xref: /illumos-gate/usr/src/cmd/mdb/common/mdb/mdb_print.c (revision 48bbca816818409505a6e214d0911fda44e622e3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  * Copyright 2015 Joyent, Inc.
29  * Copyright (c) 2014 Nexenta Systems, Inc. All rights reserved.
30  */
31 
32 #include <mdb/mdb_modapi.h>
33 #include <mdb/mdb_target.h>
34 #include <mdb/mdb_argvec.h>
35 #include <mdb/mdb_string.h>
36 #include <mdb/mdb_stdlib.h>
37 #include <mdb/mdb_err.h>
38 #include <mdb/mdb_debug.h>
39 #include <mdb/mdb_fmt.h>
40 #include <mdb/mdb_ctf.h>
41 #include <mdb/mdb_ctf_impl.h>
42 #include <mdb/mdb.h>
43 #include <mdb/mdb_tab.h>
44 
45 #include <sys/isa_defs.h>
46 #include <sys/param.h>
47 #include <sys/sysmacros.h>
48 #include <netinet/in.h>
49 #include <strings.h>
50 #include <libctf.h>
51 #include <ctype.h>
52 
53 typedef struct holeinfo {
54 	ulong_t hi_offset;		/* expected offset */
55 	uchar_t hi_isunion;		/* represents a union */
56 } holeinfo_t;
57 
58 typedef struct printarg {
59 	mdb_tgt_t *pa_tgt;		/* current target */
60 	mdb_tgt_t *pa_realtgt;		/* real target (for -i) */
61 	mdb_tgt_t *pa_immtgt;		/* immediate target (for -i) */
62 	mdb_tgt_as_t pa_as;		/* address space to use for i/o */
63 	mdb_tgt_addr_t pa_addr;		/* base address for i/o */
64 	ulong_t pa_armemlim;		/* limit on array elements to print */
65 	ulong_t pa_arstrlim;		/* limit on array chars to print */
66 	const char *pa_delim;		/* element delimiter string */
67 	const char *pa_prefix;		/* element prefix string */
68 	const char *pa_suffix;		/* element suffix string */
69 	holeinfo_t *pa_holes;		/* hole detection information */
70 	int pa_nholes;			/* size of holes array */
71 	int pa_flags;			/* formatting flags (see below) */
72 	int pa_depth;			/* previous depth */
73 	int pa_nest;			/* array nesting depth */
74 	int pa_tab;			/* tabstop width */
75 	uint_t pa_maxdepth;		/* Limit max depth */
76 	uint_t pa_nooutdepth;		/* don't print output past this depth */
77 } printarg_t;
78 
79 #define	PA_SHOWTYPE	0x001		/* print type name */
80 #define	PA_SHOWBASETYPE	0x002		/* print base type name */
81 #define	PA_SHOWNAME	0x004		/* print member name */
82 #define	PA_SHOWADDR	0x008		/* print address */
83 #define	PA_SHOWVAL	0x010		/* print value */
84 #define	PA_SHOWHOLES	0x020		/* print holes in structs */
85 #define	PA_INTHEX	0x040		/* print integer values in hex */
86 #define	PA_INTDEC	0x080		/* print integer values in decimal */
87 #define	PA_NOSYMBOLIC	0x100		/* don't print ptrs as func+offset */
88 
89 #define	IS_CHAR(e) \
90 	(((e).cte_format & (CTF_INT_CHAR | CTF_INT_SIGNED)) == \
91 	(CTF_INT_CHAR | CTF_INT_SIGNED) && (e).cte_bits == NBBY)
92 
93 #define	COMPOSITE_MASK	((1 << CTF_K_STRUCT) | \
94 			(1 << CTF_K_UNION) | (1 << CTF_K_ARRAY))
95 #define	IS_COMPOSITE(k)	(((1 << k) & COMPOSITE_MASK) != 0)
96 
97 #define	SOU_MASK	((1 << CTF_K_STRUCT) | (1 << CTF_K_UNION))
98 #define	IS_SOU(k)	(((1 << k) & SOU_MASK) != 0)
99 
100 #define	MEMBER_DELIM_ERR	-1
101 #define	MEMBER_DELIM_DONE	0
102 #define	MEMBER_DELIM_PTR	1
103 #define	MEMBER_DELIM_DOT	2
104 #define	MEMBER_DELIM_LBR	3
105 
106 typedef int printarg_f(const char *, const char *,
107     mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, printarg_t *);
108 
109 static int elt_print(const char *, mdb_ctf_id_t, mdb_ctf_id_t, ulong_t, int,
110     void *);
111 static void print_close_sou(printarg_t *, int);
112 
113 /*
114  * Given an address, look up the symbol ID of the specified symbol in its
115  * containing module.  We only support lookups for exact matches.
116  */
117 static const char *
118 addr_to_sym(mdb_tgt_t *t, uintptr_t addr, char *name, size_t namelen,
119     GElf_Sym *symp, mdb_syminfo_t *sip)
120 {
121 	const mdb_map_t *mp;
122 	const char *p;
123 
124 	if (mdb_tgt_lookup_by_addr(t, addr, MDB_TGT_SYM_EXACT, name,
125 	    namelen, NULL, NULL) == -1)
126 		return (NULL); /* address does not exactly match a symbol */
127 
128 	if ((p = strrsplit(name, '`')) != NULL) {
129 		if (mdb_tgt_lookup_by_name(t, name, p, symp, sip) == -1)
130 			return (NULL);
131 		return (p);
132 	}
133 
134 	if ((mp = mdb_tgt_addr_to_map(t, addr)) == NULL)
135 		return (NULL); /* address does not fall within a mapping */
136 
137 	if (mdb_tgt_lookup_by_name(t, mp->map_name, name, symp, sip) == -1)
138 		return (NULL);
139 
140 	return (name);
141 }
142 
143 /*
144  * This lets dcmds be a little fancy with their processing of type arguments
145  * while still treating them more or less as a single argument.
146  * For example, if a command is invokes like this:
147  *
148  *   ::<dcmd> proc_t ...
149  *
150  * this function will just copy "proc_t" into the provided buffer. If the
151  * command is instead invoked like this:
152  *
153  *   ::<dcmd> struct proc ...
154  *
155  * this function will place the string "struct proc" into the provided buffer
156  * and increment the caller's argv and argc. This allows the caller to still
157  * treat the type argument logically as it would an other atomic argument.
158  */
159 int
160 args_to_typename(int *argcp, const mdb_arg_t **argvp, char *buf, size_t len)
161 {
162 	int argc = *argcp;
163 	const mdb_arg_t *argv = *argvp;
164 
165 	if (argc < 1 || argv->a_type != MDB_TYPE_STRING)
166 		return (DCMD_USAGE);
167 
168 	if (strcmp(argv->a_un.a_str, "struct") == 0 ||
169 	    strcmp(argv->a_un.a_str, "enum") == 0 ||
170 	    strcmp(argv->a_un.a_str, "union") == 0) {
171 		if (argc <= 1) {
172 			mdb_warn("%s is not a valid type\n", argv->a_un.a_str);
173 			return (DCMD_ABORT);
174 		}
175 
176 		if (argv[1].a_type != MDB_TYPE_STRING)
177 			return (DCMD_USAGE);
178 
179 		(void) mdb_snprintf(buf, len, "%s %s",
180 		    argv[0].a_un.a_str, argv[1].a_un.a_str);
181 
182 		*argcp = argc - 1;
183 		*argvp = argv + 1;
184 	} else {
185 		(void) mdb_snprintf(buf, len, "%s", argv[0].a_un.a_str);
186 	}
187 
188 	return (0);
189 }
190 
191 /*ARGSUSED*/
192 int
193 cmd_sizeof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
194 {
195 	mdb_ctf_id_t id;
196 	char tn[MDB_SYM_NAMLEN];
197 	int ret;
198 
199 	if (flags & DCMD_ADDRSPEC)
200 		return (DCMD_USAGE);
201 
202 	if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
203 		return (ret);
204 
205 	if (argc != 1)
206 		return (DCMD_USAGE);
207 
208 	if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
209 		mdb_warn("failed to look up type %s", tn);
210 		return (DCMD_ERR);
211 	}
212 
213 	if (flags & DCMD_PIPE_OUT)
214 		mdb_printf("%#lr\n", mdb_ctf_type_size(id));
215 	else
216 		mdb_printf("sizeof (%s) = %#lr\n", tn, mdb_ctf_type_size(id));
217 
218 	return (DCMD_OK);
219 }
220 
221 int
222 cmd_sizeof_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
223     const mdb_arg_t *argv)
224 {
225 	char tn[MDB_SYM_NAMLEN];
226 	int ret;
227 
228 	if (argc == 0 && !(flags & DCMD_TAB_SPACE))
229 		return (0);
230 
231 	if (argc == 0 && (flags & DCMD_TAB_SPACE))
232 		return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT));
233 
234 	if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
235 		return (ret);
236 
237 	if (argc == 1)
238 		return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT));
239 
240 	return (0);
241 }
242 
243 /*ARGSUSED*/
244 int
245 cmd_offsetof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
246 {
247 	const char *member;
248 	mdb_ctf_id_t id;
249 	ulong_t off;
250 	char tn[MDB_SYM_NAMLEN];
251 	ssize_t sz;
252 	int ret;
253 
254 	if (flags & DCMD_ADDRSPEC)
255 		return (DCMD_USAGE);
256 
257 	if ((ret = args_to_typename(&argc, &argv, tn, sizeof (tn))) != 0)
258 		return (ret);
259 
260 	if (argc != 2 || argv[1].a_type != MDB_TYPE_STRING)
261 		return (DCMD_USAGE);
262 
263 	if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
264 		mdb_warn("failed to look up type %s", tn);
265 		return (DCMD_ERR);
266 	}
267 
268 	member = argv[1].a_un.a_str;
269 
270 	if (mdb_ctf_member_info(id, member, &off, &id) != 0) {
271 		mdb_warn("failed to find member %s of type %s", member, tn);
272 		return (DCMD_ERR);
273 	}
274 
275 	if (flags & DCMD_PIPE_OUT) {
276 		if (off % NBBY != 0) {
277 			mdb_warn("member %s of type %s is not byte-aligned\n",
278 			    member, tn);
279 			return (DCMD_ERR);
280 		}
281 		mdb_printf("%#lr", off / NBBY);
282 		return (DCMD_OK);
283 	}
284 
285 	mdb_printf("offsetof (%s, %s) = %#lr",
286 	    tn, member, off / NBBY);
287 	if (off % NBBY != 0)
288 		mdb_printf(".%lr", off % NBBY);
289 
290 	if ((sz = mdb_ctf_type_size(id)) > 0)
291 		mdb_printf(", sizeof (...->%s) = %#lr", member, sz);
292 
293 	mdb_printf("\n");
294 
295 	return (DCMD_OK);
296 }
297 
298 /*ARGSUSED*/
299 static int
300 enum_prefix_scan_cb(const char *name, int value, void *arg)
301 {
302 	char *str = arg;
303 
304 	/*
305 	 * This function is called with every name in the enum.  We make
306 	 * "arg" be the common prefix, if any.
