1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <mdb/mdb_param.h> 27 #include <mdb/mdb_modapi.h> 28 #include <mdb/mdb_ks.h> 29 #include <mdb/mdb_ctf.h> 30 31 #include <sys/types.h> 32 #include <sys/thread.h> 33 #include <sys/session.h> 34 #include <sys/user.h> 35 #include <sys/proc.h> 36 #include <sys/var.h> 37 #include <sys/t_lock.h> 38 #include <sys/callo.h> 39 #include <sys/priocntl.h> 40 #include <sys/class.h> 41 #include <sys/regset.h> 42 #include <sys/stack.h> 43 #include <sys/cpuvar.h> 44 #include <sys/vnode.h> 45 #include <sys/vfs.h> 46 #include <sys/flock_impl.h> 47 #include <sys/kmem_impl.h> 48 #include <sys/vmem_impl.h> 49 #include <sys/kstat.h> 50 #include <vm/seg_vn.h> 51 #include <vm/anon.h> 52 #include <vm/as.h> 53 #include <vm/seg_map.h> 54 #include <sys/dditypes.h> 55 #include <sys/ddi_impldefs.h> 56 #include <sys/sysmacros.h> 57 #include <sys/sysconf.h> 58 #include <sys/task.h> 59 #include <sys/project.h> 60 #include <sys/taskq.h> 61 #include <sys/taskq_impl.h> 62 #include <sys/errorq_impl.h> 63 #include <sys/cred_impl.h> 64 #include <sys/zone.h> 65 #include <sys/panic.h> 66 #include <regex.h> 67 #include <sys/port_impl.h> 68 69 #include "avl.h" 70 #include "combined.h" 71 #include "contract.h" 72 #include "cpupart_mdb.h" 73 #include "devinfo.h" 74 #include "leaky.h" 75 #include "lgrp.h" 76 #include "pg.h" 77 #include "group.h" 78 #include "list.h" 79 #include "log.h" 80 #include "kgrep.h" 81 #include "kmem.h" 82 #include "bio.h" 83 #include "streams.h" 84 #include "cyclic.h" 85 #include "findstack.h" 86 #include "ndievents.h" 87 #include "mmd.h" 88 #include "net.h" 89 #include "netstack.h" 90 #include "nvpair.h" 91 #include "ctxop.h" 92 #include "tsd.h" 93 #include "thread.h" 94 #include "memory.h" 95 #include "sobj.h" 96 #include "sysevent.h" 97 #include "rctl.h" 98 #include "tsol.h" 99 #include "typegraph.h" 100 #include "ldi.h" 101 #include "vfs.h" 102 #include "zone.h" 103 #include "modhash.h" 104 #include "mdi.h" 105 #include "fm.h" 106 107 /* 108 * Surely this is defined somewhere... 109 */ 110 #define NINTR 16 111 112 #define KILOS 10 113 #define MEGS 20 114 #define GIGS 30 115 116 #ifndef STACK_BIAS 117 #define STACK_BIAS 0 118 #endif 119 120 static char 121 pstat2ch(uchar_t state) 122 { 123 switch (state) { 124 case SSLEEP: return ('S'); 125 case SRUN: return ('R'); 126 case SZOMB: return ('Z'); 127 case SIDL: return ('I'); 128 case SONPROC: return ('O'); 129 case SSTOP: return ('T'); 130 case SWAIT: return ('W'); 131 default: return ('?'); 132 } 133 } 134 135 #define PS_PRTTHREADS 0x1 136 #define PS_PRTLWPS 0x2 137 #define PS_PSARGS 0x4 138 #define PS_TASKS 0x8 139 #define PS_PROJECTS 0x10 140 #define PS_ZONES 0x20 141 142 static int 143 ps_threadprint(uintptr_t addr, const void *data, void *private) 144 { 145 const kthread_t *t = (const kthread_t *)data; 146 uint_t prt_flags = *((uint_t *)private); 147 148 static const mdb_bitmask_t t_state_bits[] = { 149 { "TS_FREE", UINT_MAX, TS_FREE }, 150 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 151 { "TS_RUN", TS_RUN, TS_RUN }, 152 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 153 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 154 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 155 { "TS_WAIT", TS_WAIT, TS_WAIT }, 156 { NULL, 0, 0 } 157 }; 158 159 if (prt_flags & PS_PRTTHREADS) 160 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 161 162 if (prt_flags & PS_PRTLWPS) 163 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 164 165 return (WALK_NEXT); 166 } 167 168 int 169 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 170 { 171 uint_t prt_flags = 0; 172 proc_t pr; 173 struct pid pid, pgid, sid; 174 sess_t session; 175 cred_t cred; 176 task_t tk; 177 kproject_t pj; 178 zone_t zn; 179 180 if (!(flags & DCMD_ADDRSPEC)) { 181 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 182 mdb_warn("can't walk 'proc'"); 183 return (DCMD_ERR); 184 } 185 return (DCMD_OK); 186 } 187 188 if (mdb_getopts(argc, argv, 189 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 190 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 191 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 192 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 193 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 194 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 195 return (DCMD_USAGE); 196 197 if (DCMD_HDRSPEC(flags)) { 198 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 199 "S", "PID", "PPID", "PGID", "SID"); 200 if (prt_flags & PS_TASKS) 201 mdb_printf("%5s ", "TASK"); 202 if (prt_flags & PS_PROJECTS) 203 mdb_printf("%5s ", "PROJ"); 204 if (prt_flags & PS_ZONES) 205 mdb_printf("%5s ", "ZONE"); 206 mdb_printf("%6s %10s %?s %s%</u>\n", 207 "UID", "FLAGS", "ADDR", "NAME"); 208 } 209 210 mdb_vread(&pr, sizeof (pr), addr); 211 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 212 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 213 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 214 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 215 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 216 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 217 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 218 if (prt_flags & PS_PROJECTS) 219 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 220 if (prt_flags & PS_ZONES) 221 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 222 223 mdb_printf("%c %6d %6d %6d %6d ", 224 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 225 sid.pid_id); 226 if (prt_flags & PS_TASKS) 227 mdb_printf("%5d ", tk.tk_tkid); 228 if (prt_flags & PS_PROJECTS) 229 mdb_printf("%5d ", pj.kpj_id); 230 if (prt_flags & PS_ZONES) 231 mdb_printf("%5d ", zn.zone_id); 232 mdb_printf("%6d 0x%08x %0?p %s\n", 233 cred.cr_uid, pr.p_flag, addr, 234 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 235 236 if (prt_flags & ~PS_PSARGS) 237 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 238 239 return (DCMD_OK); 240 } 241 242 #define PG_NEWEST 0x0001 243 #define PG_OLDEST 0x0002 244 #define PG_PIPE_OUT 0x0004 245 #define PG_EXACT_MATCH 0x0008 246 247 typedef struct pgrep_data { 248 uint_t pg_flags; 249 uint_t pg_psflags; 250 uintptr_t pg_xaddr; 251 hrtime_t pg_xstart; 252 const char *pg_pat; 253 #ifndef _KMDB 254 regex_t pg_reg; 255 #endif 256 } pgrep_data_t; 257 258 /*ARGSUSED*/ 259 static int 260 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 261 { 262 const proc_t *prp = pdata; 263 pgrep_data_t *pgp = data; 264 #ifndef _KMDB 265 regmatch_t pmatch; 266 #endif 267 268 /* 269 * kmdb doesn't have access to the reg* functions, so we fall back 270 * to strstr/strcmp. 271 */ 272 #ifdef _KMDB 273 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 274 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 275 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 276 return (WALK_NEXT); 277 #else 278 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 279 return (WALK_NEXT); 280 281 if ((pgp->pg_flags & PG_EXACT_MATCH) && 282 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 283 return (WALK_NEXT); 284 #endif 285 286 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 287 hrtime_t start; 288 289 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 290 prp->p_user.u_start.tv_nsec; 291 292 if (pgp->pg_flags & PG_NEWEST) { 293 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 294 pgp->pg_xaddr = addr; 295 pgp->pg_xstart = start; 296 } 297 } else { 298 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 299 pgp->pg_xaddr = addr; 300 pgp->pg_xstart = start; 301 } 302 } 303 304 } else if (pgp->pg_flags & PG_PIPE_OUT) { 305 mdb_printf("%p\n", addr); 306 307 } else { 308 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 309 mdb_warn("can't invoke 'ps'"); 310 return (WALK_DONE); 311 } 312 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 313 } 314 315 return (WALK_NEXT); 316 } 317 318 /*ARGSUSED*/ 319 int 320 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 321 { 322 pgrep_data_t pg; 323 int i; 324 #ifndef _KMDB 325 int err; 326 #endif 327 328 if (flags & DCMD_ADDRSPEC) 329 return (DCMD_USAGE); 330 331 pg.pg_flags = 0; 332 pg.pg_xaddr = 0; 333 334 i = mdb_getopts(argc, argv, 335 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 336 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 337 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 338 NULL); 339 340 argc -= i; 341 argv += i; 342 343 if (argc != 1) 344 return (DCMD_USAGE); 345 346 /* 347 * -n and -o are mutually exclusive. 348 */ 349 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 350 return (DCMD_USAGE); 351 352 if (argv->a_type != MDB_TYPE_STRING) 353 return (DCMD_USAGE); 354 355 if (flags & DCMD_PIPE_OUT) 356 pg.pg_flags |= PG_PIPE_OUT; 357 358 pg.pg_pat = argv->a_un.a_str; 359 if (DCMD_HDRSPEC(flags)) 360 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 361 else 362 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 363 364 #ifndef _KMDB 365 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 366 size_t nbytes; 367 char *buf; 368 369 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 370 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 371 (void) regerror(err, &pg.pg_reg, buf, nbytes); 372 mdb_warn("%s\n", buf); 373 374 return (DCMD_ERR); 375 } 376 #endif 377 378 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 379 mdb_warn("can't walk 'proc'"); 380 return (DCMD_ERR); 381 } 382 383 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 384 if (pg.pg_flags & PG_PIPE_OUT) { 385 mdb_printf("%p\n", pg.pg_xaddr); 386 } else { 387 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 388 0, NULL) != 0) { 389 mdb_warn("can't invoke 'ps'"); 390 return (DCMD_ERR); 391 } 392 } 393 } 394 395 return (DCMD_OK); 396 } 397 398 int 399 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 400 { 401 task_t tk; 402 kproject_t pj; 403 404 if (!(flags & DCMD_ADDRSPEC)) { 405 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 406 mdb_warn("can't walk task_cache"); 407 return (DCMD_ERR); 408 } 409 return (DCMD_OK); 410 } 411 if (DCMD_HDRSPEC(flags)) { 412 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 413 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 414 } 415 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 416 mdb_warn("can't read task_t structure at %p", addr); 417 return (DCMD_ERR); 418 } 419 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 420 mdb_warn("can't read project_t structure at %p", addr); 421 return (DCMD_ERR); 422 } 423 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 424 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 425 tk.tk_flags); 426 return (DCMD_OK); 427 } 428 429 int 430 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 431 { 432 kproject_t pj; 433 434 if (!(flags & DCMD_ADDRSPEC)) { 435 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 436 mdb_warn("can't walk projects"); 437 return (DCMD_ERR); 438 } 439 return (DCMD_OK); 440 } 441 if (DCMD_HDRSPEC(flags)) { 442 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 443 "ADDR", "PROJID", "ZONEID", "REFCNT"); 444 } 445 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 446 mdb_warn("can't read kproject_t structure at %p", addr); 447 return (DCMD_ERR); 448 } 449 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 450 pj.kpj_count); 451 return (DCMD_OK); 452 } 453 454 /*ARGSUSED*/ 455 int 456 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 457 { 458 callout_table_t *co_ktable[CALLOUT_TABLES]; 459 int co_kfanout; 460 callout_table_t co_table; 461 callout_t co_callout; 462 callout_t *co_ptr; 463 int co_id; 464 clock_t lbolt; 465 int i, j, k; 466 const char *lbolt_sym; 467 uintptr_t panicstr; 468 469 if ((flags & DCMD_ADDRSPEC) || argc != 0) 470 return (DCMD_USAGE); 471 472 if (mdb_readvar(&panicstr, "panicstr") == -1 || 473 panicstr == NULL) { 474 lbolt_sym = "lbolt"; 475 } else { 476 lbolt_sym = "panic_lbolt"; 477 } 478 479 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 480 mdb_warn("failed to read '%s'", lbolt_sym); 481 return (DCMD_ERR); 482 } 483 484 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 485 mdb_warn("failed to read callout_fanout"); 486 return (DCMD_ERR); 487 } 488 489 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 490 mdb_warn("failed to read callout_table"); 491 return (DCMD_ERR); 492 } 493 494 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 495 "FUNCTION", "ARGUMENT", "ID", "TIME"); 496 497 for (i = 0; i < CALLOUT_NTYPES; i++) { 498 for (j = 0; j < co_kfanout; j++) { 499 500 co_id = CALLOUT_TABLE(i, j); 501 502 if (mdb_vread(&co_table, sizeof (co_table), 503 (uintptr_t)co_ktable[co_id]) == -1) { 504 mdb_warn("failed to read table at %p", 505 (uintptr_t)co_ktable[co_id]); 506 continue; 507 } 508 509 for (k = 0; k < CALLOUT_BUCKETS; k++) { 510 co_ptr = co_table.ct_idhash[k]; 511 512 while (co_ptr != NULL) { 513 mdb_vread(&co_callout, 514 sizeof (co_callout), 515 (uintptr_t)co_ptr); 516 517 mdb_printf("%-24a %0?p %0?lx %?lx " 518 "(T%+ld)\n", co_callout.c_func, 519 co_callout.c_arg, co_callout.c_xid, 520 co_callout.c_runtime, 521 co_callout.c_runtime - lbolt); 522 523 co_ptr = co_callout.c_idnext; 524 } 525 } 526 } 527 } 528 529 return (DCMD_OK); 530 } 531 532 /*ARGSUSED*/ 533 int 534 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 535 { 536 long num_classes, i; 537 sclass_t *class_tbl; 538 GElf_Sym g_sclass; 539 char class_name[PC_CLNMSZ]; 540 size_t tbl_size; 541 542 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 543 mdb_warn("failed to find symbol sclass\n"); 544 return (DCMD_ERR); 545 } 546 547 tbl_size = (size_t)g_sclass.st_size; 548 num_classes = tbl_size / (sizeof (sclass_t)); 549 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 550 551 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 552 mdb_warn("failed to read sclass"); 553 return (DCMD_ERR); 554 } 555 556 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 557 "INIT FCN", "CLASS FCN"); 558 559 for (i = 0; i < num_classes; i++) { 560 if (mdb_vread(class_name, sizeof (class_name), 561 (uintptr_t)class_tbl[i].cl_name) == -1) 562 (void) strcpy(class_name, "???"); 563 564 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 565 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 566 } 567 568 return (DCMD_OK); 569 } 570 571 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 572 573 int 574 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 575 { 576 uintptr_t rootdir; 577 vnode_t vn; 578 char buf[MAXPATHLEN]; 579 580 uint_t opt_F = FALSE; 581 582 if (mdb_getopts(argc, argv, 583 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 584 return (DCMD_USAGE); 585 586 if (!