1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <sys/dditypes.h> 53 #include <sys/ddi_impldefs.h> 54 #include <sys/sysmacros.h> 55 #include <sys/sysconf.h> 56 #include <sys/task.h> 57 #include <sys/project.h> 58 #include <sys/errorq_impl.h> 59 #include <sys/cred_impl.h> 60 #include <sys/zone.h> 61 #include <sys/panic.h> 62 #include <regex.h> 63 #include <sys/port_impl.h> 64 #include <sys/contract/process_impl.h> 65 66 #include "avl.h" 67 #include "bio.h" 68 #include "bitset.h" 69 #include "combined.h" 70 #include "contract.h" 71 #include "cpupart_mdb.h" 72 #include "cred.h" 73 #include "ctxop.h" 74 #include "cyclic.h" 75 #include "damap.h" 76 #include "ddi_periodic.h" 77 #include "devinfo.h" 78 #include "dnlc.h" 79 #include "findstack.h" 80 #include "fm.h" 81 #include "gcore.h" 82 #include "group.h" 83 #include "irm.h" 84 #include "kgrep.h" 85 #include "kmem.h" 86 #include "ldi.h" 87 #include "leaky.h" 88 #include "lgrp.h" 89 #include "list.h" 90 #include "log.h" 91 #include "mdi.h" 92 #include "memory.h" 93 #include "mmd.h" 94 #include "modhash.h" 95 #include "ndievents.h" 96 #include "net.h" 97 #include "netstack.h" 98 #include "nvpair.h" 99 #include "pci.h" 100 #include "pg.h" 101 #include "rctl.h" 102 #include "sobj.h" 103 #include "streams.h" 104 #include "sysevent.h" 105 #include "taskq.h" 106 #include "thread.h" 107 #include "tsd.h" 108 #include "tsol.h" 109 #include "typegraph.h" 110 #include "vfs.h" 111 #include "zone.h" 112 #include "hotplug.h" 113 114 /* 115 * Surely this is defined somewhere... 116 */ 117 #define NINTR 16 118 119 #define KILOS 10 120 #define MEGS 20 121 #define GIGS 30 122 123 #ifndef STACK_BIAS 124 #define STACK_BIAS 0 125 #endif 126 127 static char 128 pstat2ch(uchar_t state) 129 { 130 switch (state) { 131 case SSLEEP: return ('S'); 132 case SRUN: return ('R'); 133 case SZOMB: return ('Z'); 134 case SIDL: return ('I'); 135 case SONPROC: return ('O'); 136 case SSTOP: return ('T'); 137 case SWAIT: return ('W'); 138 default: return ('?'); 139 } 140 } 141 142 #define PS_PRTTHREADS 0x1 143 #define PS_PRTLWPS 0x2 144 #define PS_PSARGS 0x4 145 #define PS_TASKS 0x8 146 #define PS_PROJECTS 0x10 147 #define PS_ZONES 0x20 148 #define PS_SERVICES 0x40 149 150 static int 151 ps_threadprint(uintptr_t addr, const void *data, void *private) 152 { 153 const kthread_t *t = (const kthread_t *)data; 154 uint_t prt_flags = *((uint_t *)private); 155 156 static const mdb_bitmask_t t_state_bits[] = { 157 { "TS_FREE", UINT_MAX, TS_FREE }, 158 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 159 { "TS_RUN", TS_RUN, TS_RUN }, 160 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 161 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 162 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 163 { "TS_WAIT", TS_WAIT, TS_WAIT }, 164 { NULL, 0, 0 } 165 }; 166 167 if (prt_flags & PS_PRTTHREADS) 168 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 169 170 if (prt_flags & PS_PRTLWPS) { 171 char desc[128] = ""; 172 173 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc)); 174 175 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc); 176 } 177 178 return (WALK_NEXT); 179 } 180 181 typedef struct mdb_pflags_proc { 182 struct pid *p_pidp; 183 ushort_t p_pidflag; 184 uint_t p_proc_flag; 185 uint_t p_flag; 186 } mdb_pflags_proc_t; 187 188 static int 189 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 190 { 191 mdb_pflags_proc_t pr; 192 struct pid pid; 193 194 static const mdb_bitmask_t p_flag_bits[] = { 195 { "SSYS", SSYS, SSYS }, 196 { "SEXITING", SEXITING, SEXITING }, 197 { "SITBUSY", SITBUSY, SITBUSY }, 198 { "SFORKING", SFORKING, SFORKING }, 199 { "SWATCHOK", SWATCHOK, SWATCHOK }, 200 { "SKILLED", SKILLED, SKILLED }, 201 { "SSCONT", SSCONT, SSCONT }, 202 { "SZONETOP", SZONETOP, SZONETOP }, 203 { "SEXTKILLED", SEXTKILLED, SEXTKILLED }, 204 { "SUGID", SUGID, SUGID }, 205 { "SEXECED", SEXECED, SEXECED }, 206 { "SJCTL", SJCTL, SJCTL }, 207 { "SNOWAIT", SNOWAIT, SNOWAIT }, 208 { "SVFORK", SVFORK, SVFORK }, 209 { "SVFWAIT", SVFWAIT, SVFWAIT }, 210 { "SEXITLWPS", SEXITLWPS, SEXITLWPS }, 211 { "SHOLDFORK", SHOLDFORK, SHOLDFORK }, 212 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 }, 213 { "SCOREDUMP", SCOREDUMP, SCOREDUMP }, 214 { "SMSACCT", SMSACCT, SMSACCT }, 215 { "SLWPWRAP", SLWPWRAP, SLWPWRAP }, 216 { "SAUTOLPG", SAUTOLPG, SAUTOLPG }, 217 { "SNOCD", SNOCD, SNOCD }, 218 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH }, 219 { "SMSFORK", SMSFORK, SMSFORK }, 220 { "SDOCORE", SDOCORE, SDOCORE }, 221 { NULL, 0, 0 } 222 }; 223 224 static const mdb_bitmask_t p_pidflag_bits[] = { 225 { "CLDPEND", CLDPEND, CLDPEND }, 226 { "CLDCONT", CLDCONT, CLDCONT }, 227 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD }, 228 { "CLDWAITPID", CLDWAITPID, CLDWAITPID }, 229 { NULL, 0, 0 } 230 }; 231 232 static const mdb_bitmask_t p_proc_flag_bits[] = { 233 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE }, 234 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE }, 235 { "P_PR_FORK", P_PR_FORK, P_PR_FORK }, 236 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK }, 237 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC }, 238 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC }, 239 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ }, 240 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL }, 241 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL }, 242 { NULL, 0, 0 } 243 }; 244 245 if (!(flags & DCMD_ADDRSPEC)) { 246 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) { 247 mdb_warn("can't walk 'proc'"); 248 return (DCMD_ERR); 249 } 250 return (DCMD_OK); 251 } 252 253 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 || 254 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) { 255 mdb_warn("cannot read proc_t or pid"); 256 return (DCMD_ERR); 257 } 258 259 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id); 260 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag, 261 p_flag_bits); 262 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag, 263 p_pidflag_bits); 264 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag, 265 p_proc_flag_bits); 266 267 return (DCMD_OK); 268 } 269 270 typedef struct mdb_ps_proc { 271 char p_stat; 272 struct pid *p_pidp; 273 struct pid *p_pgidp; 274 struct cred *p_cred; 275 struct sess *p_sessp; 276 struct task *p_task; 277 struct zone *p_zone; 278 struct cont_process *p_ct_process; 279 pid_t p_ppid; 280 uint_t p_flag; 281 struct { 282 char u_comm[MAXCOMLEN + 1]; 283 char u_psargs[PSARGSZ]; 284 } p_user; 285 } mdb_ps_proc_t; 286 287 /* 288 * A reasonable enough limit. Note that we purposefully let this column over-run 289 * if needed. 290 */ 291 #define FMRI_LEN (128) 292 293 int 294 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 295 { 296 uint_t prt_flags = 0; 297 mdb_ps_proc_t pr; 298 struct pid pid, pgid, sid; 299 sess_t session; 300 cred_t cred; 301 task_t tk; 302 kproject_t pj; 303 zone_t zn; 304 struct cont_process cp; 305 char fmri[FMRI_LEN] = ""; 306 307 if (!(flags & DCMD_ADDRSPEC)) { 308 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 309 mdb_warn("can't walk 'proc'"); 310 return (DCMD_ERR); 311 } 312 return (DCMD_OK); 313 } 314 315 if (mdb_getopts(argc, argv, 316 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 317 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 318 's', MDB_OPT_SETBITS, PS_SERVICES, &prt_flags, 319 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 320 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 321 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 322 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 323 return (DCMD_USAGE); 324 325 if (DCMD_HDRSPEC(flags)) { 326 mdb_printf("%<u>%-1s %-6s %-6s %-6s %-6s ", 327 "S", "PID", "PPID", "PGID", "SID"); 328 if (prt_flags & PS_TASKS) 329 mdb_printf("%-5s ", "TASK"); 330 if (prt_flags & PS_PROJECTS) 331 mdb_printf("%-5s ", "PROJ"); 332 if (prt_flags & PS_ZONES) 333 mdb_printf("%-5s ", "ZONE"); 334 if (prt_flags & PS_SERVICES) 335 mdb_printf("%-40s ", "SERVICE"); 336 mdb_printf("%-6s %-10s %-?s %-s%</u>\n", 337 "UID", "FLAGS", "ADDR", "NAME"); 338 } 339 340 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1) 341 return (DCMD_ERR); 342 343 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 344 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 345 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 346 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 347 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 348 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 349 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 350 if (prt_flags & PS_PROJECTS) 351 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 352 if (prt_flags & PS_ZONES) 353 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone); 354 if ((prt_flags & PS_SERVICES) && pr.p_ct_process != NULL) { 355 mdb_vread(&cp, sizeof (cp), (uintptr_t)pr.p_ct_process); 356 357 if (mdb_read_refstr((uintptr_t)cp.conp_svc_fmri, fmri, 358 sizeof (fmri)) <= 0) 359 (void) strlcpy(fmri, "?", sizeof (fmri)); 360 361 /* Strip any standard prefix and suffix. */ 362 if (strncmp(fmri, "svc:/", sizeof ("svc:/") - 1) == 0) { 363 char *i = fmri; 364 char *j = fmri + sizeof ("svc:/") - 1; 365 for (; *j != '\0'; i++, j++) { 366 if (strcmp(j, ":default") == 0) 367 break; 368 *i = *j; 369 } 370 371 *i = '\0'; 372 } 373 } 374 375 mdb_printf("%-c %-6d %-6d %-6d %-6d ", 376 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 377 sid.pid_id); 378 if (prt_flags & PS_TASKS) 379 mdb_printf("%-5d ", tk.tk_tkid); 380 if (prt_flags & PS_PROJECTS) 381 mdb_printf("%-5d ", pj.kpj_id); 382 if (prt_flags & PS_ZONES) 383 mdb_printf("%-5d ", zn.zone_id); 384 if (prt_flags & PS_SERVICES) 385 mdb_printf("%-40s ", fmri); 386 mdb_printf("%-6d 0x%08x %0?p %-s\n", 387 cred.cr_uid, pr.p_flag, addr, 388 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 389 390 if (prt_flags & ~PS_PSARGS) 391 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 392 393 return (DCMD_OK); 394 } 395 396 static void 397 ps_help(void) 398 { 399 mdb_printf("Display processes.\n\n" 400 "Options:\n" 401 " -f\tDisplay command arguments\n" 402 " -l\tDisplay LWPs\n" 403 " -T\tDisplay tasks\n" 404 " -P\tDisplay projects\n" 405 " -s\tDisplay SMF FMRI\n" 406 " -z\tDisplay zones\n" 407 " -t\tDisplay threads\n\n"); 408 409 mdb_printf("The resulting output is a table of the processes on the " 410 "system. The\n" 411 "columns in the output consist of a combination of the " 412 "following fields:\n\n"); 413 mdb_printf("S\tProcess state. Possible states are:\n" 414 "\tS\tSleeping (SSLEEP)\n" 415 "\tR\tRunnable (SRUN)\n" 416 "\tZ\tZombie (SZOMB)\n" 417 "\tI\tIdle (SIDL)\n" 418 "\tO\tOn Cpu (SONPROC)\n" 419 "\tT\tStopped (SSTOP)\n" 420 "\tW\tWaiting (SWAIT)\n"); 421 422 mdb_printf("PID\tProcess id.\n"); 423 mdb_printf("PPID\tParent process id.\n"); 424 mdb_printf("PGID\tProcess group id.\n"); 425 mdb_printf("SID\tProcess id of the session leader.\n"); 426 mdb_printf("TASK\tThe task id of the process.\n"); 427 mdb_printf("PROJ\tThe project id of the process.\n"); 428 mdb_printf("ZONE\tThe zone id of the process.\n"); 429 mdb_printf("SERVICE The SMF service FMRI of the process.\n"); 430 mdb_printf("UID\tThe user id of the process.\n"); 431 mdb_printf("FLAGS\tThe process flags (see ::pflags).\n"); 432 mdb_printf("ADDR\tThe kernel address of the proc_t structure of the " 433 "process\n"); 434 mdb_printf("NAME\tThe name (p_user.u_comm field) of the process. If " 435 "the -f flag\n" 436 "\tis specified, the arguments of the process are displayed.\n"); 437 } 438 439 #define PG_NEWEST 0x0001 440 #define PG_OLDEST 0x0002 441 #define PG_PIPE_OUT 0x0004 442 #define PG_EXACT_MATCH 0x0008 443 444 typedef struct pgrep_data { 445 uint_t pg_flags; 446 uint_t pg_psflags; 447 uintptr_t pg_xaddr; 448 hrtime_t pg_xstart; 449 const char *pg_pat; 450 #ifndef _KMDB 451 regex_t pg_reg; 452 #endif 453 } pgrep_data_t; 454 455 typedef struct mdb_pgrep_proc { 456 struct { 457 timestruc_t u_start; 458 char u_comm[MAXCOMLEN + 1]; 459 } p_user; 460 } mdb_pgrep_proc_t; 461 462 /*ARGSUSED*/ 463 static int 464 pgrep_cb(uintptr_t addr, const void *ignored, void *data) 465 { 466 mdb_pgrep_proc_t p; 467 pgrep_data_t *pgp = data; 468 #ifndef _KMDB 469 regmatch_t pmatch; 470 #endif 471 472 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1) 473 return (WALK_ERR); 474 475 /* 476 * kmdb doesn't have access to the reg* functions, so we fall back 477 * to strstr/strcmp. 478 */ 479 #ifdef _KMDB 480 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 481 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) : 482 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL)) 483 return (WALK_NEXT); 484 #else 485 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0) 486 return (WALK_NEXT); 487 488 if ((pgp->pg_flags & PG_EXACT_MATCH) && 489 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0')) 490 return (WALK_NEXT); 491 #endif 492 493 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 494 hrtime_t start; 495 496 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC + 497 p.p_user.u_start.tv_nsec; 498 499 if (pgp->pg_flags & PG_NEWEST) { 500 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) { 501 pgp->pg_xaddr = addr; 502 pgp->pg_xstart = start; 503 } 504 } else { 505 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) { 506 pgp->pg_xaddr = addr; 507 pgp->pg_xstart = start; 508 } 509 } 510 511 } else if (pgp->pg_flags & PG_PIPE_OUT) { 512 mdb_printf("%p\n", addr); 513 514 } else { 515 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 516 mdb_warn("can't invoke 'ps'"); 517 return (WALK_DONE); 518 } 519 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 520 } 521 522 return (WALK_NEXT); 523 } 524 525 /*ARGSUSED*/ 526 int 527 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 528 { 529 pgrep_data_t pg; 530 int i; 531 #ifndef _KMDB 532 int err; 533 #endif 534 535 if (flags & DCMD_ADDRSPEC) 536 return (DCMD_USAGE); 537 538 pg.pg_flags = 0; 539 pg.pg_xaddr = 0; 540 541 i = mdb_getopts(argc, argv, 542 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 543 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 544 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 545 NULL); 546 547 argc -= i; 548 argv += i; 549 550 if (argc != 1) 551 return (DCMD_USAGE); 552 553 /* 554 * -n and -o are mutually exclusive. 555 */ 556 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 557 return (DCMD_USAGE); 558 559 if (argv->a_type != MDB_TYPE_STRING) 560 return (DCMD_USAGE); 561 562 if (flags & DCMD_PIPE_OUT) 563 pg.pg_flags |= PG_PIPE_OUT; 564 565 pg.pg_pat = argv->a_un.a_str; 566 if (DCMD_HDRSPEC(flags)) 567 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 568 else 569 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 570 571 #ifndef _KMDB 572 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 573 size_t nbytes; 574 char *buf; 575 576 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 577 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 578 (void) regerror(err, &pg.pg_reg, buf, nbytes); 579 mdb_warn("%s\n", buf); 580 581 return (DCMD_ERR); 582 } 583 #endif 584 585 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 586 mdb_warn("can't walk 'proc'"); 587 return (DCMD_ERR); 588 } 589 590 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 591 if (pg.pg_flags & PG_PIPE_OUT) { 592 mdb_printf("%p\n", pg.pg_xaddr); 593 } else { 594 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 595 0, NULL) != 0) { 596 mdb_warn("can't invoke 'ps'"); 597 return (DCMD_ERR); 598 } 599 } 600 } 601 602 return (DCMD_OK); 603 } 604 605 int 606 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 607 { 608 task_t tk; 609 kproject_t pj; 610 611 if (!(flags & DCMD_ADDRSPEC)) { 612 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 613 mdb_warn("can't walk task_cache"); 614 return (DCMD_ERR); 615 } 616 return (DCMD_OK); 617 } 618 if (DCMD_HDRSPEC(flags)) { 619 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 620 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 621 } 622 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 623 mdb_warn("can't read task_t structure at %p", addr); 624 return (DCMD_ERR); 625 } 626 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 627 mdb_warn("can't read project_t structure at %p", addr); 628 return (DCMD_ERR); 629 } 630 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 631 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 632 tk.tk_flags); 633 return (DCMD_OK); 634 } 635 636 int 637 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 638 { 639 kproject_t pj; 640 641 if (!(flags & DCMD_ADDRSPEC)) { 642 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 643 mdb_warn("can't walk projects"); 644 return (DCMD_ERR); 645 } 646 return (DCMD_OK); 647 } 648 if (DCMD_HDRSPEC(flags)) { 649 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 650 "ADDR", "PROJID", "ZONEID", "REFCNT"); 651 } 652 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 653 mdb_warn("can't read kproject_t structure at %p", addr); 654 return (DCMD_ERR); 655 } 656 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 657 pj.kpj_count); 658 return (DCMD_OK); 659 } 660 661 /* walk callouts themselves, either by list or id hash. */ 662 int 663 callout_walk_init(mdb_walk_state_t *wsp) 664 { 665 if (wsp->walk_addr == 0) { 666 mdb_warn("callout doesn't support global walk"); 667 return (WALK_ERR); 668 } 669 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 670 return (WALK_NEXT); 671 } 672 673 #define CALLOUT_WALK_BYLIST 0 674 #define CALLOUT_WALK_BYID 1 675 676 /* the walker arg switches between walking by list (0) and walking by id (1). */ 677 int 678 callout_walk_step(mdb_walk_state_t *wsp) 679 { 680 int retval; 681 682 if (wsp->walk_addr == 0) { 683 return (WALK_DONE); 684 } 685 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 686 wsp->walk_addr) == -1) { 687 mdb_warn("failed to read callout at %p", wsp->walk_addr); 688 return (WALK_DONE); 689 } 690 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 691 wsp->walk_cbdata); 692 693 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 694 wsp->walk_addr = 695 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 696 } else { 697 wsp->walk_addr = 698 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 699 } 700 701 return (retval); 702 } 703 704 void 705 callout_walk_fini(mdb_walk_state_t *wsp) 706 { 707 mdb_free(wsp->walk_data, sizeof (callout_t)); 708 } 709 710 /* 711 * walker for callout lists. This is different from hashes and callouts. 712 * Thankfully, it's also simpler. 