys.sys_next; 3761 } 3762 3763 return (DCMD_OK); 3764 } 3765 3766 int 3767 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3768 { 3769 3770 if (*didp == thr->t_did) { 3771 mdb_printf("%p\n", addr); 3772 return (WALK_DONE); 3773 } else 3774 return (WALK_NEXT); 3775 } 3776 3777 /*ARGSUSED*/ 3778 int 3779 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3780 { 3781 const mdb_arg_t *argp = &argv[0]; 3782 kt_did_t did; 3783 3784 if (argc != 1) 3785 return (DCMD_USAGE); 3786 3787 did = (kt_did_t)mdb_argtoull(argp); 3788 3789 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3790 mdb_warn("failed to walk thread"); 3791 return (DCMD_ERR); 3792 3793 } 3794 return (DCMD_OK); 3795 3796 } 3797 3798 static int 3799 errorq_walk_init(mdb_walk_state_t *wsp) 3800 { 3801 if (wsp->walk_addr == 0 && 3802 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3803 mdb_warn("failed to read errorq_list"); 3804 return (WALK_ERR); 3805 } 3806 3807 return (WALK_NEXT); 3808 } 3809 3810 static int 3811 errorq_walk_step(mdb_walk_state_t *wsp) 3812 { 3813 uintptr_t addr = wsp->walk_addr; 3814 errorq_t eq; 3815 3816 if (addr == 0) 3817 return (WALK_DONE); 3818 3819 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3820 mdb_warn("failed to read errorq at %p", addr); 3821 return (WALK_ERR); 3822 } 3823 3824 wsp->walk_addr = (uintptr_t)eq.eq_next; 3825 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3826 } 3827 3828 typedef struct eqd_walk_data { 3829 uintptr_t *eqd_stack; 3830 void *eqd_buf; 3831 ulong_t eqd_qpos; 3832 ulong_t eqd_qlen; 3833 size_t eqd_size; 3834 } eqd_walk_data_t; 3835 3836 /* 3837 * In order to walk the list of pending error queue elements, we push the 3838 * addresses of the corresponding data buffers in to the eqd_stack array. 3839 * The error lists are in reverse chronological order when iterating using 3840 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3841 * walker client gets addresses in order from oldest error to newest error. 3842 */ 3843 static void 3844 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3845 { 3846 errorq_elem_t eqe; 3847 3848 while (addr != 0) { 3849 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3850 mdb_warn("failed to read errorq element at %p", addr); 3851 break; 3852 } 3853 3854 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3855 mdb_warn("errorq is overfull -- more than %lu " 3856 "elems found\n", eqdp->eqd_qlen); 3857 break; 3858 } 3859 3860 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3861 addr = (uintptr_t)eqe.eqe_prev; 3862 } 3863 } 3864 3865 static int 3866 eqd_walk_init(mdb_walk_state_t *wsp) 3867 { 3868 eqd_walk_data_t *eqdp; 3869 errorq_elem_t eqe, *addr; 3870 errorq_t eq; 3871 ulong_t i; 3872 3873 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3874 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3875 return (WALK_ERR); 3876 } 3877 3878 if (eq.eq_ptail != NULL && 3879 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3880 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3881 return (WALK_ERR); 3882 } 3883 3884 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3885 wsp->walk_data = eqdp; 3886 3887 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3888 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3889 eqdp->eqd_qlen = eq.eq_qlen; 3890 eqdp->eqd_qpos = 0; 3891 eqdp->eqd_size = eq.eq_size; 3892 3893 /* 3894 * The newest elements in the queue are on the pending list, so we 3895 * push those on to our stack first. 3896 */ 3897 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3898 3899 /* 3900 * If eq_ptail is set, it may point to a subset of the errors on the 3901 * pending list in the event a atomic_cas_ptr() failed; if ptail's 3902 * data is already in our stack, NULL out eq_ptail and ignore it. 3903 */ 3904 if (eq.eq_ptail != NULL) { 3905 for (i = 0; i < eqdp->eqd_qpos; i++) { 3906 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3907 eq.eq_ptail = NULL; 3908 break; 3909 } 3910 } 3911 } 3912 3913 /* 3914 * If eq_phead is set, it has the processing list in order from oldest 3915 * to newest. Use this to recompute eq_ptail as best we can and then 3916 * we nicely fall into eqd_push_list() of eq_ptail below. 3917 */ 3918 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3919 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3920 eq.eq_ptail = addr; 3921 3922 /* 3923 * The oldest elements in the queue are on the processing list, subject 3924 * to machinations in the if-clauses above. Push any such elements. 3925 */ 3926 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3927 return (WALK_NEXT); 3928 } 3929 3930 static int 3931 eqd_walk_step(mdb_walk_state_t *wsp) 3932 { 3933 eqd_walk_data_t *eqdp = wsp->walk_data; 3934 uintptr_t addr; 3935 3936 if (eqdp->eqd_qpos == 0) 3937 return (WALK_DONE); 3938 3939 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3940 3941 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3942 mdb_warn("failed to read errorq data at %p", addr); 3943 return (WALK_ERR); 3944 } 3945 3946 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3947 } 3948 3949 static void 3950 eqd_walk_fini(mdb_walk_state_t *wsp) 3951 { 3952 eqd_walk_data_t *eqdp = wsp->walk_data; 3953 3954 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3955 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3956 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3957 } 3958 3959 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3960 3961 static int 3962 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3963 { 3964 int i; 3965 errorq_t eq; 3966 uint_t opt_v = FALSE; 3967 3968 if (!