(flags & DCMD_ADDRSPEC)) { 587 mdb_warn("expected explicit vnode_t address before ::\n"); 588 return (DCMD_USAGE); 589 } 590 591 if (mdb_readvar(&rootdir, "rootdir") == -1) { 592 mdb_warn("failed to read rootdir"); 593 return (DCMD_ERR); 594 } 595 596 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 597 return (DCMD_ERR); 598 599 if (*buf == '\0') { 600 mdb_printf("??\n"); 601 return (DCMD_OK); 602 } 603 604 mdb_printf("%s", buf); 605 if (opt_F && buf[strlen(buf)-1] != '/' && 606 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 607 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 608 mdb_printf("\n"); 609 610 return (DCMD_OK); 611 } 612 613 int 614 ld_walk_init(mdb_walk_state_t *wsp) 615 { 616 wsp->walk_data = (void *)wsp->walk_addr; 617 return (WALK_NEXT); 618 } 619 620 int 621 ld_walk_step(mdb_walk_state_t *wsp) 622 { 623 int status; 624 lock_descriptor_t ld; 625 626 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 627 mdb_warn("couldn't read lock_descriptor_t at %p\n", 628 wsp->walk_addr); 629 return (WALK_ERR); 630 } 631 632 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 633 if (status == WALK_ERR) 634 return (WALK_ERR); 635 636 wsp->walk_addr = (uintptr_t)ld.l_next; 637 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 638 return (WALK_DONE); 639 640 return (status); 641 } 642 643 int 644 lg_walk_init(mdb_walk_state_t *wsp) 645 { 646 GElf_Sym sym; 647 648 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 649 mdb_warn("failed to find symbol 'lock_graph'\n"); 650 return (WALK_ERR); 651 } 652 653 wsp->walk_addr = (uintptr_t)sym.st_value; 654 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 655 656 return (WALK_NEXT); 657 } 658 659 typedef struct lg_walk_data { 660 uintptr_t startaddr; 661 mdb_walk_cb_t callback; 662 void *data; 663 } lg_walk_data_t; 664 665 /* 666 * We can't use ::walk lock_descriptor directly, because the head of each graph 667 * is really a dummy lock. Rather than trying to dynamically determine if this 668 * is a dummy node or not, we just filter out the initial element of the 669 * list. 670 */ 671 static int 672 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 673 { 674 lg_walk_data_t *lw = priv; 675 676 if (addr != lw->startaddr) 677 return (lw->callback(addr, data, lw->data)); 678 679 return (WALK_NEXT); 680 } 681 682 int 683 lg_walk_step(mdb_walk_state_t *wsp) 684 { 685 graph_t *graph; 686 lg_walk_data_t lw; 687 688 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 689 return (WALK_DONE); 690 691 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 692 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 693 return (WALK_ERR); 694 } 695 696 wsp->walk_addr += sizeof (graph); 697 698 if (graph == NULL) 699 return (WALK_NEXT); 700 701 lw.callback = wsp->walk_callback; 702 lw.data = wsp->walk_cbdata; 703 704 lw.startaddr = (uintptr_t)&(graph->active_locks); 705 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 706 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 707 return (WALK_ERR); 708 } 709 710 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 711 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 712 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 713 return (WALK_ERR); 714 } 715 716 return (WALK_NEXT); 717 } 718 719 /* 720 * The space available for the path corresponding to the locked vnode depends 721 * on whether we are printing 32- or 64-bit addresses. 722 */ 723 #ifdef _LP64 724 #define LM_VNPATHLEN 20 725 #else 726 #define LM_VNPATHLEN 30 727 #endif 728 729 /*ARGSUSED*/ 730 static int 731 lminfo_cb(uintptr_t addr, const void *data, void *priv) 732 { 733 const lock_descriptor_t *ld = data; 734 char buf[LM_VNPATHLEN]; 735 proc_t p; 736 737 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 738 addr, ld->l_type == F_RDLCK ? "RD" : 739 ld->l_type == F_WRLCK ? "WR" : "??", 740 ld->l_state, ld->l_flock.l_pid, 741 ld->l_flock.l_pid == 0 ? "<kernel>" : 742 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 743 "<defunct>" : p.p_user.u_comm, 744 ld->l_vnode); 745 746 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 747 sizeof (buf)); 748 mdb_printf("%s\n", buf); 749 750 return (WALK_NEXT); 751 } 752 753 /*ARGSUSED*/ 754 int 755 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 756 { 757 if (DCMD_HDRSPEC(flags)) 758 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 759 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 760 761 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 762 } 763 764 /*ARGSUSED*/ 765 int 766 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 767 { 768 struct seg s; 769 770 if (argc != 0) 771 return (DCMD_USAGE); 772 773 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 774 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 775 "SEG", "BASE", "SIZE", "DATA", "OPS"); 776 } 777 778 if (mdb_vread(&s, sizeof (s), addr) == -1) { 779 mdb_warn("failed to read seg at %p", addr); 780 return (DCMD_ERR); 781 } 782 783 mdb_printf("%?p %?p %?lx %?p %a\n", 784 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 785 786 return (DCMD_OK); 787 } 788 789 /*ARGSUSED*/ 790 static int 791 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 792 { 793 uintptr_t pp = 794 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 795 796 if (pp != NULL) 797 (*nres)++; 798 799 return (WALK_NEXT); 800 } 801 802 static int 803 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 804 { 805 806 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 807 808 if (segvn == (uintptr_t)seg->s_ops) { 809 struct segvn_data svn; 810 int nres = 0; 811 812 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 813 814 if (svn.amp == NULL) { 815 mdb_printf(" %8s", ""); 816 goto drive_on; 817 } 818 819 /* 820 * We've got an amp for this segment; walk through 821 * the amp, and determine mappings. 822 */ 823 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 824 &nres, (uintptr_t)svn.amp) == -1) 825 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 826 827 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 828 drive_on: 829 830 if (svn.vp != NULL) { 831 char buf[29]; 832 833 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 834 mdb_printf(" %s", buf); 835 } else 836 mdb_printf(" [ anon ]"); 837 } 838 839 mdb_printf("\n"); 840 return (WALK_NEXT); 841 } 842 843 static int 844 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 845 { 846 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 847 848 if (segvn == (uintptr_t)seg->s_ops) { 849 struct segvn_data svn; 850 851 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 852 853 if (svn.vp != NULL) { 854 mdb_printf(" %0?p", svn.vp); 855 } else { 856 mdb_printf(" [ anon ]"); 857 } 858 } 859 860 mdb_printf("\n"); 861 return (WALK_NEXT); 862 } 863 864 /*ARGSUSED*/ 865 int 866 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 867 { 868 uintptr_t segvn; 869 proc_t proc; 870 uint_t quick = FALSE; 871 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 872 873 GElf_Sym sym; 874 875 if (!(flags & DCMD_ADDRSPEC)) 876 return (DCMD_USAGE); 877 878 if (mdb_getopts(argc, argv, 879 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 880 return (DCMD_USAGE); 881 882 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 883 mdb_warn("failed to read proc at %p", addr); 884 return (DCMD_ERR); 885 } 886 887 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 888 segvn = (uintptr_t)sym.st_value; 889 else 890 segvn = NULL; 891 892 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 893 894 if (quick) { 895 mdb_printf("VNODE\n"); 896 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 897 } else { 898 mdb_printf("%8s %s\n", "RES", "PATH"); 899 } 900 901 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 902 mdb_warn("failed to walk segments of as %p", proc.p_as); 903 return (DCMD_ERR); 904 } 905 906 return (DCMD_OK); 907 } 908 909 typedef struct anon_walk_data { 910 uintptr_t *aw_levone; 911 uintptr_t *aw_levtwo; 912 int aw_nlevone; 913 int aw_levone_ndx; 914 int aw_levtwo_ndx; 915 struct anon_map aw_amp; 916 struct anon_hdr aw_ahp; 917 } anon_walk_data_t; 918 919 int 920 anon_walk_init(mdb_walk_state_t *wsp) 921 { 922 anon_walk_data_t *aw; 923 924 if (wsp->walk_addr == NULL) { 925 mdb_warn("anon walk doesn't support global walks\n"); 926 return (WALK_ERR); 927 } 928 929 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 930 931 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 932 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 933 mdb_free(aw, sizeof (anon_walk_data_t)); 934 return (WALK_ERR); 935 } 936 937 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 938 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 939 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 940 mdb_free(aw, sizeof (anon_walk_data_t)); 941 return (WALK_ERR); 942 } 943 944 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 945 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 946 aw->aw_nlevone = aw->aw_ahp.size; 947 aw->aw_levtwo = NULL; 948 } else { 949 aw->aw_nlevone = 950 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 951 aw->aw_levtwo = 952 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 953 } 954 955 aw->aw_levone = 956 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 957 958 aw->aw_levone_ndx = 0; 959 aw->aw_levtwo_ndx = 0; 960 961 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 962 (uintptr_t)aw->aw_ahp.array_chunk); 963 964 if (aw->aw_levtwo != NULL) { 965 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 966 aw->aw_levone_ndx++; 967 if (aw->aw_levone_ndx == aw->aw_nlevone) { 968 mdb_warn("corrupt anon; couldn't" 969 "find ptr to lev two map"); 970 goto out; 971 } 972 } 973 974 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 975 aw->aw_levone[aw->aw_levone_ndx]); 976 } 977 978 out: 979 wsp->walk_data = aw; 980 return (0); 981 } 982 983 int 984 anon_walk_step(mdb_walk_state_t *wsp) 985 { 986 int status; 987 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 988 struct anon anon; 989 uintptr_t anonptr; 990 991 again: 992 /* 993 * Once we've walked through level one, we're done. 994 */ 995 if (aw->aw_levone_ndx == aw->aw_nlevone) 996 return (WALK_DONE); 997 998 if (aw->aw_levtwo == NULL) { 999 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 1000 aw->aw_levone_ndx++; 1001 } else { 1002 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 1003 aw->aw_levtwo_ndx++; 1004 1005 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 1006 aw->aw_levtwo_ndx = 0; 1007 1008 do { 1009 aw->aw_levone_ndx++; 1010 1011 if (aw->aw_levone_ndx == aw->aw_nlevone) 1012 return (WALK_DONE); 1013 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1014 1015 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1016 sizeof (uintptr_t), 1017 aw->aw_levone[aw->aw_levone_ndx]); 1018 } 1019 } 1020 1021 if (anonptr != NULL) { 1022 mdb_vread(&anon, sizeof (anon), anonptr); 1023 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1024 } else 1025 goto again; 1026 1027 return (status); 1028 } 1029 1030 void 1031 anon_walk_fini(mdb_walk_state_t *wsp) 1032 { 1033 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1034 1035 if (aw->aw_levtwo != NULL) 1036 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1037 1038 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1039 mdb_free(aw, sizeof (anon_walk_data_t)); 1040 } 1041 1042 /*ARGSUSED*/ 1043 int 1044 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1045 { 1046 if ((uintptr_t)f->f_vnode == *target) { 1047 mdb_printf("file %p\n", addr); 1048 *target = NULL; 1049 } 1050 1051 return (WALK_NEXT); 1052 } 1053 1054 /*ARGSUSED*/ 1055 int 1056 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1057 { 1058 uintptr_t t = *target; 1059 1060 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1061 mdb_warn("couldn't file walk proc %p", addr); 1062 return (WALK_ERR); 1063 } 1064 1065 if (t == NULL) 1066 mdb_printf("%p\n", addr); 1067 1068 return (WALK_NEXT); 1069 } 1070 1071 /*ARGSUSED*/ 1072 int 1073 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1074 { 1075 uintptr_t target = addr; 1076 1077 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1078 return (DCMD_USAGE); 1079 1080 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1081 mdb_warn("can't proc walk"); 1082 return (DCMD_ERR); 1083 } 1084 1085 return (DCMD_OK); 1086 } 1087 1088 typedef struct datafmt { 1089 char *hdr1; 1090 char *hdr2; 1091 char *dashes; 1092 char *fmt; 1093 } datafmt_t; 1094 1095 static datafmt_t kmemfmt[] = { 1096 { "cache ", "name ", 1097 "-------------------------", "%-25s " }, 1098 { " buf", " size", "------", "%6u " }, 1099 { " buf", "in use", "------", "%6u " }, 1100 { " buf", " total", "------", "%6u " }, 1101 { " memory", " in use", "----------", "%9u%c " }, 1102 { " alloc", " succeed", "---------", "%9u " }, 1103 { "alloc", " fail", "-----", "%5u " }, 1104 { NULL, NULL, NULL, NULL } 1105 }; 1106 1107 static datafmt_t vmemfmt[] = { 1108 { "vmem ", "name ", 1109 "-------------------------", "%-*s " }, 1110 { " memory", " in use", "----------", "%9llu%c " }, 1111 { " memory", " total", "-----------", "%10llu%c " }, 1112 { " memory", " import", "----------", "%9llu%c " }, 1113 { " alloc", " succeed", "---------", "%9llu " }, 1114 { "alloc", " fail", "-----", "%5llu " }, 1115 { NULL, NULL, NULL, NULL } 1116 }; 1117 1118 /*ARGSUSED*/ 1119 static int 1120 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1121 { 1122 if (ccp->cc_rounds > 0) 1123 *avail += ccp->cc_rounds; 1124 if (ccp->cc_prounds > 0) 1125 *avail += ccp->cc_prounds; 1126 1127 return (WALK_NEXT); 1128 } 1129 1130 /*ARGSUSED*/ 1131 static int 1132 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1133 { 1134 *alloc += ccp->cc_alloc; 1135 1136 return (WALK_NEXT); 1137 } 1138 1139 /*ARGSUSED*/ 1140 static int 1141 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1142 { 1143 *avail += sp->slab_chunks - sp->slab_refcnt; 1144 1145 return (WALK_NEXT); 1146 } 1147 1148 typedef struct kmastat_vmem { 1149 uintptr_t kv_addr; 1150 struct kmastat_vmem *kv_next; 1151 int kv_meminuse; 1152 int kv_alloc; 1153 int kv_fail; 1154 } kmastat_vmem_t; 1155 1156 typedef struct kmastat_args { 1157 kmastat_vmem_t **ka_kvpp; 1158 uint_t ka_shift; 1159 } kmastat_args_t; 1160 1161 static int 1162 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1163 { 1164 kmastat_vmem_t **kvp = kap->ka_kvpp; 1165 kmastat_vmem_t *kv; 1166 datafmt_t *dfp = kmemfmt; 1167 int magsize; 1168 1169 int avail, alloc, total; 1170 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1171 cp->cache_slabsize; 1172 1173 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1174 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1175 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1176 1177 magsize = kmem_get_magsize(cp); 1178 1179 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1180 avail = cp->cache_full.ml_total * magsize; 1181 total = cp->cache_buftotal; 1182 1183 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1184 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1185 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1186 1187 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1188 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1189 goto out; 1190 } 1191 1192 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1193 kv->kv_next = *kvp; 1194 kv->kv_addr = (uintptr_t)cp->cache_arena; 1195 *kvp = kv; 1196 out: 1197 kv->kv_meminuse += meminuse; 1198 kv->kv_alloc += alloc; 1199 kv->kv_fail += cp->cache_alloc_fail; 1200 1201 mdb_printf((dfp++)->fmt, cp->cache_name); 1202 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1203 mdb_printf((dfp++)->fmt, total - avail); 1204 mdb_printf((dfp++)->fmt, total); 1205 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 1206 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 1207 kap->ka_shift == KILOS ? 