307 	 */
308 	if (str[0] == 0) {
309 		if (strlcpy(arg, name, MDB_SYM_NAMLEN) >= MDB_SYM_NAMLEN)
310 			return (1);
311 		return (0);
312 	}
313 
314 	while (*name == *str) {
315 		if (*str == 0) {
316 			if (str != arg) {
317 				str--;	/* don't smother a name completely */
318 			}
319 			break;
320 		}
321 		name++;
322 		str++;
323 	}
324 	*str = 0;
325 
326 	return (str == arg);	/* only continue if prefix is non-empty */
327 }
328 
329 struct enum_p2_info {
330 	intmax_t e_value;	/* value we're processing */
331 	char	*e_buf;		/* buffer for holding names */
332 	size_t	e_size;		/* size of buffer */
333 	size_t	e_prefix;	/* length of initial prefix */
334 	uint_t	e_allprefix;	/* apply prefix to first guy, too */
335 	uint_t	e_bits;		/* bits seen */
336 	uint8_t	e_found;	/* have we seen anything? */
337 	uint8_t	e_first;	/* does buf contain the first one? */
338 	uint8_t	e_zero;		/* have we seen a zero value? */
339 };
340 
341 static int
342 enum_p2_cb(const char *name, int bit_arg, void *arg)
343 {
344 	struct enum_p2_info *eiip = arg;
345 	uintmax_t bit = bit_arg;
346 
347 	if (bit != 0 && !ISP2(bit))
348 		return (1);	/* non-power-of-2; abort processing */
349 
350 	if ((bit == 0 && eiip->e_zero) ||
351 	    (bit != 0 && (eiip->e_bits & bit) != 0)) {
352 		return (0);	/* already seen this value */
353 	}
354 
355 	if (bit == 0)
356 		eiip->e_zero = 1;
357 	else
358 		eiip->e_bits |= bit;
359 
360 	if (eiip->e_buf != NULL && (eiip->e_value & bit) != 0) {
361 		char *buf = eiip->e_buf;
362 		size_t prefix = eiip->e_prefix;
363 
364 		if (eiip->e_found) {
365 			(void) strlcat(buf, "|", eiip->e_size);
366 
367 			if (eiip->e_first && !eiip->e_allprefix && prefix > 0) {
368 				char c1 = buf[prefix];
369 				char c2 = buf[prefix + 1];
370 				buf[prefix] = '{';
371 				buf[prefix + 1] = 0;
372 				mdb_printf("%s", buf);
373 				buf[prefix] = c1;
374 				buf[prefix + 1] = c2;
375 				mdb_printf("%s", buf + prefix);
376 			} else {
377 				mdb_printf("%s", buf);
378 			}
379 
380 		}
381 		/* skip the common prefix as necessary */
382 		if ((eiip->e_found || eiip->e_allprefix) &&
383 		    strlen(name) > prefix)
384 			name += prefix;
385 
386 		(void) strlcpy(eiip->e_buf, name, eiip->e_size);
387 		eiip->e_first = !eiip->e_found;
388 		eiip->e_found = 1;
389 	}
390 	return (0);
391 }
392 
393 static int
394 enum_is_p2(mdb_ctf_id_t id)
395 {
396 	struct enum_p2_info eii;
397 	bzero(&eii, sizeof (eii));
398 
399 	return (mdb_ctf_type_kind(id) == CTF_K_ENUM &&
400 	    mdb_ctf_enum_iter(id, enum_p2_cb, &eii) == 0 &&
401 	    eii.e_bits != 0);
402 }
403 
404 static int
405 enum_value_print_p2(mdb_ctf_id_t id, intmax_t value, uint_t allprefix)
406 {
407 	struct enum_p2_info eii;
408 	char prefix[MDB_SYM_NAMLEN + 2];
409 	intmax_t missed;
410 
411 	bzero(&eii, sizeof (eii));
412 
413 	eii.e_value = value;
414 	eii.e_buf = prefix;
415 	eii.e_size = sizeof (prefix);
416 	eii.e_allprefix = allprefix;
417 
418 	prefix[0] = 0;
419 	if (mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
420 		eii.e_prefix = strlen(prefix);
421 
422 	if (mdb_ctf_enum_iter(id, enum_p2_cb, &eii) != 0 || eii.e_bits == 0)
423 		return (-1);
424 
425 	missed = (value & ~(intmax_t)eii.e_bits);
426 
427 	if (eii.e_found) {
428 		/* push out any final value, with a | if we missed anything */
429 		if (!eii.e_first)
430 			(void) strlcat(prefix, "}", sizeof (prefix));
431 		if (missed != 0)
432 			(void) strlcat(prefix, "|", sizeof (prefix));
433 
434 		mdb_printf("%s", prefix);
435 	}
436 
437 	if (!eii.e_found || missed) {
438 		mdb_printf("%#llx", missed);
439 	}
440 
441 	return (0);
442 }
443 
444 struct enum_cbinfo {
445 	uint_t		e_flags;
446 	const char	*e_string;	/* NULL for value searches */
447 	size_t		e_prefix;
448 	intmax_t	e_value;
449 	uint_t		e_found;
450 	mdb_ctf_id_t	e_id;
451 };
452 #define	E_PRETTY		0x01
453 #define	E_HEX			0x02
454 #define	E_SEARCH_STRING		0x04
455 #define	E_SEARCH_VALUE		0x08
456 #define	E_ELIDE_PREFIX		0x10
457 
458 static void
459 enum_print(struct enum_cbinfo *info, const char *name, int value)
460 {
461 	uint_t flags = info->e_flags;
462 	uint_t elide_prefix = (info->e_flags & E_ELIDE_PREFIX);
463 
464 	if (name != NULL && info->e_prefix && strlen(name) > info->e_prefix)
465 		name += info->e_prefix;
466 
467 	if (flags & E_PRETTY) {
468 		uint_t indent = 5 + ((flags & E_HEX) ? 8 : 11);
469 
470 		mdb_printf((flags & E_HEX)? "%8x " : "%11d ", value);
471 		(void) mdb_inc_indent(indent);
472 		if (name != NULL) {
473 			mdb_iob_puts(mdb.m_out, name);
474 		} else {
475 			(void) enum_value_print_p2(info->e_id, value,
476 			    elide_prefix);
477 		}
478 		(void) mdb_dec_indent(indent);
479 		mdb_printf("\n");
480 	} else {
481 		mdb_printf("%#r\n", value);
482 	}
483 }
484 
485 static int
486 enum_cb(const char *name, int value, void *arg)
487 {
488 	struct enum_cbinfo *info = arg;
489 	uint_t flags = info->e_flags;
490 
491 	if (flags & E_SEARCH_STRING) {
492 		if (strcmp(name, info->e_string) != 0)
493 			return (0);
494 
495 	} else if (flags & E_SEARCH_VALUE) {
496 		if (value != info->e_value)
497 			return (0);
498 	}
499 
500 	enum_print(info, name, value);
501 
502 	info->e_found = 1;
503 	return (0);
504 }
505 
506 void
507 enum_help(void)
508 {
509 	mdb_printf("%s",
510 "Without an address and name, print all values for the enumeration \"enum\".\n"
511 "With an address, look up a particular value in \"enum\".  With a name, look\n"
512 "up a particular name in \"enum\".\n");
513 
514 	(void) mdb_dec_indent(2);
515 	mdb_printf("\n%<b>OPTIONS%</b>\n");
516 	(void) mdb_inc_indent(2);
517 
518 	mdb_printf("%s",
519 "   -e    remove common prefixes from enum names\n"
520 "   -x    report enum values in hexadecimal\n");
521 }
522 
523 /*ARGSUSED*/
524 int
525 cmd_enum(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
526 {
527 	struct enum_cbinfo info;
528 
529 	char type[MDB_SYM_NAMLEN + sizeof ("enum ")];
530 	char tn2[MDB_SYM_NAMLEN + sizeof ("enum ")];
531 	char prefix[MDB_SYM_NAMLEN];
532 	mdb_ctf_id_t id;
533 	mdb_ctf_id_t idr;
534 
535 	int i;
536 	intmax_t search;
537 	uint_t isp2;
538 
539 	info.e_flags = (flags & DCMD_PIPE_OUT)? 0 : E_PRETTY;
540 	info.e_string = NULL;
541 	info.e_value = 0;
542 	info.e_found = 0;
543 
544 	i = mdb_getopts(argc, argv,
545 	    'e', MDB_OPT_SETBITS, E_ELIDE_PREFIX, &info.e_flags,
546 	    'x', MDB_OPT_SETBITS, E_HEX, &info.e_flags,
547 	    NULL);
548 
549 	argc -= i;
550 	argv += i;
551 
552 	if ((i = args_to_typename(&argc, &argv, type, MDB_SYM_NAMLEN)) != 0)
553 		return (i);
554 
555 	if (strchr(type, ' ') == NULL) {
556 		/*
557 		 * Check as an enumeration tag first, and fall back
558 		 * to checking for a typedef.  Yes, this means that
559 		 * anonymous enumerations whose typedefs conflict with
560 		 * an enum tag can't be accessed.  Don't do that.
561 		 */
562 		(void) mdb_snprintf(tn2, sizeof (tn2), "enum %s", type);
563 
564 		if (mdb_ctf_lookup_by_name(tn2, &id) == 0) {
565 			(void) strcpy(type, tn2);
566 		} else if (mdb_ctf_lookup_by_name(type, &id) != 0) {
567 			mdb_warn("types '%s', '%s'", tn2, type);
568 			return (DCMD_ERR);
569 		}
570 	} else {
571 		if (mdb_ctf_lookup_by_name(type, &id) != 0) {
572 			mdb_warn("'%s'", type);
573 			return (DCMD_ERR);
574 		}
575 	}
576 
577 	/* resolve it, and make sure we're looking at an enumeration */
578 	if (mdb_ctf_type_resolve(id, &idr) == -1) {
579 		mdb_warn("unable to resolve '%s'", type);
580 		return (DCMD_ERR);
581 	}
582 	if (mdb_ctf_type_kind(idr) != CTF_K_ENUM) {
583 		mdb_warn("'%s': not an enumeration\n", type);
584 		return (DCMD_ERR);
585 	}
586 
587 	info.e_id = idr;
588 
589 	if (argc > 2)
590 		return (DCMD_USAGE);
591 
592 	if (argc == 2) {
593 		if (flags & DCMD_ADDRSPEC) {
594 			mdb_warn("may only specify one of: name, address\n");
595 			return (DCMD_USAGE);
596 		}
597 
598 		if (argv[1].a_type == MDB_TYPE_STRING) {
599 			info.e_flags |= E_SEARCH_STRING;
600 			info.e_string = argv[1].a_un.a_str;
601 		} else if (argv[1].a_type == MDB_TYPE_IMMEDIATE) {
602 			info.e_flags |= E_SEARCH_VALUE;
603 			search = argv[1].a_un.a_val;
604 		} else {
605 			return (DCMD_USAGE);
606 		}
607 	}
608 
609 	if (flags & DCMD_ADDRSPEC) {
610 		info.e_flags |= E_SEARCH_VALUE;
611 		search = mdb_get_dot();
612 	}
613 
614 	if (info.e_flags & E_SEARCH_VALUE) {
615 		if ((int)search != search) {
616 			mdb_warn("value '%lld' out of enumeration range\n",
617 			    search);
618 		}
619 		info.e_value = search;
620 	}
621 
622 	isp2 = enum_is_p2(idr);
623 	if (isp2)
624 		info.e_flags |= E_HEX;
625 
626 	if (DCMD_HDRSPEC(flags) && (info.e_flags & E_PRETTY)) {
627 		if (info.e_flags & E_HEX)
628 			mdb_printf("%<u>%8s %-64s%</u>\n", "VALUE", "NAME");
629 		else
630 			mdb_printf("%<u>%11s %-64s%</u>\n", "VALUE", "NAME");
631 	}
632 
633 	/* if the enum is a power-of-two one, process it that way */
634 	if ((info.e_flags & E_SEARCH_VALUE) && isp2) {
635 		enum_print(&info, NULL, info.e_value);
636 		return (DCMD_OK);
637 	}
638 
639 	prefix[0] = 0;
640 	if ((info.e_flags & E_ELIDE_PREFIX) &&
641 	    mdb_ctf_enum_iter(id, enum_prefix_scan_cb, prefix) == 0)
642 		info.e_prefix = strlen(prefix);
643 
644 	if (mdb_ctf_enum_iter(idr, enum_cb, &info) == -1) {
645 		mdb_warn("cannot walk '%s' as enum", type);
646 		return (DCMD_ERR);
647 	}
648 
649 	if (info.e_found == 0 &&
650 	    (info.e_flags & (E_SEARCH_STRING | E_SEARCH_VALUE)) != 0) {
651 		if (info.e_flags & E_SEARCH_STRING)
652 			mdb_warn("name \"%s\" not in '%s'\n", info.e_string,
653 			    type);
654 		else
655 			mdb_warn("value %#lld not in '%s'\n", info.e_value,
656 			    type);
657 
658 		return (DCMD_ERR);
659 	}
660 
661 	return (DCMD_OK);
662 }
663 
664 static int
665 setup_vcb(const char *name, uintptr_t addr)
666 {
667 	const char *p;
668 	mdb_var_t *v;
669 
670 	if ((v = mdb_nv_lookup(&mdb.m_nv, name)) == NULL) {
671 		if ((p = strbadid(name)) != NULL) {
672 			mdb_warn("'%c' may not be used in a variable "
673 			    "name\n", *p);
674 			return (DCMD_ABORT);
675 		}
676 
677 		if ((v = mdb_nv_insert(&mdb.m_nv, name, NULL, addr, 0)) == NULL)
678 			return (DCMD_ERR);
679 	} else {
680 		if (v->v_flags & MDB_NV_RDONLY) {
681 			mdb_warn("variable %s is read-only\n", name);
682 			return (DCMD_ABORT);
683 		}
684 	}
685 
686 	/*
687 	 * If there already exists a vcb for this variable, we may be
688 	 * calling the dcmd in a loop.  We only create a vcb for this
689 	 * variable on the first invocation.
