xref: /illumos-gate/usr/src/cmd/mdb/common/modules/genunix/genunix.c (revision 23c73ecc8c565b8247ce7f888170bfbbce3e589c)
1  /*
2   * CDDL HEADER START
3   *
4   * The contents of this file are subject to the terms of the
5   * Common Development and Distribution License (the "License").
6   * You may not use this file except in compliance with the License.
7   *
8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9   * or http://www.opensolaris.org/os/licensing.
10   * See the License for the specific language governing permissions
11   * and limitations under the License.
12   *
13   * When distributing Covered Code, include this CDDL HEADER in each
14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15   * If applicable, add the following below this CDDL HEADER, with the
16   * fields enclosed by brackets "[]" replaced with your own identifying
17   * information: Portions Copyright [yyyy] [name of copyright owner]
18   *
19   * CDDL HEADER END
20   */
21  /*
22   * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23   * Use is subject to license terms.
24   */
25  
26  #pragma ident	"%Z%%M%	%I%	%E% SMI"
27  
28  #include <mdb/mdb_param.h>
29  #include <mdb/mdb_modapi.h>
30  #include <mdb/mdb_ks.h>
31  #include <mdb/mdb_ctf.h>
32  
33  #include <sys/types.h>
34  #include <sys/thread.h>
35  #include <sys/session.h>
36  #include <sys/user.h>
37  #include <sys/proc.h>
38  #include <sys/var.h>
39  #include <sys/t_lock.h>
40  #include <sys/callo.h>
41  #include <sys/priocntl.h>
42  #include <sys/class.h>
43  #include <sys/regset.h>
44  #include <sys/stack.h>
45  #include <sys/cpuvar.h>
46  #include <sys/vnode.h>
47  #include <sys/vfs.h>
48  #include <sys/flock_impl.h>
49  #include <sys/kmem_impl.h>
50  #include <sys/vmem_impl.h>
51  #include <sys/kstat.h>
52  #include <vm/seg_vn.h>
53  #include <vm/anon.h>
54  #include <vm/as.h>
55  #include <vm/seg_map.h>
56  #include <sys/dditypes.h>
57  #include <sys/ddi_impldefs.h>
58  #include <sys/sysmacros.h>
59  #include <sys/sysconf.h>
60  #include <sys/task.h>
61  #include <sys/project.h>
62  #include <sys/taskq.h>
63  #include <sys/taskq_impl.h>
64  #include <sys/errorq_impl.h>
65  #include <sys/cred_impl.h>
66  #include <sys/zone.h>
67  #include <sys/panic.h>
68  #include <regex.h>
69  #include <sys/port_impl.h>
70  
71  #include "avl.h"
72  #include "contract.h"
73  #include "cpupart_mdb.h"
74  #include "devinfo.h"
75  #include "leaky.h"
76  #include "lgrp.h"
77  #include "pg.h"
78  #include "group.h"
79  #include "list.h"
80  #include "log.h"
81  #include "kgrep.h"
82  #include "kmem.h"
83  #include "bio.h"
84  #include "streams.h"
85  #include "cyclic.h"
86  #include "findstack.h"
87  #include "ndievents.h"
88  #include "mmd.h"
89  #include "net.h"
90  #include "netstack.h"
91  #include "nvpair.h"
92  #include "ctxop.h"
93  #include "tsd.h"
94  #include "thread.h"
95  #include "memory.h"
96  #include "sobj.h"
97  #include "sysevent.h"
98  #include "rctl.h"
99  #include "tsol.h"
100  #include "typegraph.h"
101  #include "ldi.h"
102  #include "vfs.h"
103  #include "zone.h"
104  #include "modhash.h"
105  #include "mdi.h"
106  #include "fm.h"
107  
108  /*
109   * Surely this is defined somewhere...
110   */
111  #define	NINTR		16
112  
113  #define	KILOS		10
114  #define	MEGS		20
115  #define	GIGS		30
116  
117  #ifndef STACK_BIAS
118  #define	STACK_BIAS	0
119  #endif
120  
121  static char
122  pstat2ch(uchar_t state)
123  {
124  	switch (state) {
125  		case SSLEEP: return ('S');
126  		case SRUN: return ('R');
127  		case SZOMB: return ('Z');
128  		case SIDL: return ('I');
129  		case SONPROC: return ('O');
130  		case SSTOP: return ('T');
131  		case SWAIT: return ('W');
132  		default: return ('?');
133  	}
134  }
135  
136  #define	PS_PRTTHREADS	0x1
137  #define	PS_PRTLWPS	0x2
138  #define	PS_PSARGS	0x4
139  #define	PS_TASKS	0x8
140  #define	PS_PROJECTS	0x10
141  #define	PS_ZONES	0x20
142  
143  static int
144  ps_threadprint(uintptr_t addr, const void *data, void *private)
145  {
146  	const kthread_t *t = (const kthread_t *)data;
147  	uint_t prt_flags = *((uint_t *)private);
148  
149  	static const mdb_bitmask_t t_state_bits[] = {
150  		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
151  		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
152  		{ "TS_RUN",	TS_RUN,		TS_RUN		},
153  		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
154  		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
155  		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
156  		{ "TS_WAIT",	TS_WAIT,	TS_WAIT		},
157  		{ NULL,		0,		0		}
158  	};
159  
160  	if (prt_flags & PS_PRTTHREADS)
161  		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
162  
163  	if (prt_flags & PS_PRTLWPS)
164  		mdb_printf("\tL  %?a ID: %u\n", t->t_lwp, t->t_tid);
165  
166  	return (WALK_NEXT);
167  }
168  
169  int
170  ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
171  {
172  	uint_t prt_flags = 0;
173  	proc_t pr;
174  	struct pid pid, pgid, sid;
175  	sess_t session;
176  	cred_t cred;
177  	task_t tk;
178  	kproject_t pj;
179  	zone_t zn;
180  
181  	if (!(flags & DCMD_ADDRSPEC)) {
182  		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
183  			mdb_warn("can't walk 'proc'");
184  			return (DCMD_ERR);
185  		}
186  		return (DCMD_OK);
187  	}
188  
189  	if (mdb_getopts(argc, argv,
190  	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
191  	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
192  	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
193  	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
194  	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
195  	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
196  		return (DCMD_USAGE);
197  
198  	if (DCMD_HDRSPEC(flags)) {
199  		mdb_printf("%<u>%1s %6s %6s %6s %6s ",
200  		    "S", "PID", "PPID", "PGID", "SID");
201  		if (prt_flags & PS_TASKS)
202  			mdb_printf("%5s ", "TASK");
203  		if (prt_flags & PS_PROJECTS)
204  			mdb_printf("%5s ", "PROJ");
205  		if (prt_flags & PS_ZONES)
206  			mdb_printf("%5s ", "ZONE");
207  		mdb_printf("%6s %10s %?s %s%</u>\n",
208  		    "UID", "FLAGS", "ADDR", "NAME");
209  	}
210  
211  	mdb_vread(&pr, sizeof (pr), addr);
212  	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
213  	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
214  	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
215  	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
216  	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
217  	if (prt_flags & (PS_TASKS | PS_PROJECTS))
218  		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
219  	if (prt_flags & PS_PROJECTS)
220  		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
221  	if (prt_flags & PS_ZONES)
222  		mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
223  
224  	mdb_printf("%c %6d %6d %6d %6d ",
225  	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
226  	    sid.pid_id);
227  	if (prt_flags & PS_TASKS)
228  		mdb_printf("%5d ", tk.tk_tkid);
229  	if (prt_flags & PS_PROJECTS)
230  		mdb_printf("%5d ", pj.kpj_id);
231  	if (prt_flags & PS_ZONES)
232  		mdb_printf("%5d ", zn.zone_id);
233  	mdb_printf("%6d 0x%08x %0?p %s\n",
234  	    cred.cr_uid, pr.p_flag, addr,
235  	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
236  
237  	if (prt_flags & ~PS_PSARGS)
238  		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
239  
240  	return (DCMD_OK);
241  }
242  
243  #define	PG_NEWEST	0x0001
244  #define	PG_OLDEST	0x0002
245  #define	PG_PIPE_OUT	0x0004
246  #define	PG_EXACT_MATCH	0x0008
247  
248  typedef struct pgrep_data {
249  	uint_t pg_flags;
250  	uint_t pg_psflags;
251  	uintptr_t pg_xaddr;
252  	hrtime_t pg_xstart;
253  	const char *pg_pat;
254  #ifndef _KMDB
255  	regex_t pg_reg;
256  #endif
257  } pgrep_data_t;
258  
259  /*ARGSUSED*/
260  static int
261  pgrep_cb(uintptr_t addr, const void *pdata, void *data)
262  {
263  	const proc_t *prp = pdata;
264  	pgrep_data_t *pgp = data;
265  #ifndef _KMDB
266  	regmatch_t pmatch;
267  #endif
268  
269  	/*
270  	 * kmdb doesn't have access to the reg* functions, so we fall back
271  	 * to strstr/strcmp.
272  	 */
273  #ifdef _KMDB
274  	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
275  	    (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
276  	    (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
277  		return (WALK_NEXT);
278  #else
279  	if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
280  		return (WALK_NEXT);
281  
282  	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
283  	    (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
284  		return (WALK_NEXT);
285  #endif
286  
287  	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
288  		hrtime_t start;
289  
290  		start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
291  		    prp->p_user.u_start.tv_nsec;
292  
293  		if (pgp->pg_flags & PG_NEWEST) {
294  			if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
295  				pgp->pg_xaddr = addr;
296  				pgp->pg_xstart = start;
297  			}
298  		} else {
299  			if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
300  				pgp->pg_xaddr = addr;
301  				pgp->pg_xstart = start;
302  			}
303  		}
304  
305  	} else if (pgp->pg_flags & PG_PIPE_OUT) {
306  		mdb_printf("%p\n", addr);
307  
308  	} else {
309  		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
310  			mdb_warn("can't invoke 'ps'");
311  			return (WALK_DONE);
312  		}
313  		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
314  	}
315  
316  	return (WALK_NEXT);
317  }
318  
319  /*ARGSUSED*/
320  int
321  pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
322  {
323  	pgrep_data_t pg;
324  	int i;
325  #ifndef _KMDB
326  	int err;
327  #endif
328  
329  	if (flags & DCMD_ADDRSPEC)
330  		return (DCMD_USAGE);
331  
332  	pg.pg_flags = 0;
333  	pg.pg_xaddr = 0;
334  
335  	i = mdb_getopts(argc, argv,
336  	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
337  	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
338  	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
339  	    NULL);
340  
341  	argc -= i;
342  	argv += i;
343  
344  	if (argc != 1)
345  		return (DCMD_USAGE);
346  
347  	/*
348  	 * -n and -o are mutually exclusive.
349  	 */
350  	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
351  		return (DCMD_USAGE);
352  
353  	if (argv->a_type != MDB_TYPE_STRING)
354  		return (DCMD_USAGE);
355  
356  	if (flags & DCMD_PIPE_OUT)
357  		pg.pg_flags |= PG_PIPE_OUT;
358  
359  	pg.pg_pat = argv->a_un.a_str;
360  	if (DCMD_HDRSPEC(flags))
361  		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
362  	else
363  		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
364  
365  #ifndef _KMDB
366  	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
367  		size_t nbytes;
368  		char *buf;
369  
370  		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
371  		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
372  		(void) regerror(err, &pg.pg_reg, buf, nbytes);
373  		mdb_warn("%s\n", buf);
374  
375  		return (DCMD_ERR);
376  	}
377  #endif
378  
379  	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
380  		mdb_warn("can't walk 'proc'");
381  		return (DCMD_ERR);
382  	}
383  
384  	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
385  		if (pg.pg_flags & PG_PIPE_OUT) {
386  			mdb_printf("%p\n", pg.pg_xaddr);
387  		} else {
388  			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
389  			    0, NULL) != 0) {
390  				mdb_warn("can't invoke 'ps'");
391  				return (DCMD_ERR);
392  			}
393  		}
394  	}
395  
396  	return (DCMD_OK);
397  }
398  
399  int
400  task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
401  {
402  	task_t tk;
403  	kproject_t pj;
404  
405  	if (!(flags & DCMD_ADDRSPEC)) {
406  		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
407  			mdb_warn("can't walk task_cache");
408  			return (DCMD_ERR);
409  		}
410  		return (DCMD_OK);
411  	}
412  	if (DCMD_HDRSPEC(flags)) {
413  		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
414  		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
415  	}
416  	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
417  		mdb_warn("can't read task_t structure at %p", addr);
418  		return (DCMD_ERR);
419  	}
420  	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
421  		mdb_warn("can't read project_t structure at %p", addr);
422  		return (DCMD_ERR);
423  	}
424  	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
425  	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
426  	    tk.tk_flags);
427  	return (DCMD_OK);
428  }
429  
430  int
431  project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
432  {
433  	kproject_t pj;
434  
435  	if (!(flags & DCMD_ADDRSPEC)) {
436  		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
437  			mdb_warn("can't walk projects");
438  			return (DCMD_ERR);
439  		}
440  		return (DCMD_OK);
441  	}
442  	if (DCMD_HDRSPEC(flags)) {
443  		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
444  		    "ADDR", "PROJID", "ZONEID", "REFCNT");
445  	}
446  	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
447  		mdb_warn("can't read kproject_t structure at %p", addr);
448  		return (DCMD_ERR);
449  	}
450  	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
451  	    pj.kpj_count);
452  	return (DCMD_OK);
453  }
454  
455  /*ARGSUSED*/
456  int
457  callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
458  {
459  	callout_table_t	*co_ktable[CALLOUT_TABLES];
460  	int co_kfanout;
461  	callout_table_t co_table;
462  	callout_t co_callout;
463  	callout_t *co_ptr;
464  	int co_id;
465  	clock_t lbolt;
466  	int i, j, k;
467  	const char *lbolt_sym;
468  	uintptr_t panicstr;
469  
470  	if ((flags & DCMD_ADDRSPEC) || argc != 0)
471  		return (DCMD_USAGE);
472  
473  	if (mdb_readvar(&panicstr, "panicstr") == -1 ||
474  	    panicstr == NULL) {
475  		lbolt_sym = "lbolt";
476  	} else {
477  		lbolt_sym = "panic_lbolt";
478  	}
479  
480  	if (mdb_readvar(&lbolt, lbolt_sym) == -1) {
481  		mdb_warn("failed to read '%s'", lbolt_sym);
482  		return (DCMD_ERR);
483  	}
484  
485  	if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) {
486  		mdb_warn("failed to read callout_fanout");
487  		return (DCMD_ERR);
488  	}
489  
490  	if (mdb_readvar(&co_ktable, "callout_table") == -1) {
491  		mdb_warn("failed to read callout_table");
492  		return (DCMD_ERR);
493  	}
494  
495  	mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n",
496  	    "FUNCTION", "ARGUMENT", "ID", "TIME");
497  
498  	for (i = 0; i < CALLOUT_NTYPES; i++) {
499  		for (j = 0; j < co_kfanout; j++) {
500  
501  			co_id = CALLOUT_TABLE(i, j);
502  
503  			if (mdb_vread(&co_table, sizeof (co_table),
504  			    (uintptr_t)co_ktable[co_id]) == -1) {
505  				mdb_warn("failed to read table at %p",
506  				    (uintptr_t)co_ktable[co_id]);
507  				continue;
508  			}
509  
510  			for (k = 0; k < CALLOUT_BUCKETS; k++) {
511  				co_ptr = co_table.ct_idhash[k];
512  
513  				while (co_ptr != NULL) {
514  					mdb_vread(&co_callout,
515  					    sizeof (co_callout),
516  					    (uintptr_t)co_ptr);
517  
518  					mdb_printf("%-24a %0?p %0?lx %?lx "
519  					    "(T%+ld)\n", co_callout.c_func,
520  					    co_callout.c_arg, co_callout.c_xid,
521  					    co_callout.c_runtime,
522  					    co_callout.c_runtime - lbolt);
523  
524  					co_ptr = co_callout.c_idnext;
525  				}
526  			}
527  		}
528  	}
529  
530  	return (DCMD_OK);
531  }
532  
533  /*ARGSUSED*/
534  int
535  class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
536  {
537  	long num_classes, i;
538  	sclass_t *class_tbl;
539  	GElf_Sym g_sclass;
540  	char class_name[PC_CLNMSZ];
541  	size_t tbl_size;
542  
543  	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
544  		mdb_warn("failed to find symbol sclass\n");
545  		return (DCMD_ERR);
546  	}
547  
548  	tbl_size = (size_t)g_sclass.st_size;
549  	num_classes = tbl_size / (sizeof (sclass_t));
550  	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
551  
552  	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
553  		mdb_warn("failed to read sclass");
554  		return (DCMD_ERR);
555  	}
556  
557  	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
558  	    "INIT FCN", "CLASS FCN");
559  
560  	for (i = 0; i < num_classes; i++) {
561  		if (mdb_vread(class_name, sizeof (class_name),
562  		    (uintptr_t)class_tbl[i].cl_name) == -1)
563  			(void) strcpy(class_name, "???");
564  
565  		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
566  		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
567  	}
568  
569  	return (DCMD_OK);
570  }
571  
572  #define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
573  
574  int
575  vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
576  {
577  	uintptr_t rootdir;
578  	vnode_t vn;
579  	char buf[MAXPATHLEN];
580  
581  	uint_t opt_F = FALSE;
582  
583  	if (mdb_getopts(argc, argv,
584  	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
585  		return (DCMD_USAGE);
586  
587  	if (!(flags & DCMD_ADDRSPEC)) {
588  		mdb_warn("expected explicit vnode_t address before ::\n");
589  		return (DCMD_USAGE);
590  	}
591  
592  	if (mdb_readvar(&rootdir, "rootdir") == -1) {
593  		mdb_warn("failed to read rootdir");
594  		return (DCMD_ERR);
595  	}
596  
597  	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
598  		return (DCMD_ERR);
599  
600  	if (*buf == '\0') {
601  		mdb_printf("??\n");
602  		return (DCMD_OK);
603  	}
604  
605  	mdb_printf("%s", buf);
606  	if (opt_F && buf[strlen(buf)-1] != '/' &&
607  	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
608  		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
609  	mdb_printf("\n");
610  
611  	return (DCMD_OK);
612  }
613  
614  int
615  ld_walk_init(mdb_walk_state_t *wsp)
616  {
617  	wsp->walk_data = (void *)wsp->walk_addr;
618  	return (WALK_NEXT);
619  }
620  
621  int
622  ld_walk_step(mdb_walk_state_t *wsp)
623  {
624  	int status;
625  	lock_descriptor_t ld;
626  
627  	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
628  		mdb_warn("couldn't read lock_descriptor_t at %p\n",
629  		    wsp->walk_addr);
630  		return (WALK_ERR);
631  	}
632  
633  	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
634  	if (status == WALK_ERR)
635  		return (WALK_ERR);
636  
637  	wsp->walk_addr = (uintptr_t)ld.l_next;
638  	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
639  		return (WALK_DONE);
640  
641  	return (status);
642  }
643  
644  int
645  lg_walk_init(mdb_walk_state_t *wsp)
646  {
647  	GElf_Sym sym;
648  
649  	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
650  		mdb_warn("failed to find symbol 'lock_graph'\n");
651  		return (WALK_ERR);
652  	}
653  
654  	wsp->walk_addr = (uintptr_t)sym.st_value;
655  	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
656  
657  	return (WALK_NEXT);
658  }
659  
660  typedef struct lg_walk_data {
661  	uintptr_t startaddr;
662  	mdb_walk_cb_t callback;
663  	void *data;
664  } lg_walk_data_t;
665  
666  /*
667   * We can't use ::walk lock_descriptor directly, because the head of each graph
668   * is really a dummy lock.  Rather than trying to dynamically determine if this
669   * is a dummy node or not, we just filter out the initial element of the
670   * list.