'K' : 'B'); 1208 mdb_printf((dfp++)->fmt, alloc); 1209 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1210 mdb_printf("\n"); 1211 1212 return (WALK_NEXT); 1213 } 1214 1215 static int 1216 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 1217 { 1218 kmastat_vmem_t *kv = *kap->ka_kvpp; 1219 size_t len; 1220 1221 while (kv != NULL && kv->kv_addr != addr) 1222 kv = kv->kv_next; 1223 1224 if (kv == NULL || kv->kv_alloc == 0) 1225 return (WALK_NEXT); 1226 1227 len = MIN(17, strlen(v->vm_name)); 1228 1229 mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name, 1230 17 - len, "", "", "", "", 1231 kv->kv_meminuse >> kap->ka_shift, 1232 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 1233 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 1234 1235 return (WALK_NEXT); 1236 } 1237 1238 /*ARGSUSED*/ 1239 static int 1240 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 1241 { 1242 datafmt_t *dfp = vmemfmt; 1243 const vmem_kstat_t *vkp = &v->vm_kstat; 1244 uintptr_t paddr; 1245 vmem_t parent; 1246 int ident = 0; 1247 1248 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1249 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1250 mdb_warn("couldn't trace %p's ancestry", addr); 1251 ident = 0; 1252 break; 1253 } 1254 paddr = (uintptr_t)parent.vm_source; 1255 } 1256 1257 mdb_printf("%*s", ident, ""); 1258 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1259 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 1260 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 1261 *shiftp == KILOS ? 'K' : 'B'); 1262 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 1263 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 1264 *shiftp == KILOS ? 'K' : 'B'); 1265 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 1266 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 1267 *shiftp == KILOS ? 'K' : 'B'); 1268 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1269 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1270 1271 mdb_printf("\n"); 1272 1273 return (WALK_NEXT); 1274 } 1275 1276 /*ARGSUSED*/ 1277 int 1278 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1279 { 1280 kmastat_vmem_t *kv = NULL; 1281 datafmt_t *dfp; 1282 kmastat_args_t ka; 1283 1284 ka.ka_shift = 0; 1285 if (mdb_getopts(argc, argv, 1286 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 1287 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 1288 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 1289 return (DCMD_USAGE); 1290 1291 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1292 mdb_printf("%s ", dfp->hdr1); 1293 mdb_printf("\n"); 1294 1295 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1296 mdb_printf("%s ", dfp->hdr2); 1297 mdb_printf("\n"); 1298 1299 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1300 mdb_printf("%s ", dfp->dashes); 1301 mdb_printf("\n"); 1302 1303 ka.ka_kvpp = &kv; 1304 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 1305 mdb_warn("can't walk 'kmem_cache'"); 1306 return (DCMD_ERR); 1307 } 1308 1309 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1310 mdb_printf("%s ", dfp->dashes); 1311 mdb_printf("\n"); 1312 1313 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 1314 mdb_warn("can't walk 'vmem'"); 1315 return (DCMD_ERR); 1316 } 1317 1318 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1319 mdb_printf("%s ", dfp->dashes); 1320 mdb_printf("\n"); 1321 1322 mdb_printf("\n"); 1323 1324 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1325 mdb_printf("%s ", dfp->hdr1); 1326 mdb_printf("\n"); 1327 1328 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1329 mdb_printf("%s ", dfp->hdr2); 1330 mdb_printf("\n"); 1331 1332 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1333 mdb_printf("%s ", dfp->dashes); 1334 mdb_printf("\n"); 1335 1336 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 1337 mdb_warn("can't walk 'vmem'"); 1338 return (DCMD_ERR); 1339 } 1340 1341 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1342 mdb_printf("%s ", dfp->dashes); 1343 mdb_printf("\n"); 1344 return (DCMD_OK); 1345 } 1346 1347 /* 1348 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1349 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1350 * unfortunately, a few of the segs are both large and sparse, so we could 1351 * spend quite a bit of time scanning VAs which have no backing pages. 1352 * 1353 * So for the few very sparse segs, we skip the segment itself, and scan 1354 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1355 * Currently, we do this for: 1356 * 1357 * SEG VMEM ARENA 1358 * kvseg heap_arena 1359 * kvseg32 heap32_arena 1360 * kvseg_core heap_core_arena 1361 * 1362 * In addition, we skip the segkpm segment in its entirety, since it is very 1363 * sparse, and contains no new kernel data. 1364 */ 1365 typedef struct kgrep_walk_data { 1366 kgrep_cb_func *kg_cb; 1367 void *kg_cbdata; 1368 uintptr_t kg_kvseg; 1369 uintptr_t kg_kvseg32; 1370 uintptr_t kg_kvseg_core; 1371 uintptr_t kg_segkpm; 1372 uintptr_t kg_heap_lp_base; 1373 uintptr_t kg_heap_lp_end; 1374 } kgrep_walk_data_t; 1375 1376 static int 1377 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1378 { 1379 uintptr_t base = (uintptr_t)seg->s_base; 1380 1381 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1382 addr == kg->kg_kvseg_core) 1383 return (WALK_NEXT); 1384 1385 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1386 return (WALK_NEXT); 1387 1388 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1389 } 1390 1391 /*ARGSUSED*/ 1392 static int 1393 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1394 { 1395 /* 1396 * skip large page heap address range - it is scanned by walking 1397 * allocated vmem_segs in the heap_lp_arena 1398 */ 1399 if (seg->vs_start == kg->kg_heap_lp_base && 1400 seg->vs_end == kg->kg_heap_lp_end) 1401 return (WALK_NEXT); 1402 1403 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1404 } 1405 1406 /*ARGSUSED*/ 1407 static int 1408 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1409 { 1410 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1411 } 1412 1413 static int 1414 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1415 { 1416 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1417 1418 if (strcmp(vmem->vm_name, "heap") != 0 && 1419 strcmp(vmem->vm_name, "heap32") != 0 && 1420 strcmp(vmem->vm_name, "heap_core") != 0 && 1421 strcmp(vmem->vm_name, "heap_lp") != 0) 1422 return (WALK_NEXT); 1423 1424 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1425 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1426 1427 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1428 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1429 return (WALK_ERR); 1430 } 1431 1432 return (WALK_NEXT); 1433 } 1434 1435 int 1436 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1437 { 1438 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1439 kgrep_walk_data_t kg; 1440 1441 if (mdb_get_state() == MDB_STATE_RUNNING) { 1442 mdb_warn("kgrep can only be run on a system " 1443 "dump or under kmdb; see dumpadm(1M)\n"); 1444 return (DCMD_ERR); 1445 } 1446 1447 if (mdb_lookup_by_name("kas", &kas) == -1) { 1448 mdb_warn("failed to locate 'kas' symbol\n"); 1449 return (DCMD_ERR); 1450 } 1451 1452 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1453 mdb_warn("failed to locate 'kvseg' symbol\n"); 1454 return (DCMD_ERR); 1455 } 1456 1457 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1458 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1459 return (DCMD_ERR); 1460 } 1461 1462 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1463 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1464 return (DCMD_ERR); 1465 } 1466 1467 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1468 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1469 return (DCMD_ERR); 1470 } 1471 1472 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1473 mdb_warn("failed to read 'heap_lp_base'\n"); 1474 return (DCMD_ERR); 1475 } 1476 1477 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1478 mdb_warn("failed to read 'heap_lp_end'\n"); 1479 return (DCMD_ERR); 1480 } 1481 1482 kg.kg_cb = cb; 1483 kg.kg_cbdata = cbdata; 1484 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1485 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1486 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1487 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1488 1489 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1490 &kg, kas.st_value) == -1) { 1491 mdb_warn("failed to walk kas segments"); 1492 return (DCMD_ERR); 1493 } 1494 1495 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1496 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1497 return (DCMD_ERR); 1498 } 1499 1500 return (DCMD_OK); 1501 } 1502 1503 size_t 1504 kgrep_subr_pagesize(void) 1505 { 1506 return (PAGESIZE); 1507 } 1508 1509 typedef struct file_walk_data { 1510 struct uf_entry *fw_flist; 1511 int fw_flistsz; 1512 int fw_ndx; 1513 int fw_nofiles; 1514 } file_walk_data_t; 1515 1516 int 1517 file_walk_init(mdb_walk_state_t *wsp) 1518 { 1519 file_walk_data_t *fw; 1520 proc_t p; 1521 1522 if (wsp->walk_addr == NULL) { 1523 mdb_warn("file walk doesn't support global walks\n"); 1524 return (WALK_ERR); 1525 } 1526 1527 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1528 1529 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1530 mdb_free(fw, sizeof (file_walk_data_t)); 1531 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1532 return (WALK_ERR); 1533 } 1534 1535 if (p.p_user.u_finfo.fi_nfiles == 0) { 1536 mdb_free(fw, sizeof (file_walk_data_t)); 1537 return (WALK_DONE); 1538 } 1539 1540 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1541 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1542 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1543 1544 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1545 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1546 mdb_warn("failed to read file array at %p", 1547 p.p_user.u_finfo.fi_list); 1548 mdb_free(fw->fw_flist, fw->fw_flistsz); 1549 mdb_free(fw, sizeof (file_walk_data_t)); 1550 return (WALK_ERR); 1551 } 1552 1553 fw->fw_ndx = 0; 1554 wsp->walk_data = fw; 1555 1556 return (WALK_NEXT); 1557 } 1558 1559 int 1560 file_walk_step(mdb_walk_state_t *wsp) 1561 { 1562 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1563 struct file file; 1564 uintptr_t fp; 1565 1566 again: 1567 if (fw->fw_ndx == fw->fw_nofiles) 1568 return (WALK_DONE); 1569 1570 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1571 goto again; 1572 1573 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1574 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1575 } 1576 1577 int 1578 allfile_walk_step(mdb_walk_state_t *wsp) 1579 { 1580 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1581 struct file file; 1582 uintptr_t fp; 1583 1584 if (fw->fw_ndx == fw->fw_nofiles) 1585 return (WALK_DONE); 1586 1587 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1588 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1589 else 1590 bzero(&file, sizeof (file)); 1591 1592 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1593 } 1594 1595 void 1596 file_walk_fini(mdb_walk_state_t *wsp) 1597 { 1598 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1599 1600 mdb_free(fw->fw_flist, fw->fw_flistsz); 1601 mdb_free(fw, sizeof (file_walk_data_t)); 1602 } 1603 1604 int 1605 port_walk_init(mdb_walk_state_t *wsp) 1606 { 1607 if (wsp->walk_addr == NULL) { 1608 mdb_warn("port walk doesn't support global walks\n"); 1609 return (WALK_ERR); 1610 } 1611 1612 if (mdb_layered_walk("file", wsp) == -1) { 1613 mdb_warn("couldn't walk 'file'"); 1614 return (WALK_ERR); 1615 } 1616 return (WALK_NEXT); 1617 } 1618 1619 int 1620 port_walk_step(mdb_walk_state_t *wsp) 1621 { 1622 struct vnode vn; 1623 uintptr_t vp; 1624 uintptr_t pp; 1625 struct port port; 1626 1627 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1628 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1629 mdb_warn("failed to read vnode_t at %p", vp); 1630 return (WALK_ERR); 1631 } 1632 if (vn.v_type != VPORT) 1633 return (WALK_NEXT); 1634 1635 pp = (uintptr_t)vn.v_data; 1636 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1637 