690 	 */
691 	if (mdb_vcb_find(v, mdb.m_frame) == NULL)
692 		mdb_vcb_insert(mdb_vcb_create(v), mdb.m_frame);
693 
694 	return (0);
695 }
696 
697 /*ARGSUSED*/
698 int
699 cmd_list(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
700 {
701 	int offset;
702 	uintptr_t a, tmp;
703 	int ret;
704 
705 	if (!(flags & DCMD_ADDRSPEC) || argc == 0)
706 		return (DCMD_USAGE);
707 
708 	if (argv->a_type != MDB_TYPE_STRING) {
709 		/*
710 		 * We are being given a raw offset in lieu of a type and
711 		 * member; confirm the number of arguments and argument
712 		 * type.
713 		 */
714 		if (argc != 1 || argv->a_type != MDB_TYPE_IMMEDIATE)
715 			return (DCMD_USAGE);
716 
717 		offset = argv->a_un.a_val;
718 
719 		argv++;
720 		argc--;
721 
722 		if (offset % sizeof (uintptr_t)) {
723 			mdb_warn("offset must fall on a word boundary\n");
724 			return (DCMD_ABORT);
725 		}
726 	} else {
727 		const char *member;
728 		char buf[MDB_SYM_NAMLEN];
729 		int ret;
730 
731 		ret = args_to_typename(&argc, &argv, buf, sizeof (buf));
732 		if (ret != 0)
733 			return (ret);
734 
735 		argv++;
736 		argc--;
737 
738 		/*
739 		 * If we make it here, we were provided a type name. We should
740 		 * only continue if we still have arguments left (e.g. member
741 		 * name and potentially a variable name).
742 		 */
743 		if (argc == 0)
744 			return (DCMD_USAGE);
745 
746 		member = argv->a_un.a_str;
747 		offset = mdb_ctf_offsetof_by_name(buf, member);
748 		if (offset == -1)
749 			return (DCMD_ABORT);
750 
751 		argv++;
752 		argc--;
753 
754 		if (offset % (sizeof (uintptr_t)) != 0) {
755 			mdb_warn("%s is not a word-aligned member\n", member);
756 			return (DCMD_ABORT);
757 		}
758 	}
759 
760 	/*
761 	 * If we have any unchewed arguments, a variable name must be present.
762 	 */
763 	if (argc == 1) {
764 		if (argv->a_type != MDB_TYPE_STRING)
765 			return (DCMD_USAGE);
766 
767 		if ((ret = setup_vcb(argv->a_un.a_str, addr)) != 0)
768 			return (ret);
769 
770 	} else if (argc != 0) {
771 		return (DCMD_USAGE);
772 	}
773 
774 	a = addr;
775 
776 	do {
777 		mdb_printf("%lr\n", a);
778 
779 		if (mdb_vread(&tmp, sizeof (tmp), a + offset) == -1) {
780 			mdb_warn("failed to read next pointer from object %p",
781 			    a);
782 			return (DCMD_ERR);
783 		}
784 
785 		a = tmp;
786 	} while (a != addr && a != NULL);
787 
788 	return (DCMD_OK);
789 }
790 
791 int
792 cmd_array(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
793 {
794 	mdb_ctf_id_t id;
795 	ssize_t elemsize = 0;
796 	char tn[MDB_SYM_NAMLEN];
797 	int ret, nelem = -1;
798 
799 	mdb_tgt_t *t = mdb.m_target;
800 	GElf_Sym sym;
801 	mdb_ctf_arinfo_t ar;
802 	mdb_syminfo_t s_info;
803 
804 	if (!(flags & DCMD_ADDRSPEC))
805 		return (DCMD_USAGE);
806 
807 	if (argc >= 2) {
808 		ret = args_to_typename(&argc, &argv, tn, sizeof (tn));
809 		if (ret != 0)
810 			return (ret);
811 
812 		if (argc == 1)	/* unquoted compound type without count */
813 			return (DCMD_USAGE);
814 
815 		if (mdb_ctf_lookup_by_name(tn, &id) != 0) {
816 			mdb_warn("failed to look up type %s", tn);
817 			return (DCMD_ABORT);
818 		}
819 
820 		if (argv[1].a_type == MDB_TYPE_IMMEDIATE)
821 			nelem = argv[1].a_un.a_val;
822 		else
823 			nelem = mdb_strtoull(argv[1].a_un.a_str);
824 
825 		elemsize = mdb_ctf_type_size(id);
826 	} else if (addr_to_sym(t, addr, tn, sizeof (tn), &sym, &s_info)
827 	    != NULL && mdb_ctf_lookup_by_symbol(&sym, &s_info, &id)
828 	    == 0 && mdb_ctf_type_kind(id) == CTF_K_ARRAY &&
829 	    mdb_ctf_array_info(id, &ar) != -1) {
830 		elemsize = mdb_ctf_type_size(id) / ar.mta_nelems;
831 		nelem = ar.mta_nelems;
832 	} else {
833 		mdb_warn("no symbol information for %a", addr);
834 		return (DCMD_ERR);
835 	}
836 
837 	if (argc == 3 || argc == 1) {
838 		if (argv[argc - 1].a_type != MDB_TYPE_STRING)
839 			return (DCMD_USAGE);
840 
841 		if ((ret = setup_vcb(argv[argc - 1].a_un.a_str, addr)) != 0)
842 			return (ret);
843 
844 	} else if (argc > 3) {
845 		return (DCMD_USAGE);
846 	}
847 
848 	for (; nelem > 0; nelem--) {
849 		mdb_printf("%lr\n", addr);
850 		addr = addr + elemsize;
851 	}
852 
853 	return (DCMD_OK);
854 }
855 
856 /*
857  * Print an integer bitfield in hexadecimal by reading the enclosing byte(s)
858  * and then shifting and masking the data in the lower bits of a uint64_t.
859  */
860 static int
861 print_bitfield(ulong_t off, printarg_t *pap, ctf_encoding_t *ep)
862 {
863 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
864 	size_t size = (ep->cte_bits + (NBBY - 1)) / NBBY;
865 	uint64_t mask = (1ULL << ep->cte_bits) - 1;
866 	uint64_t value = 0;
867 	uint8_t *buf = (uint8_t *)&value;
868 	uint8_t shift;
869 
870 	const char *format;
871 
872 	if (!(pap->pa_flags & PA_SHOWVAL))
873 		return (0);
874 
875 	if (ep->cte_bits > sizeof (value) * NBBY - 1) {
876 		mdb_printf("??? (invalid bitfield size %u)", ep->cte_bits);
877 		return (0);
878 	}
879 
880 	/*
881 	 * On big-endian machines, we need to adjust the buf pointer to refer
882 	 * to the lowest 'size' bytes in 'value', and we need shift based on
883 	 * the offset from the end of the data, not the offset of the start.
884 	 */
885 #ifdef _BIG_ENDIAN
886 	buf += sizeof (value) - size;
887 	off += ep->cte_bits;
888 #endif
889 	if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, buf, size, addr) != size) {
890 		mdb_warn("failed to read %lu bytes at %llx",
891 		    (ulong_t)size, addr);
892 		return (1);
893 	}
894 
895 	shift = off % NBBY;
896 
897 	/*
898 	 * Offsets are counted from opposite ends on little- and
899 	 * big-endian machines.
900 	 */
901 #ifdef _BIG_ENDIAN
902 	shift = NBBY - shift;
903 #endif
904 
905 	/*
906 	 * If the bits we want do not begin on a byte boundary, shift the data
907 	 * right so that the value is in the lowest 'cte_bits' of 'value'.
908 	 */
909 	if (off % NBBY != 0)
910 		value >>= shift;
911 	value &= mask;
912 
913 	/*
914 	 * We default to printing signed bitfields as decimals,
915 	 * and unsigned bitfields in hexadecimal.  If they specify
916 	 * hexadecimal, we treat the field as unsigned.
917 	 */
918 	if ((pap->pa_flags & PA_INTHEX) ||
919 	    !(ep->cte_format & CTF_INT_SIGNED)) {
920 		format = (pap->pa_flags & PA_INTDEC)? "%#llu" : "%#llx";
921 	} else {
922 		int sshift = sizeof (value) * NBBY - ep->cte_bits;
923 
924 		/* sign-extend value, and print as a signed decimal */
925 		value = ((int64_t)value << sshift) >> sshift;
926 		format = "%#lld";
927 	}
928 	mdb_printf(format, value);
929 
930 	return (0);
931 }
932 
933 /*
934  * Print out a character or integer value.  We use some simple heuristics,
935  * described below, to determine the appropriate radix to use for output.
936  */
937 static int
938 print_int_val(const char *type, ctf_encoding_t *ep, ulong_t off,
939     printarg_t *pap)
940 {
941 	static const char *const sformat[] = { "%#d", "%#d", "%#d", "%#lld" };
942 	static const char *const uformat[] = { "%#u", "%#u", "%#u", "%#llu" };
943 	static const char *const xformat[] = { "%#x", "%#x", "%#x", "%#llx" };
944 
945 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
946 	const char *const *fsp;
947 	size_t size;
948 
949 	union {
950 		uint64_t i8;
951 		uint32_t i4;
952 		uint16_t i2;
953 		uint8_t i1;
954 		time_t t;
955 		ipaddr_t I;
956 	} u;
957 
958 	if (!(pap->pa_flags & PA_SHOWVAL))
959 		return (0);
960 
961 	if (ep->cte_format & CTF_INT_VARARGS) {
962 		mdb_printf("...\n");
963 		return (0);
964 	}
965 
966 	/*
967 	 * If the size is not a power-of-two number of bytes in the range 1-8
968 	 * then we assume it is a bitfield and print it as such.
969 	 */
970 	size = ep->cte_bits / NBBY;
971 	if (size > 8 || (ep->cte_bits % NBBY) != 0 || (size & (size - 1)) != 0)
972 		return (print_bitfield(off, pap, ep));
973 
974 	if (IS_CHAR(*ep)) {
975 		mdb_printf("'");
976 		if (mdb_fmt_print(pap->pa_tgt, pap->pa_as,
977 		    addr, 1, 'C') == addr)
978 			return (1);
979 		mdb_printf("'");
980 		return (0);
981 	}
982 
983 	if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size, addr) != size) {
984 		mdb_warn("failed to read %lu bytes at %llx",
985 		    (ulong_t)size, addr);
986 		return (1);
987 	}
988 
989 	/*
990 	 * We pretty-print some integer based types.  time_t values are
991 	 * printed as a calendar date and time, and IPv4 addresses as human
992 	 * readable dotted quads.
993 	 */
994 	if (!(pap->pa_flags & (PA_INTHEX | PA_INTDEC))) {
995 		if (strcmp(type, "time_t") == 0 && u.t != 0) {
996 			mdb_printf("%Y", u.t);
997 			return (0);
998 		}
999 		if (strcmp(type, "ipaddr_t") == 0 ||
1000 		    strcmp(type, "in_addr_t") == 0) {
1001 			mdb_printf("%I", u.I);
1002 			return (0);
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * The default format is hexadecimal.
1008 	 */
1009 	if (!(pap->pa_flags & PA_INTDEC))
1010 		fsp = xformat;
1011 	else if (ep->cte_format & CTF_INT_SIGNED)
1012 		fsp = sformat;
1013 	else
1014 		fsp = uformat;
1015 
1016 	switch (size) {
1017 	case sizeof (uint8_t):
1018 		mdb_printf(fsp[0], u.i1);
1019 		break;
1020 	case sizeof (uint16_t):
1021 		mdb_printf(fsp[1], u.i2);
1022 		break;
1023 	case sizeof (uint32_t):
1024 		mdb_printf(fsp[2], u.i4);
1025 		break;
1026 	case sizeof (uint64_t):
1027 		mdb_printf(fsp[3], u.i8);
1028 		break;
1029 	}
1030 	return (0);
1031 }
1032 
1033 /*ARGSUSED*/
1034 static int
1035 print_int(const char *type, const char *name, mdb_ctf_id_t id,
1036     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1037 {
1038 	ctf_encoding_t e;
1039 
1040 	if (!(pap->pa_flags & PA_SHOWVAL))
1041 		return (0);
1042 
1043 	if (mdb_ctf_type_encoding(base, &e) != 0) {
1044 		mdb_printf("??? (%s)", mdb_strerror(errno));
1045 		return (0);
1046 	}
1047 
1048 	return (print_int_val(type, &e, off, pap));
1049 }
1050 
1051 /*
1052  * Print out a floating point value.  We only provide support for floats in
1053  * the ANSI-C float, double, and long double formats.