671   */
672  static int
673  lg_walk_cb(uintptr_t addr, const void *data, void *priv)
674  {
675  	lg_walk_data_t *lw = priv;
676  
677  	if (addr != lw->startaddr)
678  		return (lw->callback(addr, data, lw->data));
679  
680  	return (WALK_NEXT);
681  }
682  
683  int
684  lg_walk_step(mdb_walk_state_t *wsp)
685  {
686  	graph_t *graph;
687  	lg_walk_data_t lw;
688  
689  	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
690  		return (WALK_DONE);
691  
692  	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
693  		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
694  		return (WALK_ERR);
695  	}
696  
697  	wsp->walk_addr += sizeof (graph);
698  
699  	if (graph == NULL)
700  		return (WALK_NEXT);
701  
702  	lw.callback = wsp->walk_callback;
703  	lw.data = wsp->walk_cbdata;
704  
705  	lw.startaddr = (uintptr_t)&(graph->active_locks);
706  	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
707  		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
708  		return (WALK_ERR);
709  	}
710  
711  	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
712  	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
713  		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
714  		return (WALK_ERR);
715  	}
716  
717  	return (WALK_NEXT);
718  }
719  
720  /*
721   * The space available for the path corresponding to the locked vnode depends
722   * on whether we are printing 32- or 64-bit addresses.
723   */
724  #ifdef _LP64
725  #define	LM_VNPATHLEN	20
726  #else
727  #define	LM_VNPATHLEN	30
728  #endif
729  
730  /*ARGSUSED*/
731  static int
732  lminfo_cb(uintptr_t addr, const void *data, void *priv)
733  {
734  	const lock_descriptor_t *ld = data;
735  	char buf[LM_VNPATHLEN];
736  	proc_t p;
737  
738  	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
739  	    addr, ld->l_type == F_RDLCK ? "RD" :
740  	    ld->l_type == F_WRLCK ? "WR" : "??",
741  	    ld->l_state, ld->l_flock.l_pid,
742  	    ld->l_flock.l_pid == 0 ? "<kernel>" :
743  	    mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
744  	    "<defunct>" : p.p_user.u_comm,
745  	    ld->l_vnode);
746  
747  	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
748  	    sizeof (buf));
749  	mdb_printf("%s\n", buf);
750  
751  	return (WALK_NEXT);
752  }
753  
754  /*ARGSUSED*/
755  int
756  lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
757  {
758  	if (DCMD_HDRSPEC(flags))
759  		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
760  		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
761  
762  	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
763  }
764  
765  /*ARGSUSED*/
766  int
767  seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
768  {
769  	struct seg s;
770  
771  	if (argc != 0)
772  		return (DCMD_USAGE);
773  
774  	if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
775  		mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
776  		    "SEG", "BASE", "SIZE", "DATA", "OPS");
777  	}
778  
779  	if (mdb_vread(&s, sizeof (s), addr) == -1) {
780  		mdb_warn("failed to read seg at %p", addr);
781  		return (DCMD_ERR);
782  	}
783  
784  	mdb_printf("%?p %?p %?lx %?p %a\n",
785  	    addr, s.s_base, s.s_size, s.s_data, s.s_ops);
786  
787  	return (DCMD_OK);
788  }
789  
790  /*ARGSUSED*/
791  static int
792  pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
793  {
794  	uintptr_t pp =
795  	    mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off);
796  
797  	if (pp != NULL)
798  		(*nres)++;
799  
800  	return (WALK_NEXT);
801  }
802  
803  static int
804  pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
805  {
806  
807  	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
808  
809  	if (segvn == (uintptr_t)seg->s_ops) {
810  		struct segvn_data svn;
811  		int nres = 0;
812  
813  		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
814  
815  		if (svn.amp == NULL) {
816  			mdb_printf(" %8s", "");
817  			goto drive_on;
818  		}
819  
820  		/*
821  		 * We've got an amp for this segment; walk through
822  		 * the amp, and determine mappings.
823  		 */
824  		if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
825  		    &nres, (uintptr_t)svn.amp) == -1)
826  			mdb_warn("failed to walk anon (amp=%p)", svn.amp);
827  
828  		mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
829  drive_on:
830  
831  		if (svn.vp != NULL) {
832  			char buf[29];
833  
834  			mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
835  			mdb_printf(" %s", buf);
836  		} else
837  			mdb_printf(" [ anon ]");
838  	}
839  
840  	mdb_printf("\n");
841  	return (WALK_NEXT);
842  }
843  
844  static int
845  pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
846  {
847  	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
848  
849  	if (segvn == (uintptr_t)seg->s_ops) {
850  		struct segvn_data svn;
851  
852  		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
853  
854  		if (svn.vp != NULL) {
855  			mdb_printf(" %0?p", svn.vp);
856  		} else {
857  			mdb_printf(" [ anon ]");
858  		}
859  	}
860  
861  	mdb_printf("\n");
862  	return (WALK_NEXT);
863  }
864  
865  /*ARGSUSED*/
866  int
867  pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
868  {
869  	uintptr_t segvn;
870  	proc_t proc;
871  	uint_t quick = FALSE;
872  	mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
873  
874  	GElf_Sym sym;
875  
876  	if (!(flags & DCMD_ADDRSPEC))
877  		return (DCMD_USAGE);
878  
879  	if (mdb_getopts(argc, argv,
880  	    'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
881  		return (DCMD_USAGE);
882  
883  	if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
884  		mdb_warn("failed to read proc at %p", addr);
885  		return (DCMD_ERR);
886  	}
887  
888  	if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
889  		segvn = (uintptr_t)sym.st_value;
890  	else
891  		segvn = NULL;
892  
893  	mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
894  
895  	if (quick) {
896  		mdb_printf("VNODE\n");
897  		cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
898  	} else {
899  		mdb_printf("%8s %s\n", "RES", "PATH");
900  	}
901  
902  	if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
903  		mdb_warn("failed to walk segments of as %p", proc.p_as);
904  		return (DCMD_ERR);
905  	}
906  
907  	return (DCMD_OK);
908  }
909  
910  typedef struct anon_walk_data {
911  	uintptr_t *aw_levone;
912  	uintptr_t *aw_levtwo;
913  	int aw_nlevone;
914  	int aw_levone_ndx;
915  	int aw_levtwo_ndx;
916  	struct anon_map aw_amp;
917  	struct anon_hdr aw_ahp;
918  } anon_walk_data_t;
919  
920  int
921  anon_walk_init(mdb_walk_state_t *wsp)
922  {
923  	anon_walk_data_t *aw;
924  
925  	if (wsp->walk_addr == NULL) {
926  		mdb_warn("anon walk doesn't support global walks\n");
927  		return (WALK_ERR);
928  	}
929  
930  	aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
931  
932  	if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
933  		mdb_warn("failed to read anon map at %p", wsp->walk_addr);
934  		mdb_free(aw, sizeof (anon_walk_data_t));
935  		return (WALK_ERR);
936  	}
937  
938  	if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
939  	    (uintptr_t)(aw->aw_amp.ahp)) == -1) {
940  		mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
941  		mdb_free(aw, sizeof (anon_walk_data_t));
942  		return (WALK_ERR);
943  	}
944  
945  	if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
946  	    (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
947  		aw->aw_nlevone = aw->aw_ahp.size;
948  		aw->aw_levtwo = NULL;
949  	} else {
950  		aw->aw_nlevone =
951  		    (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
952  		aw->aw_levtwo =
953  		    mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
954  	}
955  
956  	aw->aw_levone =
957  	    mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
958  
959  	aw->aw_levone_ndx = 0;
960  	aw->aw_levtwo_ndx = 0;
961  
962  	mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
963  	    (uintptr_t)aw->aw_ahp.array_chunk);
964  
965  	if (aw->aw_levtwo != NULL) {
966  		while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
967  			aw->aw_levone_ndx++;
968  			if (aw->aw_levone_ndx == aw->aw_nlevone) {
969  				mdb_warn("corrupt anon; couldn't"
970  				    "find ptr to lev two map");
971  				goto out;
972  			}
973  		}
974  
975  		mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
976  		    aw->aw_levone[aw->aw_levone_ndx]);
977  	}
978  
979  out:
980  	wsp->walk_data = aw;
981  	return (0);
982  }
983  
984  int
985  anon_walk_step(mdb_walk_state_t *wsp)
986  {
987  	int status;
988  	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
989  	struct anon anon;
990  	uintptr_t anonptr;
991  
992  again:
993  	/*
994  	 * Once we've walked through level one, we're done.