mdb_warn("failed to read port_t at %p", pp); 1638 return (WALK_ERR); 1639 } 1640 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1641 } 1642 1643 typedef struct portev_walk_data { 1644 list_node_t *pev_node; 1645 list_node_t *pev_last; 1646 size_t pev_offset; 1647 } portev_walk_data_t; 1648 1649 int 1650 portev_walk_init(mdb_walk_state_t *wsp) 1651 { 1652 portev_walk_data_t *pevd; 1653 struct port port; 1654 struct vnode vn; 1655 struct list *list; 1656 uintptr_t vp; 1657 1658 if (wsp->walk_addr == NULL) { 1659 mdb_warn("portev walk doesn't support global walks\n"); 1660 return (WALK_ERR); 1661 } 1662 1663 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1664 1665 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1666 mdb_free(pevd, sizeof (portev_walk_data_t)); 1667 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1668 return (WALK_ERR); 1669 } 1670 1671 vp = (uintptr_t)port.port_vnode; 1672 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1673 mdb_free(pevd, sizeof (portev_walk_data_t)); 1674 mdb_warn("failed to read vnode_t at %p", vp); 1675 return (WALK_ERR); 1676 } 1677 1678 if (vn.v_type != VPORT) { 1679 mdb_free(pevd, sizeof (portev_walk_data_t)); 1680 mdb_warn("input address (%p) does not point to an event port", 1681 wsp->walk_addr); 1682 return (WALK_ERR); 1683 } 1684 1685 if (port.port_queue.portq_nent == 0) { 1686 mdb_free(pevd, sizeof (portev_walk_data_t)); 1687 return (WALK_DONE); 1688 } 1689 list = &port.port_queue.portq_list; 1690 pevd->pev_offset = list->list_offset; 1691 pevd->pev_last = list->list_head.list_prev; 1692 pevd->pev_node = list->list_head.list_next; 1693 wsp->walk_data = pevd; 1694 return (WALK_NEXT); 1695 } 1696 1697 int 1698 portev_walk_step(mdb_walk_state_t *wsp) 1699 { 1700 portev_walk_data_t *pevd; 1701 struct port_kevent ev; 1702 uintptr_t evp; 1703 1704 pevd = (portev_walk_data_t *)wsp->walk_data; 1705 1706 if (pevd->pev_last == NULL) 1707 return (WALK_DONE); 1708 if (pevd->pev_node == pevd->pev_last) 1709 pevd->pev_last = NULL; /* last round */ 1710 1711 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1712 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1713 mdb_warn("failed to read port_kevent at %p", evp); 1714 return (WALK_DONE); 1715 } 1716 pevd->pev_node = ev.portkev_node.list_next; 1717 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1718 } 1719 1720 void 1721 portev_walk_fini(mdb_walk_state_t *wsp) 1722 { 1723 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1724 1725 if (pevd != NULL) 1726 mdb_free(pevd, sizeof (portev_walk_data_t)); 1727 } 1728 1729 typedef struct proc_walk_data { 1730 uintptr_t *pw_stack; 1731 int pw_depth; 1732 int pw_max; 1733 } proc_walk_data_t; 1734 1735 int 1736 proc_walk_init(mdb_walk_state_t *wsp) 1737 { 1738 GElf_Sym sym; 1739 proc_walk_data_t *pw; 1740 1741 if (wsp->walk_addr == NULL) { 1742 if (mdb_lookup_by_name("p0", &sym) == -1) { 1743 mdb_warn("failed to read 'practive'"); 1744 return (WALK_ERR); 1745 } 1746 wsp->walk_addr = (uintptr_t)sym.st_value; 1747 } 1748 1749 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1750 1751 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1752 mdb_warn("failed to read 'nproc'"); 1753 mdb_free(pw, sizeof (pw)); 1754 return (WALK_ERR); 1755 } 1756 1757 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1758 wsp->walk_data = pw; 1759 1760 return (WALK_NEXT); 1761 } 1762 1763 int 1764 proc_walk_step(mdb_walk_state_t *wsp) 1765 { 1766 proc_walk_data_t *pw = wsp->walk_data; 1767 uintptr_t addr = wsp->walk_addr; 1768 uintptr_t cld, sib; 1769 1770 int status; 1771 proc_t pr; 1772 1773 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1774 mdb_warn("failed to read proc at %p", addr); 1775 return (WALK_DONE); 1776 } 1777 1778 cld = (uintptr_t)pr.p_child; 1779 sib = (uintptr_t)pr.p_sibling; 1780 1781 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1782 pw->pw_depth--; 1783 goto sib; 1784 } 1785 1786 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1787 1788 if (status != WALK_NEXT) 1789 return (status); 1790 1791 if ((wsp->walk_addr = cld) != NULL) { 1792 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1793 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1794 addr, cld); 1795 goto sib; 1796 } 1797 1798 pw->pw_stack[pw->pw_depth++] = addr; 1799 1800 if (pw->pw_depth == pw->pw_max) { 1801 mdb_warn("depth %d exceeds max depth; try again\n", 1802 pw->pw_depth); 1803 return (WALK_DONE); 1804 } 1805 return (WALK_NEXT); 1806 } 1807 1808 sib: 1809 /* 1810 * We know that p0 has no siblings, and if another starting proc 1811 * was given, we don't want to walk its siblings anyway. 1812 */ 1813 if (pw->pw_depth == 0) 1814 return (WALK_DONE); 1815 1816 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1817 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1818 addr, sib); 1819 sib = NULL; 1820 } 1821 1822 if ((wsp->walk_addr = sib) == NULL) { 1823 if (pw->pw_depth > 0) { 1824 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1825 return (WALK_NEXT); 1826 } 1827 return (WALK_DONE); 1828 } 1829 1830 return (WALK_NEXT); 1831 } 1832 1833 void 1834 proc_walk_fini(mdb_walk_state_t *wsp) 1835 { 1836 proc_walk_data_t *pw = wsp->walk_data; 1837 1838 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1839 mdb_free(pw, sizeof (proc_walk_data_t)); 1840 } 1841 1842 int 1843 task_walk_init(mdb_walk_state_t *wsp) 1844 { 1845 task_t task; 1846 1847 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1848 mdb_warn("failed to read task at %p", wsp->walk_addr); 1849 return (WALK_ERR); 1850 } 1851 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1852 wsp->walk_data = task.tk_memb_list; 1853 return (WALK_NEXT); 1854 } 1855 1856 int 1857 task_walk_step(mdb_walk_state_t *wsp) 1858 { 1859 proc_t proc; 1860 int status; 1861 1862 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1863 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1864 return (WALK_DONE); 1865 } 1866 1867 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1868 1869 if (proc.p_tasknext == wsp->walk_data) 1870 return (WALK_DONE); 1871 1872 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1873 return (status); 1874 } 1875 1876 int 1877 project_walk_init(mdb_walk_state_t *wsp) 1878 { 1879 if (wsp->walk_addr == NULL) { 1880 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1881 mdb_warn("failed to read 'proj0p'"); 1882 return (WALK_ERR); 1883 } 1884 } 1885 wsp->walk_data = (void *)wsp->walk_addr; 1886 return (WALK_NEXT); 1887 } 1888 1889 int 1890 project_walk_step(mdb_walk_state_t *wsp) 1891 { 1892 uintptr_t addr = wsp->walk_addr; 1893 kproject_t pj; 1894 int status; 1895 1896 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1897 mdb_warn("failed to read project at %p", addr); 1898 return (WALK_DONE); 1899 } 1900 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1901 if (status != WALK_NEXT) 1902 return (status); 1903 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1904 if ((void *)wsp->walk_addr == wsp->walk_data) 1905 return (WALK_DONE); 1906 return (WALK_NEXT); 1907 } 1908 1909 static int 1910 generic_walk_step(mdb_walk_state_t *wsp) 1911 { 1912 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1913 wsp->walk_cbdata)); 1914 } 1915 1916 int 1917 seg_walk_init(mdb_walk_state_t *wsp) 1918 { 1919 if (wsp->walk_addr == NULL) { 1920 mdb_warn("seg walk must begin at struct as *\n"); 1921 return (WALK_ERR); 1922 } 1923 1924 /* 1925 * this is really just a wrapper to AVL tree walk 1926 */ 1927 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1928 return (avl_walk_init(wsp)); 1929 } 1930 1931 static int 1932 cpu_walk_cmp(const void *l, const void *r) 1933 { 1934 uintptr_t lhs = *((uintptr_t *)l); 1935 uintptr_t rhs = *((uintptr_t *)r); 1936 cpu_t lcpu, rcpu; 1937 1938 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1939 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1940 1941 if (lcpu.cpu_id < rcpu.cpu_id) 1942 return (-1); 1943 1944 if (lcpu.cpu_id > rcpu.cpu_id) 1945 return (1); 1946 1947 return (0); 1948 } 1949 1950 typedef struct cpu_walk { 1951 uintptr_t *cw_array; 1952 int cw_ndx; 1953 } cpu_walk_t; 1954 1955 int 1956 cpu_walk_init(mdb_walk_state_t *wsp) 1957 { 1958 cpu_walk_t *cw; 1959 int max_ncpus, i = 0; 1960 uintptr_t current, first; 1961 cpu_t cpu, panic_cpu; 1962 uintptr_t panicstr, addr; 1963 GElf_Sym sym; 1964 1965 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1966 1967 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1968 mdb_warn("failed to read 'max_ncpus'"); 1969 return (WALK_ERR); 1970 } 1971 1972 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1973 mdb_warn("failed to read 'panicstr'"); 1974 return (WALK_ERR); 1975 } 1976 1977 if (panicstr != NULL) { 1978 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1979 mdb_warn("failed to find 'panic_cpu'"); 1980 return (WALK_ERR); 1981 } 1982 1983 addr = (uintptr_t)sym.st_value; 1984 1985 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1986 mdb_warn("failed to read 'panic_cpu'"); 1987 return (WALK_ERR); 1988 } 1989 } 1990 1991 /* 1992 * Unfortunately, there is no platform-independent way to walk 1993 * CPUs in ID order. We therefore loop through in cpu_next order, 1994 * building an array of CPU pointers which will subsequently be 1995 * sorted. 1996 */ 1997 cw->cw_array = 1998 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1999 2000 if (mdb_readvar(&first, "cpu_list") == -1) { 2001 mdb_warn("failed to read 'cpu_list'"); 2002 return (WALK_ERR); 2003 } 2004 2005 current = first; 2006 do { 2007 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2008 mdb_warn("failed to read cpu at %p", current); 2009 return (WALK_ERR); 2010 } 2011 2012 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2013 cw->cw_array[i++] = addr; 2014 } else { 2015 cw->cw_array[i++] = current; 2016 } 2017 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2018 2019 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2020 wsp->walk_data = cw; 2021 2022 return (WALK_NEXT); 2023 } 2024 2025 int 2026 cpu_walk_step(mdb_walk_state_t *wsp) 2027 { 2028 cpu_walk_t *cw = wsp->walk_data; 2029 cpu_t cpu; 2030 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2031 2032 if (addr == NULL) 2033 return (WALK_DONE); 2034 2035 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2036 mdb_warn("failed to read cpu at %p", addr); 2037 return (WALK_DONE); 2038 } 2039 2040 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2041 } 2042 2043 typedef struct cpuinfo_data { 2044 intptr_t cid_cpu; 2045 uintptr_t cid_lbolt; 2046 uintptr_t **cid_ithr; 2047 char cid_print_head; 2048 char cid_print_thr; 2049 char cid_print_ithr; 2050 char cid_print_flags; 2051 } cpuinfo_data_t; 2052 2053 int 2054 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2055 { 2056 cpu_t c; 2057 int id; 2058 uint8_t pil; 2059 2060 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2061 return (WALK_NEXT); 2062 2063 if (thr->t_bound_cpu == NULL) { 2064 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2065 return (WALK_NEXT); 2066 } 2067 2068 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2069 2070 if ((id = c.cpu_id) >= NCPU) { 2071 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2072 thr->t_bound_cpu, id, NCPU); 2073 return (WALK_NEXT); 2074 } 2075 2076 if ((pil = thr->t_pil) >= NINTR) { 2077 mdb_warn("thread %p has pil (%d) greater than %d\n", 2078 addr, pil, NINTR); 2079 return (WALK_NEXT); 2080 } 2081 2082 if (cid->cid_ithr[id][pil] != NULL) { 2083 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2084 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2085 return (WALK_NEXT); 2086 } 2087 2088 cid->cid_ithr[id][pil] = addr; 2089 2090 return (WALK_NEXT); 2091 } 2092 2093 #define CPUINFO_IDWIDTH 3 2094 #define CPUINFO_FLAGWIDTH 9 2095 2096 #ifdef _LP64 2097 #if defined(__amd64) 2098 #define CPUINFO_TWIDTH 16 2099 #define CPUINFO_CPUWIDTH 16 2100 #else 2101 #define CPUINFO_CPUWIDTH 11 2102 #define CPUINFO_TWIDTH 11 2103 #endif 2104 #else 2105 #define CPUINFO_CPUWIDTH 8 2106 #define CPUINFO_TWIDTH 8 2107 #endif 2108 2109 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2110 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2111 #define CPUINFO_ITHRDELT 4 2112 2113 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2114 flagline < nflaglines ? flagbuf[flagline++] : "") 2115 2116 int 2117 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2118 { 2119 kthread_t t; 2120 disp_t disp; 2121 proc_t p; 2122 uintptr_t pinned; 2123 char **flagbuf; 2124 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2125 2126 const char *flags[] = { 2127 "RUNNING", "READY", "QUIESCED", "EXISTS", 2128 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2129 "SPARE", "FAULTED", NULL 2130 }; 2131 2132 if (cid->cid_cpu != -1) { 2133 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2134 return (WALK_NEXT); 2135 2136 /* 2137 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2138 */ 2139 cid->cid_cpu = -1; 2140 rval = WALK_DONE; 2141 } 2142 2143 if (cid->cid_print_head) { 2144 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2145 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2146 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2147 "PROC"); 2148 cid->cid_print_head = FALSE; 2149 } 2150 2151 bspl = cpu->cpu_base_spl; 2152 2153 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2154 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2155 return (WALK_ERR); 2156 } 2157 2158 mdb_printf("%3d %0*p %3x %4d %4d ", 2159 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2160 disp.disp_nrunnable, bspl); 2161 2162 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2163 mdb_printf("%3d ", t.t_pri); 2164 } else { 2165 mdb_printf("%3s ", "-"); 2166 } 2167 2168 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2169 cpu->cpu_kprunrun ? "yes" : "no"); 2170 2171 if (cpu->cpu_last_swtch) { 2172 clock_t lbolt; 2173 2174 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2175 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2176 return (WALK_ERR); 2177 } 2178 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2179 } else { 2180 mdb_printf("%-6s ", "-"); 2181 } 2182 2183 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2184 2185 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2186 mdb_printf(" (idle)\n"); 2187 else if (cpu->cpu_thread == NULL) 2188 mdb_printf(" -\n"); 2189 else { 2190 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2191 mdb_printf(" %s\n", p.p_user.u_comm); 2192 } else { 2193 mdb_printf(" ?