713 */ 714 int 715 callout_list_walk_init(mdb_walk_state_t *wsp) 716 { 717 if (wsp->walk_addr == 0) { 718 mdb_warn("callout list doesn't support global walk"); 719 return (WALK_ERR); 720 } 721 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 722 return (WALK_NEXT); 723 } 724 725 int 726 callout_list_walk_step(mdb_walk_state_t *wsp) 727 { 728 int retval; 729 730 if (wsp->walk_addr == 0) { 731 return (WALK_DONE); 732 } 733 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 734 wsp->walk_addr) != sizeof (callout_list_t)) { 735 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 736 return (WALK_ERR); 737 } 738 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 739 wsp->walk_cbdata); 740 741 wsp->walk_addr = (uintptr_t) 742 (((callout_list_t *)wsp->walk_data)->cl_next); 743 744 return (retval); 745 } 746 747 void 748 callout_list_walk_fini(mdb_walk_state_t *wsp) 749 { 750 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 751 } 752 753 /* routines/structs to walk callout table(s) */ 754 typedef struct cot_data { 755 callout_table_t *ct0; 756 callout_table_t ct; 757 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 758 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 759 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 760 int cotndx; 761 int cotsize; 762 } cot_data_t; 763 764 int 765 callout_table_walk_init(mdb_walk_state_t *wsp) 766 { 767 int max_ncpus; 768 cot_data_t *cot_walk_data; 769 770 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 771 772 if (wsp->walk_addr == 0) { 773 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 774 mdb_warn("failed to read 'callout_table'"); 775 return (WALK_ERR); 776 } 777 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 778 mdb_warn("failed to get callout_table array size"); 779 return (WALK_ERR); 780 } 781 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 782 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 783 } else { 784 /* not a global walk */ 785 cot_walk_data->cotsize = 1; 786 } 787 788 cot_walk_data->cotndx = 0; 789 wsp->walk_data = cot_walk_data; 790 791 return (WALK_NEXT); 792 } 793 794 int 795 callout_table_walk_step(mdb_walk_state_t *wsp) 796 { 797 int retval; 798 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 799 size_t size; 800 801 if (cotwd->cotndx >= cotwd->cotsize) { 802 return (WALK_DONE); 803 } 804 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 805 wsp->walk_addr) != sizeof (callout_table_t)) { 806 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 807 return (WALK_ERR); 808 } 809 810 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 811 if (cotwd->ct.ct_idhash != NULL) { 812 if (mdb_vread(cotwd->cot_idhash, size, 813 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 814 mdb_warn("failed to read id_hash at %p", 815 cotwd->ct.ct_idhash); 816 return (WALK_ERR); 817 } 818 } 819 if (cotwd->ct.ct_clhash != NULL) { 820 if (mdb_vread(&(cotwd->cot_clhash), size, 821 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 822 mdb_warn("failed to read cl_hash at %p", 823 cotwd->ct.ct_clhash); 824 return (WALK_ERR); 825 } 826 } 827 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 828 if (cotwd->ct.ct_kstat_data != NULL) { 829 if (mdb_vread(&(cotwd->ct_kstat_data), size, 830 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 831 mdb_warn("failed to read kstats at %p", 832 cotwd->ct.ct_kstat_data); 833 return (WALK_ERR); 834 } 835 } 836 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 837 wsp->walk_cbdata); 838 839 cotwd->cotndx++; 840 if (cotwd->cotndx >= cotwd->cotsize) { 841 return (WALK_DONE); 842 } 843 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 844 sizeof (callout_table_t)); 845 846 return (retval); 847 } 848 849 void 850 callout_table_walk_fini(mdb_walk_state_t *wsp) 851 { 852 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 853 } 854 855 static const char *co_typenames[] = { "R", "N" }; 856 857 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 858 859 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 860 861 /* callout flags, in no particular order */ 862 #define COF_REAL 0x00000001 863 #define COF_NORM 0x00000002 864 #define COF_LONG 0x00000004 865 #define COF_SHORT 0x00000008 866 #define COF_EMPTY 0x00000010 867 #define COF_TIME 0x00000020 868 #define COF_BEFORE 0x00000040 869 #define COF_AFTER 0x00000080 870 #define COF_SEQID 0x00000100 871 #define COF_FUNC 0x00000200 872 #define COF_ADDR 0x00000400 873 #define COF_EXEC 0x00000800 874 #define COF_HIRES 0x00001000 875 #define COF_ABS 0x00002000 876 #define COF_TABLE 0x00004000 877 #define COF_BYIDH 0x00008000 878 #define COF_FREE 0x00010000 879 #define COF_LIST 0x00020000 880 #define COF_EXPREL 0x00040000 881 #define COF_HDR 0x00080000 882 #define COF_VERBOSE 0x00100000 883 #define COF_LONGLIST 0x00200000 884 #define COF_THDR 0x00400000 885 #define COF_LHDR 0x00800000 886 #define COF_CHDR 0x01000000 887 #define COF_PARAM 0x02000000 888 #define COF_DECODE 0x04000000 889 #define COF_HEAP 0x08000000 890 #define COF_QUEUE 0x10000000 891 892 /* show real and normal, short and long, expired and unexpired. */ 893 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 894 895 #define COF_LIST_FLAGS \ 896 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 897 898 /* private callout data for callback functions */ 899 typedef struct callout_data { 900 uint_t flags; /* COF_* */ 901 cpu_t *cpu; /* cpu pointer if given */ 902 int seqid; /* cpu seqid, or -1 */ 903 hrtime_t time; /* expiration time value */ 904 hrtime_t atime; /* expiration before value */ 905 hrtime_t btime; /* expiration after value */ 906 uintptr_t funcaddr; /* function address or NULL */ 907 uintptr_t param; /* parameter to function or NULL */ 908 hrtime_t now; /* current system time */ 909 int nsec_per_tick; /* for conversions */ 910 ulong_t ctbits; /* for decoding xid */ 911 callout_table_t *co_table; /* top of callout table array */ 912 int ndx; /* table index. */ 913 int bucket; /* which list/id bucket are we in */ 914 hrtime_t exp; /* expire time */ 915 int list_flags; /* copy of cl_flags */ 916 } callout_data_t; 917 918 /* this callback does the actual callback itself (finally). */ 919 /*ARGSUSED*/ 920 static int 921 callouts_cb(uintptr_t addr, const void *data, void *priv) 922 { 923 callout_data_t *coargs = (callout_data_t *)priv; 924 callout_t *co = (callout_t *)data; 925 int tableid, list_flags; 926 callout_id_t coid; 927 928 if ((coargs == NULL) || (co == NULL)) { 929 return (WALK_ERR); 930 } 931 932 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 933 /* 934 * The callout must have been reallocated. No point in 935 * walking any more. 936 */ 937 return (WALK_DONE); 938 } 939 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 940 /* 941 * The callout must have been freed. No point in 942 * walking any more. 943 */ 944 return (WALK_DONE); 945 } 946 if ((coargs->flags & COF_FUNC) && 947 (coargs->funcaddr != (uintptr_t)co->c_func)) { 948 return (WALK_NEXT); 949 } 950 if ((coargs->flags & COF_PARAM) && 951 (coargs->param != (uintptr_t)co->c_arg)) { 952 return (WALK_NEXT); 953 } 954 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 955 return (WALK_NEXT); 956 } 957 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 958 return (WALK_NEXT); 959 } 960 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 961 return (WALK_NEXT); 962 } 963 /* it is possible we don't have the exp time or flags */ 964 if (coargs->flags & COF_BYIDH) { 965 if (!(coargs->flags & COF_FREE)) { 966 /* we have to fetch the expire time ourselves. */ 967 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 968 (uintptr_t)co->c_list + offsetof(callout_list_t, 969 cl_expiration)) == -1) { 970 mdb_warn("failed to read expiration " 971 "time from %p", co->c_list); 972 coargs->exp = 0; 973 } 974 /* and flags. */ 975 if (mdb_vread(&coargs->list_flags, sizeof (int), 976 (uintptr_t)co->c_list + offsetof(callout_list_t, 977 cl_flags)) == -1) { 978 mdb_warn("failed to read list flags" 979 "from %p", co->c_list); 980 coargs->list_flags = 0; 981 } 982 } else { 983 /* free callouts can't use list pointer. */ 984 coargs->exp = 0; 985 coargs->list_flags = 0; 986 } 987 if (coargs->exp != 0) { 988 if ((coargs->flags & COF_TIME) && 989 (coargs->exp != coargs->time)) { 990 return (WALK_NEXT); 991 } 992 if ((coargs->flags & COF_BEFORE) && 993 (coargs->exp > coargs->btime)) { 994 return (WALK_NEXT); 995 } 996 if ((coargs->flags & COF_AFTER) && 997 (coargs->exp < coargs->atime)) { 998 return (WALK_NEXT); 999 } 1000 } 1001 /* tricky part, since both HIRES and ABS can be set */ 1002 list_flags = coargs->list_flags; 1003 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1004 /* both flags are set, only skip "regular" ones */ 1005 if (! (list_flags & COF_LIST_FLAGS)) { 1006 return (WALK_NEXT); 1007 } 1008 } else { 1009 /* individual flags, or no flags */ 1010 if ((coargs->flags & COF_HIRES) && 1011 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1012 return (WALK_NEXT); 1013 } 1014 if ((coargs->flags & COF_ABS) && 1015 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1016 return (WALK_NEXT); 1017 } 1018 } 1019 /* 1020 * We do the checks for COF_HEAP and COF_QUEUE here only if we 1021 * are traversing BYIDH. If the traversal is by callout list, 1022 * we do this check in callout_list_cb() to be more 1023 * efficient. 1024 */ 1025 if ((coargs->flags & COF_HEAP) && 1026 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1027 return (WALK_NEXT); 1028 } 1029 1030 if ((coargs->flags & COF_QUEUE) && 1031 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1032 return (WALK_NEXT); 1033 } 1034 } 1035 1036 #define callout_table_mask ((1 << coargs->ctbits) - 1) 1037 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 1038 #undef callout_table_mask 1039 coid = CO_PLAIN_ID(co->c_xid); 1040 1041 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 1042 /* 1043 * We need to print the headers. If walking by id, then 1044 * the list header isn't printed, so we must include 1045 * that info here. 1046 */ 1047 if (!(coargs->flags & COF_VERBOSE)) { 1048 mdb_printf("%<u>%3s %-1s %-14s %</u>", 1049 "SEQ", "T", "EXP"); 1050 } else if (coargs->flags & COF_BYIDH) { 1051 mdb_printf("%<u>%-14s %</u>", "EXP"); 1052 } 1053 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 1054 "XHAL", "XID", "FUNC(ARG)"); 1055 if (coargs->flags & COF_LONGLIST) { 1056 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 1057 "PREVID", "NEXTID", "PREVL", "NEXTL"); 1058 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 1059 "DONE", "UTOS", "THREAD"); 1060 } 1061 mdb_printf("\n"); 1062 coargs->flags &= ~COF_CHDR; 1063 coargs->flags |= (COF_THDR | COF_LHDR); 1064 } 1065 1066 if (!(coargs->flags & COF_ADDR)) { 1067 if (!(coargs->flags & COF_VERBOSE)) { 1068 mdb_printf("%-3d %1s %-14llx ", 1069 TABLE_TO_SEQID(tableid), 1070 co_typenames[tableid & CALLOUT_TYPE_MASK], 1071 (coargs->flags & COF_EXPREL) ? 1072 coargs->exp - coargs->now : coargs->exp); 1073 } else if (coargs->flags & COF_BYIDH) { 1074 mdb_printf("%-14x ", 1075 (coargs->flags & COF_EXPREL) ? 1076 coargs->exp - coargs->now : coargs->exp); 1077 } 1078 list_flags = coargs->list_flags; 1079 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 1080 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 1081 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 1082 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 1083 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 1084 (long long)coid, co->c_func, co->c_arg); 1085 if (coargs->flags & COF_LONGLIST) { 1086 mdb_printf(" %-?p %-?p %-?p %-?p", 1087 co->c_idprev, co->c_idnext, co->c_clprev, 1088 co->c_clnext); 1089 mdb_printf(" %-?p %-4d %-0?p", 1090 co->c_done, co->c_waiting, co->c_executor); 1091 } 1092 } else { 1093 /* address only */ 1094 mdb_printf("%-0p", addr); 1095 } 1096 mdb_printf("\n"); 1097 return (WALK_NEXT); 1098 } 1099 1100 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 1101 /*ARGSUSED*/ 1102 static int 1103 callout_list_cb(uintptr_t addr, const void *data, void *priv) 1104 { 1105 callout_data_t *coargs = (callout_data_t *)priv; 1106 callout_list_t *cl = (callout_list_t *)data; 1107 callout_t *coptr; 1108 int list_flags; 1109 1110 if ((coargs == NULL) || (cl == NULL)) { 1111 return (WALK_ERR); 1112 } 1113 1114 coargs->exp = cl->cl_expiration; 1115 coargs->list_flags = cl->cl_flags; 1116 if ((coargs->flags & COF_FREE) && 1117 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1118 /* 1119 * The callout list must have been reallocated. No point in 1120 * walking any more. 1121 */ 1122 return (WALK_DONE); 1123 } 1124 if (!(coargs->flags & COF_FREE) && 1125 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1126 /* 1127 * The callout list must have been freed. No point in 1128 * walking any more. 1129 */ 1130 return (WALK_DONE); 1131 } 1132 if ((coargs->flags & COF_TIME) && 1133 (cl->cl_expiration != coargs->time)) { 1134 return (WALK_NEXT); 1135 } 1136 if ((coargs->flags & COF_BEFORE) && 1137 (cl->cl_expiration > coargs->btime)) { 1138 return (WALK_NEXT); 1139 } 1140 if ((coargs->flags & COF_AFTER) && 1141 (cl->cl_expiration < coargs->atime)) { 1142 return (WALK_NEXT); 1143 } 1144 if (!(coargs->flags & COF_EMPTY) && 1145 (cl->cl_callouts.ch_head == NULL)) { 1146 return (WALK_NEXT); 1147 } 1148 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 1149 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1150 /* both flags are set, only skip "regular" ones */ 1151 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 1152 return (WALK_NEXT); 1153 } 1154 } else { 1155 if ((coargs->flags & COF_HIRES) && 1156 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1157 return (WALK_NEXT); 1158 } 1159 if ((coargs->flags & COF_ABS) && 1160 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1161 return (WALK_NEXT); 1162 } 1163 } 1164 1165 if ((coargs->flags & COF_HEAP) && 1166 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1167 return (WALK_NEXT); 1168 } 1169 1170 if ((coargs->flags & COF_QUEUE) && 1171 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1172 return (WALK_NEXT); 1173 } 1174 1175 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 1176 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 1177 if (!(coargs->flags & COF_VERBOSE)) { 1178 /* don't be redundant again */ 1179 mdb_printf("%<u>SEQ T %</u>"); 1180 } 1181 mdb_printf("%<u>EXP HA BUCKET " 1182 "CALLOUTS %</u>"); 1183 1184 if (coargs->flags & COF_LONGLIST) { 1185 mdb_printf("%<u> %-?s %-?s%</u>", 1186 "PREV", "NEXT"); 1187 } 1188 mdb_printf("\n"); 1189 coargs->flags &= ~COF_LHDR; 1190 coargs->flags |= (COF_THDR | COF_CHDR); 1191 } 1192 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 1193 if (!(coargs->flags & COF_ADDR)) { 1194 if (!(coargs->flags & COF_VERBOSE)) { 1195 mdb_printf("%3d %1s ", 1196 TABLE_TO_SEQID(coargs->ndx), 1197 co_typenames[coargs->ndx & 1198 CALLOUT_TYPE_MASK]); 1199 } 1200 1201 list_flags = coargs->list_flags; 1202 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 1203 (coargs->flags & COF_EXPREL) ? 1204 coargs->exp - coargs->now : coargs->exp, 1205 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1206 "H" : " ", 1207 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1208 "A" : " ", 1209 coargs->bucket, cl->cl_callouts.ch_head); 1210 1211 if (coargs->flags & COF_LONGLIST) { 1212 mdb_printf(" %-?p %-?p", 1213 cl->cl_prev, cl->cl_next); 1214 } 1215 } else { 1216 /* address only */ 1217 mdb_printf("%-0p", addr); 1218 } 1219 mdb_printf("\n"); 1220 if (coargs->flags & COF_LIST) { 1221 return (WALK_NEXT); 1222 } 1223 } 1224 /* yet another layer as we walk the actual callouts via list. */ 1225 if (cl->cl_callouts.ch_head == NULL) { 1226 return (WALK_NEXT); 1227 } 1228 /* free list structures do not have valid callouts off of them. */ 1229 if (coargs->flags & COF_FREE) { 1230 return (WALK_NEXT); 1231 } 1232 coptr = (callout_t *)cl->cl_callouts.ch_head; 1233 1234 if (coargs->flags & COF_VERBOSE) { 1235 mdb_inc_indent(4); 1236 } 1237 /* 1238 * walk callouts using yet another callback routine. 1239 * we use callouts_bytime because id hash is handled via 1240 * the callout_t_cb callback. 1241 */ 1242 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1243 (uintptr_t)coptr) == -1) { 1244 mdb_warn("cannot walk callouts at %p", coptr); 1245 return (WALK_ERR); 1246 } 1247 if (coargs->flags & COF_VERBOSE) { 1248 mdb_dec_indent(4); 1249 } 1250 1251 return (WALK_NEXT); 1252 } 1253 1254 /* this callback handles the details of callout table walking. */ 1255 static int 1256 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1257 { 1258 callout_data_t *coargs = (callout_data_t *)priv; 1259 cot_data_t *cotwd = (cot_data_t *)data; 1260 callout_table_t *ct = &(cotwd->ct); 1261 int index, seqid, cotype; 1262 int i; 1263 callout_list_t *clptr; 1264 callout_t *coptr; 1265 1266 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1267 return (WALK_ERR); 1268 } 1269 1270 index = ((char *)addr - (char *)coargs->co_table) / 1271 sizeof (callout_table_t); 1272 cotype = index & CALLOUT_TYPE_MASK; 1273 seqid = TABLE_TO_SEQID(index); 1274 1275 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1276 return (WALK_NEXT); 1277 } 1278 1279 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1280 return (WALK_NEXT); 1281 } 1282 1283 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1284 return (WALK_NEXT); 1285 } 1286 1287 if (!(coargs->flags & COF_EMPTY) && ( 1288 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) { 1289 return (WALK_NEXT); 1290 } 1291 1292 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1293 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1294 /* print table hdr */ 1295 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1296 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1297 coargs->flags &= ~COF_THDR; 1298 coargs->flags |= (COF_LHDR | COF_CHDR); 1299 if (coargs->flags & COF_LONGLIST) { 1300 /* more info! */ 1301 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1302 " %-?s %-?s %-?s%</u>", 1303 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1304 "PEND", "FREE", "LOCK"); 1305 } 1306 mdb_printf("\n"); 1307 } 1308 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1309 if (!