995  	 */
996  	if (aw->aw_levone_ndx == aw->aw_nlevone)
997  		return (WALK_DONE);
998  
999  	if (aw->aw_levtwo == NULL) {
1000  		anonptr = aw->aw_levone[aw->aw_levone_ndx];
1001  		aw->aw_levone_ndx++;
1002  	} else {
1003  		anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
1004  		aw->aw_levtwo_ndx++;
1005  
1006  		if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
1007  			aw->aw_levtwo_ndx = 0;
1008  
1009  			do {
1010  				aw->aw_levone_ndx++;
1011  
1012  				if (aw->aw_levone_ndx == aw->aw_nlevone)
1013  					return (WALK_DONE);
1014  			} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
1015  
1016  			mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
1017  			    sizeof (uintptr_t),
1018  			    aw->aw_levone[aw->aw_levone_ndx]);
1019  		}
1020  	}
1021  
1022  	if (anonptr != NULL) {
1023  		mdb_vread(&anon, sizeof (anon), anonptr);
1024  		status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
1025  	} else
1026  		goto again;
1027  
1028  	return (status);
1029  }
1030  
1031  void
1032  anon_walk_fini(mdb_walk_state_t *wsp)
1033  {
1034  	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1035  
1036  	if (aw->aw_levtwo != NULL)
1037  		mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
1038  
1039  	mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
1040  	mdb_free(aw, sizeof (anon_walk_data_t));
1041  }
1042  
1043  /*ARGSUSED*/
1044  int
1045  whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1046  {
1047  	if ((uintptr_t)f->f_vnode == *target) {
1048  		mdb_printf("file %p\n", addr);
1049  		*target = NULL;
1050  	}
1051  
1052  	return (WALK_NEXT);
1053  }
1054  
1055  /*ARGSUSED*/
1056  int
1057  whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1058  {
1059  	uintptr_t t = *target;
1060  
1061  	if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
1062  		mdb_warn("couldn't file walk proc %p", addr);
1063  		return (WALK_ERR);
1064  	}
1065  
1066  	if (t == NULL)
1067  		mdb_printf("%p\n", addr);
1068  
1069  	return (WALK_NEXT);
1070  }
1071  
1072  /*ARGSUSED*/
1073  int
1074  whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1075  {
1076  	uintptr_t target = addr;
1077  
1078  	if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
1079  		return (DCMD_USAGE);
1080  
1081  	if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
1082  		mdb_warn("can't proc walk");
1083  		return (DCMD_ERR);
1084  	}
1085  
1086  	return (DCMD_OK);
1087  }
1088  
1089  typedef struct datafmt {
1090  	char	*hdr1;
1091  	char	*hdr2;
1092  	char	*dashes;
1093  	char	*fmt;
1094  } datafmt_t;
1095  
1096  static datafmt_t kmemfmt[] = {
1097  	{ "cache                    ", "name                     ",
1098  	"-------------------------", "%-25s "				},
1099  	{ "   buf",	"  size",	"------",	"%6u "		},
1100  	{ "   buf",	"in use",	"------",	"%6u "		},
1101  	{ "   buf",	" total",	"------",	"%6u "		},
1102  	{ "   memory",	"   in use",	"----------",	"%9u%c "	},
1103  	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
1104  	{ "alloc",	" fail",	"-----",	"%5u "		},
1105  	{ NULL,		NULL,		NULL,		NULL		}
1106  };
1107  
1108  static datafmt_t vmemfmt[] = {
1109  	{ "vmem                     ", "name                     ",
1110  	"-------------------------", "%-*s "				},
1111  	{ "   memory",	"   in use",	"----------",	"%9llu%c "	},
1112  	{ "    memory",	"     total",	"-----------",	"%10llu%c "	},
1113  	{ "   memory",	"   import",	"----------",	"%9llu%c "	},
1114  	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
1115  	{ "alloc",	" fail",	"-----",	"%5llu "	},
1116  	{ NULL,		NULL,		NULL,		NULL		}
1117  };
1118  
1119  /*ARGSUSED*/
1120  static int
1121  kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
1122  {
1123  	if (ccp->cc_rounds > 0)
1124  		*avail += ccp->cc_rounds;
1125  	if (ccp->cc_prounds > 0)
1126  		*avail += ccp->cc_prounds;
1127  
1128  	return (WALK_NEXT);
1129  }
1130  
1131  /*ARGSUSED*/
1132  static int
1133  kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
1134  {
1135  	*alloc += ccp->cc_alloc;
1136  
1137  	return (WALK_NEXT);
1138  }
1139  
1140  /*ARGSUSED*/
1141  static int
1142  kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
1143  {
1144  	*avail += sp->slab_chunks - sp->slab_refcnt;
1145  
1146  	return (WALK_NEXT);
1147  }
1148  
1149  typedef struct kmastat_vmem {
1150  	uintptr_t kv_addr;
1151  	struct kmastat_vmem *kv_next;
1152  	int kv_meminuse;
1153  	int kv_alloc;
1154  	int kv_fail;
1155  } kmastat_vmem_t;
1156  
1157  typedef struct kmastat_args {
1158  	kmastat_vmem_t **ka_kvpp;
1159  	uint_t ka_shift;
1160  } kmastat_args_t;
1161  
1162  static int
1163  kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
1164  {
1165  	kmastat_vmem_t **kvp = kap->ka_kvpp;
1166  	kmastat_vmem_t *kv;
1167  	datafmt_t *dfp = kmemfmt;
1168  	int magsize;
1169  
1170  	int avail, alloc, total;
1171  	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
1172  	    cp->cache_slabsize;
1173  
1174  	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
1175  	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
1176  	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
1177  
1178  	magsize = kmem_get_magsize(cp);
1179  
1180  	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
1181  	avail = cp->cache_full.ml_total * magsize;
1182  	total = cp->cache_buftotal;
1183  
1184  	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
1185  	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
1186  	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
1187  
1188  	for (kv = *kvp; kv != NULL; kv = kv->kv_next) {
1189  		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
1190  			goto out;
1191  	}
1192  
1193  	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
1194  	kv->kv_next = *kvp;
1195  	kv->kv_addr = (uintptr_t)cp->cache_arena;
1196  	*kvp = kv;
1197  out:
1198  	kv->kv_meminuse += meminuse;
1199  	kv->kv_alloc += alloc;
1200  	kv->kv_fail += cp->cache_alloc_fail;
1201  
1202  	mdb_printf((dfp++)->fmt, cp->cache_name);
1203  	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
1204  	mdb_printf((dfp++)->fmt, total - avail);
1205  	mdb_printf((dfp++)->fmt, total);
1206  	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
1207  	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
1208  	    kap->ka_shift == KILOS ? 'K' : 'B');
1209  	mdb_printf((dfp++)->fmt, alloc);
1210  	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
1211  	mdb_printf("\n");
1212  
1213  	return (WALK_NEXT);
1214  }
1215  
1216  static int
1217  kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
1218  {
1219  	kmastat_vmem_t *kv = *kap->ka_kvpp;
1220  	size_t len;
1221  
1222  	while (kv != NULL && kv->kv_addr != addr)
1223  		kv = kv->kv_next;
1224  
1225  	if (kv == NULL || kv->kv_alloc == 0)
1226  		return (WALK_NEXT);
1227  
1228  	len = MIN(17, strlen(v->vm_name));
1229  
1230  	mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name,
1231  	    17 - len, "", "", "", "",
1232  	    kv->kv_meminuse >> kap->ka_shift,
1233  	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
1234  	    kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
1235  
1236  	return (WALK_NEXT);
1237  }
1238  
1239  /*ARGSUSED*/
1240  static int
1241  kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
1242  {
1243  	datafmt_t *dfp = vmemfmt;
1244  	const vmem_kstat_t *vkp = &v->vm_kstat;
1245  	uintptr_t paddr;
1246  	vmem_t parent;
1247  	int ident = 0;
1248  
1249  	for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
1250  		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
1251  			mdb_warn("couldn't trace %p's ancestry", addr);
1252  			ident = 0;
1253  			break;
1254  		}
1255  		paddr = (uintptr_t)parent.vm_source;
1256  	}
1257  
1258  	mdb_printf("%*s", ident, "");
1259  	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
1260  	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
1261  	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
1262  	    *shiftp == KILOS ? 'K' : 'B');
1263  	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
1264  	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
1265  	    *shiftp == KILOS ? 'K' : 'B');
1266  	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
1267  	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
1268  	    *shiftp == KILOS ? 'K' : 'B');
1269  	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
1270  	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
1271  
1272  	mdb_printf("\n");
1273  
1274  	return (WALK_NEXT);
1275  }
1276  
1277  /*ARGSUSED*/
1278  int
1279  kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1280  {
1281  	kmastat_vmem_t *kv = NULL;
1282  	datafmt_t *dfp;
1283  	kmastat_args_t ka;
1284  
1285  	ka.ka_shift = 0;
1286  	if (mdb_getopts(argc, argv,
1287  	    'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
1288  	    'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
1289  	    'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
1290  		return (DCMD_USAGE);
1291  
1292  	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1293  		mdb_printf("%s ", dfp->hdr1);
1294  	mdb_printf("\n");
1295  
1296  	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1297  		mdb_printf("%s ", dfp->hdr2);
1298  	mdb_printf("\n");
1299  
1300  	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1301  		mdb_printf("%s ", dfp->dashes);
1302  	mdb_printf("\n");
1303  
1304  	ka.ka_kvpp = &kv;
1305  	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
1306  		mdb_warn("can't walk 'kmem_cache'");
1307  		return (DCMD_ERR);
1308  	}
1309  
1310  	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1311  		mdb_printf("%s ", dfp->dashes);
1312  	mdb_printf("\n");
1313  
1314  	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
1315  		mdb_warn("can't walk 'vmem'");
1316  		return (DCMD_ERR);
1317  	}
1318  
1319  	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
1320  		mdb_printf("%s ", dfp->dashes);
1321  	mdb_printf("\n");
1322  
1323  	mdb_printf("\n");
1324  
1325  	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1326  		mdb_printf("%s ", dfp->hdr1);
1327  	mdb_printf("\n");
1328  
1329  	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1330  		mdb_printf("%s ", dfp->hdr2);
1331  	mdb_printf("\n");
1332  
1333  	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1334  		mdb_printf("%s ", dfp->dashes);
1335  	mdb_printf("\n");
1336  
1337  	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
1338  		mdb_warn("can't walk 'vmem'");
1339  		return (DCMD_ERR);
1340  	}
1341  
1342  	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
1343  		mdb_printf("%s ", dfp->dashes);
1344  	mdb_printf("\n");
1345  	return (DCMD_OK);
1346  }
1347  
1348  /*
1349   * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
1350   * up of a set of 'struct seg's.  We could just scan each seg en masse, but
1351   * unfortunately, a few of the segs are both large and sparse, so we could
1352   * spend quite a bit of time scanning VAs which have no backing pages.
1353   *
1354   * So for the few very sparse segs, we skip the segment itself, and scan
1355   * the allocated vmem_segs in the vmem arena which manages that part of kas.
1356   * Currently, we do this for:
1357   *
1358   *	SEG		VMEM ARENA
1359   *	kvseg		heap_arena
1360   *	kvseg32		heap32_arena
1361   *	kvseg_core	heap_core_arena
1362   *
1363   * In addition, we skip the segkpm segment in its entirety, since it is very
1364   * sparse, and contains no new kernel data.
1365   */
1366  typedef struct kgrep_walk_data {
1367  	kgrep_cb_func *kg_cb;
1368  	void *kg_cbdata;
1369  	uintptr_t kg_kvseg;
1370  	uintptr_t kg_kvseg32;
1371  	uintptr_t kg_kvseg_core;
1372  	uintptr_t kg_segkpm;
1373  	uintptr_t kg_heap_lp_base;
1374  	uintptr_t kg_heap_lp_end;
1375  } kgrep_walk_data_t;
1376  
1377  static int
1378  kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
1379  {
1380  	uintptr_t base = (uintptr_t)seg->s_base;
1381  
1382  	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
1383  	    addr == kg->kg_kvseg_core)
1384  		return (WALK_NEXT);
1385  
1386  	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
1387  		return (WALK_NEXT);
1388  
1389  	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
1390  }
1391  
1392  /*ARGSUSED*/
1393  static int
1394  kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
1395  {
1396  	/*
1397  	 * skip large page heap address range - it is scanned by walking
1398  	 * allocated vmem_segs in the heap_lp_arena
1399  	 */
1400  	if (seg->vs_start == kg->kg_heap_lp_base &&
1401  	    seg->vs_end == kg->kg_heap_lp_end)
1402  		return (WALK_NEXT);
1403  
1404  	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
1405  }
1406  
1407  /*ARGSUSED*/
1408  static int
1409  kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
1410  {
1411  	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
1412  }
1413  
1414  static int
1415  kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
1416  {
1417  	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
1418  
1419  	if (strcmp(vmem->vm_name, "heap") != 0 &&
1420  	    strcmp(vmem->vm_name, "heap32") != 0 &&
1421  	    strcmp(vmem->vm_name, "heap_core") != 0 &&
1422  	    strcmp(vmem->vm_name, "heap_lp") != 0)
1423  		return (WALK_NEXT);
1424  
1425  	if (strcmp(vmem->vm_name, "heap_lp") == 0)
1426  		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
1427  
1428  	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
1429  		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
1430  		return (WALK_ERR);
1431  	}
1432  
1433  	return (WALK_NEXT);
1434  }
1435  
1436  int
1437  kgrep_subr(kgrep_cb_func *cb, void *cbdata)
1438  {
1439  	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
1440  	kgrep_walk_data_t kg;
1441  
1442  	if (mdb_get_state() == MDB_STATE_RUNNING) {
1443  		mdb_warn("kgrep can only be run on a system "
1444  		    "dump or under kmdb; see dumpadm(1M)\n");
1445  		return (DCMD_ERR);
1446  	}
1447  
1448  	if (mdb_lookup_by_name("kas", &kas) == -1) {
1449  		mdb_warn("failed to locate 'kas' symbol\n");
1450  		return (DCMD_ERR);
1451  	}
1452  
1453  	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
1454  		mdb_warn("failed to locate 'kvseg' symbol\n");
1455  		return (DCMD_ERR);
1456  	}
1457  
1458  	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
1459  		mdb_warn("failed to locate 'kvseg32' symbol\n");
1460  		return (DCMD_ERR);
1461  	}
1462  
1463  	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
1464  		mdb_warn("failed to locate 'kvseg_core' symbol\n");
1465  		return (DCMD_ERR);
1466  	}
1467  
1468  	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
1469  		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
1470  		return (DCMD_ERR);
1471  	}