1054  */
1055 /*ARGSUSED*/
1056 static int
1057 print_float(const char *type, const char *name, mdb_ctf_id_t id,
1058     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1059 {
1060 #ifndef _KMDB
1061 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1062 	ctf_encoding_t e;
1063 
1064 	union {
1065 		float f;
1066 		double d;
1067 		long double ld;
1068 	} u;
1069 
1070 	if (!(pap->pa_flags & PA_SHOWVAL))
1071 		return (0);
1072 
1073 	if (mdb_ctf_type_encoding(base, &e) == 0) {
1074 		if (e.cte_format == CTF_FP_SINGLE &&
1075 		    e.cte_bits == sizeof (float) * NBBY) {
1076 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.f,
1077 			    sizeof (u.f), addr) != sizeof (u.f)) {
1078 				mdb_warn("failed to read float at %llx", addr);
1079 				return (1);
1080 			}
1081 			mdb_printf("%s", doubletos(u.f, 7, 'e'));
1082 
1083 		} else if (e.cte_format == CTF_FP_DOUBLE &&
1084 		    e.cte_bits == sizeof (double) * NBBY) {
1085 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.d,
1086 			    sizeof (u.d), addr) != sizeof (u.d)) {
1087 				mdb_warn("failed to read float at %llx", addr);
1088 				return (1);
1089 			}
1090 			mdb_printf("%s", doubletos(u.d, 7, 'e'));
1091 
1092 		} else if (e.cte_format == CTF_FP_LDOUBLE &&
1093 		    e.cte_bits == sizeof (long double) * NBBY) {
1094 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.ld,
1095 			    sizeof (u.ld), addr) != sizeof (u.ld)) {
1096 				mdb_warn("failed to read float at %llx", addr);
1097 				return (1);
1098 			}
1099 			mdb_printf("%s", longdoubletos(&u.ld, 16, 'e'));
1100 
1101 		} else {
1102 			mdb_printf("??? (unsupported FP format %u / %u bits\n",
1103 			    e.cte_format, e.cte_bits);
1104 		}
1105 	} else
1106 		mdb_printf("??? (%s)", mdb_strerror(errno));
1107 #else
1108 	mdb_printf("<FLOAT>");
1109 #endif
1110 	return (0);
1111 }
1112 
1113 
1114 /*
1115  * Print out a pointer value as a symbol name + offset or a hexadecimal value.
1116  * If the pointer itself is a char *, we attempt to read a bit of the data
1117  * referenced by the pointer and display it if it is a printable ASCII string.
1118  */
1119 /*ARGSUSED*/
1120 static int
1121 print_ptr(const char *type, const char *name, mdb_ctf_id_t id,
1122     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1123 {
1124 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1125 	ctf_encoding_t e;
1126 	uintptr_t value;
1127 	char buf[256];
1128 	ssize_t len;
1129 
1130 	if (!(pap->pa_flags & PA_SHOWVAL))
1131 		return (0);
1132 
1133 	if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1134 	    &value, sizeof (value), addr) != sizeof (value)) {
1135 		mdb_warn("failed to read %s pointer at %llx", name, addr);
1136 		return (1);
1137 	}
1138 
1139 	if (pap->pa_flags & PA_NOSYMBOLIC) {
1140 		mdb_printf("%#lx", value);
1141 		return (0);
1142 	}
1143 
1144 	mdb_printf("%a", value);
1145 
1146 	if (value == NULL || strcmp(type, "caddr_t") == 0)
1147 		return (0);
1148 
1149 	if (mdb_ctf_type_kind(base) == CTF_K_POINTER &&
1150 	    mdb_ctf_type_reference(base, &base) != -1 &&
1151 	    mdb_ctf_type_resolve(base, &base) != -1 &&
1152 	    mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e)) {
1153 		if ((len = mdb_tgt_readstr(pap->pa_realtgt, pap->pa_as,
1154 		    buf, sizeof (buf), value)) >= 0 && strisprint(buf)) {
1155 			if (len == sizeof (buf))
1156 				(void) strabbr(buf, sizeof (buf));
1157 			mdb_printf(" \"%s\"", buf);
1158 		}
1159 	}
1160 
1161 	return (0);
1162 }
1163 
1164 
1165 /*
1166  * Print out a fixed-size array.  We special-case arrays of characters
1167  * and attempt to print them out as ASCII strings if possible.  For other
1168  * arrays, we iterate over a maximum of pa_armemlim members and call
1169  * mdb_ctf_type_visit() again on each element to print its value.
1170  */
1171 /*ARGSUSED*/
1172 static int
1173 print_array(const char *type, const char *name, mdb_ctf_id_t id,
1174     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1175 {
1176 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1177 	printarg_t pa = *pap;
1178 	ssize_t eltsize;
1179 	mdb_ctf_arinfo_t r;
1180 	ctf_encoding_t e;
1181 	uint_t i, kind, limit;
1182 	int d, sou;
1183 	char buf[8];
1184 	char *str;
1185 
1186 	if (!(pap->pa_flags & PA_SHOWVAL))
1187 		return (0);
1188 
1189 	if (pap->pa_depth == pap->pa_maxdepth) {
1190 		mdb_printf("[ ... ]");
1191 		return (0);
1192 	}
1193 
1194 	/*
1195 	 * Determine the base type and size of the array's content.  If this
1196 	 * fails, we cannot print anything and just give up.
1197 	 */
1198 	if (mdb_ctf_array_info(base, &r) == -1 ||
1199 	    mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
1200 	    (eltsize = mdb_ctf_type_size(base)) == -1) {
1201 		mdb_printf("[ ??? ] (%s)", mdb_strerror(errno));
1202 		return (0);
1203 	}
1204 
1205 	/*
1206 	 * Read a few bytes and determine if the content appears to be
1207 	 * printable ASCII characters.  If so, read the entire array and
1208 	 * attempt to display it as a string if it is printable.
1209 	 */
1210 	if ((pap->pa_arstrlim == MDB_ARR_NOLIMIT ||
1211 	    r.mta_nelems <= pap->pa_arstrlim) &&
1212 	    mdb_ctf_type_encoding(base, &e) == 0 && IS_CHAR(e) &&
1213 	    mdb_tgt_readstr(pap->pa_tgt, pap->pa_as, buf,
1214 	    MIN(sizeof (buf), r.mta_nelems), addr) > 0 && strisprint(buf)) {
1215 
1216 		str = mdb_alloc(r.mta_nelems + 1, UM_SLEEP | UM_GC);
1217 		str[r.mta_nelems] = '\0';
1218 
1219 		if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, str,
1220 		    r.mta_nelems, addr) != r.mta_nelems) {
1221 			mdb_warn("failed to read char array at %llx", addr);
1222 			return (1);
1223 		}
1224 
1225 		if (strisprint(str)) {
1226 			mdb_printf("[ \"%s\" ]", str);
1227 			return (0);
1228 		}
1229 	}
1230 
1231 	if (pap->pa_armemlim != MDB_ARR_NOLIMIT)
1232 		limit = MIN(r.mta_nelems, pap->pa_armemlim);
1233 	else
1234 		limit = r.mta_nelems;
1235 
1236 	if (limit == 0) {
1237 		mdb_printf("[ ... ]");
1238 		return (0);
1239 	}
1240 
1241 	kind = mdb_ctf_type_kind(base);
1242 	sou = IS_COMPOSITE(kind);
1243 
1244 	pa.pa_addr = addr;		/* set base address to start of array */
1245 	pa.pa_maxdepth = pa.pa_maxdepth - pa.pa_depth - 1;
1246 	pa.pa_nest += pa.pa_depth + 1;	/* nesting level is current depth + 1 */
1247 	pa.pa_depth = 0;		/* reset depth to 0 for new scope */
1248 	pa.pa_prefix = NULL;
1249 
1250 	if (sou) {
1251 		pa.pa_delim = "\n";
1252 		mdb_printf("[\n");
1253 	} else {
1254 		pa.pa_flags &= ~(PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR);
1255 		pa.pa_delim = ", ";
1256 		mdb_printf("[ ");
1257 	}
1258 
1259 	for (i = 0; i < limit; i++, pa.pa_addr += eltsize) {
1260 		if (i == limit - 1 && !sou) {
1261 			if (limit < r.mta_nelems)
1262 				pa.pa_delim = ", ... ]";
1263 			else
1264 				pa.pa_delim = " ]";
1265 		}
1266 
1267 		if (mdb_ctf_type_visit(r.mta_contents, elt_print, &pa) == -1) {
1268 			mdb_warn("failed to print array data");
1269 			return (1);
1270 		}
1271 	}
1272 
1273 	if (sou) {
1274 		for (d = pa.pa_depth - 1; d >= 0; d--)
1275 			print_close_sou(&pa, d);
1276 
1277 		if (limit < r.mta_nelems) {
1278 			mdb_printf("%*s... ]",
1279 			    (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1280 		} else {
1281 			mdb_printf("%*s]",
1282 			    (pap->pa_depth + pap->pa_nest) * pap->pa_tab, "");
1283 		}
1284 	}
1285 
1286 	/* copy the hole array info, since it may have been grown */
1287 	pap->pa_holes = pa.pa_holes;
1288 	pap->pa_nholes = pa.pa_nholes;
1289 
1290 	return (0);
1291 }
1292 
1293 /*
1294  * Print out a struct or union header.  We need only print the open brace
1295  * because mdb_ctf_type_visit() itself will automatically recurse through
1296  * all members of the given struct or union.
1297  */
1298 /*ARGSUSED*/
1299 static int
1300 print_sou(const char *type, const char *name, mdb_ctf_id_t id,
1301     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1302 {
1303 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1304 
1305 	/*
1306 	 * We have pretty-printing for some structures where displaying
1307 	 * structure contents has no value.
1308 	 */
1309 	if (pap->pa_flags & PA_SHOWVAL) {
1310 		if (strcmp(type, "in6_addr_t") == 0 ||
1311 		    strcmp(type, "struct in6_addr") == 0) {
1312 			in6_addr_t in6addr;
1313 
1314 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &in6addr,
1315 			    sizeof (in6addr), addr) != sizeof (in6addr)) {
1316 				mdb_warn("failed to read %s pointer at %llx",
1317 				    name, addr);
1318 				return (1);
1319 			}
1320 			mdb_printf("%N", &in6addr);
1321 			/*
1322 			 * Don't print anything further down in the
1323 			 * structure.
1324 			 */
1325 			pap->pa_nooutdepth = pap->pa_depth;
1326 			return (0);
1327 		}
1328 		if (strcmp(type, "struct in_addr") == 0) {
1329 			in_addr_t inaddr;
1330 
1331 			if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &inaddr,
1332 			    sizeof (inaddr), addr) != sizeof (inaddr)) {
1333 				mdb_warn("failed to read %s pointer at %llx",
1334 				    name, addr);
1335 				return (1);
1336 			}
1337 			mdb_printf("%I", inaddr);
1338 			pap->pa_nooutdepth = pap->pa_depth;
1339 			return (0);
1340 		}
1341 	}
1342 
1343 	if (pap->pa_depth == pap->pa_maxdepth)
1344 		mdb_printf("{ ... }");
1345 	else
1346 		mdb_printf("{");
1347 	pap->pa_delim = "\n";
1348 	return (0);
1349 }
1350 
1351 /*
1352  * Print an enum value.  We attempt to convert the value to the corresponding
1353  * enum name and print that if possible.
1354  */
1355 /*ARGSUSED*/
1356 static int
1357 print_enum(const char *type, const char *name, mdb_ctf_id_t id,
1358     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1359 {
1360 	mdb_tgt_addr_t addr = pap->pa_addr + off / NBBY;
1361 	const char *ename;
1362 	int value;
1363 	int isp2 = enum_is_p2(base);
1364 	int flags = pap->pa_flags | (isp2 ? PA_INTHEX : 0);
1365 
1366 	if (!(flags & PA_SHOWVAL))
1367 		return (0);
1368 
1369 	if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1370 	    &value, sizeof (value), addr) != sizeof (value)) {
1371 		mdb_warn("failed to read %s integer at %llx", name, addr);
1372 		return (1);
1373 	}
1374 
1375 	if (flags & PA_INTHEX)
1376 		mdb_printf("%#x", value);
1377 	else
1378 		mdb_printf("%#d", value);
1379 
1380 	(void) mdb_inc_indent(8);
1381 	mdb_printf(" (");
1382 
1383 	if (!isp2 || enum_value_print_p2(base, value, 0) != 0) {
1384 		ename = mdb_ctf_enum_name(base, value);
1385 		if (ename == NULL) {
1386 			ename = "???";
1387 		}
1388 		mdb_printf("%s", ename);
1389 	}
1390 	mdb_printf(")");
1391 	(void) mdb_dec_indent(8);
1392 
1393 	return (0);
1394 }
1395 
1396 /*
1397  * This will only get called if the structure isn't found in any available CTF
1398  * data.