(coargs->flags & COF_ADDR)) { 1310 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1311 seqid, co_typenames[cotype], 1312 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1313 ct->ct_heap); 1314 if (coargs->flags & COF_LONGLIST) { 1315 /* more info! */ 1316 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1317 " %-?lld %-?lld %-?p", 1318 ct->ct_heap_num, ct->ct_heap_max, 1319 ct->ct_taskq, ct->ct_expired.ch_head, 1320 ct->ct_queue.ch_head, 1321 cotwd->ct_timeouts_pending, 1322 cotwd->ct_allocations - 1323 cotwd->ct_timeouts_pending, 1324 ct->ct_mutex); 1325 } 1326 } else { 1327 /* address only */ 1328 mdb_printf("%-0?p", addr); 1329 } 1330 mdb_printf("\n"); 1331 if (coargs->flags & COF_TABLE) { 1332 return (WALK_NEXT); 1333 } 1334 } 1335 1336 coargs->ndx = index; 1337 if (coargs->flags & COF_VERBOSE) { 1338 mdb_inc_indent(4); 1339 } 1340 /* keep digging. */ 1341 if (!(coargs->flags & COF_BYIDH)) { 1342 /* walk the list hash table */ 1343 if (coargs->flags & COF_FREE) { 1344 clptr = ct->ct_lfree; 1345 coargs->bucket = 0; 1346 if (clptr == NULL) { 1347 return (WALK_NEXT); 1348 } 1349 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1350 (uintptr_t)clptr) == -1) { 1351 mdb_warn("cannot walk callout free list at %p", 1352 clptr); 1353 return (WALK_ERR); 1354 } 1355 } else { 1356 /* first print the expired list. */ 1357 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1358 if (clptr != NULL) { 1359 coargs->bucket = -1; 1360 if (mdb_pwalk("callout_list", callout_list_cb, 1361 coargs, (uintptr_t)clptr) == -1) { 1362 mdb_warn("cannot walk callout_list" 1363 " at %p", clptr); 1364 return (WALK_ERR); 1365 } 1366 } 1367 /* then, print the callout queue */ 1368 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1369 if (clptr != NULL) { 1370 coargs->bucket = -1; 1371 if (mdb_pwalk("callout_list", callout_list_cb, 1372 coargs, (uintptr_t)clptr) == -1) { 1373 mdb_warn("cannot walk callout_list" 1374 " at %p", clptr); 1375 return (WALK_ERR); 1376 } 1377 } 1378 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1379 if (ct->ct_clhash == NULL) { 1380 /* nothing to do */ 1381 break; 1382 } 1383 if (cotwd->cot_clhash[i].ch_head == NULL) { 1384 continue; 1385 } 1386 clptr = (callout_list_t *) 1387 cotwd->cot_clhash[i].ch_head; 1388 coargs->bucket = i; 1389 /* walk list with callback routine. */ 1390 if (mdb_pwalk("callout_list", callout_list_cb, 1391 coargs, (uintptr_t)clptr) == -1) { 1392 mdb_warn("cannot walk callout_list" 1393 " at %p", clptr); 1394 return (WALK_ERR); 1395 } 1396 } 1397 } 1398 } else { 1399 /* walk the id hash table. */ 1400 if (coargs->flags & COF_FREE) { 1401 coptr = ct->ct_free; 1402 coargs->bucket = 0; 1403 if (coptr == NULL) { 1404 return (WALK_NEXT); 1405 } 1406 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1407 (uintptr_t)coptr) == -1) { 1408 mdb_warn("cannot walk callout id free list" 1409 " at %p", coptr); 1410 return (WALK_ERR); 1411 } 1412 } else { 1413 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1414 if (ct->ct_idhash == NULL) { 1415 break; 1416 } 1417 coptr = (callout_t *) 1418 cotwd->cot_idhash[i].ch_head; 1419 if (coptr == NULL) { 1420 continue; 1421 } 1422 coargs->bucket = i; 1423 1424 /* 1425 * walk callouts directly by id. For id 1426 * chain, the callout list is just a header, 1427 * so there's no need to walk it. 1428 */ 1429 if (mdb_pwalk("callouts_byid", callouts_cb, 1430 coargs, (uintptr_t)coptr) == -1) { 1431 mdb_warn("cannot walk callouts at %p", 1432 coptr); 1433 return (WALK_ERR); 1434 } 1435 } 1436 } 1437 } 1438 if (coargs->flags & COF_VERBOSE) { 1439 mdb_dec_indent(4); 1440 } 1441 return (WALK_NEXT); 1442 } 1443 1444 /* 1445 * initialize some common info for both callout dcmds. 1446 */ 1447 int 1448 callout_common_init(callout_data_t *coargs) 1449 { 1450 /* we need a couple of things */ 1451 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1452 mdb_warn("failed to read 'callout_table'"); 1453 return (DCMD_ERR); 1454 } 1455 /* need to get now in nsecs. Approximate with hrtime vars */ 1456 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1457 sizeof (hrtime_t)) { 1458 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1459 "hrtime_base") != sizeof (hrtime_t)) { 1460 mdb_warn("Could not determine current system time"); 1461 return (DCMD_ERR); 1462 } 1463 } 1464 1465 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1466 mdb_warn("failed to read 'callout_table_bits'"); 1467 return (DCMD_ERR); 1468 } 1469 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1470 mdb_warn("failed to read 'nsec_per_tick'"); 1471 return (DCMD_ERR); 1472 } 1473 return (DCMD_OK); 1474 } 1475 1476 /* 1477 * dcmd to print callouts. Optional addr limits to specific table. 1478 * Parses lots of options that get passed to callbacks for walkers. 1479 * Has it's own help function. 1480 */ 1481 /*ARGSUSED*/ 1482 int 1483 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1484 { 1485 callout_data_t coargs; 1486 /* getopts doesn't help much with stuff like this */ 1487 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1488 char *funcname = NULL; 1489 char *paramstr = NULL; 1490 uintptr_t Stmp, Ctmp; /* for getopt. */ 1491 int retval; 1492 1493 coargs.flags = COF_DEFAULT; 1494 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1495 coargs.seqid = -1; 1496 1497 if (mdb_getopts(argc, argv, 1498 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1499 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1500 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1501 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1502 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1503 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1504 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1505 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1506 'd', MDB_OPT_SETBITS, 1, &dflag, 1507 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1508 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1509 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1510 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1511 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1512 'k', MDB_OPT_SETBITS, 1, &kflag, 1513 'f', MDB_OPT_STR, &funcname, 1514 'p', MDB_OPT_STR, ¶mstr, 1515 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1516 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1517 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1518 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1519 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1520 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1521 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1522 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1523 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1524 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1525 NULL) != argc) { 1526 return (DCMD_USAGE); 1527 } 1528 1529 /* initialize from kernel variables */ 1530 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1531 return (retval); 1532 } 1533 1534 /* do some option post-processing */ 1535 if (kflag) { 1536 coargs.time *= coargs.nsec_per_tick; 1537 coargs.atime *= coargs.nsec_per_tick; 1538 coargs.btime *= coargs.nsec_per_tick; 1539 } 1540 1541 if (dflag) { 1542 coargs.time += coargs.now; 1543 coargs.atime += coargs.now; 1544 coargs.btime += coargs.now; 1545 } 1546 if (Sflag) { 1547 if (flags & DCMD_ADDRSPEC) { 1548 mdb_printf("-S option conflicts with explicit" 1549 " address\n"); 1550 return (DCMD_USAGE); 1551 } 1552 coargs.flags |= COF_SEQID; 1553 coargs.seqid = (int)Stmp; 1554 } 1555 if (Cflag) { 1556 if (flags & DCMD_ADDRSPEC) { 1557 mdb_printf("-C option conflicts with explicit" 1558 " address\n"); 1559 return (DCMD_USAGE); 1560 } 1561 if (coargs.flags & COF_SEQID) { 1562 mdb_printf("-C and -S are mutually exclusive\n"); 1563 return (DCMD_USAGE); 1564 } 1565 coargs.cpu = (cpu_t *)Ctmp; 1566 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1567 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1568 mdb_warn("failed to read cpu_t at %p", Ctmp); 1569 return (DCMD_ERR); 1570 } 1571 coargs.flags |= COF_SEQID; 1572 } 1573 /* avoid null outputs. */ 1574 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1575 coargs.flags |= COF_REAL | COF_NORM; 1576 } 1577 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1578 coargs.flags |= COF_LONG | COF_SHORT; 1579 } 1580 if (tflag) { 1581 if (aflag || bflag) { 1582 mdb_printf("-t and -a|b are mutually exclusive\n"); 1583 return (DCMD_USAGE); 1584 } 1585 coargs.flags |= COF_TIME; 1586 } 1587 if (aflag) { 1588 coargs.flags |= COF_AFTER; 1589 } 1590 if (bflag) { 1591 coargs.flags |= COF_BEFORE; 1592 } 1593 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1594 mdb_printf("value for -a must be earlier than the value" 1595 " for -b.\n"); 1596 return (DCMD_USAGE); 1597 } 1598 1599 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1600 mdb_printf("-H and -Q are mutually exclusive\n"); 1601 return (DCMD_USAGE); 1602 } 1603 1604 if (funcname != NULL) { 1605 GElf_Sym sym; 1606 1607 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1608 coargs.funcaddr = mdb_strtoull(funcname); 1609 } else { 1610 coargs.funcaddr = sym.st_value; 1611 } 1612 coargs.flags |= COF_FUNC; 1613 } 1614 1615 if (paramstr != NULL) { 1616 GElf_Sym sym; 1617 1618 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1619 coargs.param = mdb_strtoull(paramstr); 1620 } else { 1621 coargs.param = sym.st_value; 1622 } 1623 coargs.flags |= COF_PARAM; 1624 } 1625 1626 if (!(flags & DCMD_ADDRSPEC)) { 1627 /* don't pass "dot" if no addr. */ 1628 addr = 0; 1629 } 1630 if (addr != 0) { 1631 /* 1632 * a callout table was specified. Ignore -r|n option 1633 * to avoid null output. 1634 */ 1635 coargs.flags |= (COF_REAL | COF_NORM); 1636 } 1637 1638 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1639 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1640 } 1641 if (coargs.flags & COF_FREE) { 1642 coargs.flags |= COF_EMPTY; 1643 /* -F = free callouts, -FL = free lists */ 1644 if (!(coargs.flags & COF_LIST)) { 1645 coargs.flags |= COF_BYIDH; 1646 } 1647 } 1648 1649 /* walk table, using specialized callback routine. */ 1650 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1651 mdb_warn("cannot walk callout_table"); 1652 return (DCMD_ERR); 1653 } 1654 return (DCMD_OK); 1655 } 1656 1657 1658 /* 1659 * Given an extended callout id, dump its information. 1660 */ 1661 /*ARGSUSED*/ 1662 int 1663 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1664 { 1665 callout_data_t coargs; 1666 callout_table_t *ctptr; 1667 callout_table_t ct; 1668 callout_id_t coid; 1669 callout_t *coptr; 1670 int tableid; 1671 callout_id_t xid; 1672 ulong_t idhash; 1673 int i, retval; 1674 const mdb_arg_t *arg; 1675 size_t size; 1676 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1677 1678 coargs.flags = COF_DEFAULT | COF_BYIDH; 1679 i = mdb_getopts(argc, argv, 1680 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1681 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1682 NULL); 1683 argc -= i; 1684 argv += i; 1685 1686 if (argc != 1) { 1687 return (DCMD_USAGE); 1688 } 1689 arg = &argv[0]; 1690 1691 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1692 xid = arg->a_un.a_val; 1693 } else { 1694 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1695 } 1696 1697 if (DCMD_HDRSPEC(flags)) { 1698 coargs.flags |= COF_CHDR; 1699 } 1700 1701 1702 /* initialize from kernel variables */ 1703 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1704 return (retval); 1705 } 1706 1707 /* we must massage the environment so that the macros will play nice */ 1708 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1709 #define callout_table_bits coargs.ctbits 1710 #define nsec_per_tick coargs.nsec_per_tick 1711 tableid = CALLOUT_ID_TO_TABLE(xid); 1712 idhash = CALLOUT_IDHASH(xid); 1713 #undef callouts_table_bits 1714 #undef callout_table_mask 1715 #undef nsec_per_tick 1716 coid = CO_PLAIN_ID(xid); 1717 1718 if (flags & DCMD_ADDRSPEC) { 1719 mdb_printf("calloutid does not accept explicit address.\n"); 1720 return (DCMD_USAGE); 1721 } 1722 1723 if (coargs.flags & COF_DECODE) { 1724 if (DCMD_HDRSPEC(flags)) { 1725 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1726 "SEQ", "T", "XL", "XID", "IDHASH"); 1727 } 1728 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1729 TABLE_TO_SEQID(tableid), 1730 co_typenames[tableid & CALLOUT_TYPE_MASK], 1731 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1732 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1733 (long long)coid, idhash); 1734 return (DCMD_OK); 1735 } 1736 1737 /* get our table. Note this relies on the types being correct */ 1738 ctptr = coargs.co_table + tableid; 1739 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1740 mdb_warn("failed to read callout_table at %p", ctptr); 1741 return (DCMD_ERR); 1742 } 1743 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1744 if (ct.ct_idhash != NULL) { 1745 if (mdb_vread(&(cot_idhash), size, 1746 (uintptr_t)ct.ct_idhash) == -1) { 1747 mdb_warn("failed to read id_hash at %p", 1748 ct.ct_idhash); 1749 return (WALK_ERR); 1750 } 1751 } 1752 1753 /* callout at beginning of hash chain */ 1754 if (ct.ct_idhash == NULL) { 1755 mdb_printf("id hash chain for this xid is empty\n"); 1756 return (DCMD_ERR); 1757 } 1758 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1759 if (coptr == NULL) { 1760 mdb_printf("id hash chain for this xid is empty\n"); 1761 return (DCMD_ERR); 1762 } 1763 1764 coargs.ndx = tableid; 1765 coargs.bucket = idhash; 1766 1767 /* use the walker, luke */ 1768 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1769 (uintptr_t)coptr) == -1) { 1770 mdb_warn("cannot walk callouts at %p", coptr); 1771 return (WALK_ERR); 1772 } 1773 1774 return (DCMD_OK); 1775 } 1776 1777 void 1778 callout_help(void) 1779 { 1780 mdb_printf("callout: display callouts.\n" 1781 "Given a callout table address, display callouts from table.\n" 1782 "Without an address, display callouts from all tables.\n" 1783 "options:\n" 1784 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1785 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1786 " -x : limit display to callouts which are executing\n" 1787 " -h : limit display to callouts based on hrestime\n" 1788 " -B : limit display to callouts based on absolute time\n" 1789 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1790 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1791 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1792 " -d : interpret time option to -t|a|b as delta from current time\n" 1793 " -k : use ticks instead of nanoseconds as arguments to" 1794 " -t|a|b. Note that\n ticks are less accurate and may not" 1795 " match other tick times (ie: lbolt).\n" 1796 " -D : display exiration time as delta from current time\n" 1797 " -S seqid : limit display to callouts for this cpu sequence id\n" 1798 " -C addr : limit display to callouts for this cpu pointer\n" 1799 " -f name|addr : limit display to callouts with this function\n" 1800 " -p name|addr : limit display to callouts functions with this" 1801 " parameter\n" 1802 " -T : display the callout table itself, instead of callouts\n" 1803 " -L : display callout lists instead of callouts\n" 1804 " -E : with -T or L, display empty data structures.\n" 1805 " -i : traverse callouts by id hash instead of list hash\n" 1806 " -F : walk free callout list (free list with -i) instead\n" 1807 " -v : display more info for each item\n" 1808 " -V : show details of each level of info as it is traversed\n" 1809 " -H : limit display to callouts in the callout heap\n" 1810 " -Q : limit display to callouts in the callout queue\n" 1811 " -A : show only addresses. Useful for pipelines.\n"); 1812 } 1813 1814 void 1815 calloutid_help(void) 1816 { 1817 mdb_printf("calloutid: display callout by id.\n" 1818 "Given an extended callout id, display the callout infomation.\n" 1819 "options:\n" 1820 " -d : do not dereference callout, just decode the id.\n" 1821 " -v : verbose display more info about the callout\n"); 1822 } 1823 1824 /*ARGSUSED*/ 1825 int 1826 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1827 { 1828 long num_classes, i; 1829 sclass_t *class_tbl; 1830 GElf_Sym g_sclass; 1831 char class_name[PC_CLNMSZ]; 1832 size_t tbl_size; 1833 1834 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1835 mdb_warn("failed to find symbol sclass\n"); 1836 return (DCMD_ERR); 1837 } 1838 1839 tbl_size = (size_t)g_sclass.st_size; 1840 num_classes = tbl_size / (sizeof (sclass_t)); 1841 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1842 1843 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1844 mdb_warn("failed to read sclass"); 1845 return (DCMD_ERR); 1846 } 1847 1848 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1849 "INIT FCN", "CLASS FCN"); 1850 1851 for (i = 0; i < num_classes; i++) { 1852 if (mdb_vread(class_name, sizeof (class_name), 1853 (uintptr_t)class_tbl[i].cl_name) == -1) 1854 (void) strcpy(class_name, "???"); 1855 1856 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1857 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1858 } 1859 1860 return (DCMD_OK); 1861 } 1862 1863 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1864 1865 int 1866 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1867 { 1868 uintptr_t rootdir; 1869 vnode_t vn; 1870 char buf[MAXPATHLEN]; 1871 1872 uint_t opt_F = FALSE; 1873 1874 if (mdb_getopts(argc, argv, 1875 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1876 return (DCMD_USAGE); 1877 1878 if (!(flags & DCMD_ADDRSPEC)) { 1879 mdb_warn("expected explicit vnode_t address before ::\n"); 1880 return (DCMD_USAGE); 1881 } 1882 1883 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1884 mdb_warn("failed to read rootdir"); 1885 return (DCMD_ERR); 1886 } 1887 1888 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1889 return (DCMD_ERR); 1890 1891 if (*buf == '\0') { 1892 mdb_printf("??