\n"); 2194 } 2195 } 2196 2197 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2198 2199 if (cid->cid_print_flags) { 2200 int first = 1, i, j, k; 2201 char *s; 2202 2203 cid->cid_print_head = TRUE; 2204 2205 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2206 if (!(cpu->cpu_flags & i)) 2207 continue; 2208 2209 if (first) { 2210 s = mdb_alloc(CPUINFO_THRDELT + 1, 2211 UM_GC | UM_SLEEP); 2212 2213 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2214 "%*s|%*s", CPUINFO_FLAGDELT, "", 2215 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2216 flagbuf[nflaglines++] = s; 2217 } 2218 2219 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2220 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2221 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2222 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2223 first ? "<--+" : ""); 2224 2225 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2226 s[k] = ' '; 2227 s[k] = '\0'; 2228 2229 flagbuf[nflaglines++] = s; 2230 first = 0; 2231 } 2232 } 2233 2234 if (cid->cid_print_ithr) { 2235 int i, found_one = FALSE; 2236 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2237 2238 for (i = NINTR - 1; i >= 0; i--) { 2239 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2240 2241 if (iaddr == NULL) 2242 continue; 2243 2244 if (!found_one) { 2245 found_one = TRUE; 2246 2247 CPUINFO_INDENT; 2248 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2249 CPUINFO_ITHRDELT, ""); 2250 2251 CPUINFO_INDENT; 2252 mdb_printf("%c%*s+--> %3s %s\n", 2253 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2254 "", "PIL", "THREAD"); 2255 } 2256 2257 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2258 mdb_warn("failed to read kthread_t at %p", 2259 iaddr); 2260 return (WALK_ERR); 2261 } 2262 2263 CPUINFO_INDENT; 2264 mdb_printf("%c%*s %3d %0*p\n", 2265 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2266 t.t_pil, CPUINFO_TWIDTH, iaddr); 2267 2268 pinned = (uintptr_t)t.t_intr; 2269 } 2270 2271 if (found_one && pinned != NULL) { 2272 cid->cid_print_head = TRUE; 2273 (void) strcpy(p.p_user.u_comm, "?"); 2274 2275 if (mdb_vread(&t, sizeof (t), 2276 (uintptr_t)pinned) == -1) { 2277 mdb_warn("failed to read kthread_t at %p", 2278 pinned); 2279 return (WALK_ERR); 2280 } 2281 if (mdb_vread(&p, sizeof (p), 2282 (uintptr_t)t.t_procp) == -1) { 2283 mdb_warn("failed to read proc_t at %p", 2284 t.t_procp); 2285 return (WALK_ERR); 2286 } 2287 2288 CPUINFO_INDENT; 2289 mdb_printf("%c%*s %3s %0*p %s\n", 2290 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2291 CPUINFO_TWIDTH, pinned, 2292 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2293 "(idle)" : p.p_user.u_comm); 2294 } 2295 } 2296 2297 if (disp.disp_nrunnable && cid->cid_print_thr) { 2298 dispq_t *dq; 2299 2300 int i, npri = disp.disp_npri; 2301 2302 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2303 2304 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2305 (uintptr_t)disp.disp_q) == -1) { 2306 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2307 return (WALK_ERR); 2308 } 2309 2310 CPUINFO_INDENT; 2311 mdb_printf("|\n"); 2312 2313 CPUINFO_INDENT; 2314 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2315 CPUINFO_TWIDTH, "THREAD", "PROC"); 2316 2317 for (i = npri - 1; i >= 0; i--) { 2318 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2319 2320 while (taddr != NULL) { 2321 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2322 mdb_warn("failed to read kthread_t " 2323 "at %p", taddr); 2324 return (WALK_ERR); 2325 } 2326 if (mdb_vread(&p, sizeof (p), 2327 (uintptr_t)t.t_procp) == -1) { 2328 mdb_warn("failed to read proc_t at %p", 2329 t.t_procp); 2330 return (WALK_ERR); 2331 } 2332 2333 CPUINFO_INDENT; 2334 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2335 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2336 2337 taddr = (uintptr_t)t.t_link; 2338 } 2339 } 2340 cid->cid_print_head = TRUE; 2341 } 2342 2343 while (flagline < nflaglines) 2344 mdb_printf("%s\n", flagbuf[flagline++]); 2345 2346 if (cid->cid_print_head) 2347 mdb_printf("\n"); 2348 2349 return (rval); 2350 } 2351 2352 int 2353 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2354 { 2355 uint_t verbose = FALSE; 2356 cpuinfo_data_t cid; 2357 GElf_Sym sym; 2358 clock_t lbolt; 2359 2360 cid.cid_print_ithr = FALSE; 2361 cid.cid_print_thr = FALSE; 2362 cid.cid_print_flags = FALSE; 2363 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2364 cid.cid_cpu = -1; 2365 2366 if (flags & DCMD_ADDRSPEC) 2367 cid.cid_cpu = addr; 2368 2369 if (mdb_getopts(argc, argv, 2370 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2371 return (DCMD_USAGE); 2372 2373 if (verbose) { 2374 cid.cid_print_ithr = TRUE; 2375 cid.cid_print_thr = TRUE; 2376 cid.cid_print_flags = TRUE; 2377 cid.cid_print_head = TRUE; 2378 } 2379 2380 if (cid.cid_print_ithr) { 2381 int i; 2382 2383 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2384 * NCPU, UM_SLEEP | UM_GC); 2385 2386 for (i = 0; i < NCPU; i++) 2387 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2388 NINTR, UM_SLEEP | UM_GC); 2389 2390 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2391 &cid) == -1) { 2392 mdb_warn("couldn't walk thread"); 2393 return (DCMD_ERR); 2394 } 2395 } 2396 2397 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2398 mdb_warn("failed to find panic_lbolt"); 2399 return (DCMD_ERR); 2400 } 2401 2402 cid.cid_lbolt = (uintptr_t)sym.st_value; 2403 2404 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2405 mdb_warn("failed to read panic_lbolt"); 2406 return (DCMD_ERR); 2407 } 2408 2409 if (lbolt == 0) { 2410 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2411 mdb_warn("failed to find lbolt"); 2412 return (DCMD_ERR); 2413 } 2414 cid.cid_lbolt = (uintptr_t)sym.st_value; 2415 } 2416 2417 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2418 mdb_warn("can't walk cpus"); 2419 return (DCMD_ERR); 2420 } 2421 2422 if (cid.cid_cpu != -1) { 2423 /* 2424 * We didn't find this CPU when we walked through the CPUs 2425 * (i.e. the address specified doesn't show up in the "cpu" 2426 * walk). However, the specified address may still correspond 2427 * to a valid cpu_t (for example, if the specified address is 2428 * the actual panicking cpu_t and not the cached panic_cpu). 2429 * Point is: even if we didn't find it, we still want to try 2430 * to print the specified address as a cpu_t. 2431 */ 2432 cpu_t cpu; 2433 2434 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2435 mdb_warn("%p is neither a valid CPU ID nor a " 2436 "valid cpu_t address\n", cid.cid_cpu); 2437 return (DCMD_ERR); 2438 } 2439 2440 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2441 } 2442 2443 return (DCMD_OK); 2444 } 2445 2446 /*ARGSUSED*/ 2447 int 2448 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2449 { 2450 int i; 2451 2452 if (!(flags & DCMD_ADDRSPEC)) 2453 return (DCMD_USAGE); 2454 2455 for (i = 0; i < sizeof (addr) * NBBY; i++) 2456 mdb_printf("%p\n", addr ^ (1UL << i)); 2457 2458 return (DCMD_OK); 2459 } 2460 2461 /* 2462 * Grumble, grumble. 2463 */ 2464 #define SMAP_HASHFUNC(vp, off) \ 2465 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2466 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2467 2468 int 2469 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2470 { 2471 long smd_hashmsk; 2472 int hash; 2473 uintptr_t offset = 0; 2474 struct smap smp; 2475 uintptr_t saddr, kaddr; 2476 uintptr_t smd_hash, smd_smap; 2477 struct seg seg; 2478 2479 if (!(flags & DCMD_ADDRSPEC)) 2480 return (DCMD_USAGE); 2481 2482 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2483 mdb_warn("failed to read smd_hashmsk"); 2484 return (DCMD_ERR); 2485 } 2486 2487 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2488 mdb_warn("failed to read smd_hash"); 2489 return (DCMD_ERR); 2490 } 2491 2492 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2493 mdb_warn("failed to read smd_hash"); 2494 return (DCMD_ERR); 2495 } 2496 2497 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2498 mdb_warn("failed to read segkmap"); 2499 return (DCMD_ERR); 2500 } 2501 2502 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2503 mdb_warn("failed to read segkmap at %p", kaddr); 2504 return (DCMD_ERR); 2505 } 2506 2507 if (argc != 0) { 2508 const mdb_arg_t *arg = &argv[0]; 2509 2510 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2511 offset = arg->a_un.a_val; 2512 else 2513 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2514 } 2515 2516 hash = SMAP_HASHFUNC(addr, offset); 2517 2518 if (mdb_vread(&saddr, sizeof (saddr), 2519 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2520 mdb_warn("couldn't read smap at %p", 2521 smd_hash + hash * sizeof (uintptr_t)); 2522 return (DCMD_ERR); 2523 } 2524 2525 do { 2526 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2527 mdb_warn("couldn't read smap at %p", saddr); 2528 return (DCMD_ERR); 2529 } 2530 2531 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2532 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2533 addr, offset, saddr, ((saddr - smd_smap) / 2534 sizeof (smp)) * MAXBSIZE + seg.s_base); 2535 return (DCMD_OK); 2536 } 2537 2538 saddr = (uintptr_t)smp.sm_hash; 2539 } while (saddr != NULL); 2540 2541 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2542 return (DCMD_OK); 2543 } 2544 2545 /*ARGSUSED*/ 2546 int 2547 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2548 { 2549 uintptr_t kaddr; 2550 struct seg seg; 2551 struct segmap_data sd; 2552 2553 if (!(flags & DCMD_ADDRSPEC)) 2554 return (DCMD_USAGE); 2555 2556 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2557 mdb_warn("failed to read segkmap"); 2558 return (DCMD_ERR); 2559 } 2560 2561 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2562 mdb_warn("failed to read segkmap at %p", kaddr); 2563 return (DCMD_ERR); 2564 } 2565 2566 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2567 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2568 return (DCMD_ERR); 2569 } 2570 2571 mdb_printf("%p is smap %p\n", addr, 2572 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2573 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2574 2575 return (DCMD_OK); 2576 } 2577 2578 int 2579 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2580 { 2581 if (p->p_as == *asp) 2582 mdb_printf("%p\n", addr); 2583 return (WALK_NEXT); 2584 } 2585 2586 /*ARGSUSED*/ 2587 int 2588 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2589 { 2590 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2591 return (DCMD_USAGE); 2592 2593 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2594 mdb_warn("failed to walk proc"); 2595 return (DCMD_ERR); 2596 } 2597 2598 return (DCMD_OK); 2599 } 2600 2601 /*ARGSUSED*/ 2602 int 2603 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2604 { 2605 proc_t parent; 2606 int ident = 0; 2607 uintptr_t paddr; 2608 2609 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2610 mdb_vread(&parent, sizeof (parent), paddr); 2611 paddr = (uintptr_t)parent.p_parent; 2612 } 2613 2614 mdb_inc_indent(ident); 2615 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2616 mdb_dec_indent(ident); 2617 2618 return (WALK_NEXT); 2619 } 2620 2621 void 2622 ptree_ancestors(uintptr_t addr, uintptr_t start) 2623 { 2624 proc_t p; 2625 2626 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2627 mdb_warn("couldn't read ancestor at %p", addr); 2628 return; 2629 } 2630 2631 if (p.p_parent != NULL) 2632 ptree_ancestors((uintptr_t)p.p_parent, start); 2633 2634 if (addr != start) 2635 (void) ptree_walk(addr, &p, NULL); 2636 } 2637 2638 /*ARGSUSED*/ 2639 int 2640 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2641 { 2642 if (!(flags & DCMD_ADDRSPEC)) 2643 addr = NULL; 2644 else 2645 ptree_ancestors(addr, addr); 2646 2647 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2648 mdb_warn("couldn't walk 'proc'"); 2649 return (DCMD_ERR); 2650 } 2651 2652 return (DCMD_OK); 2653 } 2654 2655 /*ARGSUSED*/ 2656 static int 2657 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2658 { 2659 int fdnum; 2660 const mdb_arg_t *argp = &argv[0]; 2661 proc_t p; 2662 uf_entry_t uf; 2663 2664 if ((flags & DCMD_ADDRSPEC) == 0) { 2665 mdb_warn("fd doesn't give global information\n"); 2666 return (DCMD_ERR); 2667 } 2668 if (argc != 1) 2669 return (DCMD_USAGE); 2670 2671 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2672 fdnum = argp->a_un.a_val; 2673 else 2674 fdnum = mdb_strtoull(argp->a_un.a_str); 2675 2676 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2677 mdb_warn("couldn't read proc_t at %p", addr); 2678 return (DCMD_ERR); 2679 } 2680 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2681 mdb_warn("process %p only has %d files open.