1472  
1473  	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
1474  		mdb_warn("failed to read 'heap_lp_base'\n");
1475  		return (DCMD_ERR);
1476  	}
1477  
1478  	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
1479  		mdb_warn("failed to read 'heap_lp_end'\n");
1480  		return (DCMD_ERR);
1481  	}
1482  
1483  	kg.kg_cb = cb;
1484  	kg.kg_cbdata = cbdata;
1485  	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
1486  	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
1487  	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
1488  	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
1489  
1490  	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
1491  	    &kg, kas.st_value) == -1) {
1492  		mdb_warn("failed to walk kas segments");
1493  		return (DCMD_ERR);
1494  	}
1495  
1496  	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
1497  		mdb_warn("failed to walk heap/heap32 vmem arenas");
1498  		return (DCMD_ERR);
1499  	}
1500  
1501  	return (DCMD_OK);
1502  }
1503  
1504  size_t
1505  kgrep_subr_pagesize(void)
1506  {
1507  	return (PAGESIZE);
1508  }
1509  
1510  typedef struct file_walk_data {
1511  	struct uf_entry *fw_flist;
1512  	int fw_flistsz;
1513  	int fw_ndx;
1514  	int fw_nofiles;
1515  } file_walk_data_t;
1516  
1517  int
1518  file_walk_init(mdb_walk_state_t *wsp)
1519  {
1520  	file_walk_data_t *fw;
1521  	proc_t p;
1522  
1523  	if (wsp->walk_addr == NULL) {
1524  		mdb_warn("file walk doesn't support global walks\n");
1525  		return (WALK_ERR);
1526  	}
1527  
1528  	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
1529  
1530  	if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
1531  		mdb_free(fw, sizeof (file_walk_data_t));
1532  		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
1533  		return (WALK_ERR);
1534  	}
1535  
1536  	if (p.p_user.u_finfo.fi_nfiles == 0) {
1537  		mdb_free(fw, sizeof (file_walk_data_t));
1538  		return (WALK_DONE);
1539  	}
1540  
1541  	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
1542  	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
1543  	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
1544  
1545  	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
1546  	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
1547  		mdb_warn("failed to read file array at %p",
1548  		    p.p_user.u_finfo.fi_list);
1549  		mdb_free(fw->fw_flist, fw->fw_flistsz);
1550  		mdb_free(fw, sizeof (file_walk_data_t));
1551  		return (WALK_ERR);
1552  	}
1553  
1554  	fw->fw_ndx = 0;
1555  	wsp->walk_data = fw;
1556  
1557  	return (WALK_NEXT);
1558  }
1559  
1560  int
1561  file_walk_step(mdb_walk_state_t *wsp)
1562  {
1563  	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1564  	struct file file;
1565  	uintptr_t fp;
1566  
1567  again:
1568  	if (fw->fw_ndx == fw->fw_nofiles)
1569  		return (WALK_DONE);
1570  
1571  	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
1572  		goto again;
1573  
1574  	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
1575  	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
1576  }
1577  
1578  int
1579  allfile_walk_step(mdb_walk_state_t *wsp)
1580  {
1581  	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1582  	struct file file;
1583  	uintptr_t fp;
1584  
1585  	if (fw->fw_ndx == fw->fw_nofiles)
1586  		return (WALK_DONE);
1587  
1588  	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
1589  		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
1590  	else
1591  		bzero(&file, sizeof (file));
1592  
1593  	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
1594  }
1595  
1596  void
1597  file_walk_fini(mdb_walk_state_t *wsp)
1598  {
1599  	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
1600  
1601  	mdb_free(fw->fw_flist, fw->fw_flistsz);
1602  	mdb_free(fw, sizeof (file_walk_data_t));
1603  }
1604  
1605  int
1606  port_walk_init(mdb_walk_state_t *wsp)
1607  {
1608  	if (wsp->walk_addr == NULL) {
1609  		mdb_warn("port walk doesn't support global walks\n");
1610  		return (WALK_ERR);
1611  	}
1612  
1613  	if (mdb_layered_walk("file", wsp) == -1) {
1614  		mdb_warn("couldn't walk 'file'");
1615  		return (WALK_ERR);
1616  	}
1617  	return (WALK_NEXT);
1618  }
1619  
1620  int
1621  port_walk_step(mdb_walk_state_t *wsp)
1622  {
1623  	struct vnode	vn;
1624  	uintptr_t	vp;
1625  	uintptr_t	pp;
1626  	struct port	port;
1627  
1628  	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
1629  	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
1630  		mdb_warn("failed to read vnode_t at %p", vp);
1631  		return (WALK_ERR);
1632  	}
1633  	if (vn.v_type != VPORT)
1634  		return (WALK_NEXT);
1635  
1636  	pp = (uintptr_t)vn.v_data;
1637  	if (mdb_vread(&port, sizeof (port), pp) == -1) {
1638  		mdb_warn("failed to read port_t at %p", pp);
1639  		return (WALK_ERR);
1640  	}
1641  	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
1642  }
1643  
1644  typedef struct portev_walk_data {
1645  	list_node_t	*pev_node;
1646  	list_node_t	*pev_last;
1647  	size_t		pev_offset;
1648  } portev_walk_data_t;
1649  
1650  int
1651  portev_walk_init(mdb_walk_state_t *wsp)
1652  {
1653  	portev_walk_data_t *pevd;
1654  	struct port	port;
1655  	struct vnode	vn;
1656  	struct list	*list;
1657  	uintptr_t	vp;
1658  
1659  	if (wsp->walk_addr == NULL) {
1660  		mdb_warn("portev walk doesn't support global walks\n");
1661  		return (WALK_ERR);
1662  	}
1663  
1664  	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
1665  
1666  	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
1667  		mdb_free(pevd, sizeof (portev_walk_data_t));
1668  		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
1669  		return (WALK_ERR);
1670  	}
1671  
1672  	vp = (uintptr_t)port.port_vnode;
1673  	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
1674  		mdb_free(pevd, sizeof (portev_walk_data_t));
1675  		mdb_warn("failed to read vnode_t at %p", vp);
1676  		return (WALK_ERR);
1677  	}
1678  
1679  	if (vn.v_type != VPORT) {
1680  		mdb_free(pevd, sizeof (portev_walk_data_t));
1681  		mdb_warn("input address (%p) does not point to an event port",
1682  		    wsp->walk_addr);
1683  		return (WALK_ERR);
1684  	}
1685  
1686  	if (port.port_queue.portq_nent == 0) {
1687  		mdb_free(pevd, sizeof (portev_walk_data_t));
1688  		return (WALK_DONE);
1689  	}
1690  	list = &port.port_queue.portq_list;
1691  	pevd->pev_offset = list->list_offset;
1692  	pevd->pev_last = list->list_head.list_prev;
1693  	pevd->pev_node = list->list_head.list_next;
1694  	wsp->walk_data = pevd;
1695  	return (WALK_NEXT);
1696  }
1697  
1698  int
1699  portev_walk_step(mdb_walk_state_t *wsp)
1700  {
1701  	portev_walk_data_t	*pevd;
1702  	struct port_kevent	ev;
1703  	uintptr_t		evp;
1704  
1705  	pevd = (portev_walk_data_t *)wsp->walk_data;
1706  
1707  	if (pevd->pev_last == NULL)
1708  		return (WALK_DONE);
1709  	if (pevd->pev_node == pevd->pev_last)
1710  		pevd->pev_last = NULL;		/* last round */
1711  
1712  	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
1713  	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
1714  		mdb_warn("failed to read port_kevent at %p", evp);
1715  		return (WALK_DONE);
1716  	}
1717  	pevd->pev_node = ev.portkev_node.list_next;
1718  	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
1719  }
1720  
1721  void
1722  portev_walk_fini(mdb_walk_state_t *wsp)
1723  {
1724  	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
1725  
1726  	if (pevd != NULL)
1727  		mdb_free(pevd, sizeof (portev_walk_data_t));
1728  }
1729  
1730  typedef struct proc_walk_data {
1731  	uintptr_t *pw_stack;
1732  	int pw_depth;
1733  	int pw_max;
1734  } proc_walk_data_t;
1735  
1736  int
1737  proc_walk_init(mdb_walk_state_t *wsp)
1738  {
1739  	GElf_Sym sym;
1740  	proc_walk_data_t *pw;
1741  
1742  	if (wsp->walk_addr == NULL) {
1743  		if (mdb_lookup_by_name("p0", &sym) == -1) {
1744  			mdb_warn("failed to read 'practive'");
1745  			return (WALK_ERR);
1746  		}
1747  		wsp->walk_addr = (uintptr_t)sym.st_value;
1748  	}
1749  
1750  	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
1751  
1752  	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
1753  		mdb_warn("failed to read 'nproc'");
1754  		mdb_free(pw, sizeof (pw));
1755  		return (WALK_ERR);
1756  	}
1757  
1758  	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
1759  	wsp->walk_data = pw;
1760  
1761  	return (WALK_NEXT);
1762  }
1763  
1764  int
1765  proc_walk_step(mdb_walk_state_t *wsp)
1766  {
1767  	proc_walk_data_t *pw = wsp->walk_data;
1768  	uintptr_t addr = wsp->walk_addr;
1769  	uintptr_t cld, sib;
1770  
1771  	int status;
1772  	proc_t pr;
1773  
1774  	if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
1775  		mdb_warn("failed to read proc at %p", addr);
1776  		return (WALK_DONE);
1777  	}
1778  
1779  	cld = (uintptr_t)pr.p_child;
1780  	sib = (uintptr_t)pr.p_sibling;
1781  
1782  	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
1783  		pw->pw_depth--;
1784  		goto sib;
1785  	}
1786  
1787  	status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
1788  
1789  	if (status != WALK_NEXT)
1790  		return (status);
1791  
1792  	if ((wsp->walk_addr = cld) != NULL) {
1793  		if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
1794  			mdb_warn("proc %p has invalid p_child %p; skipping\n",
1795  			    addr, cld);
1796  			goto sib;
1797  		}
1798  
1799  		pw->pw_stack[pw->pw_depth++] = addr;
1800  
1801  		if (pw->pw_depth == pw->pw_max) {
1802  			mdb_warn("depth %d exceeds max depth; try again\n",
1803  			    pw->pw_depth);
1804  			return (WALK_DONE);
1805  		}
1806  		return (WALK_NEXT);
1807  	}
1808  
1809  sib:
1810  	/*
1811  	 * We know that p0 has no siblings, and if another starting proc
1812  	 * was given, we don't want to walk its siblings anyway.
1813  	 */
1814  	if (pw->pw_depth == 0)
1815  		return (WALK_DONE);
1816  
1817  	if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
1818  		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
1819  		    addr, sib);
1820  		sib = NULL;
1821  	}
1822  
1823  	if ((wsp->walk_addr = sib) == NULL) {
1824  		if (pw->pw_depth > 0) {
1825  			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
1826  			return (WALK_NEXT);
1827  		}
1828  		return (WALK_DONE);
1829  	}
1830  
1831  	return (WALK_NEXT);
1832  }
1833  
1834  void
1835  proc_walk_fini(mdb_walk_state_t *wsp)
1836  {
1837  	proc_walk_data_t *pw = wsp->walk_data;
1838  
1839  	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
1840  	mdb_free(pw, sizeof (proc_walk_data_t));
1841  }
1842  
1843  int
1844  task_walk_init(mdb_walk_state_t *wsp)
1845  {
1846  	task_t task;
1847  
1848  	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
1849  		mdb_warn("failed to read task at %p", wsp->walk_addr);
1850  		return (WALK_ERR);
1851  	}
1852  	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
1853  	wsp->walk_data = task.tk_memb_list;
1854  	return (WALK_NEXT);
1855  }
1856  
1857  int
1858  task_walk_step(mdb_walk_state_t *wsp)
1859  {
1860  	proc_t proc;
1861  	int status;
1862  
1863  	if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
1864  		mdb_warn("failed to read proc at %p", wsp->walk_addr);
1865  		return (WALK_DONE);
1866  	}
1867  
1868  	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
1869  
1870  	if (proc.p_tasknext == wsp->walk_data)
1871  		return (WALK_DONE);
1872  
1873  	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
1874  	return (status);
1875  }
1876  
1877  int
1878  project_walk_init(mdb_walk_state_t *wsp)
1879  {
1880  	if (wsp->walk_addr == NULL) {
1881  		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
1882  			mdb_warn("failed to read 'proj0p'");
1883  			return (WALK_ERR);
1884  		}
1885  	}
1886  	wsp->walk_data = (void *)wsp->walk_addr;
1887  	return (WALK_NEXT);
1888  }
1889  
1890  int
1891  project_walk_step(mdb_walk_state_t *wsp)
1892  {
1893  	uintptr_t addr = wsp->walk_addr;
1894  	kproject_t pj;
1895  	int status;
1896  
1897  	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
1898  		mdb_warn("failed to read project at %p", addr);
1899  		return (WALK_DONE);
1900  	}
1901  	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
1902  	if (status != WALK_NEXT)
1903  		return (status);
1904  	wsp->walk_addr = (uintptr_t)pj.kpj_next;
1905  	if ((void *)wsp->walk_addr == wsp->walk_data)
1906  		return (WALK_DONE);
1907  	return (WALK_NEXT);
1908  }
1909  
1910  static int
1911  generic_walk_step(mdb_walk_state_t *wsp)
1912  {
1913  	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
1914  	    wsp->walk_cbdata));
1915  }
1916  
1917  int
1918  seg_walk_init(mdb_walk_state_t *wsp)
1919  {
1920  	if (wsp->walk_addr == NULL) {
1921  		mdb_warn("seg walk must begin at struct as *\n");
1922  		return (WALK_ERR);
1923  	}
1924  
1925  	/*
1926  	 * this is really just a wrapper to AVL tree walk
1927  	 */
1928  	wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
1929  	return (avl_walk_init(wsp));
1930  }
1931  
1932  static int
1933  cpu_walk_cmp(const void *l, const void *r)
1934  {
1935  	uintptr_t lhs = *((uintptr_t *)l);
1936  	uintptr_t rhs = *((uintptr_t *)r);
1937  	cpu_t lcpu, rcpu;
1938  
1939  	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
1940  	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
1941  
1942  	if (lcpu.cpu_id < rcpu.cpu_id)
1943  		return (-1);
1944  
1945  	if (lcpu.cpu_id > rcpu.cpu_id)
1946  		return (1);
1947  
1948  	return (0);
1949  }
1950  
1951  typedef struct cpu_walk {
1952  	uintptr_t *cw_array;
1953  	int cw_ndx;
1954  } cpu_walk_t;
1955  
1956  int
1957  cpu_walk_init(mdb_walk_state_t *wsp)
1958  {
1959  	cpu_walk_t *cw;
1960  	int max_ncpus, i = 0;
1961  	uintptr_t current, first;
1962  	cpu_t cpu, panic_cpu;
1963  	uintptr_t panicstr, addr;
1964  	GElf_Sym sym;
1965  
1966  	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
1967  
1968  	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
1969  		mdb_warn("failed to read 'max_ncpus'");
1970  		return (WALK_ERR);
1971  	}
1972  
1973  	if (mdb_readvar(&panicstr, "panicstr") == -1) {
1974  		mdb_warn("failed to read 'panicstr'");
1975  		return (WALK_ERR);
1976  	}
1977  
1978  	if (panicstr != NULL) {
1979  		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
1980  			mdb_warn("failed to find 'panic_cpu'");
1981  			return (WALK_ERR);
1982  		}
1983  
1984  		addr = (uintptr_t)sym.st_value;
1985  
1986  		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
1987  			mdb_warn("failed to read 'panic_cpu'");
1988  			return (WALK_ERR);
1989  		}
1990  	}
1991  
1992  	/*
1993  	 * Unfortunately, there is no platform-independent way to walk
1994  	 * CPUs in ID order.  We therefore loop through in cpu_next order,
1995  	 * building an array of CPU pointers which will subsequently be
1996  	 * sorted.