\n"); 1893 return (DCMD_OK); 1894 } 1895 1896 mdb_printf("%s", buf); 1897 if (opt_F && buf[strlen(buf)-1] != '/' && 1898 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1899 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1900 mdb_printf("\n"); 1901 1902 return (DCMD_OK); 1903 } 1904 1905 int 1906 ld_walk_init(mdb_walk_state_t *wsp) 1907 { 1908 wsp->walk_data = (void *)wsp->walk_addr; 1909 return (WALK_NEXT); 1910 } 1911 1912 int 1913 ld_walk_step(mdb_walk_state_t *wsp) 1914 { 1915 int status; 1916 lock_descriptor_t ld; 1917 1918 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1919 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1920 wsp->walk_addr); 1921 return (WALK_ERR); 1922 } 1923 1924 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1925 if (status == WALK_ERR) 1926 return (WALK_ERR); 1927 1928 wsp->walk_addr = (uintptr_t)ld.l_next; 1929 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1930 return (WALK_DONE); 1931 1932 return (status); 1933 } 1934 1935 int 1936 lg_walk_init(mdb_walk_state_t *wsp) 1937 { 1938 GElf_Sym sym; 1939 1940 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1941 mdb_warn("failed to find symbol 'lock_graph'\n"); 1942 return (WALK_ERR); 1943 } 1944 1945 wsp->walk_addr = (uintptr_t)sym.st_value; 1946 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1947 1948 return (WALK_NEXT); 1949 } 1950 1951 typedef struct lg_walk_data { 1952 uintptr_t startaddr; 1953 mdb_walk_cb_t callback; 1954 void *data; 1955 } lg_walk_data_t; 1956 1957 /* 1958 * We can't use ::walk lock_descriptor directly, because the head of each graph 1959 * is really a dummy lock. Rather than trying to dynamically determine if this 1960 * is a dummy node or not, we just filter out the initial element of the 1961 * list. 1962 */ 1963 static int 1964 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1965 { 1966 lg_walk_data_t *lw = priv; 1967 1968 if (addr != lw->startaddr) 1969 return (lw->callback(addr, data, lw->data)); 1970 1971 return (WALK_NEXT); 1972 } 1973 1974 int 1975 lg_walk_step(mdb_walk_state_t *wsp) 1976 { 1977 graph_t *graph; 1978 lg_walk_data_t lw; 1979 1980 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1981 return (WALK_DONE); 1982 1983 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1984 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1985 return (WALK_ERR); 1986 } 1987 1988 wsp->walk_addr += sizeof (graph); 1989 1990 if (graph == NULL) 1991 return (WALK_NEXT); 1992 1993 lw.callback = wsp->walk_callback; 1994 lw.data = wsp->walk_cbdata; 1995 1996 lw.startaddr = (uintptr_t)&(graph->active_locks); 1997 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1998 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1999 return (WALK_ERR); 2000 } 2001 2002 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 2003 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 2004 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 2005 return (WALK_ERR); 2006 } 2007 2008 return (WALK_NEXT); 2009 } 2010 2011 /* 2012 * The space available for the path corresponding to the locked vnode depends 2013 * on whether we are printing 32- or 64-bit addresses. 2014 */ 2015 #ifdef _LP64 2016 #define LM_VNPATHLEN 20 2017 #else 2018 #define LM_VNPATHLEN 30 2019 #endif 2020 2021 typedef struct mdb_lminfo_proc { 2022 struct { 2023 char u_comm[MAXCOMLEN + 1]; 2024 } p_user; 2025 } mdb_lminfo_proc_t; 2026 2027 /*ARGSUSED*/ 2028 static int 2029 lminfo_cb(uintptr_t addr, const void *data, void *priv) 2030 { 2031 const lock_descriptor_t *ld = data; 2032 char buf[LM_VNPATHLEN]; 2033 mdb_lminfo_proc_t p; 2034 uintptr_t paddr = 0; 2035 2036 if (ld->l_flock.l_pid != 0) 2037 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL); 2038 2039 if (paddr != 0) 2040 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0); 2041 2042 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 2043 addr, ld->l_type == F_RDLCK ? "RD" : 2044 ld->l_type == F_WRLCK ? "WR" : "??", 2045 ld->l_state, ld->l_flock.l_pid, 2046 ld->l_flock.l_pid == 0 ? "<kernel>" : 2047 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode); 2048 2049 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 2050 sizeof (buf)); 2051 mdb_printf("%s\n", buf); 2052 2053 return (WALK_NEXT); 2054 } 2055 2056 /*ARGSUSED*/ 2057 int 2058 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2059 { 2060 if (DCMD_HDRSPEC(flags)) 2061 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 2062 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 2063 2064 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0)); 2065 } 2066 2067 typedef struct mdb_whereopen { 2068 uint_t mwo_flags; 2069 uintptr_t mwo_target; 2070 boolean_t mwo_found; 2071 } mdb_whereopen_t; 2072 2073 /*ARGSUSED*/ 2074 int 2075 whereopen_fwalk(uintptr_t addr, const void *farg, void *arg) 2076 { 2077 const struct file *f = farg; 2078 mdb_whereopen_t *mwo = arg; 2079 2080 if ((uintptr_t)f->f_vnode == mwo->mwo_target) { 2081 if ((mwo->mwo_flags & DCMD_PIPE_OUT) == 0 && 2082 !mwo->mwo_found) { 2083 mdb_printf("file %p\n", addr); 2084 } 2085 mwo->mwo_found = B_TRUE; 2086 } 2087 2088 return (WALK_NEXT); 2089 } 2090 2091 /*ARGSUSED*/ 2092 int 2093 whereopen_pwalk(uintptr_t addr, const void *ignored, void *arg) 2094 { 2095 mdb_whereopen_t *mwo = arg; 2096 2097 mwo->mwo_found = B_FALSE; 2098 if (mdb_pwalk("file", whereopen_fwalk, mwo, addr) == -1) { 2099 mdb_warn("couldn't file walk proc %p", addr); 2100 return (WALK_ERR); 2101 } 2102 2103 if (mwo->mwo_found) { 2104 mdb_printf("%p\n", addr); 2105 } 2106 2107 return (WALK_NEXT); 2108 } 2109 2110 /*ARGSUSED*/ 2111 int 2112 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2113 { 2114 mdb_whereopen_t mwo; 2115 2116 if (!(flags & DCMD_ADDRSPEC) || addr == 0) 2117 return (DCMD_USAGE); 2118 2119 mwo.mwo_flags = flags; 2120 mwo.mwo_target = addr; 2121 mwo.mwo_found = B_FALSE; 2122 2123 if (mdb_walk("proc", whereopen_pwalk, &mwo) == -1) { 2124 mdb_warn("can't proc walk"); 2125 return (DCMD_ERR); 2126 } 2127 2128 return (DCMD_OK); 2129 } 2130 2131 typedef struct datafmt { 2132 char *hdr1; 2133 char *hdr2; 2134 char *dashes; 2135 char *fmt; 2136 } datafmt_t; 2137 2138 static datafmt_t kmemfmt[] = { 2139 { "cache ", "name ", 2140 "-------------------------", "%-25s " }, 2141 { " buf", " size", "------", "%6u " }, 2142 { " buf", "in use", "------", "%6u " }, 2143 { " buf", " total", "------", "%6u " }, 2144 { " memory", " in use", "----------", "%10lu%c " }, 2145 { " alloc", " succeed", "---------", "%9u " }, 2146 { "alloc", " fail", "-----", "%5u " }, 2147 { NULL, NULL, NULL, NULL } 2148 }; 2149 2150 static datafmt_t vmemfmt[] = { 2151 { "vmem ", "name ", 2152 "-------------------------", "%-*s " }, 2153 { " memory", " in use", "----------", "%9llu%c " }, 2154 { " memory", " total", "-----------", "%10llu%c " }, 2155 { " memory", " import", "----------", "%9llu%c " }, 2156 { " alloc", " succeed", "---------", "%9llu " }, 2157 { "alloc", " fail", "-----", "%5llu " }, 2158 { NULL, NULL, NULL, NULL } 2159 }; 2160 2161 /*ARGSUSED*/ 2162 static int 2163 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2164 { 2165 short rounds, prounds; 2166 2167 if (KMEM_DUMPCC(ccp)) { 2168 rounds = ccp->cc_dump_rounds; 2169 prounds = ccp->cc_dump_prounds; 2170 } else { 2171 rounds = ccp->cc_rounds; 2172 prounds = ccp->cc_prounds; 2173 } 2174 if (rounds > 0) 2175 *avail += rounds; 2176 if (prounds > 0) 2177 *avail += prounds; 2178 2179 return (WALK_NEXT); 2180 } 2181 2182 /*ARGSUSED*/ 2183 static int 2184 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2185 { 2186 *alloc += ccp->cc_alloc; 2187 2188 return (WALK_NEXT); 2189 } 2190 2191 /*ARGSUSED*/ 2192 static int 2193 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2194 { 2195 *avail += sp->slab_chunks - sp->slab_refcnt; 2196 2197 return (WALK_NEXT); 2198 } 2199 2200 typedef struct kmastat_vmem { 2201 uintptr_t kv_addr; 2202 struct kmastat_vmem *kv_next; 2203 size_t kv_meminuse; 2204 int kv_alloc; 2205 int kv_fail; 2206 } kmastat_vmem_t; 2207 2208 typedef struct kmastat_args { 2209 kmastat_vmem_t **ka_kvpp; 2210 uint_t ka_shift; 2211 } kmastat_args_t; 2212 2213 static int 2214 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2215 { 2216 kmastat_vmem_t **kvpp = kap->ka_kvpp; 2217 kmastat_vmem_t *kv; 2218 datafmt_t *dfp = kmemfmt; 2219 int magsize; 2220 2221 int avail, alloc, total; 2222 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2223 cp->cache_slabsize; 2224 2225 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2226 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2227 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2228 2229 magsize = kmem_get_magsize(cp); 2230 2231 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2232 avail = cp->cache_full.ml_total * magsize; 2233 total = cp->cache_buftotal; 2234 2235 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2236 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2237 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2238 2239 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2240 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2241 goto out; 2242 } 2243 2244 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2245 kv->kv_next = *kvpp; 2246 kv->kv_addr = (uintptr_t)cp->cache_arena; 2247 *kvpp = kv; 2248 out: 2249 kv->kv_meminuse += meminuse; 2250 kv->kv_alloc += alloc; 2251 kv->kv_fail += cp->cache_alloc_fail; 2252 2253 mdb_printf((dfp++)->fmt, cp->cache_name); 2254 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2255 mdb_printf((dfp++)->fmt, total - avail); 2256 mdb_printf((dfp++)->fmt, total); 2257 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2258 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2259 kap->ka_shift == KILOS ? 'K' : 'B'); 2260 mdb_printf((dfp++)->fmt, alloc); 2261 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2262 mdb_printf("\n"); 2263 2264 return (WALK_NEXT); 2265 } 2266 2267 static int 2268 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2269 { 2270 kmastat_vmem_t *kv = *kap->ka_kvpp; 2271 size_t len; 2272 2273 while (kv != NULL && kv->kv_addr != addr) 2274 kv = kv->kv_next; 2275 2276 if (kv == NULL || kv->kv_alloc == 0) 2277 return (WALK_NEXT); 2278 2279 len = MIN(17, strlen(v->vm_name)); 2280 2281 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2282 17 - len, "", "", "", "", 2283 kv->kv_meminuse >> kap->ka_shift, 2284 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2285 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2286 2287 return (WALK_NEXT); 2288 } 2289 2290 /*ARGSUSED*/ 2291 static int 2292 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2293 { 2294 datafmt_t *dfp = vmemfmt; 2295 const vmem_kstat_t *vkp = &v->vm_kstat; 2296 uintptr_t paddr; 2297 vmem_t parent; 2298 int ident = 0; 2299 2300 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) { 2301 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2302 mdb_warn("couldn't trace %p's ancestry", addr); 2303 ident = 0; 2304 break; 2305 } 2306 paddr = (uintptr_t)parent.vm_source; 2307 } 2308 2309 mdb_printf("%*s", ident, ""); 2310 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2311 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2312 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2313 *shiftp == KILOS ? 'K' : 'B'); 2314 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2315 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2316 *shiftp == KILOS ? 'K' : 'B'); 2317 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2318 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2319 *shiftp == KILOS ? 'K' : 'B'); 2320 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2321 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2322 2323 mdb_printf("\n"); 2324 2325 return (WALK_NEXT); 2326 } 2327 2328 /*ARGSUSED*/ 2329 int 2330 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2331 { 2332 kmastat_vmem_t *kv = NULL; 2333 datafmt_t *dfp; 2334 kmastat_args_t ka; 2335 2336 ka.ka_shift = 0; 2337 if (mdb_getopts(argc, argv, 2338 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2339 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2340 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2341 return (DCMD_USAGE); 2342 2343 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2344 mdb_printf("%s ", dfp->hdr1); 2345 mdb_printf("\n"); 2346 2347 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2348 mdb_printf("%s ", dfp->hdr2); 2349 mdb_printf("\n"); 2350 2351 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2352 mdb_printf("%s ", dfp->dashes); 2353 mdb_printf("\n"); 2354 2355 ka.ka_kvpp = &kv; 2356 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2357 mdb_warn("can't walk 'kmem_cache'"); 2358 return (DCMD_ERR); 2359 } 2360 2361 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2362 mdb_printf("%s ", dfp->dashes); 2363 mdb_printf("\n"); 2364 2365 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2366 mdb_warn("can't walk 'vmem'"); 2367 return (DCMD_ERR); 2368 } 2369 2370 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2371 mdb_printf("%s ", dfp->dashes); 2372 mdb_printf("\n"); 2373 2374 mdb_printf("\n"); 2375 2376 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2377 mdb_printf("%s ", dfp->hdr1); 2378 mdb_printf("\n"); 2379 2380 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2381 mdb_printf("%s ", dfp->hdr2); 2382 mdb_printf("\n"); 2383 2384 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2385 mdb_printf("%s ", dfp->dashes); 2386 mdb_printf("\n"); 2387 2388 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2389 mdb_warn("can't walk 'vmem'"); 2390 return (DCMD_ERR); 2391 } 2392 2393 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2394 mdb_printf("%s ", dfp->dashes); 2395 mdb_printf("\n"); 2396 return (DCMD_OK); 2397 } 2398 2399 /* 2400 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2401 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2402 * unfortunately, a few of the segs are both large and sparse, so we could 2403 * spend quite a bit of time scanning VAs which have no backing pages. 2404 * 2405 * So for the few very sparse segs, we skip the segment itself, and scan 2406 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2407 * Currently, we do this for: 2408 * 2409 * SEG VMEM ARENA 2410 * kvseg heap_arena 2411 * kvseg32 heap32_arena 2412 * kvseg_core heap_core_arena 2413 * 2414 * In addition, we skip the segkpm segment in its entirety, since it is very 2415 * sparse, and contains no new kernel data. 2416 */ 2417 typedef struct kgrep_walk_data { 2418 kgrep_cb_func *kg_cb; 2419 void *kg_cbdata; 2420 uintptr_t kg_kvseg; 2421 uintptr_t kg_kvseg32; 2422 uintptr_t kg_kvseg_core; 2423 uintptr_t kg_segkpm; 2424 uintptr_t kg_heap_lp_base; 2425 uintptr_t kg_heap_lp_end; 2426 } kgrep_walk_data_t; 2427 2428 static int 2429 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2430 { 2431 uintptr_t base = (uintptr_t)seg->s_base; 2432 2433 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2434 addr == kg->kg_kvseg_core) 2435 return (WALK_NEXT); 2436 2437 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2438 return (WALK_NEXT); 2439 2440 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2441 } 2442 2443 /*ARGSUSED*/ 2444 static int 2445 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2446 { 2447 /* 2448 * skip large page heap address range - it is scanned by walking 2449 * allocated vmem_segs in the heap_lp_arena 2450 */ 2451 if (seg->vs_start == kg->kg_heap_lp_base && 2452 seg->vs_end == kg->kg_heap_lp_end) 2453 return (WALK_NEXT); 2454 2455 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2456 } 2457 2458 /*ARGSUSED*/ 2459 static int 2460 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2461 { 2462 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2463 } 2464 2465 static int 2466 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2467 { 2468 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2469 2470 if (strcmp(vmem->vm_name, "heap") != 0 && 2471 strcmp(vmem->vm_name, "heap32") != 0 && 2472 strcmp(vmem->vm_name, "heap_core") != 0 && 2473 strcmp(vmem->vm_name, "heap_lp") != 0) 2474 return (WALK_NEXT); 2475 2476 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2477 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2478 2479 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2480 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2481 return (WALK_ERR); 2482 } 2483 2484 return (WALK_NEXT); 2485 } 2486 2487 int 2488 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2489 { 2490 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2491 kgrep_walk_data_t kg; 2492 2493 if (mdb_get_state() == MDB_STATE_RUNNING) { 2494 mdb_warn("kgrep can only be run on a system " 2495 "dump or under kmdb; see dumpadm(1M)\n"); 2496 return (DCMD_ERR); 2497 } 2498 2499 if (mdb_lookup_by_name("kas", &kas) == -1) { 2500 mdb_warn("failed to locate 'kas' symbol\n"); 2501 return (DCMD_ERR); 2502 } 2503 2504 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2505 mdb_warn("failed to locate 'kvseg' symbol\n"); 2506 return (DCMD_ERR); 2507 } 2508 2509 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2510 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2511 return (DCMD_ERR); 2512 } 2513 2514 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2515 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2516 return (DCMD_ERR); 2517 } 2518 2519 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2520 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2521 return (DCMD_ERR); 2522 } 2523 2524 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2525 mdb_warn("failed to read 'heap_lp_base'\n"); 2526 return (DCMD_ERR); 2527 } 2528 2529 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2530 mdb_warn("failed to read 'heap_lp_end'\n"); 2531 return (DCMD_ERR); 2532 } 2533 2534 kg.kg_cb = cb; 2535 kg.kg_cbdata = cbdata; 2536 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2537 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2538 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2539 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2540 2541 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2542 &kg, kas.st_value) == -1) { 2543 mdb_warn("failed to walk kas segments"); 2544 return (DCMD_ERR); 2545 } 2546 2547 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2548 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2549 return (DCMD_ERR); 2550 } 2551 2552 return (DCMD_OK); 2553 } 2554 2555 size_t 2556 kgrep_subr_pagesize(void) 2557 { 2558 return (PAGESIZE); 2559 } 2560 2561 typedef struct file_walk_data { 2562 struct uf_entry *fw_flist; 2563 int fw_flistsz; 2564 int fw_ndx; 2565 int fw_nofiles; 2566 } file_walk_data_t; 2567 2568 typedef struct mdb_file_proc { 2569 struct { 2570 struct { 2571 int fi_nfiles; 2572 uf_entry_t *volatile fi_list; 2573 } u_finfo; 2574 } p_user; 2575 } mdb_file_proc_t; 2576 2577 int 2578 file_walk_init(mdb_walk_state_t *wsp) 2579 { 2580 file_walk_data_t *fw; 2581 mdb_file_proc_t p; 2582 2583 if (wsp->walk_addr == 0) { 2584 mdb_warn("file walk doesn't support global walks\n"); 2585 return (WALK_ERR); 2586 } 2587 2588 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2589 2590 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t", 2591 wsp->walk_addr, 0) == -1) { 2592 mdb_free(fw, sizeof (file_walk_data_t)); 2593 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2594 return (WALK_ERR); 2595 } 2596 2597 if (p.p_user.u_finfo.fi_nfiles == 0) { 2598 mdb_free(fw, sizeof (file_walk_data_t)); 2599 return (WALK_DONE); 2600 } 2601 2602 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2603 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2604 