\n", 2682 addr, p.p_user.u_finfo.fi_nfiles); 2683 return (DCMD_ERR); 2684 } 2685 if (mdb_vread(&uf, sizeof (uf_entry_t), 2686 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2687 mdb_warn("couldn't read uf_entry_t at %p", 2688 &p.p_user.u_finfo.fi_list[fdnum]); 2689 return (DCMD_ERR); 2690 } 2691 2692 mdb_printf("%p\n", uf.uf_file); 2693 return (DCMD_OK); 2694 } 2695 2696 /*ARGSUSED*/ 2697 static int 2698 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2699 { 2700 pid_t pid = (pid_t)addr; 2701 2702 if (argc != 0) 2703 return (DCMD_USAGE); 2704 2705 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2706 mdb_warn("PID 0t%d not found\n", pid); 2707 return (DCMD_ERR); 2708 } 2709 2710 mdb_printf("%p\n", addr); 2711 return (DCMD_OK); 2712 } 2713 2714 static char *sysfile_cmd[] = { 2715 "exclude:", 2716 "include:", 2717 "forceload:", 2718 "rootdev:", 2719 "rootfs:", 2720 "swapdev:", 2721 "swapfs:", 2722 "moddir:", 2723 "set", 2724 "unknown", 2725 }; 2726 2727 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2728 2729 /*ARGSUSED*/ 2730 static int 2731 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2732 { 2733 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2734 *target = NULL; 2735 return (WALK_DONE); 2736 } 2737 return (WALK_NEXT); 2738 } 2739 2740 /*ARGSUSED*/ 2741 static int 2742 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2743 { 2744 struct sysparam *sysp, sys; 2745 char var[256]; 2746 char modname[256]; 2747 char val[256]; 2748 char strval[256]; 2749 vmem_t *mod_sysfile_arena; 2750 void *straddr; 2751 2752 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2753 mdb_warn("failed to read sysparam_hd"); 2754 return (DCMD_ERR); 2755 } 2756 2757 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2758 mdb_warn("failed to read mod_sysfile_arena"); 2759 return (DCMD_ERR); 2760 } 2761 2762 while (sysp != NULL) { 2763 var[0] = '\0'; 2764 val[0] = '\0'; 2765 modname[0] = '\0'; 2766 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2767 mdb_warn("couldn't read sysparam %p", sysp); 2768 return (DCMD_ERR); 2769 } 2770 if (sys.sys_modnam != NULL && 2771 mdb_readstr(modname, 256, 2772 (uintptr_t)sys.sys_modnam) == -1) { 2773 mdb_warn("couldn't read modname in %p", sysp); 2774 return (DCMD_ERR); 2775 } 2776 if (sys.sys_ptr != NULL && 2777 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2778 mdb_warn("couldn't read ptr in %p", sysp); 2779 return (DCMD_ERR); 2780 } 2781 if (sys.sys_op != SETOP_NONE) { 2782 /* 2783 * Is this an int or a string? We determine this 2784 * by checking whether straddr is contained in 2785 * mod_sysfile_arena. If so, the walker will set 2786 * straddr to NULL. 2787 */ 2788 straddr = (void *)(uintptr_t)sys.sys_info; 2789 if (sys.sys_op == SETOP_ASSIGN && 2790 sys.sys_info != 0 && 2791 mdb_pwalk("vmem_seg", 2792 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2793 (uintptr_t)mod_sysfile_arena) == 0 && 2794 straddr == NULL && 2795 mdb_readstr(strval, 256, 2796 (uintptr_t)sys.sys_info) != -1) { 2797 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2798 strval); 2799 } else { 2800 (void) mdb_snprintf(val, sizeof (val), 2801 "0x%llx [0t%llu]", sys.sys_info, 2802 sys.sys_info); 2803 } 2804 } 2805 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2806 modname, modname[0] == '\0' ? "" : ":", 2807 var, sysfile_ops[sys.sys_op], val); 2808 2809 sysp = sys.sys_next; 2810 } 2811 2812 return (DCMD_OK); 2813 } 2814 2815 /* 2816 * Dump a taskq_ent_t given its address. 2817 */ 2818 /*ARGSUSED*/ 2819 int 2820 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2821 { 2822 taskq_ent_t taskq_ent; 2823 GElf_Sym sym; 2824 char buf[MDB_SYM_NAMLEN+1]; 2825 2826 2827 if (!(flags & DCMD_ADDRSPEC)) { 2828 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2829 return (DCMD_USAGE); 2830 } 2831 2832 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2833 mdb_warn("failed to read taskq_ent_t at %p", addr); 2834 return (DCMD_ERR); 2835 } 2836 2837 if (DCMD_HDRSPEC(flags)) { 2838 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2839 "ENTRY", "ARG", "FUNCTION"); 2840 } 2841 2842 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2843 buf, sizeof (buf), &sym) == -1) { 2844 (void) strcpy(buf, "????"); 2845 } 2846 2847 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2848 2849 return (DCMD_OK); 2850 } 2851 2852 /* 2853 * Given the address of the (taskq_t) task queue head, walk the queue listing 2854 * the address of every taskq_ent_t. 2855 */ 2856 int 2857 taskq_walk_init(mdb_walk_state_t *wsp) 2858 { 2859 taskq_t tq_head; 2860 2861 2862 if (wsp->walk_addr == NULL) { 2863 mdb_warn("start address required\n"); 2864 return (WALK_ERR); 2865 } 2866 2867 2868 /* 2869 * Save the address of the list head entry. This terminates the list. 2870 */ 2871 wsp->walk_data = (void *) 2872 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2873 2874 2875 /* 2876 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2877 */ 2878 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2879 -1) { 2880 mdb_warn("failed to read taskq list head at %p", 2881 wsp->walk_addr); 2882 } 2883 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2884 2885 2886 /* 2887 * Check for null list (next=head) 2888 */ 2889 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2890 return (WALK_DONE); 2891 } 2892 2893 return (WALK_NEXT); 2894 } 2895 2896 2897 int 2898 taskq_walk_step(mdb_walk_state_t *wsp) 2899 { 2900 taskq_ent_t tq_ent; 2901 int status; 2902 2903 2904 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2905 -1) { 2906 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2907 return (DCMD_ERR); 2908 } 2909 2910 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2911 wsp->walk_cbdata); 2912 2913 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2914 2915 2916 /* Check if we're at the last element (next=head) */ 2917 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2918 return (WALK_DONE); 2919 } 2920 2921 return (status); 2922 } 2923 2924 int 2925 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2926 { 2927 2928 if (*didp == thr->t_did) { 2929 mdb_printf("%p\n", addr); 2930 return (WALK_DONE); 2931 } else 2932 return (WALK_NEXT); 2933 } 2934 2935 /*ARGSUSED*/ 2936 int 2937 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2938 { 2939 const mdb_arg_t *argp = &argv[0]; 2940 kt_did_t did; 2941 2942 if (argc != 1) 2943 return (DCMD_USAGE); 2944 2945 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2946 2947 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2948 mdb_warn("failed to walk thread"); 2949 return (DCMD_ERR); 2950 2951 } 2952 return (DCMD_OK); 2953 2954 } 2955 2956 static int 2957 errorq_walk_init(mdb_walk_state_t *wsp) 2958 { 2959 if (wsp->walk_addr == NULL && 2960 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2961 mdb_warn("failed to read errorq_list"); 2962 return (WALK_ERR); 2963 } 2964 2965 return (WALK_NEXT); 2966 } 2967 2968 static int 2969 errorq_walk_step(mdb_walk_state_t *wsp) 2970 { 2971 uintptr_t addr = wsp->walk_addr; 2972 errorq_t eq; 2973 2974 if (addr == NULL) 2975 return (WALK_DONE); 2976 2977 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2978 mdb_warn("failed to read errorq at %p", addr); 2979 return (WALK_ERR); 2980 } 2981 2982 wsp->walk_addr = (uintptr_t)eq.eq_next; 2983 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2984 } 2985 2986 typedef struct eqd_walk_data { 2987 uintptr_t *eqd_stack; 2988 void *eqd_buf; 2989 ulong_t eqd_qpos; 2990 ulong_t eqd_qlen; 2991 size_t eqd_size; 2992 } eqd_walk_data_t; 2993 2994 /* 2995 * In order to walk the list of pending error queue elements, we push the 2996 * addresses of the corresponding data buffers in to the eqd_stack array. 2997 * The error lists are in reverse chronological order when iterating using 2998 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2999 * walker client gets addresses in order from oldest error to newest error. 3000 */ 3001 static void 3002 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3003 { 3004 errorq_elem_t eqe; 3005 3006 while (addr != NULL) { 3007 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3008 mdb_warn("failed to read errorq element at %p", addr); 3009 break; 3010 } 3011 3012 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3013 mdb_warn("errorq is overfull -- more than %lu " 3014 "elems found\n", eqdp->eqd_qlen); 3015 break; 3016 } 3017 3018 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3019 addr = (uintptr_t)eqe.eqe_prev; 3020 } 3021 } 3022 3023 static int 3024 eqd_walk_init(mdb_walk_state_t *wsp) 3025 { 3026 eqd_walk_data_t *eqdp; 3027 errorq_elem_t eqe, *addr; 3028 errorq_t eq; 3029 ulong_t i; 3030 3031 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3032 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3033 return (WALK_ERR); 3034 } 3035 3036 if (eq.eq_ptail != NULL && 3037 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3038 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3039 return (WALK_ERR); 3040 } 3041 3042 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3043 wsp->walk_data = eqdp; 3044 3045 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3046 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3047 eqdp->eqd_qlen = eq.eq_qlen; 3048 eqdp->eqd_qpos = 0; 3049 eqdp->eqd_size = eq.eq_size; 3050 3051 /* 3052 * The newest elements in the queue are on the pending list, so we 3053 * push those on to our stack first. 3054 */ 3055 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3056 3057 /* 3058 * If eq_ptail is set, it may point to a subset of the errors on the 3059 * pending list in the event a casptr() failed; if ptail's data is 3060 * already in our stack, NULL out eq_ptail and ignore it. 3061 */ 3062 if (eq.eq_ptail != NULL) { 3063 for (i = 0; i < eqdp->eqd_qpos; i++) { 3064 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3065 eq.eq_ptail = NULL; 3066 break; 3067 } 3068 } 3069 } 3070 3071 /* 3072 * If eq_phead is set, it has the processing list in order from oldest 3073 * to newest. Use this to recompute eq_ptail as best we can and then 3074 * we nicely fall into eqd_push_list() of eq_ptail below. 3075 */ 3076 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3077 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3078 eq.eq_ptail = addr; 3079 3080 /* 3081 * The oldest elements in the queue are on the processing list, subject 3082 * to machinations in the if-clauses above. Push any such elements. 3083 */ 3084 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3085 return (WALK_NEXT); 3086 } 3087 3088 static int 3089 eqd_walk_step(mdb_walk_state_t *wsp) 3090 { 3091 eqd_walk_data_t *eqdp = wsp->walk_data; 3092 uintptr_t addr; 3093 3094 if (eqdp->eqd_qpos == 0) 3095 return (WALK_DONE); 3096 3097 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3098 3099 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3100 mdb_warn("failed to read errorq data at %p", addr); 3101 return (WALK_ERR); 3102 } 3103 3104 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3105 } 3106 3107 static void 3108 eqd_walk_fini(mdb_walk_state_t *wsp) 3109 { 3110 eqd_walk_data_t *eqdp = wsp->walk_data; 3111 3112 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3113 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3114 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3115 } 3116 3117 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3118 3119 static int 3120 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3121 { 3122 int i; 3123 errorq_t eq; 3124 uint_t opt_v = FALSE; 3125 3126 if (!(flags & DCMD_ADDRSPEC)) { 3127 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3128 mdb_warn("can't walk 'errorq'"); 3129 return (DCMD_ERR); 3130 } 3131 return (DCMD_OK); 3132 } 3133 3134 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3135 argc -= i; 3136 argv += i; 3137 3138 if (argc != 0) 3139 return (DCMD_USAGE); 3140 3141 if (opt_v || DCMD_HDRSPEC(flags)) { 3142 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3143 "ADDR", "NAME", "S", "V", "N"); 3144 if (!opt_v) { 3145 mdb_printf("%7s %7s %7s%</u>\n", 3146 "ACCEPT", "DROP", "LOG"); 3147 } else { 3148 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3149 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3150 } 3151 } 3152 3153 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3154 mdb_warn("failed to read errorq at %p", addr); 3155 return (DCMD_ERR); 3156 } 3157 3158 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3159 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3160 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3161 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3162 3163 if (!opt_v) { 3164 mdb_printf("%7llu %7llu %7llu\n", 3165 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3166 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3167 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3168 } else { 3169 mdb_printf("%5s %6lu %6lu %3u %a\n", 3170 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3171 mdb_printf("%38s\n%41s" 3172 "%12s %llu\n" 3173 "%53s %llu\n" 3174 "%53s %llu\n" 3175 "%53s %llu\n" 3176 "%53s %llu\n" 3177 "%53s %llu\n" 3178 "%53s %llu\n" 3179 "%53s %llu\n\n", 3180 "|", "+-> ", 3181 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3182 "DROPPED", EQKSVAL(eq, eqk_dropped), 3183 "LOGGED", EQKSVAL(eq, eqk_logged), 3184 "RESERVED", EQKSVAL(eq, eqk_reserved), 3185 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3186 "COMMITTED", EQKSVAL(eq, eqk_committed), 3187 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3188 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3189 } 3190 3191 return (DCMD_OK); 3192 } 3193 3194 /*ARGSUSED*/ 3195 static int 3196 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3197 { 3198 cpu_t panic_cpu; 3199 kthread_t *panic_thread; 3200 void *buf; 3201 panic_data_t *pd; 3202 int i, n; 3203 3204 if (!mdb_prop_postmortem) { 3205 mdb_warn("panicinfo can only be run on a system " 3206 "dump; see dumpadm(1M)\n"); 3207 return (DCMD_ERR); 3208 } 3209 3210 if (flags & DCMD_ADDRSPEC || argc != 0) 3211 return (DCMD_USAGE); 3212 3213 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3214 mdb_warn("failed to read 'panic_cpu'"); 3215 else 3216 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3217 3218 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3219 mdb_warn("failed to read 'panic_thread'"); 3220 else 3221 mdb_printf("%16s %?p\n", "thread", panic_thread); 3222 3223 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3224 pd = (panic_data_t *)buf; 3225 3226 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3227 pd->pd_version != PANICBUFVERS) { 3228 mdb_warn("failed to read 'panicbuf'"); 3229 mdb_free(buf, PANICBUFSIZE); 3230 return (DCMD_ERR); 3231 } 3232 3233 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3234 3235 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3236 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3237 3238 for (i = 0; i < n; i++) 3239 mdb_printf("%16s %?llx\n", 3240 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3241 3242 mdb_free(buf, PANICBUFSIZE); 3243 return (DCMD_OK); 3244 } 3245 3246 static const mdb_dcmd_t dcmds[] = { 3247 3248 /* from genunix.c */ 3249 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3250 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3251 { "binding_hash_entry", ":", "print driver names hash table entry", 3252 binding_hash_entry }, 3253 { "callout", NULL, "print callout table", callout }, 3254 { "class", NULL, "print