1997  	 */
1998  	cw->cw_array =
1999  	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2000  
2001  	if (mdb_readvar(&first, "cpu_list") == -1) {
2002  		mdb_warn("failed to read 'cpu_list'");
2003  		return (WALK_ERR);
2004  	}
2005  
2006  	current = first;
2007  	do {
2008  		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2009  			mdb_warn("failed to read cpu at %p", current);
2010  			return (WALK_ERR);
2011  		}
2012  
2013  		if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
2014  			cw->cw_array[i++] = addr;
2015  		} else {
2016  			cw->cw_array[i++] = current;
2017  		}
2018  	} while ((current = (uintptr_t)cpu.cpu_next) != first);
2019  
2020  	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2021  	wsp->walk_data = cw;
2022  
2023  	return (WALK_NEXT);
2024  }
2025  
2026  int
2027  cpu_walk_step(mdb_walk_state_t *wsp)
2028  {
2029  	cpu_walk_t *cw = wsp->walk_data;
2030  	cpu_t cpu;
2031  	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2032  
2033  	if (addr == NULL)
2034  		return (WALK_DONE);
2035  
2036  	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2037  		mdb_warn("failed to read cpu at %p", addr);
2038  		return (WALK_DONE);
2039  	}
2040  
2041  	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
2042  }
2043  
2044  typedef struct cpuinfo_data {
2045  	intptr_t cid_cpu;
2046  	uintptr_t cid_lbolt;
2047  	uintptr_t **cid_ithr;
2048  	char	cid_print_head;
2049  	char	cid_print_thr;
2050  	char	cid_print_ithr;
2051  	char	cid_print_flags;
2052  } cpuinfo_data_t;
2053  
2054  int
2055  cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
2056  {
2057  	cpu_t c;
2058  	int id;
2059  	uint8_t pil;
2060  
2061  	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
2062  		return (WALK_NEXT);
2063  
2064  	if (thr->t_bound_cpu == NULL) {
2065  		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
2066  		return (WALK_NEXT);
2067  	}
2068  
2069  	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
2070  
2071  	if ((id = c.cpu_id) >= NCPU) {
2072  		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
2073  		    thr->t_bound_cpu, id, NCPU);
2074  		return (WALK_NEXT);
2075  	}
2076  
2077  	if ((pil = thr->t_pil) >= NINTR) {
2078  		mdb_warn("thread %p has pil (%d) greater than %d\n",
2079  		    addr, pil, NINTR);
2080  		return (WALK_NEXT);
2081  	}
2082  
2083  	if (cid->cid_ithr[id][pil] != NULL) {
2084  		mdb_warn("CPU %d has multiple threads at pil %d (at least "
2085  		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
2086  		return (WALK_NEXT);
2087  	}
2088  
2089  	cid->cid_ithr[id][pil] = addr;
2090  
2091  	return (WALK_NEXT);
2092  }
2093  
2094  #define	CPUINFO_IDWIDTH		3
2095  #define	CPUINFO_FLAGWIDTH	9
2096  
2097  #ifdef _LP64
2098  #if defined(__amd64)
2099  #define	CPUINFO_TWIDTH		16
2100  #define	CPUINFO_CPUWIDTH	16
2101  #else
2102  #define	CPUINFO_CPUWIDTH	11
2103  #define	CPUINFO_TWIDTH		11
2104  #endif
2105  #else
2106  #define	CPUINFO_CPUWIDTH	8
2107  #define	CPUINFO_TWIDTH		8
2108  #endif
2109  
2110  #define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
2111  #define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
2112  #define	CPUINFO_ITHRDELT	4
2113  
2114  #define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
2115      flagline < nflaglines ? flagbuf[flagline++] : "")
2116  
2117  int
2118  cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
2119  {
2120  	kthread_t t;
2121  	disp_t disp;
2122  	proc_t p;
2123  	uintptr_t pinned;
2124  	char **flagbuf;
2125  	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
2126  
2127  	const char *flags[] = {
2128  	    "RUNNING", "READY", "QUIESCED", "EXISTS",
2129  	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
2130  	    "SPARE", "FAULTED", NULL
2131  	};
2132  
2133  	if (cid->cid_cpu != -1) {
2134  		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
2135  			return (WALK_NEXT);
2136  
2137  		/*
2138  		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
2139  		 */
2140  		cid->cid_cpu = -1;
2141  		rval = WALK_DONE;
2142  	}
2143  
2144  	if (cid->cid_print_head) {
2145  		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
2146  		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
2147  		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
2148  		    "PROC");
2149  		cid->cid_print_head = FALSE;
2150  	}
2151  
2152  	bspl = cpu->cpu_base_spl;
2153  
2154  	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
2155  		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
2156  		return (WALK_ERR);
2157  	}
2158  
2159  	mdb_printf("%3d %0*p %3x %4d %4d ",
2160  	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
2161  	    disp.disp_nrunnable, bspl);
2162  
2163  	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
2164  		mdb_printf("%3d ", t.t_pri);
2165  	} else {
2166  		mdb_printf("%3s ", "-");
2167  	}
2168  
2169  	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
2170  	    cpu->cpu_kprunrun ? "yes" : "no");
2171  
2172  	if (cpu->cpu_last_swtch) {
2173  		clock_t lbolt;
2174  
2175  		if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) {
2176  			mdb_warn("failed to read lbolt at %p", cid->cid_lbolt);
2177  			return (WALK_ERR);
2178  		}
2179  		mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch);
2180  	} else {
2181  		mdb_printf("%-6s ", "-");
2182  	}
2183  
2184  	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
2185  
2186  	if (cpu->cpu_thread == cpu->cpu_idle_thread)
2187  		mdb_printf(" (idle)\n");
2188  	else if (cpu->cpu_thread == NULL)
2189  		mdb_printf(" -\n");
2190  	else {
2191  		if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
2192  			mdb_printf(" %s\n", p.p_user.u_comm);
2193  		} else {
2194  			mdb_printf(" ?\n");
2195  		}
2196  	}
2197  
2198  	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
2199  
2200  	if (cid->cid_print_flags) {
2201  		int first = 1, i, j, k;
2202  		char *s;
2203  
2204  		cid->cid_print_head = TRUE;
2205  
2206  		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
2207  			if (!(cpu->cpu_flags & i))
2208  				continue;
2209  
2210  			if (first) {
2211  				s = mdb_alloc(CPUINFO_THRDELT + 1,
2212  				    UM_GC | UM_SLEEP);
2213  
2214  				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
2215  				    "%*s|%*s", CPUINFO_FLAGDELT, "",
2216  				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
2217  				flagbuf[nflaglines++] = s;
2218  			}
2219  
2220  			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
2221  			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
2222  			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
2223  			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
2224  			    first ? "<--+" : "");
2225  
2226  			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
2227  				s[k] = ' ';
2228  			s[k] = '\0';
2229  
2230  			flagbuf[nflaglines++] = s;
2231  			first = 0;
2232  		}
2233  	}
2234  
2235  	if (cid->cid_print_ithr) {
2236  		int i, found_one = FALSE;
2237  		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
2238  
2239  		for (i = NINTR - 1; i >= 0; i--) {
2240  			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
2241  
2242  			if (iaddr == NULL)
2243  				continue;
2244  
2245  			if (!found_one) {
2246  				found_one = TRUE;
2247  
2248  				CPUINFO_INDENT;
2249  				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
2250  				    CPUINFO_ITHRDELT, "");
2251  
2252  				CPUINFO_INDENT;
2253  				mdb_printf("%c%*s+--> %3s %s\n",
2254  				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
2255  				    "", "PIL", "THREAD");
2256  			}
2257  
2258  			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
2259  				mdb_warn("failed to read kthread_t at %p",
2260  				    iaddr);
2261  				return (WALK_ERR);
2262  			}
2263  
2264  			CPUINFO_INDENT;
2265  			mdb_printf("%c%*s     %3d %0*p\n",
2266  			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
2267  			    t.t_pil, CPUINFO_TWIDTH, iaddr);
2268  
2269  			pinned = (uintptr_t)t.t_intr;
2270  		}
2271  
2272  		if (found_one && pinned != NULL) {
2273  			cid->cid_print_head = TRUE;
2274  			(void) strcpy(p.p_user.u_comm, "?");
2275  
2276  			if (mdb_vread(&t, sizeof (t),
2277  			    (uintptr_t)pinned) == -1) {
2278  				mdb_warn("failed to read kthread_t at %p",
2279  				    pinned);
2280  				return (WALK_ERR);
2281  			}
2282  			if (mdb_vread(&p, sizeof (p),
2283  			    (uintptr_t)t.t_procp) == -1) {
2284  				mdb_warn("failed to read proc_t at %p",
2285  				    t.t_procp);
2286  				return (WALK_ERR);
2287  			}
2288  
2289  			CPUINFO_INDENT;
2290  			mdb_printf("%c%*s     %3s %0*p %s\n",
2291  			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
2292  			    CPUINFO_TWIDTH, pinned,
2293  			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
2294  			    "(idle)" : p.p_user.u_comm);
2295  		}
2296  	}
2297  
2298  	if (disp.disp_nrunnable && cid->cid_print_thr) {
2299  		dispq_t *dq;
2300  
2301  		int i, npri = disp.disp_npri;
2302  
2303  		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
2304  
2305  		if (mdb_vread(dq, sizeof (dispq_t) * npri,
2306  		    (uintptr_t)disp.disp_q) == -1) {
2307  			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
2308  			return (WALK_ERR);
2309  		}
2310  
2311  		CPUINFO_INDENT;
2312  		mdb_printf("|\n");
2313  
2314  		CPUINFO_INDENT;
2315  		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
2316  		    CPUINFO_TWIDTH, "THREAD", "PROC");
2317  
2318  		for (i = npri - 1; i >= 0; i--) {
2319  			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
2320  
2321  			while (taddr != NULL) {
2322  				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
2323  					mdb_warn("failed to read kthread_t "
2324  					    "at %p", taddr);
2325  					return (WALK_ERR);
2326  				}
2327  				if (mdb_vread(&p, sizeof (p),
2328  				    (uintptr_t)t.t_procp) == -1) {
2329  					mdb_warn("failed to read proc_t at %p",
2330  					    t.t_procp);
2331  					return (WALK_ERR);
2332  				}
2333  
2334  				CPUINFO_INDENT;
2335  				mdb_printf("      %3d %0*p %s\n", t.t_pri,
2336  				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
2337  
2338  				taddr = (uintptr_t)t.t_link;
2339  			}
2340  		}
2341  		cid->cid_print_head = TRUE;
2342  	}
2343  
2344  	while (flagline < nflaglines)
2345  		mdb_printf("%s\n", flagbuf[flagline++]);
2346  
2347  	if (cid->cid_print_head)
2348  		mdb_printf("\n");
2349  
2350  	return (rval);
2351  }
2352  
2353  int
2354  cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2355  {
2356  	uint_t verbose = FALSE;
2357  	cpuinfo_data_t cid;
2358  	GElf_Sym sym;
2359  	clock_t lbolt;
2360  
2361  	cid.cid_print_ithr = FALSE;
2362  	cid.cid_print_thr = FALSE;
2363  	cid.cid_print_flags = FALSE;
2364  	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
2365  	cid.cid_cpu = -1;
2366  
2367  	if (flags & DCMD_ADDRSPEC)
2368  		cid.cid_cpu = addr;
2369  
2370  	if (mdb_getopts(argc, argv,
2371  	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
2372  		return (DCMD_USAGE);
2373  
2374  	if (verbose) {
2375  		cid.cid_print_ithr = TRUE;
2376  		cid.cid_print_thr = TRUE;
2377  		cid.cid_print_flags = TRUE;
2378  		cid.cid_print_head = TRUE;
2379  	}
2380  
2381  	if (cid.cid_print_ithr) {
2382  		int i;
2383  
2384  		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
2385  		    * NCPU, UM_SLEEP | UM_GC);
2386  
2387  		for (i = 0; i < NCPU; i++)
2388  			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
2389  			    NINTR, UM_SLEEP | UM_GC);
2390  
2391  		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
2392  		    &cid) == -1) {
2393  			mdb_warn("couldn't walk thread");
2394  			return (DCMD_ERR);
2395  		}
2396  	}
2397  
2398  	if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) {
2399  		mdb_warn("failed to find panic_lbolt");
2400  		return (DCMD_ERR);
2401  	}
2402  
2403  	cid.cid_lbolt = (uintptr_t)sym.st_value;
2404  
2405  	if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) {
2406  		mdb_warn("failed to read panic_lbolt");
2407  		return (DCMD_ERR);
2408  	}
2409  
2410  	if (lbolt == 0) {
2411  		if (mdb_lookup_by_name("lbolt", &sym) == -1) {
2412  			mdb_warn("failed to find lbolt");
2413  			return (DCMD_ERR);
2414  		}
2415  		cid.cid_lbolt = (uintptr_t)sym.st_value;
2416  	}
2417  
2418  	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
2419  		mdb_warn("can't walk cpus");
2420  		return (DCMD_ERR);
2421  	}
2422  
2423  	if (cid.cid_cpu != -1) {
2424  		/*
2425  		 * We didn't find this CPU when we walked through the CPUs
2426  		 * (i.e. the address specified doesn't show up in the "cpu"
2427  		 * walk).  However, the specified address may still correspond
2428  		 * to a valid cpu_t (for example, if the specified address is
2429  		 * the actual panicking cpu_t and not the cached panic_cpu).
2430  		 * Point is:  even if we didn't find it, we still want to try
2431  		 * to print the specified address as a cpu_t.
2432  		 */
2433  		cpu_t cpu;
2434  
2435  		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
2436  			mdb_warn("%p is neither a valid CPU ID nor a "
2437  			    "valid cpu_t address\n", cid.cid_cpu);
2438  			return (DCMD_ERR);
2439  		}
2440  
2441  		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
2442  	}
2443  
2444  	return (DCMD_OK);
2445  }
2446  
2447  /*ARGSUSED*/
2448  int
2449  flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2450  {
2451  	int i;
2452  
2453  	if (!(flags & DCMD_ADDRSPEC))
2454  		return (DCMD_USAGE);
2455  
2456  	for (i = 0; i < sizeof (addr) * NBBY; i++)
2457  		mdb_printf("%p\n", addr ^ (1UL << i));
2458  
2459  	return (DCMD_OK);
2460  }
2461  
2462  /*
2463   * Grumble, grumble.