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2605 2606 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2607 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2608 mdb_warn("failed to read file array at %p", 2609 p.p_user.u_finfo.fi_list); 2610 mdb_free(fw->fw_flist, fw->fw_flistsz); 2611 mdb_free(fw, sizeof (file_walk_data_t)); 2612 return (WALK_ERR); 2613 } 2614 2615 fw->fw_ndx = 0; 2616 wsp->walk_data = fw; 2617 2618 return (WALK_NEXT); 2619 } 2620 2621 int 2622 file_walk_step(mdb_walk_state_t *wsp) 2623 { 2624 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2625 struct file file; 2626 uintptr_t fp; 2627 2628 again: 2629 if (fw->fw_ndx == fw->fw_nofiles) 2630 return (WALK_DONE); 2631 2632 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0) 2633 goto again; 2634 2635 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2636 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2637 } 2638 2639 int 2640 allfile_walk_step(mdb_walk_state_t *wsp) 2641 { 2642 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2643 struct file file; 2644 uintptr_t fp; 2645 2646 if (fw->fw_ndx == fw->fw_nofiles) 2647 return (WALK_DONE); 2648 2649 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0) 2650 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2651 else 2652 bzero(&file, sizeof (file)); 2653 2654 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2655 } 2656 2657 void 2658 file_walk_fini(mdb_walk_state_t *wsp) 2659 { 2660 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2661 2662 mdb_free(fw->fw_flist, fw->fw_flistsz); 2663 mdb_free(fw, sizeof (file_walk_data_t)); 2664 } 2665 2666 int 2667 port_walk_init(mdb_walk_state_t *wsp) 2668 { 2669 if (wsp->walk_addr == 0) { 2670 mdb_warn("port walk doesn't support global walks\n"); 2671 return (WALK_ERR); 2672 } 2673 2674 if (mdb_layered_walk("file", wsp) == -1) { 2675 mdb_warn("couldn't walk 'file'"); 2676 return (WALK_ERR); 2677 } 2678 return (WALK_NEXT); 2679 } 2680 2681 int 2682 port_walk_step(mdb_walk_state_t *wsp) 2683 { 2684 struct vnode vn; 2685 uintptr_t vp; 2686 uintptr_t pp; 2687 struct port port; 2688 2689 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2690 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2691 mdb_warn("failed to read vnode_t at %p", vp); 2692 return (WALK_ERR); 2693 } 2694 if (vn.v_type != VPORT) 2695 return (WALK_NEXT); 2696 2697 pp = (uintptr_t)vn.v_data; 2698 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2699 mdb_warn("failed to read port_t at %p", pp); 2700 return (WALK_ERR); 2701 } 2702 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2703 } 2704 2705 typedef struct portev_walk_data { 2706 list_node_t *pev_node; 2707 list_node_t *pev_last; 2708 size_t pev_offset; 2709 } portev_walk_data_t; 2710 2711 int 2712 portev_walk_init(mdb_walk_state_t *wsp) 2713 { 2714 portev_walk_data_t *pevd; 2715 struct port port; 2716 struct vnode vn; 2717 struct list *list; 2718 uintptr_t vp; 2719 2720 if (wsp->walk_addr == 0) { 2721 mdb_warn("portev walk doesn't support global walks\n"); 2722 return (WALK_ERR); 2723 } 2724 2725 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2726 2727 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2728 mdb_free(pevd, sizeof (portev_walk_data_t)); 2729 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2730 return (WALK_ERR); 2731 } 2732 2733 vp = (uintptr_t)port.port_vnode; 2734 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2735 mdb_free(pevd, sizeof (portev_walk_data_t)); 2736 mdb_warn("failed to read vnode_t at %p", vp); 2737 return (WALK_ERR); 2738 } 2739 2740 if (vn.v_type != VPORT) { 2741 mdb_free(pevd, sizeof (portev_walk_data_t)); 2742 mdb_warn("input address (%p) does not point to an event port", 2743 wsp->walk_addr); 2744 return (WALK_ERR); 2745 } 2746 2747 if (port.port_queue.portq_nent == 0) { 2748 mdb_free(pevd, sizeof (portev_walk_data_t)); 2749 return (WALK_DONE); 2750 } 2751 list = &port.port_queue.portq_list; 2752 pevd->pev_offset = list->list_offset; 2753 pevd->pev_last = list->list_head.list_prev; 2754 pevd->pev_node = list->list_head.list_next; 2755 wsp->walk_data = pevd; 2756 return (WALK_NEXT); 2757 } 2758 2759 int 2760 portev_walk_step(mdb_walk_state_t *wsp) 2761 { 2762 portev_walk_data_t *pevd; 2763 struct port_kevent ev; 2764 uintptr_t evp; 2765 2766 pevd = (portev_walk_data_t *)wsp->walk_data; 2767 2768 if (pevd->pev_last == NULL) 2769 return (WALK_DONE); 2770 if (pevd->pev_node == pevd->pev_last) 2771 pevd->pev_last = NULL; /* last round */ 2772 2773 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2774 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2775 mdb_warn("failed to read port_kevent at %p", evp); 2776 return (WALK_DONE); 2777 } 2778 pevd->pev_node = ev.portkev_node.list_next; 2779 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2780 } 2781 2782 void 2783 portev_walk_fini(mdb_walk_state_t *wsp) 2784 { 2785 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2786 2787 if (pevd != NULL) 2788 mdb_free(pevd, sizeof (portev_walk_data_t)); 2789 } 2790 2791 typedef struct proc_walk_data { 2792 uintptr_t *pw_stack; 2793 int pw_depth; 2794 int pw_max; 2795 } proc_walk_data_t; 2796 2797 int 2798 proc_walk_init(mdb_walk_state_t *wsp) 2799 { 2800 GElf_Sym sym; 2801 proc_walk_data_t *pw; 2802 2803 if (wsp->walk_addr == 0) { 2804 if (mdb_lookup_by_name("p0", &sym) == -1) { 2805 mdb_warn("failed to read 'practive'"); 2806 return (WALK_ERR); 2807 } 2808 wsp->walk_addr = (uintptr_t)sym.st_value; 2809 } 2810 2811 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2812 2813 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2814 mdb_warn("failed to read 'nproc'"); 2815 mdb_free(pw, sizeof (pw)); 2816 return (WALK_ERR); 2817 } 2818 2819 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2820 wsp->walk_data = pw; 2821 2822 return (WALK_NEXT); 2823 } 2824 2825 typedef struct mdb_walk_proc { 2826 struct proc *p_child; 2827 struct proc *p_sibling; 2828 } mdb_walk_proc_t; 2829 2830 int 2831 proc_walk_step(mdb_walk_state_t *wsp) 2832 { 2833 proc_walk_data_t *pw = wsp->walk_data; 2834 uintptr_t addr = wsp->walk_addr; 2835 uintptr_t cld, sib; 2836 int status; 2837 mdb_walk_proc_t pr; 2838 2839 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2840 addr, 0) == -1) { 2841 mdb_warn("failed to read proc at %p", addr); 2842 return (WALK_DONE); 2843 } 2844 2845 cld = (uintptr_t)pr.p_child; 2846 sib = (uintptr_t)pr.p_sibling; 2847 2848 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2849 pw->pw_depth--; 2850 goto sib; 2851 } 2852 2853 /* 2854 * Always pass NULL as the local copy pointer. Consumers 2855 * should use mdb_ctf_vread() to read their own minimal 2856 * version of proc_t. Thus minimizing the chance of breakage 2857 * with older crash dumps. 2858 */ 2859 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata); 2860 2861 if (status != WALK_NEXT) 2862 return (status); 2863 2864 if ((wsp->walk_addr = cld) != 0) { 2865 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2866 cld, 0) == -1) { 2867 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2868 addr, cld); 2869 goto sib; 2870 } 2871 2872 pw->pw_stack[pw->pw_depth++] = addr; 2873 2874 if (pw->pw_depth == pw->pw_max) { 2875 mdb_warn("depth %d exceeds max depth; try again\n", 2876 pw->pw_depth); 2877 return (WALK_DONE); 2878 } 2879 return (WALK_NEXT); 2880 } 2881 2882 sib: 2883 /* 2884 * We know that p0 has no siblings, and if another starting proc 2885 * was given, we don't want to walk its siblings anyway. 2886 */ 2887 if (pw->pw_depth == 0) 2888 return (WALK_DONE); 2889 2890 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2891 sib, 0) == -1) { 2892 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2893 addr, sib); 2894 sib = 0; 2895 } 2896 2897 if ((wsp->walk_addr = sib) == 0) { 2898 if (pw->pw_depth > 0) { 2899 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2900 return (WALK_NEXT); 2901 } 2902 return (WALK_DONE); 2903 } 2904 2905 return (WALK_NEXT); 2906 } 2907 2908 void 2909 proc_walk_fini(mdb_walk_state_t *wsp) 2910 { 2911 proc_walk_data_t *pw = wsp->walk_data; 2912 2913 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2914 mdb_free(pw, sizeof (proc_walk_data_t)); 2915 } 2916 2917 int 2918 task_walk_init(mdb_walk_state_t *wsp) 2919 { 2920 task_t task; 2921 2922 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2923 mdb_warn("failed to read task at %p", wsp->walk_addr); 2924 return (WALK_ERR); 2925 } 2926 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2927 wsp->walk_data = task.tk_memb_list; 2928 return (WALK_NEXT); 2929 } 2930 2931 typedef struct mdb_task_proc { 2932 struct proc *p_tasknext; 2933 } mdb_task_proc_t; 2934 2935 int 2936 task_walk_step(mdb_walk_state_t *wsp) 2937 { 2938 mdb_task_proc_t proc; 2939 int status; 2940 2941 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t", 2942 wsp->walk_addr, 0) == -1) { 2943 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2944 return (WALK_DONE); 2945 } 2946 2947 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2948 2949 if (proc.p_tasknext == wsp->walk_data) 2950 return (WALK_DONE); 2951 2952 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2953 return (status); 2954 } 2955 2956 int 2957 project_walk_init(mdb_walk_state_t *wsp) 2958 { 2959 if (wsp->walk_addr == 0) { 2960 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2961 mdb_warn("failed to read 'proj0p'"); 2962 return (WALK_ERR); 2963 } 2964 } 2965 wsp->walk_data = (void *)wsp->walk_addr; 2966 return (WALK_NEXT); 2967 } 2968 2969 int 2970 project_walk_step(mdb_walk_state_t *wsp) 2971 { 2972 uintptr_t addr = wsp->walk_addr; 2973 kproject_t pj; 2974 int status; 2975 2976 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2977 mdb_warn("failed to read project at %p", addr); 2978 return (WALK_DONE); 2979 } 2980 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2981 if (status != WALK_NEXT) 2982 return (status); 2983 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2984 if ((void *)wsp->walk_addr == wsp->walk_data) 2985 return (WALK_DONE); 2986 return (WALK_NEXT); 2987 } 2988 2989 static int 2990 generic_walk_step(mdb_walk_state_t *wsp) 2991 { 2992 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2993 wsp->walk_cbdata)); 2994 } 2995 2996 static int 2997 cpu_walk_cmp(const void *l, const void *r) 2998 { 2999 uintptr_t lhs = *((uintptr_t *)l); 3000 uintptr_t rhs = *((uintptr_t *)r); 3001 cpu_t lcpu, rcpu; 3002 3003 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 3004 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 3005 3006 if (lcpu.cpu_id < rcpu.cpu_id) 3007 return (-1); 3008 3009 if (lcpu.cpu_id > rcpu.cpu_id) 3010 return (1); 3011 3012 return (0); 3013 } 3014 3015 typedef struct cpu_walk { 3016 uintptr_t *cw_array; 3017 int cw_ndx; 3018 } cpu_walk_t; 3019 3020 int 3021 cpu_walk_init(mdb_walk_state_t *wsp) 3022 { 3023 cpu_walk_t *cw; 3024 int max_ncpus, i = 0; 3025 uintptr_t current, first; 3026 cpu_t cpu, panic_cpu; 3027 uintptr_t panicstr, addr; 3028 GElf_Sym sym; 3029 3030 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 3031 3032 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 3033 mdb_warn("failed to read 'max_ncpus'"); 3034 return (WALK_ERR); 3035 } 3036 3037 if (mdb_readvar(&panicstr, "panicstr") == -1) { 3038 mdb_warn("failed to read 'panicstr'"); 3039 return (WALK_ERR); 3040 } 3041 3042 if (panicstr != 0) { 3043 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 3044 mdb_warn("failed to find 'panic_cpu'"); 3045 return (WALK_ERR); 3046 } 3047 3048 addr = (uintptr_t)sym.st_value; 3049 3050 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 3051 mdb_warn("failed to read 'panic_cpu'"); 3052 return (WALK_ERR); 3053 } 3054 } 3055 3056 /* 3057 * Unfortunately, there is no platform-independent way to walk 3058 * CPUs in ID order. We therefore loop through in cpu_next order, 3059 * building an array of CPU pointers which will subsequently be 3060 * sorted. 3061 */ 3062 cw->cw_array = 3063 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 3064 3065 if (mdb_readvar(&first, "cpu_list") == -1) { 3066 mdb_warn("failed to read 'cpu_list'"); 3067 return (WALK_ERR); 3068 } 3069 3070 current = first; 3071 do { 3072 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 3073 mdb_warn("failed to read cpu at %p", current); 3074 return (WALK_ERR); 3075 } 3076 3077 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) { 3078 cw->cw_array[i++] = addr; 3079 } else { 3080 cw->cw_array[i++] = current; 3081 } 3082 } while ((current = (uintptr_t)cpu.cpu_next) != first); 3083 3084 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 3085 wsp->walk_data = cw; 3086 3087 return (WALK_NEXT); 3088 } 3089 3090 int 3091 cpu_walk_step(mdb_walk_state_t *wsp) 3092 { 3093 cpu_walk_t *cw = wsp->walk_data; 3094 cpu_t cpu; 3095 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 3096 3097 if (addr == 0) 3098 return (WALK_DONE); 3099 3100 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 3101 mdb_warn("failed to read cpu at %p", addr); 3102 return (WALK_DONE); 3103 } 3104 3105 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 3106 } 3107 3108 typedef struct cpuinfo_data { 3109 intptr_t cid_cpu; 3110 uintptr_t **cid_ithr; 3111 char cid_print_head; 3112 char cid_print_thr; 3113 char cid_print_ithr; 3114 char cid_print_flags; 3115 } cpuinfo_data_t; 3116 3117 int 3118 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 3119 { 3120 cpu_t c; 3121 int id; 3122 uint8_t pil; 3123 3124 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3125 return (WALK_NEXT); 3126 3127 if (thr->t_bound_cpu == NULL) { 3128 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3129 return (WALK_NEXT); 3130 } 3131 3132 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3133 3134 if ((id = c.cpu_id) >= NCPU) { 3135 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3136 thr->t_bound_cpu, id, NCPU); 3137 return (WALK_NEXT); 3138 } 3139 3140 if ((pil = thr->t_pil) >= NINTR) { 3141 mdb_warn("thread %p has pil (%d) greater than %d\n", 3142 addr, pil, NINTR); 3143 return (WALK_NEXT); 3144 } 3145 3146 if (cid->cid_ithr[id][pil] != 0) { 3147 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3148 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3149 return (WALK_NEXT); 3150 } 3151 3152 cid->cid_ithr[id][pil] = addr; 3153 3154 return (WALK_NEXT); 3155 } 3156 3157 #define CPUINFO_IDWIDTH 3 3158 #define CPUINFO_FLAGWIDTH 9 3159 3160 #ifdef _LP64 3161 #if defined(__amd64) 3162 #define CPUINFO_TWIDTH 16 3163 #define CPUINFO_CPUWIDTH 16 3164 #else 3165 #define CPUINFO_CPUWIDTH 11 3166 #define CPUINFO_TWIDTH 11 3167 #endif 3168 #else 3169 #define CPUINFO_CPUWIDTH 8 3170 #define CPUINFO_TWIDTH 8 3171 #endif 3172 3173 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3174 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3175 #define CPUINFO_ITHRDELT 4 3176 3177 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3178 flagline < nflaglines ? flagbuf[flagline++] : "") 3179 3180 typedef struct mdb_cpuinfo_proc { 3181 struct { 3182 char u_comm[MAXCOMLEN + 1]; 3183 } p_user; 3184 } mdb_cpuinfo_proc_t; 3185 3186 int 3187 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3188 { 3189 kthread_t t; 3190 disp_t disp; 3191 mdb_cpuinfo_proc_t p; 3192 uintptr_t pinned; 3193 char **flagbuf; 3194 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3195 3196 const char *flags[] = { 3197 "RUNNING", "READY", "QUIESCED", "EXISTS", 3198 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3199 "SPARE", "FAULTED", "DISABLED", NULL 3200 }; 3201 3202 if (cid->cid_cpu != -1) { 3203 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3204 return (WALK_NEXT); 3205 3206 /* 3207 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3208 */ 3209 cid->cid_cpu = -1; 3210 rval = WALK_DONE; 3211 } 3212 3213 if (cid->cid_print_head) { 3214 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3215 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3216 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3217 "PROC"); 3218 cid->cid_print_head = FALSE; 3219 } 3220 3221 bspl = cpu->cpu_base_spl; 3222 3223 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3224 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3225 return (WALK_ERR); 3226 } 3227 3228 mdb_printf("%3d %0*p %3x %4d %4d ", 3229 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3230 disp.disp_nrunnable, bspl); 3231 3232 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3233 mdb_printf("%3d ", t.t_pri); 3234 } else { 3235 mdb_printf("%3s ", "-"); 3236 } 3237 3238 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3239 cpu->cpu_kprunrun ? "yes" : "no"); 3240 3241 if (cpu->cpu_last_swtch) { 3242 mdb_printf("t-%-4d ", 3243 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 3244 } else { 3245 mdb_printf("%-6s ", "-"); 3246 } 3247 3248 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3249 3250 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3251 mdb_printf(" (idle)\n"); 3252 else if (cpu->cpu_thread == NULL) 3253 mdb_printf(" -\n"); 3254 else { 3255 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3256 (uintptr_t)t.t_procp, 0) != -1) { 3257 mdb_printf(" %s\n", p.p_user.u_comm); 3258 } else { 3259 mdb_printf(" ?\n"); 3260 } 3261 } 3262 3263 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3264 3265 if (cid->cid_print_flags) { 3266 int first = 1, i, j, k; 3267 char *s; 3268 3269 cid->cid_print_head = TRUE; 3270 3271 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3272 if (!