xref: /illumos-gate/usr/src/cmd/mdb/common/mdb/mdb_vcb.c (revision 8119dad84d6416f13557b0ba8e2aaf9064cbcfd3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * In order to implement walk iteration variables (that is, ::walk walk varname)
29  * we need to keep track of the active walk variables as the pipeline is
30  * processed.  Each variable is tracked using a VCB (Variable Control Block)
31  * that keeps a pointer to the variable in the MDB variable hash table, as
32  * well as an addrvec (array of values) and parent pointer.  Each command in
33  * the pipeline keeps its own list of VCBs, and these are inherited from left
34  * to right in the pipeline.  The diagram shows an example pipeline and the
35  * contents of c_addrv and VCBs at each stage:
36  *
37  *     > ::walk proc p |     ::map .+1    |   ::eval '<p=K'
38  *
39  *                                 vcb(p)              vcb(p)
40  *                             0<- parent <----------- parent
41  *                       c_addrv   addrv     c_addrv   addrv
42  *                       123       123       124       123
43  *                       456       456       457       456
44  *                       789       789       790       789
45  *
46  * Then the first command (::walk) begins life with no VCBs.  It then creates
47  * a new VCB for the rest of the pipeline and adds it to the next command's
48  * VCB list (::map).  Before ::map is executed, it will first pass along a set
49  * of VCBs to its "child" ::eval.  The important operations defined for VCBs
50  * are as follows:
51  *
52  * (1) mdb_vcb_inherit - Prior to processing each command (pipeline stage), the
53  * debugger calls the inherit routine to cause the next command to inherit the
54  * VCBs from the current command.  The inherit routine allocates a new VCB
55  * containing a pointer to the same variable, and sets its parent pointer to
56  * point back to the parent VCB.  A VCB created by ::walk has a NULL parent
57  * pointer indicating that it inherits its value from dot.
58  *
59  * (2) mdb_vcb_propagate - Prior to invoking the dcmd associated with a command,
60  * the debugger propagates the next value stored in the VCB to its variable.
61  * The VCB stores the values the variable should assume (that is, the values
62  * of the variable that correspond to the value stored in the command's c_addrv)
63  * in an addrvec in the VCB itself.
64  *
65  * (3) mdb_vcb_update - As each dcmd executes, it produces output for the next
66  * stage in the pipeline.  The *next* stage of the pipeline's mdb_cmd_t has
67  * already inherited the necessary VCBs in step (1), and so we just need to
68  * record the current value of the variable into the VCB's addrv.  In the base
69  * case (the first pipeline stage), the variable is not yet set, so we want
70  * to store the current value of dot (produced by ::walk's callback) into the
71  * addrv.  This value is passed in directly from the parsing code as a parameter
72  * before the parser resets dot itself.  For subsequent pipeline stages, we
73  * need to store into addrv the value the variable previously held when the
74  * dcmd that produced this new value of dot was executed.  This value is
75  * stored in the corresponding index of the parent VCB's addrv.
76  *
77  * (4) mdb_vcb_find - Given an mdb_var_t, determines if there already exists a
78  * vcb for this variable, and if so returns it.  This allows us to avoid
79  * re-creating a vcb every time through a walk, such as:
80  *
81  * 	> ::walk proc p | ::walk proc v | ::eval "<p=Kn"
82  *
83  * In this case, we don't want to create a new vcb for 'v' every time we execute
84  * the second walk.
85  *
86  * Unfortunately, determining the addrv index is complicated by the fact that
87  * pipes involve the asynchronous execution of the dcmds and the parser.  This
88  * asynchrony means that the parser may not actually consume the output of a
89  * given dcmd until long after it has completed, and thus when the parser is
90  * ready to reset dot, it does not know what addrv index produced this value.
91  * We work around this problem by explicitly flushing the pipeline after each
92  * dcmd invocation if VCBs are active.  This does impact performance, so we
93  * may need to re-evaluate in the future if pipelines are producing huge
94  * amounts of data and a large number of VCBs are active simultaneously.