2464   */
2465  #define	SMAP_HASHFUNC(vp, off)	\
2466  	((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
2467  	((off) >> MAXBSHIFT)) & smd_hashmsk)
2468  
2469  int
2470  vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2471  {
2472  	long smd_hashmsk;
2473  	int hash;
2474  	uintptr_t offset = 0;
2475  	struct smap smp;
2476  	uintptr_t saddr, kaddr;
2477  	uintptr_t smd_hash, smd_smap;
2478  	struct seg seg;
2479  
2480  	if (!(flags & DCMD_ADDRSPEC))
2481  		return (DCMD_USAGE);
2482  
2483  	if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
2484  		mdb_warn("failed to read smd_hashmsk");
2485  		return (DCMD_ERR);
2486  	}
2487  
2488  	if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
2489  		mdb_warn("failed to read smd_hash");
2490  		return (DCMD_ERR);
2491  	}
2492  
2493  	if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
2494  		mdb_warn("failed to read smd_hash");
2495  		return (DCMD_ERR);
2496  	}
2497  
2498  	if (mdb_readvar(&kaddr, "segkmap") == -1) {
2499  		mdb_warn("failed to read segkmap");
2500  		return (DCMD_ERR);
2501  	}
2502  
2503  	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
2504  		mdb_warn("failed to read segkmap at %p", kaddr);
2505  		return (DCMD_ERR);
2506  	}
2507  
2508  	if (argc != 0) {
2509  		const mdb_arg_t *arg = &argv[0];
2510  
2511  		if (arg->a_type == MDB_TYPE_IMMEDIATE)
2512  			offset = arg->a_un.a_val;
2513  		else
2514  			offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
2515  	}
2516  
2517  	hash = SMAP_HASHFUNC(addr, offset);
2518  
2519  	if (mdb_vread(&saddr, sizeof (saddr),
2520  	    smd_hash + hash * sizeof (uintptr_t)) == -1) {
2521  		mdb_warn("couldn't read smap at %p",
2522  		    smd_hash + hash * sizeof (uintptr_t));
2523  		return (DCMD_ERR);
2524  	}
2525  
2526  	do {
2527  		if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
2528  			mdb_warn("couldn't read smap at %p", saddr);
2529  			return (DCMD_ERR);
2530  		}
2531  
2532  		if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
2533  			mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
2534  			    addr, offset, saddr, ((saddr - smd_smap) /
2535  			    sizeof (smp)) * MAXBSIZE + seg.s_base);
2536  			return (DCMD_OK);
2537  		}
2538  
2539  		saddr = (uintptr_t)smp.sm_hash;
2540  	} while (saddr != NULL);
2541  
2542  	mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
2543  	return (DCMD_OK);
2544  }
2545  
2546  /*ARGSUSED*/
2547  int
2548  addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2549  {
2550  	uintptr_t kaddr;
2551  	struct seg seg;
2552  	struct segmap_data sd;
2553  
2554  	if (!(flags & DCMD_ADDRSPEC))
2555  		return (DCMD_USAGE);
2556  
2557  	if (mdb_readvar(&kaddr, "segkmap") == -1) {
2558  		mdb_warn("failed to read segkmap");
2559  		return (DCMD_ERR);
2560  	}
2561  
2562  	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
2563  		mdb_warn("failed to read segkmap at %p", kaddr);
2564  		return (DCMD_ERR);
2565  	}
2566  
2567  	if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
2568  		mdb_warn("failed to read segmap_data at %p", seg.s_data);
2569  		return (DCMD_ERR);
2570  	}
2571  
2572  	mdb_printf("%p is smap %p\n", addr,
2573  	    ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
2574  	    sizeof (struct smap) + (uintptr_t)sd.smd_sm);
2575  
2576  	return (DCMD_OK);
2577  }
2578  
2579  int
2580  as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
2581  {
2582  	if (p->p_as == *asp)
2583  		mdb_printf("%p\n", addr);
2584  	return (WALK_NEXT);
2585  }
2586  
2587  /*ARGSUSED*/
2588  int
2589  as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2590  {
2591  	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
2592  		return (DCMD_USAGE);
2593  
2594  	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
2595  		mdb_warn("failed to walk proc");
2596  		return (DCMD_ERR);
2597  	}
2598  
2599  	return (DCMD_OK);
2600  }
2601  
2602  /*ARGSUSED*/
2603  int
2604  ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
2605  {
2606  	proc_t parent;
2607  	int ident = 0;
2608  	uintptr_t paddr;
2609  
2610  	for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
2611  		mdb_vread(&parent, sizeof (parent), paddr);
2612  		paddr = (uintptr_t)parent.p_parent;
2613  	}
2614  
2615  	mdb_inc_indent(ident);
2616  	mdb_printf("%0?p  %s\n", addr, p->p_user.u_comm);
2617  	mdb_dec_indent(ident);
2618  
2619  	return (WALK_NEXT);
2620  }
2621  
2622  void
2623  ptree_ancestors(uintptr_t addr, uintptr_t start)
2624  {
2625  	proc_t p;
2626  
2627  	if (mdb_vread(&p, sizeof (p), addr) == -1) {
2628  		mdb_warn("couldn't read ancestor at %p", addr);
2629  		return;
2630  	}
2631  
2632  	if (p.p_parent != NULL)
2633  		ptree_ancestors((uintptr_t)p.p_parent, start);
2634  
2635  	if (addr != start)
2636  		(void) ptree_walk(addr, &p, NULL);
2637  }
2638  
2639  /*ARGSUSED*/
2640  int
2641  ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2642  {
2643  	if (!(flags & DCMD_ADDRSPEC))
2644  		addr = NULL;
2645  	else
2646  		ptree_ancestors(addr, addr);
2647  
2648  	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
2649  		mdb_warn("couldn't walk 'proc'");
2650  		return (DCMD_ERR);
2651  	}
2652  
2653  	return (DCMD_OK);
2654  }
2655  
2656  /*ARGSUSED*/
2657  static int
2658  fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2659  {
2660  	int fdnum;
2661  	const mdb_arg_t *argp = &argv[0];
2662  	proc_t p;
2663  	uf_entry_t uf;
2664  
2665  	if ((flags & DCMD_ADDRSPEC) == 0) {
2666  		mdb_warn("fd doesn't give global information\n");
2667  		return (DCMD_ERR);
2668  	}
2669  	if (argc != 1)
2670  		return (DCMD_USAGE);
2671  
2672  	if (argp->a_type == MDB_TYPE_IMMEDIATE)
2673  		fdnum = argp->a_un.a_val;
2674  	else
2675  		fdnum = mdb_strtoull(argp->a_un.a_str);
2676  
2677  	if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
2678  		mdb_warn("couldn't read proc_t at %p", addr);
2679  		return (DCMD_ERR);
2680  	}
2681  	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
2682  		mdb_warn("process %p only has %d files open.\n",
2683  		    addr, p.p_user.u_finfo.fi_nfiles);
2684  		return (DCMD_ERR);
2685  	}
2686  	if (mdb_vread(&uf, sizeof (uf_entry_t),
2687  	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
2688  		mdb_warn("couldn't read uf_entry_t at %p",
2689  		    &p.p_user.u_finfo.fi_list[fdnum]);
2690  		return (DCMD_ERR);
2691  	}
2692  
2693  	mdb_printf("%p\n", uf.uf_file);
2694  	return (DCMD_OK);
2695  }
2696  
2697  /*ARGSUSED*/
2698  static int
2699  pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2700  {
2701  	pid_t pid = (pid_t)addr;
2702  
2703  	if (argc != 0)
2704  		return (DCMD_USAGE);
2705  
2706  	if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
2707  		mdb_warn("PID 0t%d not found\n", pid);
2708  		return (DCMD_ERR);
2709  	}
2710  
2711  	mdb_printf("%p\n", addr);
2712  	return (DCMD_OK);
2713  }
2714  
2715  static char *sysfile_cmd[] = {
2716  	"exclude:",
2717  	"include:",
2718  	"forceload:",
2719  	"rootdev:",
2720  	"rootfs:",
2721  	"swapdev:",
2722  	"swapfs:",
2723  	"moddir:",
2724  	"set",
2725  	"unknown",
2726  };
2727  
2728  static char *sysfile_ops[] = { "", "=", "&", "|" };
2729  
2730  /*ARGSUSED*/
2731  static int
2732  sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
2733  {
2734  	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
2735  		*target = NULL;
2736  		return (WALK_DONE);
2737  	}
2738  	return (WALK_NEXT);
2739  }
2740  
2741  /*ARGSUSED*/
2742  static int
2743  sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2744  {
2745  	struct sysparam *sysp, sys;
2746  	char var[256];
2747  	char modname[256];
2748  	char val[256];
2749  	char strval[256];
2750  	vmem_t *mod_sysfile_arena;
2751  	void *straddr;
2752  
2753  	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
2754  		mdb_warn("failed to read sysparam_hd");
2755  		return (DCMD_ERR);
2756  	}
2757  
2758  	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
2759  		mdb_warn("failed to read mod_sysfile_arena");
2760  		return (DCMD_ERR);
2761  	}
2762  
2763  	while (sysp != NULL) {
2764  		var[0] = '\0';
2765  		val[0] = '\0';
2766  		modname[0] = '\0';
2767  		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
2768  			mdb_warn("couldn't read sysparam %p", sysp);
2769  			return (DCMD_ERR);
2770  		}
2771  		if (sys.sys_modnam != NULL &&
2772  		    mdb_readstr(modname, 256,
2773  		    (uintptr_t)sys.sys_modnam) == -1) {
2774  			mdb_warn("couldn't read modname in %p", sysp);
2775  			return (DCMD_ERR);
2776  		}
2777  		if (sys.sys_ptr != NULL &&
2778  		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
2779  			mdb_warn("couldn't read ptr in %p", sysp);
2780  			return (DCMD_ERR);
2781  		}
2782  		if (sys.sys_op != SETOP_NONE) {
2783  			/*
2784  			 * Is this an int or a string?  We determine this
2785  			 * by checking whether straddr is contained in
2786  			 * mod_sysfile_arena.  If so, the walker will set
2787  			 * straddr to NULL.
2788  			 */
2789  			straddr = (void *)(uintptr_t)sys.sys_info;
2790  			if (sys.sys_op == SETOP_ASSIGN &&
2791  			    sys.sys_info != 0 &&
2792  			    mdb_pwalk("vmem_seg",
2793  			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
2794  			    (uintptr_t)mod_sysfile_arena) == 0 &&
2795  			    straddr == NULL &&
2796  			    mdb_readstr(strval, 256,
2797  			    (uintptr_t)sys.sys_info) != -1) {
2798  				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
2799  				    strval);
2800  			} else {
2801  				(void) mdb_snprintf(val, sizeof (val),
2802  				    "0x%llx [0t%llu]", sys.sys_info,
2803  				    sys.sys_info);
2804  			}
2805  		}
2806  		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
2807  		    modname, modname[0] == '\0' ? "" : ":",
2808  		    var, sysfile_ops[sys.sys_op], val);
2809  
2810  		sysp = sys.sys_next;
2811  	}
2812  
2813  	return (DCMD_OK);
2814  }
2815  
2816  /*
2817   * Dump a taskq_ent_t given its address.
2818   */
2819  /*ARGSUSED*/
2820  int
2821  taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2822  {
2823  	taskq_ent_t	taskq_ent;
2824  	GElf_Sym	sym;
2825  	char		buf[MDB_SYM_NAMLEN+1];
2826  
2827  
2828  	if (!(flags & DCMD_ADDRSPEC)) {
2829  		mdb_warn("expected explicit taskq_ent_t address before ::\n");
2830  		return (DCMD_USAGE);
2831  	}
2832  
2833  	if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) {
2834  		mdb_warn("failed to read taskq_ent_t at %p", addr);
2835  		return (DCMD_ERR);
2836  	}
2837  
2838  	if (DCMD_HDRSPEC(flags)) {
2839  		mdb_printf("%<u>%-?s    %-?s    %-s%</u>\n",
2840  		"ENTRY", "ARG", "FUNCTION");
2841  	}
2842  
2843  	if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT,
2844  	    buf, sizeof (buf), &sym) == -1) {
2845  		(void) strcpy(buf, "????");
2846  	}
2847  
2848  	mdb_printf("%-?p    %-?p    %s\n", addr, taskq_ent.tqent_arg, buf);
2849  
2850  	return (DCMD_OK);
2851  }
2852  
2853  /*
2854   * Given the address of the (taskq_t) task queue head, walk the queue listing
2855   * the address of every taskq_ent_t.
2856   */
2857  int
2858  taskq_walk_init(mdb_walk_state_t *wsp)
2859  {
2860  	taskq_t	tq_head;
2861  
2862  
2863  	if (wsp->walk_addr == NULL) {
2864  		mdb_warn("start address required\n");
2865  		return (WALK_ERR);
2866  	}
2867  
2868  
2869  	/*
2870  	 * Save the address of the list head entry.  This terminates the list.
2871  	 */
2872  	wsp->walk_data = (void *)
2873  	    ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task));
2874  
2875  
2876  	/*
2877  	 * Read in taskq head, set walk_addr to point to first taskq_ent_t.
2878  	 */
2879  	if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) ==
2880  	    -1) {
2881  		mdb_warn("failed to read taskq list head at %p",
2882  		    wsp->walk_addr);
2883  	}
2884  	wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next;
2885  
2886  
2887  	/*
2888  	 * Check for null list (next=head)
2889  	 */
2890  	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
2891  		return (WALK_DONE);
2892  	}
2893  
2894  	return (WALK_NEXT);
2895  }
2896  
2897  
2898  int
2899  taskq_walk_step(mdb_walk_state_t *wsp)
2900  {
2901  	taskq_ent_t	tq_ent;
2902  	int		status;
2903  
2904  
2905  	if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) ==
2906  	    -1) {
2907  		mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr);
2908  		return (DCMD_ERR);
2909  	}
2910  
2911  	status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent,
2912  	    wsp->walk_cbdata);
2913  
2914  	wsp->walk_addr = (uintptr_t)tq_ent.tqent_next;
2915  
2916  
2917  	/* Check if we're at the last element (next=head) */
2918  	if (wsp->walk_addr == (uintptr_t)wsp->walk_data) {
2919  		return (WALK_DONE);
2920  	}
2921  
2922  	return (status);
2923  }
2924  
2925  int
2926  didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
2927  {
2928  
2929  	if (*didp == thr->t_did) {
2930  		mdb_printf("%p\n", addr);
2931  		return (WALK_DONE);
2932  	} else
2933  		return (WALK_NEXT);
2934  }
2935  
2936  /*ARGSUSED*/
2937  int
2938  did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2939  {
2940  	const mdb_arg_t *argp = &argv[0];
2941  	kt_did_t	did;
2942  
2943  	if (argc != 1)
2944  		return (DCMD_USAGE);
2945  
2946  	did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
2947  
2948  	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
2949  		mdb_warn("failed to walk thread");
2950  		return (DCMD_ERR);
2951  
2952  	}
2953  	return (DCMD_OK);
2954  
2955  }
2956  
2957  static int
2958  errorq_walk_init(mdb_walk_state_t *wsp)
2959  {
2960  	if (wsp->walk_addr == NULL &&
2961  	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
2962  		mdb_warn("failed to read errorq_list");
2963  		return (WALK_ERR);
2964  	}
2965  
2966  	return (WALK_NEXT);
2967  }
2968  
2969  static int
2970  errorq_walk_step(mdb_walk_state_t *wsp)
2971  {
2972  	uintptr_t addr = wsp->walk_addr;
2973  	errorq_t eq;
2974  
2975  	if (addr == NULL)
2976  		return (WALK_DONE);
2977  
2978  	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
2979  		mdb_warn("failed to read errorq at %p", addr);
2980  		return (WALK_ERR);
2981  	}
2982  
2983  	wsp->walk_addr = (uintptr_t)eq.eq_next;
2984  	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
2985  }
2986  
2987  typedef struct eqd_walk_data {
2988  	uintptr_t *eqd_stack;
2989  	void *eqd_buf;
2990  	ulong_t eqd_qpos;
2991  	ulong_t eqd_qlen;
2992  	size_t eqd_size;
2993  } eqd_walk_data_t;
2994  
2995  /*
2996   * In order to walk the list of pending error queue elements, we push the
2997   * addresses of the corresponding data buffers in to the eqd_stack array.
2998   * The error lists are in reverse chronological order when iterating using
2999   * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3000   * walker client gets addresses in order from oldest error to newest error.
3001   */
3002  static void
3003  eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3004  {
3005  	errorq_elem_t eqe;
3006  
3007  	while (addr != NULL) {
3008  		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3009  			mdb_warn("failed to read errorq element at %p", addr);
3010  			break;
3011  		}
3012  
3013  		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3014  			mdb_warn("errorq is overfull -- more than %lu "
3015  			    "elems found\n", eqdp->eqd_qlen);
3016  			break;
3017  		}
3018  
3019  		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3020  		addr = (uintptr_t)eqe.eqe_prev;
3021  	}
3022  }
3023  
3024  static int
3025  eqd_walk_init(mdb_walk_state_t *wsp)
3026  {
3027  	eqd_walk_data_t *eqdp;
3028  	errorq_elem_t eqe, *addr;
3029  	errorq_t eq;
3030  	ulong_t i;
3031  
3032  	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3033  		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3034  		return (WALK_ERR);
3035  	}
3036  
3037  	if (eq.eq_ptail != NULL &&
3038  	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3039  		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3040  		return (WALK_ERR);
3041  	}
3042  
3043  	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3044  	wsp->walk_data = eqdp;
3045  
3046  	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3047  	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3048  	eqdp->eqd_qlen = eq.eq_qlen;
3049  	eqdp->eqd_qpos = 0;
3050  	eqdp->eqd_size = eq.eq_size;
3051  
3052  	/*
3053  	 * The newest elements in the queue are on the pending list, so we
3054  	 * push those on to our stack first.
3055  	 */
3056  	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3057  
3058  	/*
3059  	 * If eq_ptail is set, it may point to a subset of the errors on the
3060  	 * pending list in the event a casptr() failed; if ptail's data is
3061  	 * already in our stack, NULL out eq_ptail and ignore it.
3062  	 */
3063  	if (eq.eq_ptail != NULL) {
3064  		for (i = 0; i < eqdp->eqd_qpos; i++) {
3065  			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3066  				eq.eq_ptail = NULL;
3067  				break;
3068  			}
3069  		}
3070  	}
3071  
3072  	/*
3073  	 * If eq_phead is set, it has the processing list in order from oldest
3074  	 * to newest.  Use this to recompute eq_ptail as best we can and then
3075  	 * we nicely fall into eqd_push_list() of eq_ptail below.
3076  	 */
3077  	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3078  	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3079  		eq.eq_ptail = addr;
3080  
3081  	/*
3082  	 * The oldest elements in the queue are on the processing list, subject
3083  	 * to machinations in the if-clauses above.  Push any such elements.