(cpu->cpu_flags & i)) 3273 continue; 3274 3275 if (first) { 3276 s = mdb_alloc(CPUINFO_THRDELT + 1, 3277 UM_GC | UM_SLEEP); 3278 3279 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3280 "%*s|%*s", CPUINFO_FLAGDELT, "", 3281 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3282 flagbuf[nflaglines++] = s; 3283 } 3284 3285 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3286 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3287 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3288 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3289 first ? "<--+" : ""); 3290 3291 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3292 s[k] = ' '; 3293 s[k] = '\0'; 3294 3295 flagbuf[nflaglines++] = s; 3296 first = 0; 3297 } 3298 } 3299 3300 if (cid->cid_print_ithr) { 3301 int i, found_one = FALSE; 3302 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3303 3304 for (i = NINTR - 1; i >= 0; i--) { 3305 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3306 3307 if (iaddr == 0) 3308 continue; 3309 3310 if (!found_one) { 3311 found_one = TRUE; 3312 3313 CPUINFO_INDENT; 3314 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3315 CPUINFO_ITHRDELT, ""); 3316 3317 CPUINFO_INDENT; 3318 mdb_printf("%c%*s+--> %3s %s\n", 3319 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3320 "", "PIL", "THREAD"); 3321 } 3322 3323 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3324 mdb_warn("failed to read kthread_t at %p", 3325 iaddr); 3326 return (WALK_ERR); 3327 } 3328 3329 CPUINFO_INDENT; 3330 mdb_printf("%c%*s %3d %0*p\n", 3331 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3332 t.t_pil, CPUINFO_TWIDTH, iaddr); 3333 3334 pinned = (uintptr_t)t.t_intr; 3335 } 3336 3337 if (found_one && pinned != 0) { 3338 cid->cid_print_head = TRUE; 3339 (void) strcpy(p.p_user.u_comm, "?"); 3340 3341 if (mdb_vread(&t, sizeof (t), 3342 (uintptr_t)pinned) == -1) { 3343 mdb_warn("failed to read kthread_t at %p", 3344 pinned); 3345 return (WALK_ERR); 3346 } 3347 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3348 (uintptr_t)t.t_procp, 0) == -1) { 3349 mdb_warn("failed to read proc_t at %p", 3350 t.t_procp); 3351 return (WALK_ERR); 3352 } 3353 3354 CPUINFO_INDENT; 3355 mdb_printf("%c%*s %3s %0*p %s\n", 3356 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3357 CPUINFO_TWIDTH, pinned, 3358 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3359 "(idle)" : p.p_user.u_comm); 3360 } 3361 } 3362 3363 if (disp.disp_nrunnable && cid->cid_print_thr) { 3364 dispq_t *dq; 3365 3366 int i, npri = disp.disp_npri; 3367 3368 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3369 3370 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3371 (uintptr_t)disp.disp_q) == -1) { 3372 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3373 return (WALK_ERR); 3374 } 3375 3376 CPUINFO_INDENT; 3377 mdb_printf("|\n"); 3378 3379 CPUINFO_INDENT; 3380 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3381 CPUINFO_TWIDTH, "THREAD", "PROC"); 3382 3383 for (i = npri - 1; i >= 0; i--) { 3384 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3385 3386 while (taddr != 0) { 3387 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3388 mdb_warn("failed to read kthread_t " 3389 "at %p", taddr); 3390 return (WALK_ERR); 3391 } 3392 if (mdb_ctf_vread(&p, "proc_t", 3393 "mdb_cpuinfo_proc_t", 3394 (uintptr_t)t.t_procp, 0) == -1) { 3395 mdb_warn("failed to read proc_t at %p", 3396 t.t_procp); 3397 return (WALK_ERR); 3398 } 3399 3400 CPUINFO_INDENT; 3401 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3402 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3403 3404 taddr = (uintptr_t)t.t_link; 3405 } 3406 } 3407 cid->cid_print_head = TRUE; 3408 } 3409 3410 while (flagline < nflaglines) 3411 mdb_printf("%s\n", flagbuf[flagline++]); 3412 3413 if (cid->cid_print_head) 3414 mdb_printf("\n"); 3415 3416 return (rval); 3417 } 3418 3419 int 3420 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3421 { 3422 uint_t verbose = FALSE; 3423 cpuinfo_data_t cid; 3424 3425 cid.cid_print_ithr = FALSE; 3426 cid.cid_print_thr = FALSE; 3427 cid.cid_print_flags = FALSE; 3428 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3429 cid.cid_cpu = -1; 3430 3431 if (flags & DCMD_ADDRSPEC) 3432 cid.cid_cpu = addr; 3433 3434 if (mdb_getopts(argc, argv, 3435 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3436 return (DCMD_USAGE); 3437 3438 if (verbose) { 3439 cid.cid_print_ithr = TRUE; 3440 cid.cid_print_thr = TRUE; 3441 cid.cid_print_flags = TRUE; 3442 cid.cid_print_head = TRUE; 3443 } 3444 3445 if (cid.cid_print_ithr) { 3446 int i; 3447 3448 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3449 * NCPU, UM_SLEEP | UM_GC); 3450 3451 for (i = 0; i < NCPU; i++) 3452 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3453 NINTR, UM_SLEEP | UM_GC); 3454 3455 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3456 &cid) == -1) { 3457 mdb_warn("couldn't walk thread"); 3458 return (DCMD_ERR); 3459 } 3460 } 3461 3462 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3463 mdb_warn("can't walk cpus"); 3464 return (DCMD_ERR); 3465 } 3466 3467 if (cid.cid_cpu != -1) { 3468 /* 3469 * We didn't find this CPU when we walked through the CPUs 3470 * (i.e. the address specified doesn't show up in the "cpu" 3471 * walk). However, the specified address may still correspond 3472 * to a valid cpu_t (for example, if the specified address is 3473 * the actual panicking cpu_t and not the cached panic_cpu). 3474 * Point is: even if we didn't find it, we still want to try 3475 * to print the specified address as a cpu_t. 3476 */ 3477 cpu_t cpu; 3478 3479 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3480 mdb_warn("%p is neither a valid CPU ID nor a " 3481 "valid cpu_t address\n", cid.cid_cpu); 3482 return (DCMD_ERR); 3483 } 3484 3485 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3486 } 3487 3488 return (DCMD_OK); 3489 } 3490 3491 /*ARGSUSED*/ 3492 int 3493 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3494 { 3495 int i; 3496 3497 if (!(flags & DCMD_ADDRSPEC)) 3498 return (DCMD_USAGE); 3499 3500 for (i = 0; i < sizeof (addr) * NBBY; i++) 3501 mdb_printf("%p\n", addr ^ (1UL << i)); 3502 3503 return (DCMD_OK); 3504 } 3505 3506 typedef struct mdb_as2proc_proc { 3507 struct as *p_as; 3508 } mdb_as2proc_proc_t; 3509 3510 /*ARGSUSED*/ 3511 int 3512 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp) 3513 { 3514 mdb_as2proc_proc_t p; 3515 3516 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0); 3517 3518 if (p.p_as == *asp) 3519 mdb_printf("%p\n", addr); 3520 return (WALK_NEXT); 3521 } 3522 3523 /*ARGSUSED*/ 3524 int 3525 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3526 { 3527 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3528 return (DCMD_USAGE); 3529 3530 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3531 mdb_warn("failed to walk proc"); 3532 return (DCMD_ERR); 3533 } 3534 3535 return (DCMD_OK); 3536 } 3537 3538 typedef struct mdb_ptree_proc { 3539 struct proc *p_parent; 3540 struct { 3541 char u_comm[MAXCOMLEN + 1]; 3542 } p_user; 3543 } mdb_ptree_proc_t; 3544 3545 /*ARGSUSED*/ 3546 int 3547 ptree_walk(uintptr_t addr, const void *ignored, void *data) 3548 { 3549 mdb_ptree_proc_t proc; 3550 mdb_ptree_proc_t parent; 3551 int ident = 0; 3552 uintptr_t paddr; 3553 3554 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0); 3555 3556 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) { 3557 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0); 3558 paddr = (uintptr_t)parent.p_parent; 3559 } 3560 3561 mdb_inc_indent(ident); 3562 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm); 3563 mdb_dec_indent(ident); 3564 3565 return (WALK_NEXT); 3566 } 3567 3568 void 3569 ptree_ancestors(uintptr_t addr, uintptr_t start) 3570 { 3571 mdb_ptree_proc_t p; 3572 3573 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) { 3574 mdb_warn("couldn't read ancestor at %p", addr); 3575 return; 3576 } 3577 3578 if (p.p_parent != NULL) 3579 ptree_ancestors((uintptr_t)p.p_parent, start); 3580 3581 if (addr != start) 3582 (void) ptree_walk(addr, &p, NULL); 3583 } 3584 3585 /*ARGSUSED*/ 3586 int 3587 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3588 { 3589 if (!(flags & DCMD_ADDRSPEC)) 3590 addr = 0; 3591 else 3592 ptree_ancestors(addr, addr); 3593 3594 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3595 mdb_warn("couldn't walk 'proc'"); 3596 return (DCMD_ERR); 3597 } 3598 3599 return (DCMD_OK); 3600 } 3601 3602 typedef struct mdb_fd_proc { 3603 struct { 3604 struct { 3605 int fi_nfiles; 3606 uf_entry_t *volatile fi_list; 3607 } u_finfo; 3608 } p_user; 3609 } mdb_fd_proc_t; 3610 3611 /*ARGSUSED*/ 3612 static int 3613 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3614 { 3615 int fdnum; 3616 const mdb_arg_t *argp = &argv[0]; 3617 mdb_fd_proc_t p; 3618 uf_entry_t uf; 3619 3620 if ((flags & DCMD_ADDRSPEC) == 0) { 3621 mdb_warn("fd doesn't give global information\n"); 3622 return (DCMD_ERR); 3623 } 3624 if (argc != 1) 3625 return (DCMD_USAGE); 3626 3627 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3628 fdnum = argp->a_un.a_val; 3629 else 3630 fdnum = mdb_strtoull(argp->a_un.a_str); 3631 3632 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) { 3633 mdb_warn("couldn't read proc_t at %p", addr); 3634 return (DCMD_ERR); 3635 } 3636 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3637 mdb_warn("process %p only has %d files open.\n", 3638 addr, p.p_user.u_finfo.fi_nfiles); 3639 return (DCMD_ERR); 3640 } 3641 if (mdb_vread(&uf, sizeof (uf_entry_t), 3642 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3643 mdb_warn("couldn't read uf_entry_t at %p", 3644 &p.p_user.u_finfo.fi_list[fdnum]); 3645 return (DCMD_ERR); 3646 } 3647 3648 mdb_printf("%p\n", uf.uf_file); 3649 return (DCMD_OK); 3650 } 3651 3652 /*ARGSUSED*/ 3653 static int 3654 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3655 { 3656 pid_t pid = (pid_t)addr; 3657 3658 if (argc != 0) 3659 return (DCMD_USAGE); 3660 3661 if ((addr = mdb_pid2proc(pid, NULL)) == 0) { 3662 mdb_warn("PID 0t%d not found\n", pid); 3663 return (DCMD_ERR); 3664 } 3665 3666 mdb_printf("%p\n", addr); 3667 return (DCMD_OK); 3668 } 3669 3670 static char *sysfile_cmd[] = { 3671 "exclude:", 3672 "include:", 3673 "forceload:", 3674 "rootdev:", 3675 "rootfs:", 3676 "swapdev:", 3677 "swapfs:", 3678 "moddir:", 3679 "set", 3680 "unknown", 3681 }; 3682 3683 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3684 3685 /*ARGSUSED*/ 3686 static int 3687 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3688 { 3689 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3690 *target = NULL; 3691 return (WALK_DONE); 3692 } 3693 return (WALK_NEXT); 3694 } 3695 3696 /*ARGSUSED*/ 3697 static int 3698 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3699 { 3700 struct sysparam *sysp, sys; 3701 char var[256]; 3702 char modname[256]; 3703 char val[256]; 3704 char strval[256]; 3705 vmem_t *mod_sysfile_arena; 3706 void *straddr; 3707 3708 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3709 mdb_warn("failed to read sysparam_hd"); 3710 return (DCMD_ERR); 3711 } 3712 3713 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3714 mdb_warn("failed to read mod_sysfile_arena"); 3715 return (DCMD_ERR); 3716 } 3717 3718 while (sysp != NULL) { 3719 var[0] = '\0'; 3720 val[0] = '\0'; 3721 modname[0] = '\0'; 3722 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3723 mdb_warn("couldn't read sysparam %p", sysp); 3724 return (DCMD_ERR); 3725 } 3726 if (sys.sys_modnam != NULL && 3727 mdb_readstr(modname, 256, 3728 (uintptr_t)sys.sys_modnam) == -1) { 3729 mdb_warn("couldn't read modname in %p", sysp); 3730 return (DCMD_ERR); 3731 } 3732 if (sys.sys_ptr != NULL && 3733 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3734 mdb_warn("couldn't read ptr in %p", sysp); 3735 return (DCMD_ERR); 3736 } 3737 if (sys.sys_op != SETOP_NONE) { 3738 /* 3739 * Is this an int or a string? We determine this 3740 * by checking whether straddr is contained in 3741 * mod_sysfile_arena. If so, the walker will set 3742 * straddr to NULL. 3743 */ 3744 straddr = (void *)(uintptr_t)sys.sys_info; 3745 if (sys.sys_op == SETOP_ASSIGN && 3746 sys.sys_info != 0 && 3747 mdb_pwalk("vmem_seg", 3748 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3749 (uintptr_t)mod_sysfile_arena) == 0 && 3750 straddr == NULL && 3751 mdb_readstr(strval, 256, 3752 (uintptr_t)sys.sys_info) != -1) { 3753 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3754 strval); 3755 } else { 3756 (void) mdb_snprintf(val, sizeof (val), 3757 "0x%llx [0t%llu]", sys.sys_info, 3758 sys.sys_info); 3759 } 3760 } 3761 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3762 modname, modname[0] == '\0' ? "" : ":", 3763 var, sysfile_ops[sys.sys_op], val); 3764 3765 sysp = sys.sys_next; 3766 } 3767 3768 return (DCMD_OK); 3769 } 3770 3771 int 3772 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3773 { 3774 3775 if (*didp == thr->t_did) { 3776 mdb_printf("%p\n", addr); 3777 return (WALK_DONE); 3778 } else 3779 return (WALK_NEXT); 3780 } 3781 3782 /*ARGSUSED*/ 3783 int 3784 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3785 { 3786 const mdb_arg_t *argp = &argv[0]; 3787 kt_did_t did; 3788 3789 if (argc != 1) 3790 return (DCMD_USAGE); 3791 3792 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3793 3794 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3795 mdb_warn("failed to walk thread"); 3796 return (DCMD_ERR); 3797 3798 } 3799 return (DCMD_OK); 3800 3801 } 3802 3803 static int 3804 errorq_walk_init(mdb_walk_state_t *wsp) 3805 { 3806 if (wsp->walk_addr == 0 && 3807 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3808 mdb_warn("failed to read errorq_list"); 3809 return (WALK_ERR); 3810 } 3811 3812 return (WALK_NEXT); 3813 } 3814 3815 static int 3816 errorq_walk_step(mdb_walk_state_t *wsp) 3817 { 3818 uintptr_t addr = wsp->walk_addr; 3819 errorq_t eq; 3820 3821 if (addr == 0) 3822 return (WALK_DONE); 3823 3824 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3825 mdb_warn("failed to read errorq at %p", addr); 3826 return (WALK_ERR); 3827 } 3828 3829 wsp->walk_addr = (uintptr_t)eq.eq_next; 3830 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3831 } 3832 3833 typedef struct eqd_walk_data { 3834 uintptr_t *eqd_stack; 3835 void *eqd_buf; 3836 ulong_t eqd_qpos; 3837 ulong_t eqd_qlen; 3838 size_t eqd_size; 3839 } eqd_walk_data_t; 3840 3841 /* 3842 * In order to walk the list of pending error queue elements, we push the 3843 * addresses of the corresponding data buffers in to the eqd_stack array. 3844 * The error lists are in reverse chronological order when iterating using 3845 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3846 * walker client gets addresses in order from oldest error to newest error. 3847 */ 3848 static void 3849 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3850 { 3851 errorq_elem_t eqe; 3852 3853 while (addr != 0) { 3854 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3855 mdb_warn("failed to read errorq element at %p", addr); 3856 break; 3857 } 3858 3859 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3860 mdb_warn("errorq is overfull -- more than %lu " 3861 "elems found\n", eqdp->eqd_qlen); 3862 break; 3863 } 3864 3865 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3866 addr = (uintptr_t)eqe.eqe_prev; 3867 } 3868 } 3869 3870 static int 3871 eqd_walk_init(mdb_walk_state_t *wsp) 3872 { 3873 eqd_walk_data_t *eqdp; 3874 errorq_elem_t eqe, *addr; 3875 errorq_t eq; 3876 ulong_t i; 3877 3878 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3879 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3880 return (WALK_ERR); 3881 } 3882 3883 if (eq.eq_ptail != NULL && 3884 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3885 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3886 return (WALK_ERR); 3887 } 3888 3889 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3890 wsp->walk_data = eqdp; 3891 3892 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3893 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3894 eqdp->eqd_qlen = eq.eq_qlen; 3895 eqdp->eqd_qpos = 0; 3896 eqdp->eqd_size = eq.eq_size; 3897 3898 /* 3899 * The newest elements in the queue are on the pending list, so we 3900 * push those on to our stack first. 3901 */ 3902 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3903 3904 /* 3905 * If eq_ptail is set, it may point to a subset of the errors on the 3906 * pending list in the event a atomic_cas_ptr() failed; if ptail's 3907 * data is already in our stack, NULL out eq_ptail and ignore it. 3908 */ 3909 if (eq.eq_ptail != NULL) { 3910 for (i = 0; i < eqdp->eqd_qpos; i++) { 3911 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3912 eq.eq_ptail = NULL; 3913 break; 3914 } 3915 } 3916 } 3917 3918 /* 3919 * If eq_phead is set, it has the processing list in order from oldest 3920 * to newest. Use this to recompute eq_ptail as best we can and then 3921 * we nicely fall into eqd_push_list() of eq_ptail below. 3922 */ 3923 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3924 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3925 eq.eq_ptail = addr; 3926 3927 /* 3928 * The oldest elements in the queue are on the processing list, subject 3929 * to machinations in the if-clauses above. Push any such elements. 3930 */ 3931 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3932 return (WALK_NEXT); 3933 } 3934 3935 static int 3936 eqd_walk_step(mdb_walk_state_t *wsp) 3937 { 3938 eqd_walk_data_t *eqdp = wsp->walk_data; 3939 uintptr_t addr; 3940 3941 if (eqdp->eqd_qpos == 0) 3942 return (WALK_DONE); 3943 3944 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3945 3946 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3947 mdb_warn("failed to read errorq data at %p", addr); 3948 return (WALK_ERR); 3949 } 3950 3951 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3952 } 3953 3954 static void 3955 eqd_walk_fini(mdb_walk_state_t *wsp) 3956 { 3957 eqd_walk_data_t *eqdp = wsp->walk_data; 3958 3959 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3960 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3961 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3962 } 3963 3964 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3965 3966 static int 3967 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3968 { 3969 int i; 3970 errorq_t eq; 3971 uint_t opt_v = FALSE; 3972 3973 if (!