process scheduler classes", class }, 3255 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3256 { "did2thread", "? kt_did", "find kernel thread for this id", 3257 did2thread }, 3258 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3259 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3260 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3261 { "lminfo", NULL, "print lock manager information", lminfo }, 3262 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3263 { "panicinfo", NULL, "print panic information", panicinfo }, 3264 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3265 { "pmap", ":[-q]", "print process memory map", pmap }, 3266 { "project", NULL, "display kernel project(s)", project }, 3267 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3268 { "pgrep", "[-x] [-n | -o] pattern", 3269 "pattern match against all processes", pgrep }, 3270 { "ptree", NULL, "print process tree", ptree }, 3271 { "seg", ":", "print address space segment", seg }, 3272 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3273 sysevent}, 3274 { "sysevent_channel", "?", "print sysevent channel database", 3275 sysevent_channel}, 3276 { "sysevent_class_list", ":", "print sysevent class list", 3277 sysevent_class_list}, 3278 { "sysevent_subclass_list", ":", 3279 "print sysevent subclass list", sysevent_subclass_list}, 3280 { "system", NULL, "print contents of /etc/system file", sysfile }, 3281 { "task", NULL, "display kernel task(s)", task }, 3282 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3283 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3284 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3285 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3286 whereopen }, 3287 3288 /* from zone.c */ 3289 { "zone", "?", "display kernel zone(s)", zoneprt }, 3290 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3291 3292 /* from bio.c */ 3293 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3294 3295 /* from contract.c */ 3296 { "contract", "?", "display a contract", cmd_contract }, 3297 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3298 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3299 3300 /* from cpupart.c */ 3301 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3302 3303 /* from cyclic.c */ 3304 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3305 { "cycid", "?", "dump a cyclic id", cycid }, 3306 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3307 { "cyclic", ":", "developer information", cyclic }, 3308 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3309 3310 /* from devinfo.c */ 3311 { "devbindings", "?[-qs] [device-name | major-num]", 3312 "print devinfo nodes bound to device-name or major-num", 3313 devbindings, devinfo_help }, 3314 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3315 devinfo_help }, 3316 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3317 devinfo_audit }, 3318 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3319 devinfo_audit_log }, 3320 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3321 devinfo_audit_node }, 3322 { "devinfo2driver", ":", "find driver name for this devinfo node", 3323 devinfo2driver }, 3324 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3325 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3326 dev2major }, 3327 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3328 dev2minor }, 3329 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3330 devt }, 3331 { "major2name", "?<major-num>", "convert major number to dev name", 3332 major2name }, 3333 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3334 minornodes }, 3335 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3336 modctl2devinfo }, 3337 { "name2major", "<dev-name>", "convert dev name to major number", 3338 name2major }, 3339 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3340 { "softstate", ":<instance>", "retrieve soft-state pointer", 3341 softstate }, 3342 { "devinfo_fm", ":", "devinfo fault managment configuration", 3343 devinfo_fm }, 3344 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3345 devinfo_fmce}, 3346 3347 /* from fm.c */ 3348 { "ereport", "[-v]", "print ereports logged in dump", 3349 ereport }, 3350 3351 /* from findstack.c */ 3352 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3353 { "findstack_debug", NULL, "toggle findstack debugging", 3354 findstack_debug }, 3355 3356 /* from kgrep.c + genunix.c */ 3357 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3358 kgrep_help }, 3359 3360 /* from kmem.c */ 3361 { "allocdby", ":", "given a thread, print its allocated buffers", 3362 allocdby }, 3363 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3364 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3365 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3366 { "kmalog", "?[ fail | slab ]", 3367 "display kmem transaction log and stack traces", kmalog }, 3368 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3369 kmastat }, 3370 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3371 "of the kmem allocator", kmausers, kmausers_help }, 3372 { "kmem_cache", "?[-n name]", 3373 "print kernel memory caches", kmem_cache, kmem_cache_help}, 3374 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 3375 "[-B minbinsize]", "display slab usage per kmem cache", 3376 kmem_slabs, kmem_slabs_help }, 3377 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3378 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3379 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3380 kmem_verify }, 3381 { "vmem", "?", "print a vmem_t", vmem }, 3382 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3383 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3384 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3385 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3386 whatis_help }, 3387 { "whatthread", ":[-v]", "print threads whose stack contains the " 3388 "given address", whatthread }, 3389 3390 /* from ldi.c */ 3391 { "ldi_handle", "?[-i]", "display a layered driver handle", 3392 ldi_handle, ldi_handle_help }, 3393 { "ldi_ident", NULL, "display a layered driver identifier", 3394 ldi_ident, ldi_ident_help }, 3395 3396 /* from leaky.c + leaky_subr.c */ 3397 { "findleaks", FINDLEAKS_USAGE, 3398 "search for potential kernel memory leaks", findleaks, 3399 findleaks_help }, 3400 3401 /* from lgrp.c */ 3402 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3403 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 3404 3405 /* from log.c */ 3406 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3407 3408 /* from memory.c */ 3409 { "page", "?", "display a summarized page_t", page }, 3410 { "memstat", NULL, "display memory usage summary", memstat }, 3411 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3412 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3413 3414 /* from mmd.c */ 3415 { "multidata", ":[-sv]", "display a summarized multidata_t", 3416 multidata }, 3417 { "pattbl", ":", "display a summarized multidata attribute table", 3418 pattbl }, 3419 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3420 pattr2multidata }, 3421 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3422 pdesc2slab }, 3423 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3424 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3425 slab2multidata }, 3426 3427 /* from modhash.c */ 3428 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3429 "display information about one or all mod_hash structures", 3430 modhash, modhash_help }, 3431 { "modent", ":[-k | -v | -t type]", 3432 "display information about a mod_hash_entry", modent, 3433 modent_help }, 3434 3435 /* from net.c */ 3436 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3437 mi }, 3438 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 3439 "show network statistics", netstat }, 3440 { "sonode", "?[-f inet | inet6 | unix | #] " 3441 "[-t stream | dgram | raw | #] [-p #]", 3442 "filter and display sonode", sonode }, 3443 3444 /* from netstack.c */ 3445 { "netstack", "", "show stack instances", netstack }, 3446 3447 /* from nvpair.c */ 3448 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3449 nvpair_print }, 3450 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3451 print_nvlist }, 3452 3453 /* from pg.c */ 3454 { "pg", "?[-q]", "display a pg", pg}, 3455 /* from group.c */ 3456 { "group", "?[-q]", "display a group", group}, 3457 3458 /* from log.c */ 3459 /* from rctl.c */ 3460 { "rctl_dict", "?", "print systemwide default rctl definitions", 3461 rctl_dict }, 3462 { "rctl_list", ":[handle]", "print rctls for the given proc", 3463 rctl_list }, 3464 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3465 rctl }, 3466 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3467 "sequence", rctl_validate }, 3468 3469 /* from sobj.c */ 3470 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3471 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3472 mutex_help }, 3473 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3474 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3475 { "turnstile", "?", "display a turnstile", turnstile }, 3476 3477 /* from stream.c */ 3478 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3479 "print an mblk", mblk_prt, mblk_help }, 3480 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3481 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3482 mblk2dblk }, 3483 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3484 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3485 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3486 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3487 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3488 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3489 "filter and display STREAM queue", queue, queue_help }, 3490 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3491 "filter and display STREAM head", stdata, stdata_help }, 3492 { "str2mate", ":", "print mate of this stream", str2mate }, 3493 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3494 { "stream", ":", "display STREAM", stream }, 3495 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3496 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3497 "filter and display STREAM sync queue", syncq, syncq_help }, 3498 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3499 3500 /* from thread.c */ 3501 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3502 thread_help }, 3503 { "threadlist", "?[-t] [-v [count]]", 3504 "display threads and associated C stack traces", threadlist, 3505 threadlist_help }, 3506 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 3507 stackinfo_help }, 3508 3509 /* from tsd.c */ 3510 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3511 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3512 3513 /* 3514 * typegraph does not work under kmdb, as it requires too much memory 3515 * for its internal data structures. 3516 */ 3517 #ifndef _KMDB 3518 /* from typegraph.c */ 3519 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3520 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3521 findfalse }, 3522 { "typegraph", NULL, "build type graph", typegraph }, 3523 { "istype", ":type", "manually set object type", istype }, 3524 { "notype", ":", "manually clear object type", notype }, 3525 { "whattype", ":", "determine object type", whattype }, 3526 #endif 3527 3528 /* from vfs.c */ 3529 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3530 { "pfiles", ":[-fp]", "print process file information", pfiles, 3531 pfiles_help }, 3532 3533 /* from mdi.c */ 3534 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 3535 "and detailed pi_prop list", mdipi }, 3536 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 3537 mdiprops }, 3538 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 3539 "list all paths", mdiphci }, 3540 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 3541 "all phcis", mdivhci }, 3542 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 3543 "client links", mdiclient_paths }, 3544 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 3545 "phci links", mdiphci_paths }, 3546 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 3547 mdiphcis }, 3548 3549 { NULL } 3550 }; 3551 3552 static const mdb_walker_t walkers[] = { 3553 3554 /* from genunix.c */ 3555 { "anon", "given an amp, list of anon structures", 3556 anon_walk_init, anon_walk_step, anon_walk_fini }, 3557 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3558 { "ereportq_dump", "walk list of ereports in dump error queue", 3559 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 3560 { "ereportq_pend", "walk list of ereports in pending error queue", 3561 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 3562 { "errorq", "walk list of system error queues", 3563 errorq_walk_init, errorq_walk_step, NULL }, 3564 { "errorq_data", "walk pending error queue data buffers", 3565 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3566 { "allfile", "given a proc pointer, list all file pointers", 3567 file_walk_init, allfile_walk_step, file_walk_fini }, 3568 { "file", "given a proc pointer, list of open file pointers", 3569 file_walk_init, file_walk_step, file_walk_fini }, 3570 { "lock_descriptor", "walk lock_descriptor_t structures", 3571 ld_walk_init, ld_walk_step, NULL }, 3572 { "lock_graph", "walk lock graph", 3573 lg_walk_init, lg_walk_step, NULL }, 3574 { "port", "given a proc pointer, list of created event ports", 3575 port_walk_init, port_walk_step, NULL }, 3576 { "portev", "given a port pointer, list of events in the queue", 3577 portev_walk_init, portev_walk_step, portev_walk_fini }, 3578 { "proc", "list of active proc_t structures", 3579 proc_walk_init, proc_walk_step, proc_walk_fini }, 3580 { "projects", "walk a list of kernel projects", 3581 project_walk_init, project_walk_step, NULL }, 3582 { "seg", "given an as, list of segments", 3583 seg_walk_init, avl_walk_step, avl_walk_fini }, 3584 { "sysevent_pend", "walk sysevent pending queue", 3585 sysevent_pend_walk_init, sysevent_walk_step, 3586 sysevent_walk_fini}, 3587 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3588 sysevent_walk_step, sysevent_walk_fini}, 3589 { "sysevent_channel", "walk sysevent channel