(flags & DCMD_ADDRSPEC)) { 3969 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3970 mdb_warn("can't walk 'errorq'"); 3971 return (DCMD_ERR); 3972 } 3973 return (DCMD_OK); 3974 } 3975 3976 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3977 argc -= i; 3978 argv += i; 3979 3980 if (argc != 0) 3981 return (DCMD_USAGE); 3982 3983 if (opt_v || DCMD_HDRSPEC(flags)) { 3984 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3985 "ADDR", "NAME", "S", "V", "N"); 3986 if (!opt_v) { 3987 mdb_printf("%7s %7s %7s%</u>\n", 3988 "ACCEPT", "DROP", "LOG"); 3989 } else { 3990 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3991 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3992 } 3993 } 3994 3995 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3996 mdb_warn("failed to read errorq at %p", addr); 3997 return (DCMD_ERR); 3998 } 3999 4000 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 4001 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 4002 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 4003 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 4004 4005 if (!opt_v) { 4006 mdb_printf("%7llu %7llu %7llu\n", 4007 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 4008 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 4009 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 4010 } else { 4011 mdb_printf("%5s %6lu %6lu %3u %a\n", 4012 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 4013 mdb_printf("%38s\n%41s" 4014 "%12s %llu\n" 4015 "%53s %llu\n" 4016 "%53s %llu\n" 4017 "%53s %llu\n" 4018 "%53s %llu\n" 4019 "%53s %llu\n" 4020 "%53s %llu\n" 4021 "%53s %llu\n\n", 4022 "|", "+-> ", 4023 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 4024 "DROPPED", EQKSVAL(eq, eqk_dropped), 4025 "LOGGED", EQKSVAL(eq, eqk_logged), 4026 "RESERVED", EQKSVAL(eq, eqk_reserved), 4027 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 4028 "COMMITTED", EQKSVAL(eq, eqk_committed), 4029 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 4030 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 4031 } 4032 4033 return (DCMD_OK); 4034 } 4035 4036 /*ARGSUSED*/ 4037 static int 4038 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4039 { 4040 cpu_t panic_cpu; 4041 kthread_t *panic_thread; 4042 void *buf; 4043 panic_data_t *pd; 4044 int i, n; 4045 4046 if (!mdb_prop_postmortem) { 4047 mdb_warn("panicinfo can only be run on a system " 4048 "dump; see dumpadm(8)\n"); 4049 return (DCMD_ERR); 4050 } 4051 4052 if (flags & DCMD_ADDRSPEC || argc != 0) 4053 return (DCMD_USAGE); 4054 4055 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 4056 mdb_warn("failed to read 'panic_cpu'"); 4057 else 4058 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 4059 4060 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 4061 mdb_warn("failed to read 'panic_thread'"); 4062 else 4063 mdb_printf("%16s %?p\n", "thread", panic_thread); 4064 4065 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 4066 pd = (panic_data_t *)buf; 4067 4068 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 4069 pd->pd_version != PANICBUFVERS) { 4070 mdb_warn("failed to read 'panicbuf'"); 4071 mdb_free(buf, PANICBUFSIZE); 4072 return (DCMD_ERR); 4073 } 4074 4075 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 4076 4077 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 4078 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 4079 4080 for (i = 0; i < n; i++) 4081 mdb_printf("%16s %?llx\n", 4082 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 4083 4084 mdb_free(buf, PANICBUFSIZE); 4085 return (DCMD_OK); 4086 } 4087 4088 /* 4089 * ::time dcmd, which will print a hires timestamp of when we entered the 4090 * debugger, or the lbolt value if used with the -l option. 4091 * 4092 */ 4093 /*ARGSUSED*/ 4094 static int 4095 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4096 { 4097 uint_t opt_dec = FALSE; 4098 uint_t opt_lbolt = FALSE; 4099 uint_t opt_hex = FALSE; 4100 const char *fmt; 4101 hrtime_t result; 4102 4103 if (mdb_getopts(argc, argv, 4104 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 4105 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 4106 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 4107 NULL) != argc) 4108 return (DCMD_USAGE); 4109 4110 if (opt_dec && opt_hex) 4111 return (DCMD_USAGE); 4112 4113 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 4114 fmt = 4115 opt_hex ? "0x%llx\n" : 4116 opt_dec ? "0t%lld\n" : "%#llr\n"; 4117 4118 mdb_printf(fmt, result); 4119 return (DCMD_OK); 4120 } 4121 4122 void 4123 time_help(void) 4124 { 4125 mdb_printf("Prints the system time in nanoseconds.\n\n" 4126 "::time will return the timestamp at which we dropped into, \n" 4127 "if called from, kmdb(1); the core dump's high resolution \n" 4128 "time if inspecting one; or the running hires time if we're \n" 4129 "looking at a live system.