3084  	 */
3085  	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3086  	return (WALK_NEXT);
3087  }
3088  
3089  static int
3090  eqd_walk_step(mdb_walk_state_t *wsp)
3091  {
3092  	eqd_walk_data_t *eqdp = wsp->walk_data;
3093  	uintptr_t addr;
3094  
3095  	if (eqdp->eqd_qpos == 0)
3096  		return (WALK_DONE);
3097  
3098  	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3099  
3100  	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3101  		mdb_warn("failed to read errorq data at %p", addr);
3102  		return (WALK_ERR);
3103  	}
3104  
3105  	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3106  }
3107  
3108  static void
3109  eqd_walk_fini(mdb_walk_state_t *wsp)
3110  {
3111  	eqd_walk_data_t *eqdp = wsp->walk_data;
3112  
3113  	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3114  	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3115  	mdb_free(eqdp, sizeof (eqd_walk_data_t));
3116  }
3117  
3118  #define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3119  
3120  static int
3121  errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3122  {
3123  	int i;
3124  	errorq_t eq;
3125  	uint_t opt_v = FALSE;
3126  
3127  	if (!(flags & DCMD_ADDRSPEC)) {
3128  		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3129  			mdb_warn("can't walk 'errorq'");
3130  			return (DCMD_ERR);
3131  		}
3132  		return (DCMD_OK);
3133  	}
3134  
3135  	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3136  	argc -= i;
3137  	argv += i;
3138  
3139  	if (argc != 0)
3140  		return (DCMD_USAGE);
3141  
3142  	if (opt_v || DCMD_HDRSPEC(flags)) {
3143  		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3144  		    "ADDR", "NAME", "S", "V", "N");
3145  		if (!opt_v) {
3146  			mdb_printf("%7s %7s %7s%</u>\n",
3147  			    "ACCEPT", "DROP", "LOG");
3148  		} else {
3149  			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3150  			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3151  		}
3152  	}
3153  
3154  	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3155  		mdb_warn("failed to read errorq at %p", addr);
3156  		return (DCMD_ERR);
3157  	}
3158  
3159  	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3160  	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3161  	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3162  	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3163  
3164  	if (!opt_v) {
3165  		mdb_printf("%7llu %7llu %7llu\n",
3166  		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3167  		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3168  		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3169  	} else {
3170  		mdb_printf("%5s %6lu %6lu %3u %a\n",
3171  		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3172  		mdb_printf("%38s\n%41s"
3173  		    "%12s %llu\n"
3174  		    "%53s %llu\n"
3175  		    "%53s %llu\n"
3176  		    "%53s %llu\n"
3177  		    "%53s %llu\n"
3178  		    "%53s %llu\n"
3179  		    "%53s %llu\n"
3180  		    "%53s %llu\n\n",
3181  		    "|", "+-> ",
3182  		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
3183  		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
3184  		    "LOGGED",		EQKSVAL(eq, eqk_logged),
3185  		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
3186  		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
3187  		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
3188  		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
3189  		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
3190  	}
3191  
3192  	return (DCMD_OK);
3193  }
3194  
3195  /*ARGSUSED*/
3196  static int
3197  panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3198  {
3199  	cpu_t panic_cpu;
3200  	kthread_t *panic_thread;
3201  	void *buf;
3202  	panic_data_t *pd;
3203  	int i, n;
3204  
3205  	if (!mdb_prop_postmortem) {
3206  		mdb_warn("panicinfo can only be run on a system "
3207  		    "dump; see dumpadm(1M)\n");
3208  		return (DCMD_ERR);
3209  	}
3210  
3211  	if (flags & DCMD_ADDRSPEC || argc != 0)
3212  		return (DCMD_USAGE);
3213  
3214  	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3215  		mdb_warn("failed to read 'panic_cpu'");
3216  	else
3217  		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3218  
3219  	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3220  		mdb_warn("failed to read 'panic_thread'");
3221  	else
3222  		mdb_printf("%16s %?p\n", "thread", panic_thread);
3223  
3224  	buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3225  	pd = (panic_data_t *)buf;
3226  
3227  	if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3228  	    pd->pd_version != PANICBUFVERS) {
3229  		mdb_warn("failed to read 'panicbuf'");
3230  		mdb_free(buf, PANICBUFSIZE);
3231  		return (DCMD_ERR);
3232  	}
3233  
3234  	mdb_printf("%16s %s\n", "message",  (char *)buf + pd->pd_msgoff);
3235  
3236  	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3237  	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3238  
3239  	for (i = 0; i < n; i++)
3240  		mdb_printf("%16s %?llx\n",
3241  		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3242  
3243  	mdb_free(buf, PANICBUFSIZE);
3244  	return (DCMD_OK);
3245  }
3246  
3247  static const mdb_dcmd_t dcmds[] = {
3248  
3249  	/* from genunix.c */
3250  	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
3251  	{ "as2proc", ":", "convert as to proc_t address", as2proc },
3252  	{ "binding_hash_entry", ":", "print driver names hash table entry",
3253  		binding_hash_entry },
3254  	{ "callout", NULL, "print callout table", callout },
3255  	{ "class", NULL, "print process scheduler classes", class },
3256  	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
3257  	{ "did2thread", "? kt_did", "find kernel thread for this id",
3258  		did2thread },
3259  	{ "errorq", "?[-v]", "display kernel error queues", errorq },
3260  	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
3261  	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
3262  	{ "lminfo", NULL, "print lock manager information", lminfo },
3263  	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
3264  	{ "panicinfo", NULL, "print panic information", panicinfo },
3265  	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
3266  	{ "pmap", ":[-q]", "print process memory map", pmap },
3267  	{ "project", NULL, "display kernel project(s)", project },
3268  	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
3269  	{ "pgrep", "[-x] [-n | -o] pattern",
3270  		"pattern match against all processes", pgrep },
3271  	{ "ptree", NULL, "print process tree", ptree },
3272  	{ "seg", ":", "print address space segment", seg },
3273  	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3274  		sysevent},
3275  	{ "sysevent_channel", "?", "print sysevent channel database",
3276  		sysevent_channel},
3277  	{ "sysevent_class_list", ":", "print sysevent class list",
3278  		sysevent_class_list},
3279  	{ "sysevent_subclass_list", ":",
3280  		"print sysevent subclass list", sysevent_subclass_list},
3281  	{ "system", NULL, "print contents of /etc/system file", sysfile },
3282  	{ "task", NULL, "display kernel task(s)", task },
3283  	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
3284  	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3285  	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
3286  	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
3287  	    whereopen },
3288  
3289  	/* from zone.c */
3290  	{ "zone", "?", "display kernel zone(s)", zoneprt },
3291  	{ "zsd", ":[zsd key]", "lookup zsd value from a key", zsd },
3292  
3293  	/* from bio.c */
3294  	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
3295  
3296  	/* from contract.c */
3297  	{ "contract", "?", "display a contract", cmd_contract },
3298  	{ "ctevent", ":", "display a contract event", cmd_ctevent },
3299  	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
3300  
3301  	/* from cpupart.c */
3302  	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
3303  
3304  	/* from cyclic.c */
3305  	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
3306  	{ "cycid", "?", "dump a cyclic id", cycid },
3307  	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
3308  	{ "cyclic", ":", "developer information", cyclic },
3309  	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
3310  
3311  	/* from devinfo.c */
3312  	{ "devbindings", "?[-qs] [device-name | major-num]",
3313  	    "print devinfo nodes bound to device-name or major-num",
3314  	    devbindings, devinfo_help },
3315  	{ "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
3316  	    devinfo_help },
3317  	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3318  	    devinfo_audit },
3319  	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
3320  	    devinfo_audit_log },
3321  	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3322  	    devinfo_audit_node },
3323  	{ "devinfo2driver", ":", "find driver name for this devinfo node",
3324  	    devinfo2driver },
3325  	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
3326  	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
3327  	    dev2major },
3328  	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
3329  	    dev2minor },
3330  	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
3331  	    devt },
3332  	{ "major2name", "?<major-num>", "convert major number to dev name",
3333  	    major2name },
3334  	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
3335  	    minornodes },
3336  	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
3337  	    modctl2devinfo },
3338  	{ "name2major", "<dev-name>", "convert dev name to major number",
3339  	    name2major },
3340  	{ "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3341  	{ "softstate", ":<instance>", "retrieve soft-state pointer",
3342  	    softstate },
3343  	{ "devinfo_fm", ":", "devinfo fault managment configuration",
3344  	    devinfo_fm },
3345  	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
3346  	    devinfo_fmce},
3347  
3348  	/* from fm.c */
3349  	{ "ereport", "[-v]", "print ereports logged in dump",
3350  	    ereport },
3351  
3352  	/* from findstack.c */
3353  	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
3354  	{ "findstack_debug", NULL, "toggle findstack debugging",
3355  		findstack_debug },
3356  
3357  	/* from kgrep.c + genunix.c */
3358  	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
3359  		kgrep_help },
3360  
3361  	/* from kmem.c */
3362  	{ "allocdby", ":", "given a thread, print its allocated buffers",
3363  		allocdby },
3364  	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
3365  		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
3366  	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
3367  	{ "kmalog", "?[ fail | slab ]",
3368  	    "display kmem transaction log and stack traces", kmalog },
3369  	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
3370  	    kmastat },
3371  	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
3372  		"of the kmem allocator", kmausers, kmausers_help },
3373  	{ "kmem_cache", "?", "print kernel memory caches", kmem_cache },
3374  	{ "kmem_slabs", "?[-v] [-n cache] [-b maxbins] [-B minbinsize]",
3375  		"display slab usage per kmem cache",
3376  		kmem_slabs, kmem_slabs_help },
3377  	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
3378  	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
3379  	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
3380  		kmem_verify },
3381  	{ "vmem", "?", "print a vmem_t", vmem },
3382  	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
3383  		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
3384  		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
3385  	{ "whatis", ":[-abiv]", "given an address, return information", whatis,
3386  		whatis_help },
3387  	{ "whatthread", ":[-v]", "print threads whose stack contains the "
3388  		"given address", whatthread },
3389  
3390  	/* from ldi.c */
3391  	{ "ldi_handle", "?[-i]", "display a layered driver handle",
3392  	    ldi_handle, ldi_handle_help },
3393  	{ "ldi_ident", NULL, "display a layered driver identifier",
3394  	    ldi_ident, ldi_ident_help },
3395  
3396  	/* from leaky.c + leaky_subr.c */
3397  	{ "findleaks", FINDLEAKS_USAGE,
3398  	    "search for potential kernel memory leaks", findleaks,
3399  	    findleaks_help },
3400  
3401  	/* from lgrp.c */
3402  	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
3403  	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
3404  
3405  	/* from log.c */
3406  	{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
3407  
3408  	/* from memory.c */
3409  	{ "page", "?", "display a summarized page_t", page },
3410  	{ "memstat", NULL, "display memory usage summary", memstat },
3411  	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
3412  	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
3413  
3414  	/* from mmd.c */
3415  	{ "multidata", ":[-sv]", "display a summarized multidata_t",
3416  		multidata },
3417  	{ "pattbl", ":", "display a summarized multidata attribute table",
3418  		pattbl },
3419  	{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
3420  		pattr2multidata },
3421  	{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
3422  		pdesc2slab },
3423  	{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
3424  	{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
3425  		slab2multidata },
3426  
3427  	/* from modhash.c */
3428  	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
3429  		"display information about one or all mod_hash structures",
3430  		modhash, modhash_help },
3431  	{ "modent", ":[-k | -v | -t type]",
3432  		"display information about a mod_hash_entry", modent,
3433  		modent_help },
3434  
3435  	/* from net.c */
3436  	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
3437  		mi },
3438  	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]",
3439  		"show network statistics", netstat },
3440  	{ "sonode", "?[-f inet | inet6 | unix | #] "
3441  		"[-t stream | dgram | raw | #] [-p #]",
3442  		"filter and display sonode", sonode },
3443  
3444  	/* from netstack.c */
3445  	{ "netstack", "", "show stack instances", netstack },
3446  
3447  	/* from nvpair.c */
3448  	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
3449  		nvpair_print },
3450  	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
3451  		print_nvlist },
3452  
3453  	/* from pg.c */
3454  	{ "pg", "?[-q]", "display a pg", pg},
3455  	/* from group.c */
3456  	{ "group", "?[-q]", "display a group", group},
3457  
3458  	/* from log.c */
3459  	/* from rctl.c */
3460  	{ "rctl_dict", "?", "print systemwide default rctl definitions",
3461  		rctl_dict },
3462  	{ "rctl_list", ":[handle]", "print rctls for the given proc",
3463  		rctl_list },
3464  	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
3465  		rctl },
3466  	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
3467  		"sequence", rctl_validate },
3468  
3469  	/* from sobj.c */
3470  	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
3471  	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
3472  		mutex_help },
3473  	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
3474  	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
3475  	{ "turnstile", "?", "display a turnstile", turnstile },
3476  
3477  	/* from stream.c */
3478  	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
3479  		"print an mblk", mblk_prt, mblk_help },
3480  	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
3481  	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
3482  		mblk2dblk },
3483  	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
3484  	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
3485  	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
3486  	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
3487  	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
3488  	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
3489  		"filter and display STREAM queue", queue, queue_help },
3490  	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
3491  		"filter and display STREAM head", stdata, stdata_help },
3492  	{ "str2mate", ":", "print mate of this stream", str2mate },
3493  	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
3494  	{ "stream", ":", "display STREAM", stream },
3495  	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
3496  	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
3497  		"filter and display STREAM sync queue", syncq, syncq_help },
3498  	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
3499  
3500  	/* from thread.c */
3501  	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
3502  		thread_help },
3503  	{ "threadlist", "?[-t] [-v [count]]",
3504  		"display threads and associated C stack traces", threadlist,
3505  		threadlist_help },
3506  
3507  	/* from tsd.c */
3508  	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
3509  	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
3510  
3511  	/*
3512  	 * typegraph does not work under kmdb, as it requires too much memory
3513  	 * for its internal data structures.