subscriptions", 3590 sysevent_channel_walk_init, sysevent_channel_walk_step, 3591 sysevent_channel_walk_fini}, 3592 { "sysevent_class_list", "walk sysevent subscription's class list", 3593 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3594 sysevent_class_list_walk_fini}, 3595 { "sysevent_subclass_list", 3596 "walk sysevent subscription's subclass list", 3597 sysevent_subclass_list_walk_init, 3598 sysevent_subclass_list_walk_step, 3599 sysevent_subclass_list_walk_fini}, 3600 { "task", "given a task pointer, walk its processes", 3601 task_walk_init, task_walk_step, NULL }, 3602 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3603 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3604 3605 /* from avl.c */ 3606 { AVL_WALK_NAME, AVL_WALK_DESC, 3607 avl_walk_init, avl_walk_step, avl_walk_fini }, 3608 3609 /* from zone.c */ 3610 { "zone", "walk a list of kernel zones", 3611 zone_walk_init, zone_walk_step, NULL }, 3612 { "zsd", "walk list of zsd entries for a zone", 3613 zsd_walk_init, zsd_walk_step, NULL }, 3614 3615 /* from bio.c */ 3616 { "buf", "walk the bio buf hash", 3617 buf_walk_init, buf_walk_step, buf_walk_fini }, 3618 3619 /* from contract.c */ 3620 { "contract", "walk all contracts, or those of the specified type", 3621 ct_walk_init, generic_walk_step, NULL }, 3622 { "ct_event", "walk events on a contract event queue", 3623 ct_event_walk_init, generic_walk_step, NULL }, 3624 { "ct_listener", "walk contract event queue listeners", 3625 ct_listener_walk_init, generic_walk_step, NULL }, 3626 3627 /* from cpupart.c */ 3628 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3629 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3630 NULL }, 3631 { "cpupart_walk", "walk the set of cpu partitions", 3632 cpupart_walk_init, cpupart_walk_step, NULL }, 3633 3634 /* from ctxop.c */ 3635 { "ctxop", "walk list of context ops on a thread", 3636 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3637 3638 /* from cyclic.c */ 3639 { "cyccpu", "walk per-CPU cyc_cpu structures", 3640 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3641 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3642 cycomni_walk_init, cycomni_walk_step, NULL }, 3643 { "cyctrace", "walk cyclic trace buffer", 3644 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3645 3646 /* from devinfo.c */ 3647 { "binding_hash", "walk all entries in binding hash table", 3648 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3649 { "devinfo", "walk devinfo tree or subtree", 3650 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3651 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3652 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3653 devinfo_audit_log_walk_fini}, 3654 { "devinfo_audit_node", "walk per-devinfo audit history", 3655 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3656 devinfo_audit_node_walk_fini}, 3657 { "devinfo_children", "walk children of devinfo node", 3658 devinfo_children_walk_init, devinfo_children_walk_step, 3659 devinfo_children_walk_fini }, 3660 { "devinfo_parents", "walk ancestors of devinfo node", 3661 devinfo_parents_walk_init, devinfo_parents_walk_step, 3662 devinfo_parents_walk_fini }, 3663 { "devinfo_siblings", "walk siblings of devinfo node", 3664 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3665 { "devi_next", "walk devinfo list", 3666 NULL, devi_next_walk_step, NULL }, 3667 { "devnames", "walk devnames array", 3668 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3669 { "minornode", "given a devinfo node, walk minor nodes", 3670 minornode_walk_init, minornode_walk_step, NULL }, 3671 { "softstate", 3672 "given an i_ddi_soft_state*, list all in-use driver stateps", 3673 soft_state_walk_init, soft_state_walk_step, 3674 NULL, NULL }, 3675 { "softstate_all", 3676 "given an i_ddi_soft_state*, list all driver stateps", 3677 soft_state_walk_init, soft_state_all_walk_step, 3678 NULL, NULL }, 3679 { "devinfo_fmc", 3680 "walk a fault management handle cache active list", 3681 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3682 3683 /* from kmem.c */ 3684 { "allocdby", "given a thread, walk its allocated bufctls", 3685 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3686 { "bufctl", "walk a kmem cache's bufctls", 3687 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3688 { "bufctl_history", "walk the available history of a bufctl", 3689 bufctl_history_walk_init, bufctl_history_walk_step, 3690 bufctl_history_walk_fini }, 3691 { "freedby", "given a thread, walk its freed bufctls", 3692 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3693 { "freectl", "walk a kmem cache's free bufctls", 3694 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3695 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3696 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3697 { "freemem", "walk a kmem cache's free memory", 3698 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3699 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3700 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3701 { "kmem", "walk a kmem cache", 3702 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3703 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3704 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3705 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3706 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3707 { "kmem_log", "walk the kmem transaction log", 3708 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3709 { "kmem_slab", "given a kmem cache, walk its slabs", 3710 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 3711 { "kmem_slab_partial", 3712 "given a kmem cache, walk its partially allocated slabs (min 1)", 3713 kmem_slab_walk_partial_init, combined_walk_step, 3714 combined_walk_fini }, 3715 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3716 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3717 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3718 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3719 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3720 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3721 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3722 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3723 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3724 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3725 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3726 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3727 3728 /* from ldi.c */ 3729 { "ldi_handle", "walk the layered driver handle hash", 3730 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3731 { "ldi_ident", "walk the layered driver identifier hash", 3732 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3733 3734 /* from leaky.c + leaky_subr.c */ 3735 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3736 "stack trace", 3737 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3738 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3739 "leaks w/ same stack trace", 3740 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3741 3742 /* from lgrp.c */ 3743 { "lgrp_cpulist", "walk CPUs in a given lgroup", 3744 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 3745 { "lgrptbl", "walk lgroup table", 3746 lgrp_walk_init, lgrp_walk_step, NULL }, 3747 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 3748 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 3749 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 3750 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 3751 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 3752 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 3753 3754 /* from group.c */ 3755 { "group", "walk all elements of a group", 3756 group_walk_init, group_walk_step, NULL }, 3757 3758 /* from list.c */ 3759 { LIST_WALK_NAME, LIST_WALK_DESC, 3760 list_walk_init, list_walk_step, list_walk_fini }, 3761 3762 /* from memory.c */ 3763 { "page", "walk all pages, or those from the specified vnode", 3764 page_walk_init, page_walk_step, page_walk_fini }, 3765 { "memlist", "walk specified memlist", 3766 NULL, memlist_walk_step, NULL }, 3767 { "swapinfo", "walk swapinfo structures", 3768 swap_walk_init, swap_walk_step, NULL }, 3769 3770 /* from mmd.c */ 3771 { "pattr", "walk pattr_t structures", pattr_walk_init, 3772 mmdq_walk_step, mmdq_walk_fini }, 3773 { "pdesc", "walk pdesc_t structures", 3774 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3775 { "pdesc_slab", "walk pdesc_slab_t structures", 3776 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3777 3778 /* from modhash.c */ 3779 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3780 modhash_walk_step, NULL }, 3781 { "modent", "walk list of entries in a given mod_hash", 3782 modent_walk_init, modent_walk_step, modent_walk_fini }, 3783 { "modchain", "walk list of entries in a given mod_hash_entry", 3784 NULL, modchain_walk_step, NULL }, 3785 3786 /* from net.c */ 3787 { "ar", "walk ar_t structures using MI for all stacks", 3788 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg }, 3789 { "icmp", "walk ICMP control structures using MI for all stacks", 3790 mi_payload_walk_init, mi_payload_walk_step, NULL, 3791 &mi_icmp_arg }, 3792 { "ill", "walk ill_t structures using MI for all stacks", 3793 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg }, 3794 3795 { "mi", "given a MI_O, walk the MI", 3796 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3797 { "sonode", "given a sonode, walk its children", 3798 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3799 3800 { "ar_stacks", "walk all the ar_stack_t", 3801 ar_stacks_walk_init, ar_stacks_walk_step, NULL }, 3802 { "icmp_stacks", "walk all the icmp_stack_t", 3803 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 3804 { "tcp_stacks", "walk all the tcp_stack_t", 3805 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 3806 { "udp_stacks", "walk all the udp_stack_t", 3807 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 3808 3809 /* from nvpair.c */ 3810 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3811 nvpair_walk_init, nvpair_walk_step, NULL }, 3812 3813 /* from rctl.c */ 3814 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3815 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3816 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3817 rctl_set_walk_step, NULL }, 3818 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3819 rctl_val_walk_init, rctl_val_walk_step }, 3820 3821 /* from sobj.c */ 3822 { "blocked", "walk threads blocked on a given sobj", 3823 blocked_walk_init, blocked_walk_step, NULL }, 3824 { "wchan", "given a wchan, list of blocked threads", 3825 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3826 3827 /* from stream.c */ 3828 { "b_cont", "walk mblk_t list using b_cont", 3829 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3830 { "b_next", "walk mblk_t list using b_next", 3831 mblk_walk_init, b_next_step, mblk_walk_fini }, 3832 { "qlink", "walk queue_t list using q_link", 3833 queue_walk_init, queue_link_step, queue_walk_fini }, 3834 { "qnext", "walk queue_t list using q_next", 3835 queue_walk_init, queue_next_step, queue_walk_fini }, 3836 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3837 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3838 { "readq", "walk read queue side of stdata", 3839 str_walk_init, strr_walk_step, str_walk_fini }, 3840 { "writeq", "walk write queue side of stdata", 3841 str_walk_init, strw_walk_step, str_walk_fini }, 3842 3843 /* from thread.c */ 3844 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3845 deathrow_walk_init, deathrow_walk_step, NULL }, 3846 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3847 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3848 { "cpupart_dispq", 3849 "given a cpupart_t, walk threads in dispatcher queues", 3850 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3851 { "lwp_deathrow", "walk lwp_deathrow", 3852 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3853 { "thread", "global or per-process kthread_t structures", 3854 thread_walk_init, thread_walk_step, thread_walk_fini }, 3855 { "thread_deathrow", "walk threads on thread_deathrow", 3856 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3857 3858 /* from tsd.c */ 3859 { "tsd", "walk list of thread-specific data", 3860 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3861 3862 /* from tsol.c */ 3863 { "tnrh", "walk remote host cache structures", 3864 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 3865 { "tnrhtp", "walk remote host template structures", 3866 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 3867 3868 /* 3869 * typegraph does not work under kmdb, as it requires too much memory 3870 * for its internal data structures. 3871 */ 3872 #ifndef _KMDB 3873 /* from typegraph.c */ 3874 { "typeconflict", "walk buffers with conflicting type inferences", 3875 typegraph_walk_init, typeconflict_walk_step }, 3876 { "typeunknown", "walk buffers with unknown types", 3877 typegraph_walk_init, typeunknown_walk_step }, 3878 #endif 3879 3880 /* from vfs.c */ 3881 { "vfs", "walk file system list", 3882 vfs_walk_init, vfs_walk_step }, 3883 3884 /* from mdi.c */ 3885 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 3886 mdi_pi_client_link_walk_init, 3887 mdi_pi_client_link_walk_step, 3888 mdi_pi_client_link_walk_fini }, 3889 3890 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 3891 mdi_pi_phci_link_walk_init, 3892 mdi_pi_phci_link_walk_step, 3893 mdi_pi_phci_link_walk_fini }, 3894 3895 { "mdiphci_list", "Walker for mdi_phci ph_next link", 3896 mdi_phci_ph_next_walk_init, 3897 mdi_phci_ph_next_walk_step, 3898 mdi_phci_ph_next_walk_fini }, 3899 3900 /* from netstack.c */ 3901 { "netstack", "walk a list of kernel netstacks", 3902 netstack_walk_init, netstack_walk_step, NULL }, 3903 3904 { NULL } 3905 }; 3906 3907 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3908 3909 const mdb_modinfo_t * 3910 _mdb_init(void) 3911 { 3912 if (findstack_init() != DCMD_OK) 3913 return (NULL); 3914 3915 kmem_init(); 3916 3917 return (&modinfo); 3918 } 3919 3920 void 3921 _mdb_fini(void) 3922 { 3923 /* 3924 * Force ::findleaks to let go any cached memory 3925 */ 3926 leaky_cleanup(1); 3927 } 3928