1399  */
1400 /*ARGSUSED*/
1401 static int
1402 print_tag(const char *type, const char *name, mdb_ctf_id_t id,
1403     mdb_ctf_id_t base, ulong_t off, printarg_t *pap)
1404 {
1405 	char basename[MDB_SYM_NAMLEN];
1406 
1407 	if (pap->pa_flags & PA_SHOWVAL)
1408 		mdb_printf("; ");
1409 
1410 	if (mdb_ctf_type_name(base, basename, sizeof (basename)) != NULL)
1411 		mdb_printf("<forward declaration of %s>", basename);
1412 	else
1413 		mdb_printf("<forward declaration of unknown type>");
1414 
1415 	return (0);
1416 }
1417 
1418 static void
1419 print_hole(printarg_t *pap, int depth, ulong_t off, ulong_t endoff)
1420 {
1421 	ulong_t bits = endoff - off;
1422 	ulong_t size = bits / NBBY;
1423 	ctf_encoding_t e;
1424 
1425 	static const char *const name = "<<HOLE>>";
1426 	char type[MDB_SYM_NAMLEN];
1427 
1428 	int bitfield =
1429 	    (off % NBBY != 0 ||
1430 	    bits % NBBY != 0 ||
1431 	    size > 8 ||
1432 	    (size & (size - 1)) != 0);
1433 
1434 	ASSERT(off < endoff);
1435 
1436 	if (bits > NBBY * sizeof (uint64_t)) {
1437 		ulong_t end;
1438 
1439 		/*
1440 		 * The hole is larger than the largest integer type.  To
1441 		 * handle this, we split up the hole at 8-byte-aligned
1442 		 * boundaries, recursing to print each subsection.  For
1443 		 * normal C structures, we'll loop at most twice.
1444 		 */
1445 		for (; off < endoff; off = end) {
1446 			end = P2END(off, NBBY * sizeof (uint64_t));
1447 			if (end > endoff)
1448 				end = endoff;
1449 
1450 			ASSERT((end - off) <= NBBY * sizeof (uint64_t));
1451 			print_hole(pap, depth, off, end);
1452 		}
1453 		ASSERT(end == endoff);
1454 
1455 		return;
1456 	}
1457 
1458 	if (bitfield)
1459 		(void) mdb_snprintf(type, sizeof (type), "unsigned");
1460 	else
1461 		(void) mdb_snprintf(type, sizeof (type), "uint%d_t", bits);
1462 
1463 	if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1464 		mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1465 
1466 	if (pap->pa_flags & PA_SHOWADDR) {
1467 		if (off % NBBY == 0)
1468 			mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1469 		else
1470 			mdb_printf("%llx.%lx ",
1471 			    pap->pa_addr + off / NBBY, off % NBBY);
1472 	}
1473 
1474 	if (pap->pa_flags & PA_SHOWTYPE)
1475 		mdb_printf("%s ", type);
1476 
1477 	if (pap->pa_flags & PA_SHOWNAME)
1478 		mdb_printf("%s", name);
1479 
1480 	if (bitfield && (pap->pa_flags & PA_SHOWTYPE))
1481 		mdb_printf(" :%d", bits);
1482 
1483 	mdb_printf("%s ", (pap->pa_flags & PA_SHOWVAL)? " =" : "");
1484 
1485 	/*
1486 	 * We fake up a ctf_encoding_t, and use print_int_val() to print
1487 	 * the value.  Holes are always processed as unsigned integers.
1488 	 */
1489 	bzero(&e, sizeof (e));
1490 	e.cte_format = 0;
1491 	e.cte_offset = 0;
1492 	e.cte_bits = bits;
1493 
1494 	if (print_int_val(type, &e, off, pap) != 0)
1495 		mdb_iob_discard(mdb.m_out);
1496 	else
1497 		mdb_iob_puts(mdb.m_out, pap->pa_delim);
1498 }
1499 
1500 /*
1501  * The print_close_sou() function is called for each structure or union
1502  * which has been completed.  For structures, we detect and print any holes
1503  * before printing the closing brace.
1504  */
1505 static void
1506 print_close_sou(printarg_t *pap, int newdepth)
1507 {
1508 	int d = newdepth + pap->pa_nest;
1509 
1510 	if ((pap->pa_flags & PA_SHOWHOLES) && !pap->pa_holes[d].hi_isunion) {
1511 		ulong_t end = pap->pa_holes[d + 1].hi_offset;
1512 		ulong_t expected = pap->pa_holes[d].hi_offset;
1513 
1514 		if (end < expected)
1515 			print_hole(pap, newdepth + 1, end, expected);
1516 	}
1517 	/* if the struct is an array element, print a comma after the } */
1518 	mdb_printf("%*s}%s\n", d * pap->pa_tab, "",
1519 	    (newdepth == 0 && pap->pa_nest > 0)? "," : "");
1520 }
1521 
1522 static printarg_f *const printfuncs[] = {
1523 	print_int,	/* CTF_K_INTEGER */
1524 	print_float,	/* CTF_K_FLOAT */
1525 	print_ptr,	/* CTF_K_POINTER */
1526 	print_array,	/* CTF_K_ARRAY */
1527 	print_ptr,	/* CTF_K_FUNCTION */
1528 	print_sou,	/* CTF_K_STRUCT */
1529 	print_sou,	/* CTF_K_UNION */
1530 	print_enum,	/* CTF_K_ENUM */
1531 	print_tag	/* CTF_K_FORWARD */
1532 };
1533 
1534 /*
1535  * The elt_print function is used as the mdb_ctf_type_visit callback.  For
1536  * each element, we print an appropriate name prefix and then call the
1537  * print subroutine for this type class in the array above.
1538  */
1539 static int
1540 elt_print(const char *name, mdb_ctf_id_t id, mdb_ctf_id_t base,
1541     ulong_t off, int depth, void *data)
1542 {
1543 	char type[MDB_SYM_NAMLEN + sizeof (" <<12345678...>>")];
1544 	int kind, rc, d;
1545 	printarg_t *pap = data;
1546 
1547 	for (d = pap->pa_depth - 1; d >= depth; d--) {
1548 		if (d < pap->pa_nooutdepth)
1549 			print_close_sou(pap, d);
1550 	}
1551 
1552 	/*
1553 	 * Reset pa_nooutdepth if we've come back out of the structure we
1554 	 * didn't want to print.
1555 	 */
1556 	if (depth <= pap->pa_nooutdepth)
1557 		pap->pa_nooutdepth = (uint_t)-1;
1558 
1559 	if (depth > pap->pa_maxdepth || depth > pap->pa_nooutdepth)
1560 		return (0);
1561 
1562 	if (!mdb_ctf_type_valid(base) ||
1563 	    (kind = mdb_ctf_type_kind(base)) == -1)
1564 		return (-1); /* errno is set for us */
1565 
1566 	if (mdb_ctf_type_name(id, type, MDB_SYM_NAMLEN) == NULL)
1567 		(void) strcpy(type, "(?)");
1568 
1569 	if (pap->pa_flags & PA_SHOWBASETYPE) {
1570 		/*
1571 		 * If basetype is different and informative, concatenate
1572 		 * <<basetype>> (or <<baset...>> if it doesn't fit)
1573 		 *
1574 		 * We just use the end of the buffer to store the type name, and
1575 		 * only connect it up if that's necessary.
1576 		 */
1577 
1578 		char *type_end = type + strlen(type);
1579 		char *basetype;
1580 		size_t sz;
1581 
1582 		(void) strlcat(type, " <<", sizeof (type));
1583 
1584 		basetype = type + strlen(type);
1585 		sz = sizeof (type) - (basetype - type);
1586 
1587 		*type_end = '\0'; /* restore the end of type for strcmp() */
1588 
1589 		if (mdb_ctf_type_name(base, basetype, sz) != NULL &&
1590 		    strcmp(basetype, type) != 0 &&
1591 		    strcmp(basetype, "struct ") != 0 &&
1592 		    strcmp(basetype, "enum ") != 0 &&
1593 		    strcmp(basetype, "union ") != 0) {
1594 			type_end[0] = ' ';	/* reconnect */
1595 			if (strlcat(type, ">>", sizeof (type)) >= sizeof (type))
1596 				(void) strlcpy(
1597 				    type + sizeof (type) - 6, "...>>", 6);
1598 		}
1599 	}
1600 
1601 	if (pap->pa_flags & PA_SHOWHOLES) {
1602 		ctf_encoding_t e;
1603 		ssize_t nsize;
1604 		ulong_t newoff;
1605 		holeinfo_t *hole;
1606 		int extra = IS_COMPOSITE(kind)? 1 : 0;
1607 
1608 		/*
1609 		 * grow the hole array, if necessary
1610 		 */
1611 		if (pap->pa_nest + depth + extra >= pap->pa_nholes) {
1612 			int new = MAX(MAX(8, pap->pa_nholes * 2),
1613 			    pap->pa_nest + depth + extra + 1);
1614 
1615 			holeinfo_t *nhi = mdb_zalloc(
1616 			    sizeof (*nhi) * new, UM_NOSLEEP | UM_GC);
1617 
1618 			bcopy(pap->pa_holes, nhi,
1619 			    pap->pa_nholes * sizeof (*nhi));
1620 
1621 			pap->pa_holes = nhi;
1622 			pap->pa_nholes = new;
1623 		}
1624 
1625 		hole = &pap->pa_holes[depth + pap->pa_nest];
1626 
1627 		if (depth != 0 && off > hole->hi_offset)
1628 			print_hole(pap, depth, hole->hi_offset, off);
1629 
1630 		/* compute the next expected offset */
1631 		if (kind == CTF_K_INTEGER &&
1632 		    mdb_ctf_type_encoding(base, &e) == 0)
1633 			newoff = off + e.cte_bits;
1634 		else if ((nsize = mdb_ctf_type_size(base)) >= 0)
1635 			newoff = off + nsize * NBBY;
1636 		else {
1637 			/* something bad happened, disable hole checking */
1638 			newoff = -1UL;		/* ULONG_MAX */
1639 		}
1640 
1641 		hole->hi_offset = newoff;
1642 
1643 		if (IS_COMPOSITE(kind)) {
1644 			hole->hi_isunion = (kind == CTF_K_UNION);
1645 			hole++;
1646 			hole->hi_offset = off;
1647 		}
1648 	}
1649 
1650 	if (pap->pa_flags & (PA_SHOWTYPE | PA_SHOWNAME | PA_SHOWADDR))
1651 		mdb_printf("%*s", (depth + pap->pa_nest) * pap->pa_tab, "");
1652 
1653 	if (pap->pa_flags & PA_SHOWADDR) {
1654 		if (off % NBBY == 0)
1655 			mdb_printf("%llx ", pap->pa_addr + off / NBBY);
1656 		else
1657 			mdb_printf("%llx.%lx ",
1658 			    pap->pa_addr + off / NBBY, off % NBBY);
1659 	}
1660 
1661 	if ((pap->pa_flags & PA_SHOWTYPE)) {
1662 		mdb_printf("%s", type);
1663 		/*
1664 		 * We want to avoid printing a trailing space when
1665 		 * dealing with pointers in a structure, so we end
1666 		 * up with:
1667 		 *
1668 		 *	label_t *t_onfault = 0
1669 		 *
1670 		 * If depth is zero, always print the trailing space unless
1671 		 * we also have a prefix.
1672 		 */
1673 		if (type[strlen(type) - 1] != '*' ||
1674 		    (depth == 0 && (!(pap->pa_flags & PA_SHOWNAME) ||
1675 		    pap->pa_prefix == NULL)))
1676 			mdb_printf(" ");
1677 	}
1678 
1679 	if (pap->pa_flags & PA_SHOWNAME) {
1680 		if (pap->pa_prefix != NULL && depth <= 1)
1681 			mdb_printf("%s%s", pap->pa_prefix,
1682 			    (depth == 0) ? "" : pap->pa_suffix);
1683 		mdb_printf("%s", name);
1684 	}
1685 
1686 	if ((pap->pa_flags & PA_SHOWTYPE) && kind == CTF_K_INTEGER) {
1687 		ctf_encoding_t e;
1688 
1689 		if (mdb_ctf_type_encoding(base, &e) == 0) {
1690 			ulong_t bits = e.cte_bits;
1691 			ulong_t size = bits / NBBY;
1692 
1693 			if (bits % NBBY != 0 ||
1694 			    off % NBBY != 0 ||
1695 			    size > 8 ||
1696 			    size != mdb_ctf_type_size(base))
1697 				mdb_printf(" :%d", bits);
1698 		}
1699 	}
1700 
1701 	if (depth != 0 ||
1702 	    ((pap->pa_flags & PA_SHOWNAME) && pap->pa_prefix != NULL))
1703 		mdb_printf("%s ", pap->pa_flags & PA_SHOWVAL ? " =" : "");
1704 
1705 	if (depth == 0 && pap->pa_prefix != NULL)
1706 		name = pap->pa_prefix;
1707 
1708 	pap->pa_depth = depth;
1709 	if (kind <= CTF_K_UNKNOWN || kind >= CTF_K_TYPEDEF) {
1710 		mdb_warn("unknown ctf for %s type %s kind %d\n",
1711 		    name, type, kind);
1712 		return (-1);
1713 	}
1714 	rc = printfuncs[kind - 1](type, name, id, base, off, pap);
1715 
1716 	if (rc != 0)
1717 		mdb_iob_discard(mdb.m_out);
1718 	else
1719 		mdb_iob_puts(mdb.m_out, pap->pa_delim);
1720 
1721 	return (rc);
1722 }
1723 
1724 /*
1725  * Special semantics for pipelines.