(flags & DCMD_ADDRSPEC)) { 3974 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3975 mdb_warn("can't walk 'errorq'"); 3976 return (DCMD_ERR); 3977 } 3978 return (DCMD_OK); 3979 } 3980 3981 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3982 argc -= i; 3983 argv += i; 3984 3985 if (argc != 0) 3986 return (DCMD_USAGE); 3987 3988 if (opt_v || DCMD_HDRSPEC(flags)) { 3989 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3990 "ADDR", "NAME", "S", "V", "N"); 3991 if (!opt_v) { 3992 mdb_printf("%7s %7s %7s%</u>\n", 3993 "ACCEPT", "DROP", "LOG"); 3994 } else { 3995 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3996 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3997 } 3998 } 3999 4000 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 4001 mdb_warn("failed to read errorq at %p", addr); 4002 return (DCMD_ERR); 4003 } 4004 4005 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 4006 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 4007 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 4008 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 4009 4010 if (!opt_v) { 4011 mdb_printf("%7llu %7llu %7llu\n", 4012 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 4013 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 4014 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 4015 } else { 4016 mdb_printf("%5s %6lu %6lu %3u %a\n", 4017 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 4018 mdb_printf("%38s\n%41s" 4019 "%12s %llu\n" 4020 "%53s %llu\n" 4021 "%53s %llu\n" 4022 "%53s %llu\n" 4023 "%53s %llu\n" 4024 "%53s %llu\n" 4025 "%53s %llu\n" 4026 "%53s %llu\n\n", 4027 "|", "+-> ", 4028 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 4029 "DROPPED", EQKSVAL(eq, eqk_dropped), 4030 "LOGGED", EQKSVAL(eq, eqk_logged), 4031 "RESERVED", EQKSVAL(eq, eqk_reserved), 4032 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 4033 "COMMITTED", EQKSVAL(eq, eqk_committed), 4034 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 4035 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 4036 } 4037 4038 return (DCMD_OK); 4039 } 4040 4041 /*ARGSUSED*/ 4042 static int 4043 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4044 { 4045 cpu_t panic_cpu; 4046 kthread_t *panic_thread; 4047 void *buf; 4048 panic_data_t *pd; 4049 int i, n; 4050 4051 if (!mdb_prop_postmortem) { 4052 mdb_warn("panicinfo can only be run on a system " 4053 "dump; see dumpadm(1M)\n"); 4054 return (DCMD_ERR); 4055 } 4056 4057 if (flags & DCMD_ADDRSPEC || argc != 0) 4058 return (DCMD_USAGE); 4059 4060 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 4061 mdb_warn("failed to read 'panic_cpu'"); 4062 else 4063 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 4064 4065 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 4066 mdb_warn("failed to read 'panic_thread'"); 4067 else 4068 mdb_printf("%16s %?p\n", "thread", panic_thread); 4069 4070 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 4071 pd = (panic_data_t *)buf; 4072 4073 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 4074 pd->pd_version != PANICBUFVERS) { 4075 mdb_warn("failed to read 'panicbuf'"); 4076 mdb_free(buf, PANICBUFSIZE); 4077 return (DCMD_ERR); 4078 } 4079 4080 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 4081 4082 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 4083 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 4084 4085 for (i = 0; i < n; i++) 4086 mdb_printf("%16s %?llx\n", 4087 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 4088 4089 mdb_free(buf, PANICBUFSIZE); 4090 return (DCMD_OK); 4091 } 4092 4093 /* 4094 * ::time dcmd, which will print a hires timestamp of when we entered the 4095 * debugger, or the lbolt value if used with the -l option. 4096 * 4097 */ 4098 /*ARGSUSED*/ 4099 static int 4100 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4101 { 4102 uint_t opt_dec = FALSE; 4103 uint_t opt_lbolt = FALSE; 4104 uint_t opt_hex = FALSE; 4105 const char *fmt; 4106 hrtime_t result; 4107 4108 if (mdb_getopts(argc, argv, 4109 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 4110 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 4111 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 4112 NULL) != argc) 4113 return (DCMD_USAGE); 4114 4115 if (opt_dec && opt_hex) 4116 return (DCMD_USAGE); 4117 4118 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 4119 fmt = 4120 opt_hex ? "0x%llx\n" : 4121 opt_dec ? "0t%lld\n" : "%#llr\n"; 4122 4123 mdb_printf(fmt, result); 4124 return (DCMD_OK); 4125 } 4126 4127 void 4128 time_help(void) 4129 { 4130 mdb_printf("Prints the system time in nanoseconds.\n\n" 4131 "::time will return the timestamp at which we dropped into, \n" 4132 "if called from, kmdb(1); the core dump's high resolution \n" 4133 "time if inspecting one; or the running hires time if we're \n" 4134 "looking at a live system.\n\n" 4135 "Switches:\n" 4136 " -d report times in decimal\n" 4137 " -l prints the number of clock ticks since system boot\n" 4138 " -x report times in hexadecimal\n"); 4139 } 4140 4141 extern int cmd_refstr(uintptr_t, uint_t, int, const mdb_arg_t *); 4142 4143 static const mdb_dcmd_t dcmds[] = { 4144 4145 /* from genunix.c */ 4146 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4147 { "binding_hash_entry", ":", "print driver names hash table entry", 4148 binding_hash_entry }, 4149 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 4150 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4151 " [-FivVA]", 4152 "display callouts", callout, callout_help }, 4153 { "calloutid", "[-d|v] xid", "print callout by extended id", 4154 calloutid, calloutid_help }, 4155 { "class", NULL, "print process scheduler classes", class }, 4156 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4157 { "did2thread", "? kt_did", "find kernel thread for this id", 4158 did2thread }, 4159 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4160 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4161 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4162 { "lminfo", NULL, "print lock manager information", lminfo }, 4163 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4164 { "panicinfo", NULL, "print panic information", panicinfo }, 4165 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4166 { "project", NULL, "display kernel project(s)", project }, 4167 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps, 4168 ps_help }, 4169 { "pflags", NULL, "display various proc_t flags", pflags }, 4170 { "pgrep", "[-x] [-n | -o] pattern", 4171 "pattern match against all processes", pgrep }, 4172 { "ptree", NULL, "print process tree", ptree }, 4173 { "refstr", NULL, "print string from a refstr_t", cmd_refstr, NULL }, 4174 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4175 sysevent}, 4176 { "sysevent_channel", "?", "print sysevent channel database", 4177 sysevent_channel}, 4178 { "sysevent_class_list", ":", "print sysevent class list", 4179 sysevent_class_list}, 4180 { "sysevent_subclass_list", ":", 4181 "print sysevent subclass list", sysevent_subclass_list}, 4182 { "system", NULL, "print contents of /etc/system file", sysfile }, 4183 { "task", NULL, "display kernel task(s)", task }, 4184 { "time", "[-dlx]", "display system time", time, time_help }, 4185 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4186 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4187 whereopen }, 4188 4189 /* from bio.c */ 4190 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4191 4192 /* from bitset.c */ 4193 { "bitset", ":", "display a bitset", bitset, bitset_help }, 4194 4195 /* from contract.c */ 4196 { "contract", "?", "display a contract", cmd_contract }, 4197 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4198 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4199 4200 /* from cpupart.c */ 4201 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4202 4203 /* from cred.c */ 4204 { "cred", ":[-v]", "display a credential", cmd_cred }, 4205 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 4206 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 4207 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 4208 4209 /* from cyclic.c */ 4210 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4211 { "cycid", "?", "dump a cyclic id", cycid }, 4212 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4213 { "cyclic", ":", "developer information", cyclic }, 4214 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4215 4216 /* from damap.c */ 4217 { "damap", ":", "display a damap_t", damap, damap_help }, 4218 4219 /* from ddi_periodic.c */ 4220 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 4221 4222 /* from devinfo.c */ 4223 { "devbindings", "?[-qs] [device-name | major-num]", 4224 "print devinfo nodes bound to device-name or major-num", 4225 devbindings, devinfo_help }, 4226 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node", 4227 devinfo, devinfo_help }, 4228 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4229 devinfo_audit }, 4230 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4231 devinfo_audit_log }, 4232 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4233 devinfo_audit_node }, 4234 { "devinfo2driver", ":", "find driver name for this devinfo node", 4235 devinfo2driver }, 4236 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4237 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4238 dev2major }, 4239 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4240 dev2minor }, 4241 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4242 devt }, 4243 { "major2name", "?<major-num>", "convert major number to dev name", 4244 major2name }, 4245 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4246 minornodes }, 4247 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4248 modctl2devinfo }, 4249 { "name2major", "<dev-name>", "convert dev name to major number", 4250 name2major }, 4251 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree", 4252 prtconf, prtconf_help }, 4253 { "softstate", ":<instance>", "retrieve soft-state pointer", 4254 softstate }, 4255 { "devinfo_fm", ":", "devinfo fault managment configuration", 4256 devinfo_fm }, 4257 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4258 devinfo_fmce}, 4259 4260 /* from findstack.c */ 4261 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4262 { "findstack_debug", NULL, "toggle findstack debugging", 4263 findstack_debug }, 4264 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4265 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4266 "print unique kernel thread stacks", 4267 stacks, stacks_help }, 4268 4269 /* from fm.c */ 4270 { "ereport", "[-v]", "print ereports logged in dump", 4271 ereport }, 4272 4273 /* from group.c */ 4274 { "group", "?[-q]", "display a group", group}, 4275 4276 /* from hotplug.c */ 4277 { "hotplug", "?[-p]", "display a registered hotplug attachment", 4278 hotplug, hotplug_help }, 4279 4280 /* from irm.c */ 4281 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4282 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4283 irmreqs_dcmd }, 4284 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4285 4286 /* from kgrep.c + genunix.c */ 4287 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4288 kgrep_help }, 4289 4290 /* from kmem.c */ 4291 { "allocdby", ":", "given a thread, print its allocated buffers", 4292 allocdby }, 4293 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4294 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4295 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4296 { "kmalog", "?[ fail | slab | zerosized ]", 4297 "display kmem transaction log and stack traces for specified type", 4298 kmalog }, 4299 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4300 kmastat }, 4301 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4302 "of the kmem allocator", kmausers, kmausers_help }, 4303 { "kmem_cache", "?[-n name]", 4304 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4305 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4306 "[-B minbinsize]", "display slab usage per kmem cache", 4307 kmem_slabs, kmem_slabs_help }, 4308 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4309 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4310 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4311 kmem_verify }, 4312 { "vmem", "?", "print a vmem_t", vmem }, 4313 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4314 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4315 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4316 { "whatthread", ":[-v]", "print threads whose stack contains the " 4317 "given address", whatthread }, 4318 4319 /* from ldi.c */ 4320 { "ldi_handle", "?[-i]", "display a layered driver handle", 4321 ldi_handle, ldi_handle_help }, 4322 { "ldi_ident", NULL, "display a layered driver identifier", 4323 ldi_ident, ldi_ident_help }, 4324 4325 /* from leaky.c + leaky_subr.c */ 4326 { "findleaks", FINDLEAKS_USAGE, 4327 "search for potential kernel memory leaks", findleaks, 4328 findleaks_help }, 4329 4330 /* from lgrp.c */ 4331 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4332 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4333 4334 /* from log.c */ 4335 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4336 4337 /* from mdi.c */ 4338 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4339 "and detailed pi_prop list", mdipi }, 4340 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4341 mdiprops }, 4342 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4343 "list all paths", mdiphci }, 4344 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4345 "all phcis", mdivhci }, 4346 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4347 "client links", mdiclient_paths }, 4348 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4349 "phci links", mdiphci_paths }, 4350 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4351 mdiphcis }, 4352 4353 /* from memory.c */ 4354 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4355 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4356 { "memstat", NULL, "display memory usage summary", memstat }, 4357 { "page", "?", "display a summarized page_t", page }, 4358 { "pagelookup", "?[-v vp] [-o offset]", 4359 "find the page_t with the name {vp, offset}", 4360 pagelookup, pagelookup_help }, 4361 { "page_num2pp", ":", "find the page_t for a given page frame number", 4362 page_num2pp }, 4363 { "pmap", ":[-q]", "print process memory map", pmap }, 4364 { "seg", ":", "print address space segment", seg }, 4365 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4366 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4367 4368 /* from mmd.c */ 4369 { "multidata", ":[-sv]", "display a summarized multidata_t", 4370 multidata }, 4371 { "pattbl", ":", "display a summarized multidata attribute table", 4372 pattbl }, 4373 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4374 pattr2multidata }, 4375 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4376 pdesc2slab }, 4377 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4378 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4379 slab2multidata }, 4380 4381 /* from modhash.c */ 4382 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4383 "display information about one or all mod_hash structures", 4384 modhash, modhash_help }, 4385 { "modent", ":[-k | -v | -t type]", 4386 "display information about a mod_hash_entry", modent, 4387 modent_help }, 4388 4389 /* from net.c */ 4390 { "dladm", "?<sub-command> [flags]", "show data link information", 4391 dladm, dladm_help }, 4392 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4393 mi }, 4394 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4395 "show network statistics", netstat }, 4396 { "sonode", "?[-f inet | inet6 | unix | #] " 4397 "[-t stream | dgram | raw | #] [-p #]", 4398 "filter and display sonode", sonode }, 4399 4400 /* from netstack.c */ 4401 { "netstack", "", "show stack instances", netstack }, 4402 { "netstackid2netstack", ":", 4403 "translate a netstack id to its netstack_t", 4404 netstackid2netstack }, 4405 4406 /* from nvpair.c */ 4407 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4408 nvpair_print }, 4409 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4410 print_nvlist }, 4411 4412 /* from pg.c */ 4413 { "pg", "?[-q]", "display a pg", pg}, 4414 4415 /* from rctl.c */ 4416 { "rctl_dict", "?", "print systemwide default rctl definitions", 4417 rctl_dict }, 4418 { "rctl_list", ":[handle]", "print rctls for the given proc", 4419 rctl_list }, 4420 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4421 rctl }, 4422 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4423 "sequence", rctl_validate }, 4424 4425 /* from sobj.c */ 4426 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4427 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4428 mutex_help }, 4429 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4430 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4431 { "turnstile", "?", "display a turnstile", turnstile }, 4432 4433 /* from stream.c */ 4434 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4435 "print an mblk", mblk_prt, mblk_help }, 4436 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4437 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4438 mblk2dblk }, 4439 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4440 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4441 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4442 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4443 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4444 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4445 "filter and display STREAM queue", queue, queue_help }, 4446 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4447 "filter and display STREAM head", stdata, stdata_help }, 4448 { "str2mate", ":", "print mate of this stream", str2mate }, 4449 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4450 { "stream", ":", "display STREAM", stream }, 4451 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4452 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4453 "filter and display STREAM sync queue", syncq, syncq_help }, 4454 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4455 4456 /* from taskq.c */ 4457 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4458 "display a taskq", taskq, taskq_help }, 4459 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4460 4461 /* from thread.c */ 4462 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4463 thread_help }, 4464 { "threadlist", "?[-t] [-v [count]]", 4465 "display threads and associated C stack traces", threadlist, 4466 threadlist_help }, 4467 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4468 stackinfo_help }, 4469 4470 /* from tsd.c */ 4471 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4472 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4473 4474 /* 4475 * typegraph does not work under kmdb, as it requires too much memory 4476 * for its internal data structures. 