\n\n" 4130 "Switches:\n" 4131 " -d report times in decimal\n" 4132 " -l prints the number of clock ticks since system boot\n" 4133 " -x report times in hexadecimal\n"); 4134 } 4135 4136 extern int cmd_refstr(uintptr_t, uint_t, int, const mdb_arg_t *); 4137 4138 static const mdb_dcmd_t dcmds[] = { 4139 4140 /* from genunix.c */ 4141 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4142 { "binding_hash_entry", ":", "print driver names hash table entry", 4143 binding_hash_entry }, 4144 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 4145 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4146 " [-FivVA]", 4147 "display callouts", callout, callout_help }, 4148 { "calloutid", "[-d|v] xid", "print callout by extended id", 4149 calloutid, calloutid_help }, 4150 { "class", NULL, "print process scheduler classes", class }, 4151 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4152 { "did2thread", "? kt_did", "find kernel thread for this id", 4153 did2thread }, 4154 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4155 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4156 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4157 { "lminfo", NULL, "print lock manager information", lminfo }, 4158 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4159 { "panicinfo", NULL, "print panic information", panicinfo }, 4160 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4161 { "project", NULL, "display kernel project(s)", project }, 4162 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps, 4163 ps_help }, 4164 { "pflags", NULL, "display various proc_t flags", pflags }, 4165 { "pgrep", "[-x] [-n | -o] pattern", 4166 "pattern match against all processes", pgrep }, 4167 { "ptree", NULL, "print process tree", ptree }, 4168 { "refstr", NULL, "print string from a refstr_t", cmd_refstr, NULL }, 4169 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4170 sysevent}, 4171 { "sysevent_channel", "?", "print sysevent channel database", 4172 sysevent_channel}, 4173 { "sysevent_class_list", ":", "print sysevent class list", 4174 sysevent_class_list}, 4175 { "sysevent_subclass_list", ":", 4176 "print sysevent subclass list", sysevent_subclass_list}, 4177 { "system", NULL, "print contents of /etc/system file", sysfile }, 4178 { "task", NULL, "display kernel task(s)", task }, 4179 { "time", "[-dlx]", "display system time", time, time_help }, 4180 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4181 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4182 whereopen }, 4183 4184 /* from bio.c */ 4185 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4186 4187 /* from bitset.c */ 4188 { "bitset", ":", "display a bitset", bitset, bitset_help }, 4189 4190 /* from contract.c */ 4191 { "contract", "?", "display a contract", cmd_contract }, 4192 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4193 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4194 4195 /* from cpupart.c */ 4196 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4197 4198 /* from cred.c */ 4199 { "cred", ":[-v]", "display a credential", cmd_cred }, 4200 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 4201 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 4202 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 4203 4204 /* from cyclic.c */ 4205 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4206 { "cycid", "?", "dump a cyclic id", cycid }, 4207 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4208 { "cyclic", ":", "developer information", cyclic }, 4209 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4210 4211 /* from damap.c */ 4212 { "damap", ":", "display a damap_t", damap, damap_help }, 4213 4214 /* from ddi_periodic.c */ 4215 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 4216 4217 /* from devinfo.c */ 4218 { "devbindings", "?[-qs] [device-name | major-num]", 4219 "print devinfo nodes bound to device-name or major-num", 4220 devbindings, devinfo_help }, 4221 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node", 4222 devinfo, devinfo_help }, 4223 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4224 devinfo_audit }, 4225 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4226 devinfo_audit_log }, 4227 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4228 devinfo_audit_node }, 4229 { "devinfo2driver", ":", "find driver name for this devinfo node", 4230 devinfo2driver }, 4231 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4232 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4233 dev2major }, 4234 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4235 dev2minor }, 4236 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4237 devt }, 4238 { "major2name", "?<major-num>", "convert major number to dev name", 4239 major2name }, 4240 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4241 minornodes }, 4242 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4243 modctl2devinfo }, 4244 { "name2major", "<dev-name>", "convert dev name to major number", 4245 name2major }, 4246 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree", 4247 prtconf, prtconf_help }, 4248 { "softstate", ":<instance>", "retrieve soft-state pointer", 4249 softstate }, 4250 { "devinfo_fm", ":", "devinfo fault managment configuration", 4251 devinfo_fm }, 4252 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4253 devinfo_fmce}, 4254 4255 /* from findstack.c */ 4256 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4257 { "findstack_debug", NULL, "toggle findstack debugging", 4258 findstack_debug }, 4259 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4260 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4261 "print unique kernel thread stacks", 4262 stacks, stacks_help }, 4263 4264 /* from fm.c */ 4265 { "ereport", "[-v]", "print ereports logged in dump", 4266 ereport }, 4267 4268 /* from group.c */ 4269 { "group", "?