1726  */
1727 static int
1728 pipe_print(mdb_ctf_id_t id, ulong_t off, void *data)
1729 {
1730 	printarg_t *pap = data;
1731 	ssize_t size;
1732 	static const char *const fsp[] = { "%#r", "%#r", "%#r", "%#llr" };
1733 	uintptr_t value;
1734 	uintptr_t addr = pap->pa_addr + off / NBBY;
1735 	mdb_ctf_id_t base;
1736 	int enum_value;
1737 	ctf_encoding_t e;
1738 
1739 	union {
1740 		uint64_t i8;
1741 		uint32_t i4;
1742 		uint16_t i2;
1743 		uint8_t i1;
1744 	} u;
1745 
1746 	if (mdb_ctf_type_resolve(id, &base) == -1) {
1747 		mdb_warn("could not resolve type");
1748 		return (-1);
1749 	}
1750 
1751 	/*
1752 	 * If the user gives -a, then always print out the address of the
1753 	 * member.
1754 	 */
1755 	if ((pap->pa_flags & PA_SHOWADDR)) {
1756 		mdb_printf("%#lr\n", addr);
1757 		return (0);
1758 	}
1759 
1760 again:
1761 	switch (mdb_ctf_type_kind(base)) {
1762 	case CTF_K_POINTER:
1763 		if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as,
1764 		    &value, sizeof (value), addr) != sizeof (value)) {
1765 			mdb_warn("failed to read pointer at %p", addr);
1766 			return (-1);
1767 		}
1768 		mdb_printf("%#lr\n", value);
1769 		break;
1770 
1771 	case CTF_K_ENUM:
1772 		if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &enum_value,
1773 		    sizeof (enum_value), addr) != sizeof (enum_value)) {
1774 			mdb_warn("failed to read enum at %llx", addr);
1775 			return (-1);
1776 		}
1777 		mdb_printf("%#r\n", enum_value);
1778 		break;
1779 
1780 	case CTF_K_INTEGER:
1781 		if (mdb_ctf_type_encoding(base, &e) != 0) {
1782 			mdb_warn("could not get type encoding\n");
1783 			return (-1);
1784 		}
1785 
1786 		/*
1787 		 * For immediate values, we just print out the value.
1788 		 */
1789 		size = e.cte_bits / NBBY;
1790 		if (size > 8 || (e.cte_bits % NBBY) != 0 ||
1791 		    (size & (size - 1)) != 0) {
1792 			return (print_bitfield(off, pap, &e));
1793 		}
1794 
1795 		if (mdb_tgt_aread(pap->pa_tgt, pap->pa_as, &u.i8, size,
1796 		    addr) != size) {
1797 			mdb_warn("failed to read %lu bytes at %p",
1798 			    (ulong_t)size, pap->pa_addr);
1799 			return (-1);
1800 		}
1801 
1802 		switch (size) {
1803 		case sizeof (uint8_t):
1804 			mdb_printf(fsp[0], u.i1);
1805 			break;
1806 		case sizeof (uint16_t):
1807 			mdb_printf(fsp[1], u.i2);
1808 			break;
1809 		case sizeof (uint32_t):
1810 			mdb_printf(fsp[2], u.i4);
1811 			break;
1812 		case sizeof (uint64_t):
1813 			mdb_printf(fsp[3], u.i8);
1814 			break;
1815 		}
1816 		mdb_printf("\n");
1817 		break;
1818 
1819 	case CTF_K_FUNCTION:
1820 	case CTF_K_FLOAT:
1821 	case CTF_K_ARRAY:
1822 	case CTF_K_UNKNOWN:
1823 	case CTF_K_STRUCT:
1824 	case CTF_K_UNION:
1825 	case CTF_K_FORWARD:
1826 		/*
1827 		 * For these types, always print the address of the member
1828 		 */
1829 		mdb_printf("%#lr\n", addr);
1830 		break;
1831 
1832 	default:
1833 		mdb_warn("unknown type %d", mdb_ctf_type_kind(base));
1834 		break;
1835 	}
1836 
1837 	return (0);
1838 }
1839 
1840 static int
1841 parse_delimiter(char **strp)
1842 {
1843 	switch (**strp) {
1844 	case '\0':
1845 		return (MEMBER_DELIM_DONE);
1846 
1847 	case '.':
1848 		*strp = *strp + 1;
1849 		return (MEMBER_DELIM_DOT);
1850 
1851 	case '[':
1852 		*strp = *strp + 1;
1853 		return (MEMBER_DELIM_LBR);
1854 
1855 	case '-':
1856 		*strp = *strp + 1;
1857 		if (**strp == '>') {
1858 			*strp = *strp + 1;
1859 			return (MEMBER_DELIM_PTR);
1860 		}
1861 		*strp = *strp - 1;
1862 		/*FALLTHROUGH*/
1863 	default:
1864 		return (MEMBER_DELIM_ERR);
1865 	}
1866 }
1867 
1868 static int
1869 deref(printarg_t *pap, size_t size)
1870 {
1871 	uint32_t a32;
1872 	mdb_tgt_as_t as = pap->pa_as;
1873 	mdb_tgt_addr_t *ap = &pap->pa_addr;
1874 
1875 	if (size == sizeof (mdb_tgt_addr_t)) {
1876 		if (mdb_tgt_aread(mdb.m_target, as, ap, size, *ap) == -1) {
1877 			mdb_warn("could not dereference pointer %llx\n", *ap);
1878 			return (-1);
1879 		}
1880 	} else {
1881 		if (mdb_tgt_aread(mdb.m_target, as, &a32, size, *ap) == -1) {
1882 			mdb_warn("could not dereference pointer %x\n", *ap);
1883 			return (-1);
1884 		}
1885 
1886 		*ap = (mdb_tgt_addr_t)a32;
1887 	}
1888 
1889 	/*
1890 	 * We've dereferenced at least once, we must be on the real
1891 	 * target. If we were in the immediate target, reset to the real
1892 	 * target; it's reset as needed when we return to the print
1893 	 * routines.
1894 	 */
1895 	if (pap->pa_tgt == pap->pa_immtgt)
1896 		pap->pa_tgt = pap->pa_realtgt;
1897 
1898 	return (0);
1899 }
1900 
1901 static int
1902 parse_member(printarg_t *pap, const char *str, mdb_ctf_id_t id,
1903     mdb_ctf_id_t *idp, ulong_t *offp, int *last_deref)
1904 {
1905 	int delim;
1906 	char member[64];
1907 	char buf[128];
1908 	uint_t index;
1909 	char *start = (char *)str;
1910 	char *end;
1911 	ulong_t off = 0;
1912 	mdb_ctf_arinfo_t ar;
1913 	mdb_ctf_id_t rid;
1914 	int kind;
1915 	ssize_t size;
1916 	int non_array = FALSE;
1917 
1918 	/*
1919 	 * id always has the unresolved type for printing error messages
1920 	 * that include the type; rid always has the resolved type for
1921 	 * use in mdb_ctf_* calls.  It is possible for this command to fail,
1922 	 * however, if the resolved type is in the parent and it is currently
1923 	 * unavailable.  Note that we also can't print out the name of the
1924 	 * type, since that would also rely on looking up the resolved name.
1925 	 */
1926 	if (mdb_ctf_type_resolve(id, &rid) != 0) {
1927 		mdb_warn("failed to resolve type");
1928 		return (-1);
1929 	}
1930 
1931 	delim = parse_delimiter(&start);
1932 	/*
1933 	 * If the user fails to specify an initial delimiter, guess -> for
1934 	 * pointer types and . for non-pointer types.
1935 	 */
1936 	if (delim == MEMBER_DELIM_ERR)
1937 		delim = (mdb_ctf_type_kind(rid) == CTF_K_POINTER) ?
1938 		    MEMBER_DELIM_PTR : MEMBER_DELIM_DOT;
1939 
1940 	*last_deref = FALSE;
1941 
1942 	while (delim != MEMBER_DELIM_DONE) {
1943 		switch (delim) {
1944 		case MEMBER_DELIM_PTR:
1945 			kind = mdb_ctf_type_kind(rid);
1946 			if (kind != CTF_K_POINTER) {
1947 				mdb_warn("%s is not a pointer type\n",
1948 				    mdb_ctf_type_name(id, buf, sizeof (buf)));
1949 				return (-1);
1950 			}
1951 
1952 			size = mdb_ctf_type_size(id);
1953 			if (deref(pap, size) != 0)
1954 				return (-1);
1955 
1956 			(void) mdb_ctf_type_reference(rid, &id);
1957 			(void) mdb_ctf_type_resolve(id, &rid);
1958 
1959 			off = 0;
1960 			break;
1961 
1962 		case MEMBER_DELIM_DOT:
1963 			kind = mdb_ctf_type_kind(rid);
1964 			if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) {
1965 				mdb_warn("%s is not a struct or union type\n",
1966 				    mdb_ctf_type_name(id, buf, sizeof (buf)));
1967 				return (-1);
1968 			}
1969 			break;
1970 
1971 		case MEMBER_DELIM_LBR:
1972 			end = strchr(start, ']');
1973 			if (end == NULL) {
1974 				mdb_warn("no trailing ']'\n");
1975 				return (-1);
1976 			}
1977 
1978 			(void) mdb_snprintf(member, end - start + 1, "%s",
1979 			    start);
1980 
1981 			index = mdb_strtoull(member);
1982 
1983 			switch (mdb_ctf_type_kind(rid)) {
1984 			case CTF_K_POINTER:
1985 				size = mdb_ctf_type_size(rid);
1986 
1987 				if (deref(pap, size) != 0)
1988 					return (-1);
1989 
1990 				(void) mdb_ctf_type_reference(rid, &id);
1991 				(void) mdb_ctf_type_resolve(id, &rid);
1992 
1993 				size = mdb_ctf_type_size(id);
1994 				if (size <= 0) {
1995 					mdb_warn("cannot dereference void "
1996 					    "type\n");
1997 					return (-1);
1998 				}
1999 
2000 				pap->pa_addr += index * size;
2001 				off = 0;
2002 
2003 				if (index == 0 && non_array)
2004 					*last_deref = TRUE;
2005 				break;
2006 
2007 			case CTF_K_ARRAY:
2008 				(void) mdb_ctf_array_info(rid, &ar);
2009 
2010 				if (index >= ar.mta_nelems) {
2011 					mdb_warn("index %r is outside of "
2012 					    "array bounds [0 .. %r]\n",
2013 					    index, ar.mta_nelems - 1);
2014 				}
2015 
2016 				id = ar.mta_contents;
2017 				(void) mdb_ctf_type_resolve(id, &rid);
2018 
2019 				size = mdb_ctf_type_size(id);
2020 				if (size <= 0) {
2021 					mdb_warn("cannot dereference void "
2022 					    "type\n");
2023 					return (-1);
2024 				}
2025 
2026 				pap->pa_addr += index * size;
2027 				off = 0;
2028 				break;
2029 
2030 			default:
2031 				mdb_warn("cannot index into non-array, "
2032 				    "non-pointer type\n");
2033 				return (-1);
2034 			}
2035 
2036 			start = end + 1;
2037 			delim = parse_delimiter(&start);
2038 			continue;
2039 
2040 		case MEMBER_DELIM_ERR:
2041 		default:
2042 			mdb_warn("'%c' is not a valid delimiter\n", *start);
2043 			return (-1);
2044 		}
2045 
2046 		*last_deref = FALSE;
2047 		non_array = TRUE;
2048 
2049 		/*
2050 		 * Find the end of the member name; assume that a member
2051 		 * name is at least one character long.