3514  	 */
3515  #ifndef _KMDB
3516  	/* from typegraph.c */
3517  	{ "findlocks", ":", "find locks held by specified thread", findlocks },
3518  	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
3519  		findfalse },
3520  	{ "typegraph", NULL, "build type graph", typegraph },
3521  	{ "istype", ":type", "manually set object type", istype },
3522  	{ "notype", ":", "manually clear object type", notype },
3523  	{ "whattype", ":", "determine object type", whattype },
3524  #endif
3525  
3526  	/* from vfs.c */
3527  	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
3528  	{ "pfiles", ":[-fp]", "print process file information", pfiles,
3529  		pfiles_help },
3530  
3531  	/* from mdi.c */
3532  	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
3533  		"and detailed pi_prop list", mdipi },
3534  	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
3535  		mdiprops },
3536  	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
3537  		"list all paths", mdiphci },
3538  	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
3539  		"all phcis", mdivhci },
3540  	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
3541  		"client links", mdiclient_paths },
3542  	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
3543  		"phci links", mdiphci_paths },
3544  	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
3545  		mdiphcis },
3546  
3547  	{ NULL }
3548  };
3549  
3550  static const mdb_walker_t walkers[] = {
3551  
3552  	/* from genunix.c */
3553  	{ "anon", "given an amp, list of anon structures",
3554  		anon_walk_init, anon_walk_step, anon_walk_fini },
3555  	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
3556  	{ "ereportq_dump", "walk list of ereports in dump error queue",
3557  		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
3558  	{ "ereportq_pend", "walk list of ereports in pending error queue",
3559  		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
3560  	{ "errorq", "walk list of system error queues",
3561  		errorq_walk_init, errorq_walk_step, NULL },
3562  	{ "errorq_data", "walk pending error queue data buffers",
3563  		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
3564  	{ "allfile", "given a proc pointer, list all file pointers",
3565  		file_walk_init, allfile_walk_step, file_walk_fini },
3566  	{ "file", "given a proc pointer, list of open file pointers",
3567  		file_walk_init, file_walk_step, file_walk_fini },
3568  	{ "lock_descriptor", "walk lock_descriptor_t structures",
3569  		ld_walk_init, ld_walk_step, NULL },
3570  	{ "lock_graph", "walk lock graph",
3571  		lg_walk_init, lg_walk_step, NULL },
3572  	{ "port", "given a proc pointer, list of created event ports",
3573  		port_walk_init, port_walk_step, NULL },
3574  	{ "portev", "given a port pointer, list of events in the queue",
3575  		portev_walk_init, portev_walk_step, portev_walk_fini },
3576  	{ "proc", "list of active proc_t structures",
3577  		proc_walk_init, proc_walk_step, proc_walk_fini },
3578  	{ "projects", "walk a list of kernel projects",
3579  		project_walk_init, project_walk_step, NULL },
3580  	{ "seg", "given an as, list of segments",
3581  		seg_walk_init, avl_walk_step, avl_walk_fini },
3582  	{ "sysevent_pend", "walk sysevent pending queue",
3583  		sysevent_pend_walk_init, sysevent_walk_step,
3584  		sysevent_walk_fini},
3585  	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
3586  		sysevent_walk_step, sysevent_walk_fini},
3587  	{ "sysevent_channel", "walk sysevent channel subscriptions",
3588  		sysevent_channel_walk_init, sysevent_channel_walk_step,
3589  		sysevent_channel_walk_fini},
3590  	{ "sysevent_class_list", "walk sysevent subscription's class list",
3591  		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
3592  		sysevent_class_list_walk_fini},
3593  	{ "sysevent_subclass_list",
3594  		"walk sysevent subscription's subclass list",
3595  		sysevent_subclass_list_walk_init,
3596  		sysevent_subclass_list_walk_step,
3597  		sysevent_subclass_list_walk_fini},
3598  	{ "task", "given a task pointer, walk its processes",
3599  		task_walk_init, task_walk_step, NULL },
3600  	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
3601  		taskq_walk_init, taskq_walk_step, NULL, NULL },
3602  
3603  	/* from avl.c */
3604  	{ AVL_WALK_NAME, AVL_WALK_DESC,
3605  		avl_walk_init, avl_walk_step, avl_walk_fini },
3606  
3607  	/* from zone.c */
3608  	{ "zone", "walk a list of kernel zones",
3609  		zone_walk_init, zone_walk_step, NULL },
3610  	{ "zsd", "walk list of zsd entries for a zone",
3611  		zsd_walk_init, zsd_walk_step, NULL },
3612  
3613  	/* from bio.c */
3614  	{ "buf", "walk the bio buf hash",
3615  		buf_walk_init, buf_walk_step, buf_walk_fini },
3616  
3617  	/* from contract.c */
3618  	{ "contract", "walk all contracts, or those of the specified type",
3619  		ct_walk_init, generic_walk_step, NULL },
3620  	{ "ct_event", "walk events on a contract event queue",
3621  		ct_event_walk_init, generic_walk_step, NULL },
3622  	{ "ct_listener", "walk contract event queue listeners",
3623  		ct_listener_walk_init, generic_walk_step, NULL },
3624  
3625  	/* from cpupart.c */
3626  	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
3627  		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
3628  		NULL },
3629  	{ "cpupart_walk", "walk the set of cpu partitions",
3630  		cpupart_walk_init, cpupart_walk_step, NULL },
3631  
3632  	/* from ctxop.c */
3633  	{ "ctxop", "walk list of context ops on a thread",
3634  		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
3635  
3636  	/* from cyclic.c */
3637  	{ "cyccpu", "walk per-CPU cyc_cpu structures",
3638  		cyccpu_walk_init, cyccpu_walk_step, NULL },
3639  	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
3640  		cycomni_walk_init, cycomni_walk_step, NULL },
3641  	{ "cyctrace", "walk cyclic trace buffer",
3642  		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
3643  
3644  	/* from devinfo.c */
3645  	{ "binding_hash", "walk all entries in binding hash table",
3646  		binding_hash_walk_init, binding_hash_walk_step, NULL },
3647  	{ "devinfo", "walk devinfo tree or subtree",
3648  		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
3649  	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
3650  		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
3651  		devinfo_audit_log_walk_fini},
3652  	{ "devinfo_audit_node", "walk per-devinfo audit history",
3653  		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
3654  		devinfo_audit_node_walk_fini},
3655  	{ "devinfo_children", "walk children of devinfo node",
3656  		devinfo_children_walk_init, devinfo_children_walk_step,
3657  		devinfo_children_walk_fini },
3658  	{ "devinfo_parents", "walk ancestors of devinfo node",
3659  		devinfo_parents_walk_init, devinfo_parents_walk_step,
3660  		devinfo_parents_walk_fini },
3661  	{ "devinfo_siblings", "walk siblings of devinfo node",
3662  		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
3663  	{ "devi_next", "walk devinfo list",
3664  		NULL, devi_next_walk_step, NULL },
3665  	{ "devnames", "walk devnames array",
3666  		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
3667  	{ "minornode", "given a devinfo node, walk minor nodes",
3668  		minornode_walk_init, minornode_walk_step, NULL },
3669  	{ "softstate",
3670  		"given an i_ddi_soft_state*, list all in-use driver stateps",
3671  		soft_state_walk_init, soft_state_walk_step,
3672  		NULL, NULL },
3673  	{ "softstate_all",
3674  		"given an i_ddi_soft_state*, list all driver stateps",
3675  		soft_state_walk_init, soft_state_all_walk_step,
3676  		NULL, NULL },
3677  	{ "devinfo_fmc",
3678  		"walk a fault management handle cache active list",
3679  		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
3680  
3681  	/* from kmem.c */
3682  	{ "allocdby", "given a thread, walk its allocated bufctls",
3683  		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
3684  	{ "bufctl", "walk a kmem cache's bufctls",
3685  		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
3686  	{ "bufctl_history", "walk the available history of a bufctl",
3687  		bufctl_history_walk_init, bufctl_history_walk_step,
3688  		bufctl_history_walk_fini },
3689  	{ "freedby", "given a thread, walk its freed bufctls",
3690  		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
3691  	{ "freectl", "walk a kmem cache's free bufctls",
3692  		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
3693  	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
3694  		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
3695  	{ "freemem", "walk a kmem cache's free memory",
3696  		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
3697  	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
3698  		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
3699  	{ "kmem", "walk a kmem cache",
3700  		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
3701  	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
3702  		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
3703  	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
3704  		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
3705  	{ "kmem_log", "walk the kmem transaction log",
3706  		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
3707  	{ "kmem_slab", "given a kmem cache, walk its slabs",
3708  		kmem_slab_walk_init, kmem_slab_walk_step, NULL },
3709  	{ "kmem_slab_partial",
3710  	    "given a kmem cache, walk its partially allocated slabs (min 1)",
3711  		kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL },
3712  	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
3713  		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
3714  	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
3715  		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3716  	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
3717  		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3718  	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
3719  		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
3720  	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
3721  		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3722  	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
3723  		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
3724  
3725  	/* from ldi.c */
3726  	{ "ldi_handle", "walk the layered driver handle hash",
3727  		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
3728  	{ "ldi_ident", "walk the layered driver identifier hash",
3729  		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
3730  
3731  	/* from leaky.c + leaky_subr.c */
3732  	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
3733  	    "stack trace",
3734  		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
3735  	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
3736  	    "leaks w/ same stack trace",
3737  		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
3738  
3739  	/* from lgrp.c */
3740  	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
3741  		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
3742  	{ "lgrptbl", "walk lgroup table",
3743  		lgrp_walk_init, lgrp_walk_step, NULL },
3744  	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
3745  		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
3746  	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
3747  		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
3748  	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
3749  		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
3750  
3751  	/* from group.c */
3752  	{ "group", "walk all elements of a group",
3753  		group_walk_init, group_walk_step, NULL },
3754  
3755  	/* from list.c */
3756  	{ LIST_WALK_NAME, LIST_WALK_DESC,
3757  		list_walk_init, list_walk_step, list_walk_fini },
3758  
3759  	/* from memory.c */
3760  	{ "page", "walk all pages, or those from the specified vnode",
3761  		page_walk_init, page_walk_step, page_walk_fini },
3762  	{ "memlist", "walk specified memlist",
3763  		NULL, memlist_walk_step, NULL },
3764  	{ "swapinfo", "walk swapinfo structures",
3765  		swap_walk_init, swap_walk_step, NULL },
3766  
3767  	/* from mmd.c */
3768  	{ "pattr", "walk pattr_t structures", pattr_walk_init,
3769  		mmdq_walk_step, mmdq_walk_fini },
3770  	{ "pdesc", "walk pdesc_t structures",
3771  		pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
3772  	{ "pdesc_slab", "walk pdesc_slab_t structures",
3773  		pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
3774  
3775  	/* from modhash.c */
3776  	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
3777  		modhash_walk_step, NULL },
3778  	{ "modent", "walk list of entries in a given mod_hash",
3779  		modent_walk_init, modent_walk_step, modent_walk_fini },
3780  	{ "modchain", "walk list of entries in a given mod_hash_entry",
3781  		NULL, modchain_walk_step, NULL },
3782  
3783  	/* from net.c */
3784  	{ "ar", "walk ar_t structures using MI for all stacks",
3785  		mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg },
3786  	{ "icmp", "walk ICMP control structures using MI for all stacks",
3787  		mi_payload_walk_init, mi_payload_walk_step, NULL,
3788  		&mi_icmp_arg },
3789  	{ "ill", "walk ill_t structures using MI for all stacks",
3790  		mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg },
3791  
3792  	{ "mi", "given a MI_O, walk the MI",
3793  		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
3794  	{ "sonode", "given a sonode, walk its children",
3795  		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
3796  
3797  	{ "ar_stacks", "walk all the ar_stack_t",
3798  		ar_stacks_walk_init, ar_stacks_walk_step, NULL },
3799  	{ "icmp_stacks", "walk all the icmp_stack_t",
3800  		icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
3801  	{ "tcp_stacks", "walk all the tcp_stack_t",
3802  		tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
3803  	{ "udp_stacks", "walk all the udp_stack_t",
3804  		udp_stacks_walk_init, udp_stacks_walk_step, NULL },
3805  
3806  	/* from nvpair.c */
3807  	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
3808  		nvpair_walk_init, nvpair_walk_step, NULL },
3809  
3810  	/* from rctl.c */
3811  	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
3812  		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
3813  	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
3814  		rctl_set_walk_step, NULL },
3815  	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
3816  		rctl_val_walk_init, rctl_val_walk_step },
3817  
3818  	/* from sobj.c */
3819  	{ "blocked", "walk threads blocked on a given sobj",
3820  		blocked_walk_init, blocked_walk_step, NULL },
3821  	{ "wchan", "given a wchan, list of blocked threads",
3822  		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
3823  
3824  	/* from stream.c */
3825  	{ "b_cont", "walk mblk_t list using b_cont",
3826  		mblk_walk_init, b_cont_step, mblk_walk_fini },
3827  	{ "b_next", "walk mblk_t list using b_next",
3828  		mblk_walk_init, b_next_step, mblk_walk_fini },
3829  	{ "qlink", "walk queue_t list using q_link",
3830  		queue_walk_init, queue_link_step, queue_walk_fini },
3831  	{ "qnext", "walk queue_t list using q_next",
3832  		queue_walk_init, queue_next_step, queue_walk_fini },
3833  	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
3834  		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
3835  	{ "readq", "walk read queue side of stdata",
3836  		str_walk_init, strr_walk_step, str_walk_fini },
3837  	{ "writeq", "walk write queue side of stdata",
3838  		str_walk_init, strw_walk_step, str_walk_fini },
3839  
3840  	/* from thread.c */
3841  	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
3842  		deathrow_walk_init, deathrow_walk_step, NULL },
3843  	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
3844  		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
3845  	{ "cpupart_dispq",
3846  		"given a cpupart_t, walk threads in dispatcher queues",
3847  		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
3848  	{ "lwp_deathrow", "walk lwp_deathrow",
3849  		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
3850  	{ "thread", "global or per-process kthread_t structures",
3851  		thread_walk_init, thread_walk_step, thread_walk_fini },
3852  	{ "thread_deathrow", "walk threads on thread_deathrow",
3853  		thread_deathrow_walk_init, deathrow_walk_step, NULL },
3854  
3855  	/* from tsd.c */
3856  	{ "tsd", "walk list of thread-specific data",
3857  		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
3858  
3859  	/* from tsol.c */
3860  	{ "tnrh", "walk remote host cache structures",
3861  	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
3862  	{ "tnrhtp", "walk remote host template structures",
3863  	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
3864  
3865  	/*
3866  	 * typegraph does not work under kmdb, as it requires too much memory
3867  	 * for its internal data structures.
3868  	 */
3869  #ifndef _KMDB
3870  	/* from typegraph.c */
3871  	{ "typeconflict", "walk buffers with conflicting type inferences",
3872  		typegraph_walk_init, typeconflict_walk_step },
3873  	{ "typeunknown", "walk buffers with unknown types",
3874  		typegraph_walk_init, typeunknown_walk_step },
3875  #endif
3876  
3877  	/* from vfs.c */
3878  	{ "vfs", "walk file system list",
3879  		vfs_walk_init, vfs_walk_step },
3880  
3881  	/* from mdi.c */
3882  	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
3883  		mdi_pi_client_link_walk_init,
3884  		mdi_pi_client_link_walk_step,
3885  		mdi_pi_client_link_walk_fini },
3886  
3887  	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
3888  		mdi_pi_phci_link_walk_init,
3889  		mdi_pi_phci_link_walk_step,
3890  		mdi_pi_phci_link_walk_fini },
3891  
3892  	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
3893  		mdi_phci_ph_next_walk_init,
3894  		mdi_phci_ph_next_walk_step,
3895  		mdi_phci_ph_next_walk_fini },
3896  
3897  	/* from netstack.c */
3898  	{ "netstack", "walk a list of kernel netstacks",
3899  		netstack_walk_init, netstack_walk_step, NULL },
3900  
3901  	{ NULL }
3902  };
3903  
3904  static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
3905  
3906  const mdb_modinfo_t *
3907  _mdb_init(void)
3908  {
3909  	if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) {
3910  		mdb_warn("failed to read 'top_devinfo'");
3911  		return (NULL);
3912  	}
3913  
3914  	if (findstack_init() != DCMD_OK)
3915  		return (NULL);
3916  
3917  	kmem_init();
3918  
3919  	return (&modinfo);
3920  }
3921  
3922  void
3923  _mdb_fini(void)
3924  {
3925  	/*
3926  	 * Force ::findleaks to let go any cached memory
3927  	 */
3928  	leaky_cleanup(1);
3929  }
3930