[-q]", "display a group", group}, 4270 4271 /* from hotplug.c */ 4272 { "hotplug", "?[-p]", "display a registered hotplug attachment", 4273 hotplug, hotplug_help }, 4274 4275 /* from irm.c */ 4276 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4277 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4278 irmreqs_dcmd }, 4279 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4280 4281 /* from kgrep.c + genunix.c */ 4282 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4283 kgrep_help }, 4284 4285 /* from kmem.c */ 4286 { "allocdby", ":", "given a thread, print its allocated buffers", 4287 allocdby }, 4288 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4289 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4290 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4291 { "kmalog", "?[ fail | slab | zerosized ]", 4292 "display kmem transaction log and stack traces for specified type", 4293 kmalog }, 4294 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4295 kmastat }, 4296 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4297 "of the kmem allocator", kmausers, kmausers_help }, 4298 { "kmem_cache", "?[-n name]", 4299 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4300 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4301 "[-B minbinsize]", "display slab usage per kmem cache", 4302 kmem_slabs, kmem_slabs_help }, 4303 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4304 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4305 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4306 kmem_verify }, 4307 { "vmem", "?", "print a vmem_t", vmem }, 4308 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4309 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4310 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4311 { "whatthread", ":[-v]", "print threads whose stack contains the " 4312 "given address", whatthread }, 4313 4314 /* from ldi.c */ 4315 { "ldi_handle", "?[-i]", "display a layered driver handle", 4316 ldi_handle, ldi_handle_help }, 4317 { "ldi_ident", NULL, "display a layered driver identifier", 4318 ldi_ident, ldi_ident_help }, 4319 4320 /* from leaky.c + leaky_subr.c */ 4321 { "findleaks", FINDLEAKS_USAGE, 4322 "search for potential kernel memory leaks", findleaks, 4323 findleaks_help }, 4324 4325 /* from lgrp.c */ 4326 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4327 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4328 4329 /* from log.c */ 4330 { "msgbuf", "?[-tTv]", "print most recent console messages", msgbuf, 4331 msgbuf_help }, 4332 4333 /* from mdi.c */ 4334 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4335 "and detailed pi_prop list", mdipi }, 4336 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4337 mdiprops }, 4338 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4339 "list all paths", mdiphci }, 4340 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4341 "all phcis", mdivhci }, 4342 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4343 "client links", mdiclient_paths }, 4344 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4345 "phci links", mdiphci_paths }, 4346 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4347 mdiphcis }, 4348 4349 /* from memory.c */ 4350 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4351 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4352 { "memstat", NULL, "display memory usage summary", memstat }, 4353 { "page", "?", "display a summarized page_t", page }, 4354 { "pagelookup", "?[-v vp] [-o offset]", 4355 "find the page_t with the name {vp, offset}", 4356 pagelookup, pagelookup_help }, 4357 { "page_num2pp", ":", "find the page_t for a given page frame number", 4358 page_num2pp }, 4359 { "pmap", ":[-q]", "print process memory map", pmap }, 4360 { "seg", ":", "print address space segment", seg }, 4361 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4362 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4363 4364 /* from modhash.c */ 4365 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4366 "display information about one or all mod_hash structures", 4367 modhash, modhash_help }, 4368 { "modent", ":[-k | -v | -t type]", 4369 "display information about a mod_hash_entry", modent, 4370 modent_help }, 4371 4372 /* from net.c */ 4373 { "dladm", "?<sub-command> [flags]", "show data link information", 4374 dladm, dladm_help }, 4375 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4376 mi }, 4377 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4378 "show network statistics", netstat }, 4379 { "sonode", "?[-f inet | inet6 | unix | #] " 4380 "[-t stream | dgram | raw | #] [-p #]", 4381 "filter and display sonode", sonode }, 4382 4383 /* from netstack.c */ 4384 { "netstack", "", "show stack instances", netstack }, 4385 { "netstackid2netstack", ":", 4386 "translate a netstack id to its netstack_t", 4387 netstackid2netstack }, 4388 4389 /* from nvpair.c */ 4390 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4391 nvpair_print }, 4392 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4393 print_nvlist }, 4394 4395 /* from pg.c */ 4396 { "pg", "?