2052 		 */
2053 		for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2054 			continue;
2055 
2056 		(void) mdb_snprintf(member, end - start + 1, "%s", start);
2057 
2058 		if (mdb_ctf_member_info(rid, member, &off, &id) != 0) {
2059 			mdb_warn("failed to find member %s of %s", member,
2060 			    mdb_ctf_type_name(id, buf, sizeof (buf)));
2061 			return (-1);
2062 		}
2063 		(void) mdb_ctf_type_resolve(id, &rid);
2064 
2065 		pap->pa_addr += off / NBBY;
2066 
2067 		start = end;
2068 		delim = parse_delimiter(&start);
2069 	}
2070 
2071 	*idp = id;
2072 	*offp = off;
2073 
2074 	return (0);
2075 }
2076 
2077 static int
2078 cmd_print_tab_common(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2079     const mdb_arg_t *argv)
2080 {
2081 	char tn[MDB_SYM_NAMLEN];
2082 	char member[64];
2083 	int delim, kind;
2084 	int ret = 0;
2085 	mdb_ctf_id_t id, rid;
2086 	mdb_ctf_arinfo_t ar;
2087 	char *start, *end;
2088 	ulong_t dul;
2089 
2090 	if (argc == 0 && !(flags & DCMD_TAB_SPACE))
2091 		return (0);
2092 
2093 	if (argc == 0 && (flags & DCMD_TAB_SPACE))
2094 		return (mdb_tab_complete_type(mcp, NULL, MDB_TABC_NOPOINT |
2095 		    MDB_TABC_NOARRAY));
2096 
2097 	if ((ret = mdb_tab_typename(&argc, &argv, tn, sizeof (tn))) < 0)
2098 		return (ret);
2099 
2100 	if (argc == 1 && (!(flags & DCMD_TAB_SPACE) || ret == 1))
2101 		return (mdb_tab_complete_type(mcp, tn, MDB_TABC_NOPOINT |
2102 		    MDB_TABC_NOARRAY));
2103 
2104 	if (argc == 1 && (flags & DCMD_TAB_SPACE))
2105 		return (mdb_tab_complete_member(mcp, tn, NULL));
2106 
2107 	/*
2108 	 * This is the reason that tab completion was created. We're going to go
2109 	 * along and walk the delimiters until we find something a member that
2110 	 * we don't recognize, at which point we'll try and tab complete it.
2111 	 * Note that ::print takes multiple args, so this is going to operate on
2112 	 * whatever the last arg that we have is.
2113 	 */
2114 	if (mdb_ctf_lookup_by_name(tn, &id) != 0)
2115 		return (1);
2116 
2117 	(void) mdb_ctf_type_resolve(id, &rid);
2118 	start = (char *)argv[argc-1].a_un.a_str;
2119 	delim = parse_delimiter(&start);
2120 
2121 	/*
2122 	 * If we hit the case where we actually have no delimiters, than we need
2123 	 * to make sure that we properly set up the fields the loops would.
2124 	 */
2125 	if (delim == MEMBER_DELIM_DONE)
2126 		(void) mdb_snprintf(member, sizeof (member), "%s", start);
2127 
2128 	while (delim != MEMBER_DELIM_DONE) {
2129 		switch (delim) {
2130 		case MEMBER_DELIM_PTR:
2131 			kind = mdb_ctf_type_kind(rid);
2132 			if (kind != CTF_K_POINTER)
2133 				return (1);
2134 
2135 			(void) mdb_ctf_type_reference(rid, &id);
2136 			(void) mdb_ctf_type_resolve(id, &rid);
2137 			break;
2138 		case MEMBER_DELIM_DOT:
2139 			kind = mdb_ctf_type_kind(rid);
2140 			if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
2141 				return (1);
2142 			break;
2143 		case MEMBER_DELIM_LBR:
2144 			end = strchr(start, ']');
2145 			/*
2146 			 * We're not going to try and tab complete the indexes
2147 			 * here. So for now, punt on it. Also, we're not going
2148 			 * to try and validate you're within the bounds, just
2149 			 * that you get the type you asked for.
2150 			 */
2151 			if (end == NULL)
2152 				return (1);
2153 
2154 			switch (mdb_ctf_type_kind(rid)) {
2155 			case CTF_K_POINTER:
2156 				(void) mdb_ctf_type_reference(rid, &id);
2157 				(void) mdb_ctf_type_resolve(id, &rid);
2158 				break;
2159 			case CTF_K_ARRAY:
2160 				(void) mdb_ctf_array_info(rid, &ar);
2161 				id = ar.mta_contents;
2162 				(void) mdb_ctf_type_resolve(id, &rid);
2163 				break;
2164 			default:
2165 				return (1);
2166 			}
2167 
2168 			start = end + 1;
2169 			delim = parse_delimiter(&start);
2170 			break;
2171 		case MEMBER_DELIM_ERR:
2172 		default:
2173 			break;
2174 		}
2175 
2176 		for (end = start + 1; isalnum(*end) || *end == '_'; end++)
2177 			continue;
2178 
2179 		(void) mdb_snprintf(member, end - start + 1, start);
2180 
2181 		/*
2182 		 * We are going to try to resolve this name as a member. There
2183 		 * are a few two different questions that we need to answer. The
2184 		 * first is do we recognize this member. The second is are we at
2185 		 * the end of the string. If we encounter a member that we don't
2186 		 * recognize before the end, then we have to error out and can't
2187 		 * complete it. But if there are no more delimiters then we can
2188 		 * try and complete it.
2189 		 */
2190 		ret = mdb_ctf_member_info(rid, member, &dul, &id);
2191 		start = end;
2192 		delim = parse_delimiter(&start);
2193 		if (ret != 0 && errno == EMDB_CTFNOMEMB) {
2194 			if (delim != MEMBER_DELIM_DONE)
2195 				return (1);
2196 			continue;
2197 		} else if (ret != 0)
2198 			return (1);
2199 
2200 		if (delim == MEMBER_DELIM_DONE)
2201 			return (mdb_tab_complete_member_by_id(mcp, rid,
2202 			    member));
2203 
2204 		(void) mdb_ctf_type_resolve(id, &rid);
2205 	}
2206 
2207 	/*
2208 	 * If we've reached here, then we need to try and tab complete the last
2209 	 * field, which is currently member, based on the ctf type id that we
2210 	 * already have in rid.
2211 	 */
2212 	return (mdb_tab_complete_member_by_id(mcp, rid, member));
2213 }
2214 
2215 int
2216 cmd_print_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2217     const mdb_arg_t *argv)
2218 {
2219 	int i, dummy;
2220 
2221 	/*
2222 	 * This getopts is only here to make the tab completion work better when
2223 	 * including options in the ::print arguments. None of the values should
2224 	 * be used. This should only be updated with additional arguments, if
2225 	 * they are added to cmd_print.
2226 	 */
2227 	i = mdb_getopts(argc, argv,
2228 	    'a', MDB_OPT_SETBITS, PA_SHOWADDR, &dummy,
2229 	    'C', MDB_OPT_SETBITS, TRUE, &dummy,
2230 	    'c', MDB_OPT_UINTPTR, &dummy,
2231 	    'd', MDB_OPT_SETBITS, PA_INTDEC, &dummy,
2232 	    'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &dummy,
2233 	    'i', MDB_OPT_SETBITS, TRUE, &dummy,
2234 	    'L', MDB_OPT_SETBITS, TRUE, &dummy,
2235 	    'l', MDB_OPT_UINTPTR, &dummy,
2236 	    'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &dummy,
2237 	    'p', MDB_OPT_SETBITS, TRUE, &dummy,
2238 	    's', MDB_OPT_UINTPTR, &dummy,
2239 	    'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &dummy,
2240 	    't', MDB_OPT_SETBITS, PA_SHOWTYPE, &dummy,
2241 	    'x', MDB_OPT_SETBITS, PA_INTHEX, &dummy,
2242 	    NULL);
2243 
2244 	argc -= i;
2245 	argv += i;
2246 
2247 	return (cmd_print_tab_common(mcp, flags, argc, argv));
2248 }
2249 
2250 /*
2251  * Recursively descend a print a given data structure.  We create a struct of
2252  * the relevant print arguments and then call mdb_ctf_type_visit() to do the
2253  * traversal, using elt_print() as the callback for each element.
2254  */
2255 /*ARGSUSED*/
2256 int
2257 cmd_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2258 {
2259 	uintptr_t opt_c = MDB_ARR_NOLIMIT, opt_l = MDB_ARR_NOLIMIT;
2260 	uint_t opt_C = FALSE, opt_L = FALSE, opt_p = FALSE, opt_i = FALSE;
2261 	uintptr_t opt_s = (uintptr_t)-1ul;
2262 	int uflags = (flags & DCMD_ADDRSPEC) ? PA_SHOWVAL : 0;
2263 	mdb_ctf_id_t id;
2264 	int err = DCMD_OK;
2265 
2266 	mdb_tgt_t *t = mdb.m_target;
2267 	printarg_t pa;
2268 	int d, i;
2269 
2270 	char s_name[MDB_SYM_NAMLEN];
2271 	mdb_syminfo_t s_info;
2272 	GElf_Sym sym;
2273 
2274 	/*
2275 	 * If a new option is added, make sure the getopts above in
2276 	 * cmd_print_tab is also updated.
2277 	 */
2278 	i = mdb_getopts(argc, argv,
2279 	    'a', MDB_OPT_SETBITS, PA_SHOWADDR, &uflags,
2280 	    'C', MDB_OPT_SETBITS, TRUE, &opt_C,
2281 	    'c', MDB_OPT_UINTPTR, &opt_c,
2282 	    'd', MDB_OPT_SETBITS, PA_INTDEC, &uflags,
2283 	    'h', MDB_OPT_SETBITS, PA_SHOWHOLES, &uflags,
2284 	    'i', MDB_OPT_SETBITS, TRUE, &opt_i,
2285 	    'L', MDB_OPT_SETBITS, TRUE, &opt_L,
2286 	    'l', MDB_OPT_UINTPTR, &opt_l,
2287 	    'n', MDB_OPT_SETBITS, PA_NOSYMBOLIC, &uflags,
2288 	    'p', MDB_OPT_SETBITS, TRUE, &opt_p,
2289 	    's', MDB_OPT_UINTPTR, &opt_s,
2290 	    'T', MDB_OPT_SETBITS, PA_SHOWTYPE | PA_SHOWBASETYPE, &uflags,
2291 	    't', MDB_OPT_SETBITS, PA_SHOWTYPE, &uflags,
2292 	    'x', MDB_OPT_SETBITS, PA_INTHEX, &uflags,
2293 	    NULL);
2294 
2295 	if (uflags & PA_INTHEX)
2296 		uflags &= ~PA_INTDEC;	/* -x and -d are mutually exclusive */
2297 
2298 	uflags |= PA_SHOWNAME;
2299 
2300 	if (opt_p && opt_i) {
2301 		mdb_warn("-p and -i options are incompatible\n");
2302 		return (DCMD_ERR);
2303 	}
2304 
2305 	argc -= i;
2306 	argv += i;
2307 
2308 	if (argc != 0 && argv->a_type == MDB_TYPE_STRING) {
2309 		const char *t_name = s_name;
2310 		int ret;
2311 
2312 		if (strchr("+-", argv->a_un.a_str[0]) != NULL)
2313 			return (DCMD_USAGE);
2314 
2315 		if ((ret = args_to_typename(&argc, &argv, s_name,
2316 		    sizeof (s_name))) != 0)
2317 			return (ret);
2318 
2319 		if (mdb_ctf_lookup_by_name(t_name, &id) != 0) {
2320 			if (!(flags & DCMD_ADDRSPEC) || opt_i ||
2321 			    addr_to_sym(t, addr, s_name, sizeof (s_name),
2322 			    &sym, &s_info) == NULL ||
2323 			    mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2324 
2325 				mdb_warn("failed to look up type %s", t_name);
2326 				return (DCMD_ABORT);
2327 			}
2328 		} else {
2329 			argc--;
2330 			argv++;
2331 		}
2332 
2333 	} else if (!(flags & DCMD_ADDRSPEC) || opt_i) {
2334 		return (DCMD_USAGE);
2335 
2336 	} else if (addr_to_sym(t, addr, s_name, sizeof (s_name),
2337 	    &sym, &s_info) == NULL) {
2338 		mdb_warn("no symbol information for %a", addr);
2339 		return (DCMD_ERR);
2340 
2341 	} else if (mdb_ctf_lookup_by_symbol(&sym, &s_info, &id) != 0) {
2342 		mdb_warn("no type data available for %a [%u]", addr,
2343 		    s_info.sym_id);
2344 		return (DCMD_ERR);
2345 	}
2346 
2347 	pa.pa_tgt = mdb.m_target;
2348 	pa.pa_realtgt = pa.pa_tgt;
2349 	pa.pa_immtgt = NULL;
2350 	pa.pa_as = opt_p ? MDB_TGT_AS_PHYS : MDB_TGT_AS_VIRT;
2351 	pa.pa_armemlim = mdb.m_armemlim;
2352 	pa.pa_arstrlim = mdb.m_arstrlim;
2353 	pa.pa_delim = "\n";
2354 	pa.pa_flags = uflags;
2355 	pa.pa_nest = 0;
2356 	pa.pa_tab = 4;
2357 	pa.pa_prefix = NULL;
2358 	pa.pa_suffix = NULL;
2359 	pa.pa_holes = NULL;
2360 	pa.pa_nholes = 0;
2361 	pa.pa_depth = 0;
2362 	pa.pa_maxdepth = opt_s;
2363 	pa.pa_nooutdepth = (uint_t)-1;
2364 
2365 	if ((flags & DCMD_ADDRSPEC) && !opt_i)
2366 		pa.pa_addr = opt_p ? mdb_get_dot() : addr;
2367 	else
2368 		pa.pa_addr = NULL;
2369 
2370 	if (opt_i) {
2371 		const char *vargv[2];
2372 		uintmax_t dot = mdb_get_dot();
2373 		size_t outsize = mdb_ctf_type_size(id);
2374 		vargv[0] = (const char *)&dot;
2375 		vargv[1] = (const char *)&outsize;
2376 		pa.pa_immtgt = mdb_tgt_create(mdb_value_tgt_create,
2377 		    0, 2, vargv);
2378 		pa.pa_tgt = pa.pa_immtgt;
2379 	}
2380 
2381 	if (opt_c != MDB_ARR_NOLIMIT)
2382 		pa.pa_arstrlim = opt_c;
2383 	if (opt_C)
2384 		pa.pa_arstrlim = MDB_ARR_NOLIMIT;
2385 	if (opt_l != MDB_ARR_NOLIMIT)
2386 		pa.pa_armemlim = opt_l;
2387 	if (opt_L)
2388 		pa.pa_armemlim = MDB_ARR_NOLIMIT;
2389 
2390 	if (argc > 0) {
2391 		for (i = 0; i < argc; i++) {
2392 			mdb_ctf_id_t mid;
2393 			int last_deref;
2394 			ulong_t off;
2395 			int kind;
2396 			char buf[MDB_SYM_NAMLEN];
2397 
2398 			mdb_tgt_t *oldtgt = pa.pa_tgt;
2399 			mdb_tgt_as_t oldas = pa.pa_as;
2400 			mdb_tgt_addr_t oldaddr = pa.pa_addr;
2401 
2402 			if (argv->a_type == MDB_TYPE_STRING) {
2403 				const char *member = argv[i].a_un.a_str;
2404 				mdb_ctf_id_t rid;
2405 
2406 				if (parse_member(&pa, member, id, &mid,
2407 				    &off, &last_deref) != 0) {
2408 					err = DCMD_ABORT;
2409 					goto out;
2410 				}
2411 
2412 				/*
2413 				 * If the member string ends with a "[0]"
2414 				 * (last_deref * is true) and the type is a
2415 				 * structure or union, * print "->" rather
2416 				 * than "[0]." in elt_print.