4477 */ 4478 #ifndef _KMDB 4479 /* from typegraph.c */ 4480 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4481 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4482 findfalse }, 4483 { "typegraph", NULL, "build type graph", typegraph }, 4484 { "istype", ":type", "manually set object type", istype }, 4485 { "notype", ":", "manually clear object type", notype }, 4486 { "whattype", ":", "determine object type", whattype }, 4487 #endif 4488 4489 /* from vfs.c */ 4490 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4491 { "pfiles", ":[-fp]", "print process file information", pfiles, 4492 pfiles_help }, 4493 4494 /* from zone.c */ 4495 { "zid2zone", ":", "find the zone_t with the given zone id", 4496 zid2zone }, 4497 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4498 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4499 "selected zones", zsd }, 4500 4501 #ifndef _KMDB 4502 { "gcore", NULL, "generate a user core for the given process", 4503 gcore_dcmd }, 4504 #endif 4505 4506 { NULL } 4507 }; 4508 4509 static const mdb_walker_t walkers[] = { 4510 4511 /* from genunix.c */ 4512 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4513 callout_walk_init, callout_walk_step, callout_walk_fini, 4514 (void *)CALLOUT_WALK_BYLIST }, 4515 { "callouts_byid", "walk callouts by id hash chain", 4516 callout_walk_init, callout_walk_step, callout_walk_fini, 4517 (void *)CALLOUT_WALK_BYID }, 4518 { "callout_list", "walk a callout list", callout_list_walk_init, 4519 callout_list_walk_step, callout_list_walk_fini }, 4520 { "callout_table", "walk callout table array", callout_table_walk_init, 4521 callout_table_walk_step, callout_table_walk_fini }, 4522 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4523 { "dnlc", "walk dnlc entries", 4524 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini }, 4525 { "ereportq_dump", "walk list of ereports in dump error queue", 4526 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4527 { "ereportq_pend", "walk list of ereports in pending error queue", 4528 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4529 { "errorq", "walk list of system error queues", 4530 errorq_walk_init, errorq_walk_step, NULL }, 4531 { "errorq_data", "walk pending error queue data buffers", 4532 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4533 { "allfile", "given a proc pointer, list all file pointers", 4534 file_walk_init, allfile_walk_step, file_walk_fini }, 4535 { "file", "given a proc pointer, list of open file pointers", 4536 file_walk_init, file_walk_step, file_walk_fini }, 4537 { "lock_descriptor", "walk lock_descriptor_t structures", 4538 ld_walk_init, ld_walk_step, NULL }, 4539 { "lock_graph", "walk lock graph", 4540 lg_walk_init, lg_walk_step, NULL }, 4541 { "port", "given a proc pointer, list of created event ports", 4542 port_walk_init, port_walk_step, NULL }, 4543 { "portev", "given a port pointer, list of events in the queue", 4544 portev_walk_init, portev_walk_step, portev_walk_fini }, 4545 { "proc", "list of active proc_t structures", 4546 proc_walk_init, proc_walk_step, proc_walk_fini }, 4547 { "projects", "walk a list of kernel projects", 4548 project_walk_init, project_walk_step, NULL }, 4549 { "sysevent_pend", "walk sysevent pending queue", 4550 sysevent_pend_walk_init, sysevent_walk_step, 4551 sysevent_walk_fini}, 4552 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4553 sysevent_walk_step, sysevent_walk_fini}, 4554 { "sysevent_channel", "walk sysevent channel subscriptions", 4555 sysevent_channel_walk_init, sysevent_channel_walk_step, 4556 sysevent_channel_walk_fini}, 4557 { "sysevent_class_list", "walk sysevent subscription's class list", 4558 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4559 sysevent_class_list_walk_fini}, 4560 { "sysevent_subclass_list", 4561 "walk sysevent subscription's subclass list", 4562 sysevent_subclass_list_walk_init, 4563 sysevent_subclass_list_walk_step, 4564 sysevent_subclass_list_walk_fini}, 4565 { "task", "given a task pointer, walk its processes", 4566 task_walk_init, task_walk_step, NULL }, 4567 4568 /* from avl.c */ 4569 { AVL_WALK_NAME, AVL_WALK_DESC, 4570 avl_walk_init, avl_walk_step, avl_walk_fini }, 4571 4572 /* from bio.c */ 4573 { "buf", "walk the bio buf hash", 4574 buf_walk_init, buf_walk_step, buf_walk_fini }, 4575 4576 /* from contract.c */ 4577 { "contract", "walk all contracts, or those of the specified type", 4578 ct_walk_init, generic_walk_step, NULL }, 4579 { "ct_event", "walk events on a contract event queue", 4580 ct_event_walk_init, generic_walk_step, NULL }, 4581 { "ct_listener", "walk contract event queue listeners", 4582 ct_listener_walk_init, generic_walk_step, NULL }, 4583 4584 /* from cpupart.c */ 4585 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4586 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4587 NULL }, 4588 { "cpupart_walk", "walk the set of cpu partitions", 4589 cpupart_walk_init, cpupart_walk_step, NULL }, 4590 4591 /* from ctxop.c */ 4592 { "ctxop", "walk list of context ops on a thread", 4593 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4594 4595 /* from cyclic.c */ 4596 { "cyccpu", "walk per-CPU cyc_cpu structures", 4597 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4598 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4599 cycomni_walk_init, cycomni_walk_step, NULL }, 4600 { "cyctrace", "walk cyclic trace buffer", 4601 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4602 4603 /* from devinfo.c */ 4604 { "binding_hash", "walk all entries in binding hash table", 4605 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4606 { "devinfo", "walk devinfo tree or subtree", 4607 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4608 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4609 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4610 devinfo_audit_log_walk_fini}, 4611 { "devinfo_audit_node", "walk per-devinfo audit history", 4612 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4613 devinfo_audit_node_walk_fini}, 4614 { "devinfo_children", "walk children of devinfo node", 4615 devinfo_children_walk_init, devinfo_children_walk_step, 4616 devinfo_children_walk_fini }, 4617 { "devinfo_parents", "walk ancestors of devinfo node", 4618 devinfo_parents_walk_init, devinfo_parents_walk_step, 4619 devinfo_parents_walk_fini }, 4620 { "devinfo_siblings", "walk siblings of devinfo node", 4621 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4622 { "devi_next", "walk devinfo list", 4623 NULL, devi_next_walk_step, NULL }, 4624 { "devnames", "walk devnames array", 4625 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4626 { "minornode", "given a devinfo node, walk minor nodes", 4627 minornode_walk_init, minornode_walk_step, NULL }, 4628 { "softstate", 4629 "given an i_ddi_soft_state*, list all in-use driver stateps", 4630 soft_state_walk_init, soft_state_walk_step, 4631 NULL, NULL }, 4632 { "softstate_all", 4633 "given an i_ddi_soft_state*, list all driver stateps", 4634 soft_state_walk_init, soft_state_all_walk_step, 4635 NULL, NULL }, 4636 { "devinfo_fmc", 4637 "walk a fault management handle cache active list", 4638 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4639 4640 /* from group.c */ 4641 { "group", "walk all elements of a group", 4642 group_walk_init, group_walk_step, NULL }, 4643 4644 /* from irm.c */ 4645 { "irmpools", "walk global list of interrupt pools", 4646 irmpools_walk_init, list_walk_step, list_walk_fini }, 4647 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4648 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4649 4650 /* from kmem.c */ 4651 { "allocdby", "given a thread, walk its allocated bufctls", 4652 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4653 { "bufctl", "walk a kmem cache's bufctls", 4654 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4655 { "bufctl_history", "walk the available history of a bufctl", 4656 bufctl_history_walk_init, bufctl_history_walk_step, 4657 bufctl_history_walk_fini }, 4658 { "freedby", "given a thread, walk its freed bufctls", 4659 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4660 { "freectl", "walk a kmem cache's free bufctls", 4661 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4662 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4663 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4664 { "freemem", "walk a kmem cache's free memory", 4665 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4666 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4667 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4668 { "kmem", "walk a kmem cache", 4669 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4670 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4671 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4672 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4673 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4674 { "kmem_log", "walk the kmem transaction log", 4675 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4676 { "kmem_slab", "given a kmem cache, walk its slabs", 4677 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4678 { "kmem_slab_partial", 4679 "given a kmem cache, walk its partially allocated slabs (min 1)", 4680 kmem_slab_walk_partial_init, combined_walk_step, 4681 combined_walk_fini }, 4682 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4683 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4684 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4685 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4686 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4687 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4688 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4689 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4690 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4691 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4692 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4693 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4694 4695 /* from ldi.c */ 4696 { "ldi_handle", "walk the layered driver handle hash", 4697 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4698 { "ldi_ident", "walk the layered driver identifier hash", 4699 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4700 4701 /* from leaky.c + leaky_subr.c */ 4702 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4703 "stack trace", 4704 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4705 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4706 "leaks w/ same stack trace", 4707 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4708 4709 /* from lgrp.c */ 4710 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4711 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4712 { "lgrptbl", "walk lgroup table", 4713 lgrp_walk_init, lgrp_walk_step, NULL }, 4714 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4715 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4716 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4717 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4718 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4719 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4720 4721 /* from list.c */ 4722 { LIST_WALK_NAME, LIST_WALK_DESC, 4723 list_walk_init, list_walk_step, list_walk_fini }, 4724 4725 /* from mdi.c */ 4726 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4727 mdi_pi_client_link_walk_init, 4728 mdi_pi_client_link_walk_step, 4729 mdi_pi_client_link_walk_fini }, 4730 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4731 mdi_pi_phci_link_walk_init, 4732 mdi_pi_phci_link_walk_step, 4733 mdi_pi_phci_link_walk_fini }, 4734 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4735 mdi_phci_ph_next_walk_init, 4736 mdi_phci_ph_next_walk_step, 4737 mdi_phci_ph_next_walk_fini }, 4738 4739 /* from memory.c */ 4740 { "allpages", "walk all pages, including free pages", 4741 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4742 { "anon", "given an amp, list allocated anon structures", 4743 anon_walk_init, anon_walk_step, anon_walk_fini, 4744 ANON_WALK_ALLOC }, 4745 { "anon_all", "given an amp, list contents of all anon slots", 4746 anon_walk_init, anon_walk_step, anon_walk_fini, 4747 ANON_WALK_ALL }, 4748 { "memlist", "walk specified memlist", 4749 NULL, memlist_walk_step, NULL }, 4750 { "page", "walk all pages, or those from the specified vnode", 4751 page_walk_init, page_walk_step, page_walk_fini }, 4752 { "seg", "given an as, list of segments", 4753 seg_walk_init, avl_walk_step, avl_walk_fini }, 4754 { "segvn_anon", 4755 "given a struct segvn_data, list allocated anon structures", 4756 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4757 ANON_WALK_ALLOC }, 4758 { "segvn_anon_all", 4759 "given a struct segvn_data, list contents of all anon slots", 4760 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4761 ANON_WALK_ALL }, 4762 { "segvn_pages", 4763 "given a struct segvn_data, list resident pages in " 4764 "offset order", 4765 segvn_pages_walk_init, segvn_pages_walk_step, 4766 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4767 { "segvn_pages_all", 4768 "for each offset in a struct segvn_data, give page_t pointer " 4769 "(if resident), or NULL.", 4770 segvn_pages_walk_init, segvn_pages_walk_step, 4771 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4772 { "swapinfo", "walk swapinfo structures", 4773 swap_walk_init, swap_walk_step, NULL }, 4774 4775 /* from mmd.c */ 4776 { "pattr", "walk pattr_t structures", pattr_walk_init, 4777 mmdq_walk_step, mmdq_walk_fini }, 4778 { "pdesc", "walk pdesc_t structures", 4779 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4780 { "pdesc_slab", "walk pdesc_slab_t structures", 4781 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4782 4783 /* from modhash.c */ 4784 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4785 modhash_walk_step, NULL }, 4786 { "modent", "walk list of entries in a given mod_hash", 4787 modent_walk_init, modent_walk_step, modent_walk_fini }, 4788 { "modchain", "walk list of entries in a given mod_hash_entry", 4789 NULL, modchain_walk_step, NULL }, 4790 4791 /* from net.c */ 4792 { "icmp", "walk ICMP control structures using MI for all stacks", 4793 mi_payload_walk_init, mi_payload_walk_step, NULL, 4794 &mi_icmp_arg }, 4795 { "mi", "given a MI_O, walk the MI", 4796 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4797 { "sonode", "given a sonode, walk its children", 4798 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4799 { "icmp_stacks", "walk all the icmp_stack_t", 4800 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4801 { "tcp_stacks", "walk all the tcp_stack_t", 4802 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4803 { "udp_stacks", "walk all the udp_stack_t", 4804 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4805 4806 /* from netstack.c */ 4807 { "netstack", "walk a list of kernel netstacks", 4808 netstack_walk_init, netstack_walk_step, NULL }, 4809 4810 /* from nvpair.c */ 4811 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4812 nvpair_walk_init, nvpair_walk_step, NULL }, 4813 4814 /* from pci.c */ 4815 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init, 4816 pcie_bus_walk_step, NULL }, 4817 4818 /* from rctl.c */ 4819 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4820 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4821 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4822 rctl_set_walk_step, NULL }, 4823 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4824 rctl_val_walk_init, rctl_val_walk_step }, 4825 4826 /* from sobj.c */ 4827 { "blocked", "walk threads blocked on a given sobj", 4828 blocked_walk_init, blocked_walk_step, NULL }, 4829 { "wchan", "given a wchan, list of blocked threads", 4830 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4831 4832 /* from stream.c */ 4833 { "b_cont", "walk mblk_t list using b_cont", 4834 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4835 { "b_next", "walk mblk_t list using b_next", 4836 mblk_walk_init, b_next_step, mblk_walk_fini }, 4837 { "qlink", "walk queue_t list using q_link", 4838 queue_walk_init, queue_link_step, queue_walk_fini }, 4839 { "qnext", "walk queue_t list using q_next", 4840 queue_walk_init, queue_next_step, queue_walk_fini }, 4841 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4842 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4843 { "readq", "walk read queue side of stdata", 4844 str_walk_init, strr_walk_step, str_walk_fini }, 4845 { "writeq", "walk write queue side of stdata", 4846 str_walk_init, strw_walk_step, str_walk_fini }, 4847 4848 /* from taskq.c */ 4849 { "taskq_thread", "given a taskq_t, list all of its threads", 4850 taskq_thread_walk_init, 4851 taskq_thread_walk_step, 4852 taskq_thread_walk_fini }, 4853 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4854 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4855 4856 /* from thread.c */ 4857 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4858 deathrow_walk_init, deathrow_walk_step, NULL }, 4859 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4860 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4861 { "cpupart_dispq", 4862 "given a cpupart_t, walk threads in dispatcher queues", 4863 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4864 { "lwp_deathrow", "walk lwp_deathrow", 4865 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4866 { "thread", "global or per-process kthread_t structures", 4867 thread_walk_init, thread_walk_step, thread_walk_fini }, 4868 { "thread_deathrow", "walk threads on thread_deathrow", 4869 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4870 4871 /* from tsd.c */ 4872 { "tsd", "walk list of thread-specific data", 4873 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4874 4875 /* from tsol.c */ 4876 { "tnrh", "walk remote host cache structures", 4877 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4878 { "tnrhtp", "walk remote host template structures", 4879 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4880 4881 /* 4882 * typegraph does not work under kmdb, as it requires too much memory 4883 * for its internal data structures. 4884 */ 4885 #ifndef _KMDB 4886 /* from typegraph.c */ 4887 { "typeconflict", "walk buffers with conflicting type inferences", 4888 typegraph_walk_init, typeconflict_walk_step }, 4889 { "typeunknown", "walk buffers with unknown types", 4890 typegraph_walk_init, typeunknown_walk_step }, 4891 #endif 4892 4893 /* from vfs.c */ 4894 { "vfs", "walk file system list", 4895 vfs_walk_init, vfs_walk_step }, 4896 4897 /* from zone.c */ 4898 { "zone", "walk a list of kernel zones", 4899 zone_walk_init, zone_walk_step, NULL }, 4900 { "zsd", "walk list of zsd entries for a zone", 4901 zsd_walk_init, zsd_walk_step, NULL }, 4902 4903 { NULL } 4904 }; 4905 4906 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4907 4908 /*ARGSUSED*/ 4909 static void 4910 genunix_statechange_cb(void *ignored) 4911 { 4912 /* 4913 * Force ::findleaks and ::stacks to let go any cached state. 4914 */ 4915 leaky_cleanup(1); 4916 stacks_cleanup(1); 4917 4918 kmem_statechange(); /* notify kmem */ 4919 } 4920 4921 const mdb_modinfo_t * 4922 _mdb_init(void) 4923 { 4924 kmem_init(); 4925 4926 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4927 genunix_statechange_cb, NULL); 4928 4929 #ifndef _KMDB 4930 gcore_init(); 4931 #endif 4932 4933 return (&modinfo); 4934 } 4935 4936 void 4937 _mdb_fini(void) 4938 { 4939 leaky_cleanup(1); 4940 stacks_cleanup(1); 4941 } 4942