[-q]", "display a pg", pg}, 4397 4398 /* from rctl.c */ 4399 { "rctl_dict", "?", "print systemwide default rctl definitions", 4400 rctl_dict }, 4401 { "rctl_list", ":[handle]", "print rctls for the given proc", 4402 rctl_list }, 4403 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4404 rctl }, 4405 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4406 "sequence", rctl_validate }, 4407 4408 /* from sobj.c */ 4409 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4410 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4411 mutex_help }, 4412 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4413 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4414 { "turnstile", "?", "display a turnstile", turnstile }, 4415 4416 /* from stream.c */ 4417 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4418 "print an mblk", mblk_prt, mblk_help }, 4419 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4420 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4421 mblk2dblk }, 4422 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4423 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4424 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4425 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4426 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4427 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4428 "filter and display STREAM queue", queue, queue_help }, 4429 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4430 "filter and display STREAM head", stdata, stdata_help }, 4431 { "str2mate", ":", "print mate of this stream", str2mate }, 4432 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4433 { "stream", ":", "display STREAM", stream }, 4434 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4435 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4436 "filter and display STREAM sync queue", syncq, syncq_help }, 4437 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4438 4439 /* from taskq.c */ 4440 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4441 "display a taskq", taskq, taskq_help }, 4442 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4443 4444 /* from thread.c */ 4445 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4446 thread_help }, 4447 { "threadlist", "?[-t] [-v [count]]", 4448 "display threads and associated C stack traces", threadlist, 4449 threadlist_help }, 4450 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4451 stackinfo_help }, 4452 4453 /* from tsd.c */ 4454 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4455 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4456 4457 /* 4458 * typegraph does not work under kmdb, as it requires too much memory 4459 * for its internal data structures. 4460 */ 4461 #ifndef _KMDB 4462 /* from typegraph.c */ 4463 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4464 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4465 findfalse }, 4466 { "typegraph", NULL, "build type graph", typegraph }, 4467 { "istype", ":type", "manually set object type", istype }, 4468 { "notype", ":", "manually clear object type", notype }, 4469 { "whattype", ":", "determine object type", whattype }, 4470 #endif 4471 4472 /* from vfs.c */ 4473 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4474 { "pfiles", ":[-fp]", "print process file information", pfiles, 4475 pfiles_help }, 4476 4477 /* from zone.c */ 4478 { "zid2zone", ":", "find the zone_t with the given zone id", 4479 zid2zone }, 4480 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4481 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4482 "selected zones", zsd }, 4483 4484 #ifndef _KMDB 4485 { "gcore", NULL, "generate a user core for the given process", 4486 gcore_dcmd }, 4487 #endif 4488 4489 { NULL } 4490 }; 4491 4492 static const mdb_walker_t walkers[] = { 4493 4494 /* from genunix.c */ 4495 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4496 callout_walk_init, callout_walk_step, callout_walk_fini, 4497 (void *)CALLOUT_WALK_BYLIST }, 4498 { "callouts_byid", "walk callouts by id hash chain", 4499 callout_walk_init, callout_walk_step, callout_walk_fini, 4500 (void *)CALLOUT_WALK_BYID }, 4501 { "callout_list", "walk a callout list", callout_list_walk_init, 4502 callout_list_walk_step, callout_list_walk_fini }, 4503 { "callout_table", "walk callout table array", callout_table_walk_init, 4504 callout_table_walk_step, callout_table_walk_fini }, 4505 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4506 { "dnlc", "walk dnlc entries", 4507 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini }, 4508 { "ereportq_dump", "walk list of ereports in dump error queue", 4509 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4510 { "ereportq_pend", "walk list of ereports in pending error queue", 4511 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4512 { "errorq", "walk list of system error queues", 4513 errorq_walk_init, errorq_walk_step, NULL }, 4514 { "errorq_data", "walk pending error queue data buffers", 4515 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4516 { "allfile", "given a proc pointer, list all file pointers", 4517 file_walk_init, allfile_walk_step, file_walk_fini }, 4518 { "file", "given a proc pointer, list of open file pointers", 4519 file_walk_init, file_walk_step, file_walk_fini }, 4520 { "lock_descriptor", "walk lock_descriptor_t structures", 4521 ld_walk_init, ld_walk_step, NULL }, 4522 { "lock_graph", "walk lock graph", 4523 lg_walk_init, lg_walk_step, NULL }, 4524 { "port", "given a proc pointer, list of created event ports", 4525 port_walk_init, port_walk_step, NULL }, 4526 { "portev", "given a port pointer, list of events in