95  */
96 
97 #include <mdb/mdb_frame.h>
98 #include <mdb/mdb_debug.h>
99 #include <mdb/mdb_modapi.h>
100 #include <mdb/mdb_vcb.h>
101 #include <mdb/mdb.h>
102 
103 mdb_vcb_t *
104 mdb_vcb_create(mdb_var_t *v)
105 {
106 	mdb_vcb_t *vcb = mdb_zalloc(sizeof (mdb_vcb_t), UM_SLEEP);
107 	vcb->vc_var = v;
108 	return (vcb);
109 }
110 
111 void
112 mdb_vcb_destroy(mdb_vcb_t *vcb)
113 {
114 	mdb_dprintf(MDB_DBG_DSTK, "delete vcb %p (%s)\n", (void *)vcb,
115 	    mdb_nv_get_name(vcb->vc_var));
116 
117 	mdb_addrvec_destroy(&vcb->vc_addrv);
118 	mdb_free(vcb, sizeof (mdb_vcb_t));
119 }
120 
121 void
122 mdb_vcb_propagate(mdb_vcb_t *vcb)
123 {
124 	while (vcb != NULL) {
125 		mdb_addrvec_t *adp = &vcb->vc_addrv;
126 		ASSERT(vcb->vc_adnext < adp->ad_nelems);
127 		mdb_nv_set_value(vcb->vc_var, adp->ad_data[vcb->vc_adnext++]);
128 		vcb = vcb->vc_link;
129 	}
130 }
131 
132 void
133 mdb_vcb_purge(mdb_vcb_t *vcb)
134 {
135 	while (vcb != NULL) {
136 		mdb_vcb_t *n = vcb->vc_link;
137 		mdb_vcb_destroy(vcb);
138 		vcb = n;
139 	}
140 }
141 
142 void
143 mdb_vcb_inherit(mdb_cmd_t *src, mdb_cmd_t *dst)
144 {
145 	mdb_vcb_t *vc1, *vc2;
146 
147 	for (vc1 = src->c_vcbs; vc1 != NULL; vc1 = vc1->vc_link) {
148 		vc2 = mdb_vcb_create(vc1->vc_var);
149 		vc2->vc_parent = vc1;
150 		vc2->vc_link = dst->c_vcbs;
151 		dst->c_vcbs = vc2;
152 	}
153 }
154 
155 void
156 mdb_vcb_insert(mdb_vcb_t *vcb, mdb_frame_t *fp)
157 {
158 	if (fp->f_pcmd != NULL) {
159 		mdb_cmd_t *cp = fp->f_pcmd;
160 
161 		mdb_dprintf(MDB_DBG_DSTK, "insert vcb %p (%s)\n",
162 		    (void *)vcb, mdb_nv_get_name(vcb->vc_var));
163 
164 		ASSERT(vcb->vc_link == NULL);
165 		vcb->vc_link = cp->c_vcbs;
166 		cp->c_vcbs = vcb;
167 	}
168 }
169 
170 void
171 mdb_vcb_update(struct mdb_frame *fp, uintptr_t value)
172 {
173 	mdb_vcb_t *vcb;
174 
175 	for (vcb = fp->f_pcmd->c_vcbs; vcb != NULL; vcb = vcb->vc_link) {
176 		if (vcb->vc_parent != NULL) {
177 			mdb_addrvec_t *adp = &vcb->vc_parent->vc_addrv;
178 			adp->ad_ndx = vcb->vc_parent->vc_adnext - 1;
179 			ASSERT(adp->ad_ndx < adp->ad_nelems);
180 			value = adp->ad_data[adp->ad_ndx++];
181 		}
182 		mdb_addrvec_unshift(&vcb->vc_addrv, value);
183 	}
184 }
185 
186 mdb_vcb_t *
187 mdb_vcb_find(mdb_var_t *var, mdb_frame_t *fp)
188 {
189 	mdb_vcb_t *vcb;
190 
191 	if (fp->f_pcmd != NULL) {
192 		vcb = fp->f_pcmd->c_vcbs;
193 		while (vcb != NULL) {
194 			if (vcb->vc_var == var)
195 				return (vcb);
196 			vcb = vcb->vc_link;
197 		}
198 	}
199 
200 	return (NULL);
201 }
202