the queue", 4527 portev_walk_init, portev_walk_step, portev_walk_fini }, 4528 { "proc", "list of active proc_t structures", 4529 proc_walk_init, proc_walk_step, proc_walk_fini }, 4530 { "projects", "walk a list of kernel projects", 4531 project_walk_init, project_walk_step, NULL }, 4532 { "sysevent_pend", "walk sysevent pending queue", 4533 sysevent_pend_walk_init, sysevent_walk_step, 4534 sysevent_walk_fini}, 4535 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4536 sysevent_walk_step, sysevent_walk_fini}, 4537 { "sysevent_channel", "walk sysevent channel subscriptions", 4538 sysevent_channel_walk_init, sysevent_channel_walk_step, 4539 sysevent_channel_walk_fini}, 4540 { "sysevent_class_list", "walk sysevent subscription's class list", 4541 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4542 sysevent_class_list_walk_fini}, 4543 { "sysevent_subclass_list", 4544 "walk sysevent subscription's subclass list", 4545 sysevent_subclass_list_walk_init, 4546 sysevent_subclass_list_walk_step, 4547 sysevent_subclass_list_walk_fini}, 4548 { "task", "given a task pointer, walk its processes", 4549 task_walk_init, task_walk_step, NULL }, 4550 4551 /* from avl.c */ 4552 { AVL_WALK_NAME, AVL_WALK_DESC, 4553 avl_walk_init, avl_walk_step, avl_walk_fini }, 4554 4555 /* from bio.c */ 4556 { "buf", "walk the bio buf hash", 4557 buf_walk_init, buf_walk_step, buf_walk_fini }, 4558 4559 /* from contract.c */ 4560 { "contract", "walk all contracts, or those of the specified type", 4561 ct_walk_init, generic_walk_step, NULL }, 4562 { "ct_event", "walk events on a contract event queue", 4563 ct_event_walk_init, generic_walk_step, NULL }, 4564 { "ct_listener", "walk contract event queue listeners", 4565 ct_listener_walk_init, generic_walk_step, NULL }, 4566 4567 /* from cpupart.c */ 4568 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4569 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4570 NULL }, 4571 { "cpupart_walk", "walk the set of cpu partitions", 4572 cpupart_walk_init, cpupart_walk_step, NULL }, 4573 4574 /* from ctxop.c */ 4575 { "ctxop", "walk list of context ops on a thread", 4576 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4577 4578 /* from cyclic.c */ 4579 { "cyccpu", "walk per-CPU cyc_cpu structures", 4580 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4581 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4582 cycomni_walk_init, cycomni_walk_step, NULL }, 4583 { "cyctrace", "walk cyclic trace buffer", 4584 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4585 4586 /* from devinfo.c */ 4587 { "binding_hash", "walk all entries in binding hash table", 4588 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4589 { "devinfo", "walk devinfo tree or subtree", 4590 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4591 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4592 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4593 devinfo_audit_log_walk_fini}, 4594 { "devinfo_audit_node", "walk per-devinfo audit history", 4595 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4596 devinfo_audit_node_walk_fini}, 4597 { "devinfo_children", "walk children of devinfo node", 4598 devinfo_children_walk_init, devinfo_children_walk_step, 4599 devinfo_children_walk_fini }, 4600 { "devinfo_parents", "walk ancestors of devinfo node", 4601 devinfo_parents_walk_init, devinfo_parents_walk_step, 4602 devinfo_parents_walk_fini }, 4603 { "devinfo_siblings", "walk siblings of devinfo node", 4604 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4605 { "devi_next", "walk devinfo list", 4606 NULL, devi_next_walk_step, NULL }, 4607 { "devnames", "walk devnames array", 4608 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4609 { "minornode", "given a devinfo node, walk minor nodes", 4610 minornode_walk_init, minornode_walk_step, NULL }, 4611 { "softstate", 4612 "given an i_ddi_soft_state*, list all in-use driver stateps", 4613 soft_state_walk_init, soft_state_walk_step, 4614 NULL, NULL }, 4615 { "softstate_all", 4616 "given an i_ddi_soft_state*, list all driver stateps", 4617 soft_state_walk_init, soft_state_all_walk_step, 4618 NULL, NULL }, 4619 { "devinfo_fmc", 4620 "walk a fault management handle cache active list", 4621 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4622 4623 /* from group.c */ 4624 { "group", "walk all elements of a group", 4625 group_walk_init, group_walk_step, NULL }, 4626 4627 /* from irm.c */ 4628 { "irmpools", "walk global list of interrupt pools", 4629 irmpools_walk_init, list_walk_step, list_walk_fini }, 4630 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4631 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4632 4633 /* from kmem.c */ 4634 { "allocdby", "given a thread, walk its allocated bufctls", 4635 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4636 { "bufctl", "walk a kmem cache's bufctls", 4637 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4638 { "bufctl_history", "walk the available history of a bufctl", 4639 bufctl_history_walk_init, bufctl_history_walk_step, 4640 bufctl_history_walk_fini }, 4641 { "freedby", "given a thread, walk its freed bufctls", 4642 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4643 { "freectl", "walk a kmem cache's free bufctls", 4644 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4645 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4646 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4647 { "freemem", "walk a kmem cache's free memory", 4648 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4649 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4650 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4651 { "kmem", "walk a kmem cache", 4652 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4653 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4654 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4655 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4656 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4657 { "kmem_log", "walk the kmem transaction log", 4658 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4659 { "kmem_slab", "given a kmem cache, walk its slabs", 4660 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4661 { "kmem_slab_partial", 4662 "given a kmem cache, walk its partially allocated slabs (min 1)", 4663 kmem_slab_walk_partial_init, combined_walk_step, 4664 combined_walk_fini }, 4665 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4666 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4667 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4668 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4669 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4670 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4671 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4672 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4673 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4674 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4675 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4676 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4677 4678 /* from ldi.c */ 4679 { "ldi_handle", "walk the layered driver handle hash", 4680 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4681 { "ldi_ident", "walk the layered driver identifier hash", 4682 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4683 4684 /* from leaky.c + leaky_subr.c */ 4685 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4686 "stack trace", 4687 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4688 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4689 "leaks w/ same stack trace", 4690 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4691 4692 /* from lgrp.c */ 4693 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4694 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4695 { "lgrptbl", "walk lgroup table", 4696 lgrp_walk_init, lgrp_walk_step, NULL }, 4697 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4698 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4699 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4700 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4701 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4702 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4703 4704 /* from list.c */ 4705 { LIST_WALK_NAME, LIST_WALK_DESC, 4706 list_walk_init, list_walk_step, list_walk_fini }, 4707 4708 /* from mdi.c */ 4709 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4710 mdi_pi_client_link_walk_init, 4711 mdi_pi_client_link_walk_step, 4712 mdi_pi_client_link_walk_fini }, 4713 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4714 mdi_pi_phci_link_walk_init, 4715 mdi_pi_phci_link_walk_step, 4716 mdi_pi_phci_link_walk_fini }, 4717 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4718 mdi_phci_ph_next_walk_init, 4719 mdi_phci_ph_next_walk_step, 4720 mdi_phci_ph_next_walk_fini }, 4721 4722 /* from memory.c */ 4723 { "allpages", "walk all pages, including free pages", 4724 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4725 { "anon", "given an amp, list allocated anon structures", 4726 anon_walk_init, anon_walk_step, anon_walk_fini, 4727 ANON_WALK_ALLOC }, 4728 { "anon_all", "given an amp, list contents of all anon slots", 4729 anon_walk_init, anon_walk_step, anon_walk_fini, 4730 ANON_WALK_ALL }, 4731 { "memlist", "walk specified memlist", 4732 NULL, memlist_walk_step, NULL }, 4733 { "page", "walk all pages, or those from the specified vnode", 4734 page_walk_init, page_walk_step, page_walk_fini }, 4735 { "seg", "given an as, list of segments", 4736 seg_walk_init, avl_walk_step, avl_walk_fini }, 4737 { "segvn_anon", 4738 "given a struct segvn_data, list allocated anon structures", 4739 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4740 ANON_WALK_ALLOC }, 4741 { "segvn_anon_all", 4742 "given a struct segvn_data, list contents of all anon slots", 4743 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4744 ANON_WALK_ALL }, 4745 { "segvn_pages", 4746 "given a struct segvn_data, list resident pages in " 4747 "offset order", 4748 segvn_pages_walk_init, segvn_pages_walk_step, 4749 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4750 { "segvn_pages_all", 4751 "for each offset in a struct segvn_data, give page_t pointer " 4752 "(if resident), or NULL.", 4753 segvn_pages_walk_init, segvn_pages_walk_step, 4754 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4755 { "swapinfo", "walk swapinfo structures", 4756 swap_walk_init, swap_walk_step, NULL }, 4757 4758 /* from modhash.c */ 4759 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4760 modhash_walk_step, NULL }, 4761 { "modent", "walk list of entries in a given mod_hash", 4762 modent_walk_init, modent_walk_step, modent_walk_fini }, 4763 { "modchain", "walk list of entries in a given mod_hash_entry", 4764 NULL, modchain_walk_step, NULL }, 4765 4766 /* from net.c */ 4767 { "icmp", "walk ICMP control structures using MI for all stacks", 4768 mi_payload_walk_init, mi_payload_walk_step, NULL, 4769 &mi_icmp_arg }, 4770 { "mi", "given a MI_O, walk the MI", 4771 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4772 { "sonode", "given a sonode, walk its children", 4773 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4774 { "icmp_stacks", "walk all the icmp_stack_t", 4775 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4776 { "tcp_stacks", "walk all the tcp_stack_t", 4777 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4778 { "udp_stacks", "walk all the udp_stack_t", 4779 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4780 4781 /* from netstack.c */ 4782 { "netstack", "walk a list of kernel netstacks", 4783 netstack_walk_init, netstack_walk_step, NULL }, 4784 4785 /* from nvpair.c */ 4786 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4787 nvpair_walk_init, nvpair_walk_step, NULL }, 4788 4789 /* from pci.c */ 4790 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init, 4791 pcie_bus_walk_step, NULL }, 4792 4793 /* from rctl.c */ 4794 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4795 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4796 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4797 rctl_set_walk_step, NULL }, 4798 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4799 rctl_val_walk_init, rctl_val_walk_step }, 4800 4801 /* from sobj.c */ 4802 { "blocked", "walk threads blocked on a given sobj", 4803 blocked_walk_init, blocked_walk_step, NULL }, 4804 { "wchan", "given a wchan, list of blocked threads", 4805 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4806 4807 /* from stream.c */ 4808 { "b_cont", "walk mblk_t list using b_cont", 4809 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4810 { "b_next", "walk mblk_t list using b_next", 4811 mblk_walk_init, b_next_step, mblk_walk_fini }, 4812 { "qlink", "walk queue_t list using q_link", 4813 queue_walk_init, queue_link_step, queue_walk_fini }, 4814 { "qnext", "walk queue_t list using q_next", 4815 queue_walk_init, queue_next_step, queue_walk_fini }, 4816 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4817 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4818 { "readq", "walk read queue side of stdata", 4819 str_walk_init, strr_walk_step, str_walk_fini }, 4820 { "writeq", "walk write queue side of stdata", 4821 str_walk_init, strw_walk_step, str_walk_fini }, 4822 4823 /* from taskq.c */ 4824 { "taskq_thread", "given a taskq_t, list all of its threads", 4825 taskq_thread_walk_init, 4826 taskq_thread_walk_step, 4827 taskq_thread_walk_fini }, 4828 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4829 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4830 4831 /* from thread.c */ 4832 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4833 deathrow_walk_init, deathrow_walk_step, NULL }, 4834 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4835 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4836 { "cpupart_dispq", 4837 "given a cpupart_t, walk threads in dispatcher queues", 4838 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4839 { "lwp_deathrow", "walk lwp_deathrow", 4840 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4841 { "thread", "global or per-process kthread_t structures", 4842 thread_walk_init, thread_walk_step, thread_walk_fini }, 4843 { "thread_deathrow", "walk threads on thread_deathrow", 4844 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4845 4846 /* from tsd.c */ 4847 { "tsd", "walk list of thread-specific data", 4848 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4849 4850 /* from tsol.c */ 4851 { "tnrh", "walk remote host cache structures", 4852 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4853 { "tnrhtp", "walk remote host template structures", 4854 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4855 4856 /* 4857 * typegraph does not work under kmdb, as it requires too much memory 4858 * for its internal data structures. 4859 */ 4860 #ifndef _KMDB 4861 /* from typegraph.c */ 4862 { "typeconflict", "walk buffers with conflicting type inferences", 4863 typegraph_walk_init, typeconflict_walk_step }, 4864 { "typeunknown", "walk buffers with unknown types", 4865 typegraph_walk_init, typeunknown_walk_step }, 4866 #endif 4867 4868 /* from vfs.c */ 4869 { "vfs", "walk file system list", 4870 vfs_walk_init, vfs_walk_step }, 4871 4872 /* from zone.c */ 4873 { "zone", "walk a list of kernel zones", 4874 zone_walk_init, zone_walk_step, NULL }, 4875 { "zsd", "walk list of zsd entries for a zone", 4876 zsd_walk_init, zsd_walk_step, NULL }, 4877 4878 { NULL } 4879 }; 4880 4881 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4882 4883 /*ARGSUSED*/ 4884 static void 4885 genunix_statechange_cb(void *ignored) 4886 { 4887 /* 4888 * Force ::findleaks and ::stacks to let go any cached state. 4889 */ 4890 leaky_cleanup(1); 4891 stacks_cleanup(1); 4892 4893 kmem_statechange(); /* notify kmem */ 4894 } 4895 4896 const mdb_modinfo_t * 4897 _mdb_init(void) 4898 { 4899 kmem_init(); 4900 4901 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4902 genunix_statechange_cb, NULL); 4903 4904 #ifndef _KMDB 4905 gcore_init(); 4906 #endif 4907 4908 return (&modinfo); 4909 } 4910 4911 void 4912 _mdb_fini(void) 4913 { 4914 leaky_cleanup(1); 4915 stacks_cleanup(1); 4916 } 4917