2417 				 */
2418 				(void) mdb_ctf_type_resolve(mid, &rid);
2419 				kind = mdb_ctf_type_kind(rid);
2420 				if (last_deref && IS_SOU(kind)) {
2421 					char *end;
2422 					(void) mdb_snprintf(buf, sizeof (buf),
2423 					    "%s", member);
2424 					end = strrchr(buf, '[');
2425 					*end = '\0';
2426 					pa.pa_suffix = "->";
2427 					member = &buf[0];
2428 				} else if (IS_SOU(kind)) {
2429 					pa.pa_suffix = ".";
2430 				} else {
2431 					pa.pa_suffix = "";
2432 				}
2433 
2434 				pa.pa_prefix = member;
2435 			} else {
2436 				ulong_t moff;
2437 
2438 				moff = (ulong_t)argv[i].a_un.a_val;
2439 
2440 				if (mdb_ctf_offset_to_name(id, moff * NBBY,
2441 				    buf, sizeof (buf), 0, &mid, &off) == -1) {
2442 					mdb_warn("invalid offset %lx\n", moff);
2443 					err = DCMD_ABORT;
2444 					goto out;
2445 				}
2446 
2447 				pa.pa_prefix = buf;
2448 				pa.pa_addr += moff - off / NBBY;
2449 				pa.pa_suffix = strlen(buf) == 0 ? "" : ".";
2450 			}
2451 
2452 			off %= NBBY;
2453 			if (flags & DCMD_PIPE_OUT) {
2454 				if (pipe_print(mid, off, &pa) != 0) {
2455 					mdb_warn("failed to print type");
2456 					err = DCMD_ERR;
2457 					goto out;
2458 				}
2459 			} else if (off != 0) {
2460 				mdb_ctf_id_t base;
2461 				(void) mdb_ctf_type_resolve(mid, &base);
2462 
2463 				if (elt_print("", mid, base, off, 0,
2464 				    &pa) != 0) {
2465 					mdb_warn("failed to print type");
2466 					err = DCMD_ERR;
2467 					goto out;
2468 				}
2469 			} else {
2470 				if (mdb_ctf_type_visit(mid, elt_print,
2471 				    &pa) == -1) {
2472 					mdb_warn("failed to print type");
2473 					err = DCMD_ERR;
2474 					goto out;
2475 				}
2476 
2477 				for (d = pa.pa_depth - 1; d >= 0; d--)
2478 					print_close_sou(&pa, d);
2479 			}
2480 
2481 			pa.pa_depth = 0;
2482 			pa.pa_tgt = oldtgt;
2483 			pa.pa_as = oldas;
2484 			pa.pa_addr = oldaddr;
2485 			pa.pa_delim = "\n";
2486 		}
2487 
2488 	} else if (flags & DCMD_PIPE_OUT) {
2489 		if (pipe_print(id, 0, &pa) != 0) {
2490 			mdb_warn("failed to print type");
2491 			err = DCMD_ERR;
2492 			goto out;
2493 		}
2494 	} else {
2495 		if (mdb_ctf_type_visit(id, elt_print, &pa) == -1) {
2496 			mdb_warn("failed to print type");
2497 			err = DCMD_ERR;
2498 			goto out;
2499 		}
2500 
2501 		for (d = pa.pa_depth - 1; d >= 0; d--)
2502 			print_close_sou(&pa, d);
2503 	}
2504 
2505 	mdb_set_dot(addr + mdb_ctf_type_size(id));
2506 	err = DCMD_OK;
2507 out:
2508 	if (pa.pa_immtgt)
2509 		mdb_tgt_destroy(pa.pa_immtgt);
2510 	return (err);
2511 }
2512 
2513 void
2514 print_help(void)
2515 {
2516 	mdb_printf(
2517 	    "-a         show address of object\n"
2518 	    "-C         unlimit the length of character arrays\n"
2519 	    "-c limit   limit the length of character arrays\n"
2520 	    "-d         output values in decimal\n"
2521 	    "-h         print holes in structures\n"
2522 	    "-i         interpret address as data of the given type\n"
2523 	    "-L         unlimit the length of standard arrays\n"
2524 	    "-l limit   limit the length of standard arrays\n"
2525 	    "-n         don't print pointers as symbol offsets\n"
2526 	    "-p         interpret address as a physical memory address\n"
2527 	    "-s depth   limit the recursion depth\n"
2528 	    "-T         show type and <<base type>> of object\n"
2529 	    "-t         show type of object\n"
2530 	    "-x         output values in hexadecimal\n"
2531 	    "\n"
2532 	    "type may be omitted if the C type of addr can be inferred.\n"
2533 	    "\n"
2534 	    "Members may be specified with standard C syntax using the\n"
2535 	    "array indexing operator \"[index]\", structure member\n"
2536 	    "operator \".\", or structure pointer operator \"->\".\n"
2537 	    "\n"
2538 	    "Offsets must use the $[ expression ] syntax\n");
2539 }
2540 
2541 static int
2542 printf_signed(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt,
2543     boolean_t sign)
2544 {
2545 	ssize_t size;
2546 	mdb_ctf_id_t base;
2547 	ctf_encoding_t e;
2548 
2549 	union {
2550 		uint64_t ui8;
2551 		uint32_t ui4;
2552 		uint16_t ui2;
2553 		uint8_t ui1;
2554 		int64_t i8;
2555 		int32_t i4;
2556 		int16_t i2;
2557 		int8_t i1;
2558 	} u;
2559 
2560 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2561 		mdb_warn("could not resolve type");
2562 		return (DCMD_ABORT);
2563 	}
2564 
2565 	switch (mdb_ctf_type_kind(base)) {
2566 		case CTF_K_ENUM:
2567 			e.cte_format = CTF_INT_SIGNED;
2568 			e.cte_offset = 0;
2569 			e.cte_bits = mdb_ctf_type_size(id) * NBBY;
2570 			break;
2571 		case CTF_K_INTEGER:
2572 			if (mdb_ctf_type_encoding(base, &e) != 0) {
2573 				mdb_warn("could not get type encoding");
2574 				return (DCMD_ABORT);
2575 			}
2576 			break;
2577 		default:
2578 			mdb_warn("expected integer type\n");
2579 			return (DCMD_ABORT);
2580 	}
2581 
2582 	if (sign)
2583 		sign = e.cte_format & CTF_INT_SIGNED;
2584 
2585 	size = e.cte_bits / NBBY;
2586 
2587 	/*
2588 	 * Check to see if our life has been complicated by the presence of
2589 	 * a bitfield.  If it has, we will print it using logic that is only
2590 	 * slightly different than that found in print_bitfield(), above.  (In
2591 	 * particular, see the comments there for an explanation of the
2592 	 * endianness differences in this code.)
2593 	 */
2594 	if (size > 8 || (e.cte_bits % NBBY) != 0 ||
2595 	    (size & (size - 1)) != 0) {
2596 		uint64_t mask = (1ULL << e.cte_bits) - 1;
2597 		uint64_t value = 0;
2598 		uint8_t *buf = (uint8_t *)&value;
2599 		uint8_t shift;
2600 
2601 		/*
2602 		 * Round our size up one byte.
2603 		 */
2604 		size = (e.cte_bits + (NBBY - 1)) / NBBY;
2605 
2606 		if (e.cte_bits > sizeof (value) * NBBY - 1) {
2607 			mdb_printf("invalid bitfield size %u", e.cte_bits);
2608 			return (DCMD_ABORT);
2609 		}
2610 
2611 #ifdef _BIG_ENDIAN
2612 		buf += sizeof (value) - size;
2613 		off += e.cte_bits;
2614 #endif
2615 
2616 		if (mdb_vread(buf, size, addr) == -1) {
2617 			mdb_warn("failed to read %lu bytes at %p", size, addr);
2618 			return (DCMD_ERR);
2619 		}
2620 
2621 		shift = off % NBBY;
2622 #ifdef _BIG_ENDIAN
2623 		shift = NBBY - shift;
2624 #endif
2625 
2626 		/*
2627 		 * If we have a bit offset within the byte, shift it down.
2628 		 */
2629 		if (off % NBBY != 0)
2630 			value >>= shift;
2631 		value &= mask;
2632 
2633 		if (sign) {
2634 			int sshift = sizeof (value) * NBBY - e.cte_bits;
2635 			value = ((int64_t)value << sshift) >> sshift;
2636 		}
2637 
2638 		mdb_printf(fmt, value);
2639 		return (0);
2640 	}
2641 
2642 	if (mdb_vread(&u.i8, size, addr) == -1) {
2643 		mdb_warn("failed to read %lu bytes at %p", (ulong_t)size, addr);
2644 		return (DCMD_ERR);
2645 	}
2646 
2647 	switch (size) {
2648 	case sizeof (uint8_t):
2649 		mdb_printf(fmt, (uint64_t)(sign ? u.i1 : u.ui1));
2650 		break;
2651 	case sizeof (uint16_t):
2652 		mdb_printf(fmt, (uint64_t)(sign ? u.i2 : u.ui2));
2653 		break;
2654 	case sizeof (uint32_t):
2655 		mdb_printf(fmt, (uint64_t)(sign ? u.i4 : u.ui4));
2656 		break;
2657 	case sizeof (uint64_t):
2658 		mdb_printf(fmt, (uint64_t)(sign ? u.i8 : u.ui8));
2659 		break;
2660 	}
2661 
2662 	return (0);
2663 }
2664 
2665 static int
2666 printf_int(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2667 {
2668 	return (printf_signed(id, addr, off, fmt, B_TRUE));
2669 }
2670 
2671 static int
2672 printf_uint(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2673 {
2674 	return (printf_signed(id, addr, off, fmt, B_FALSE));
2675 }
2676 
2677 /*ARGSUSED*/
2678 static int
2679 printf_uint32(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2680 {
2681 	mdb_ctf_id_t base;
2682 	ctf_encoding_t e;
2683 	uint32_t value;
2684 
2685 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2686 		mdb_warn("could not resolve type\n");
2687 		return (DCMD_ABORT);
2688 	}
2689 
2690 	if (mdb_ctf_type_kind(base) != CTF_K_INTEGER ||
2691 	    mdb_ctf_type_encoding(base, &e) != 0 ||
2692 	    e.cte_bits / NBBY != sizeof (value)) {
2693 		mdb_warn("expected 32-bit integer type\n");
2694 		return (DCMD_ABORT);
2695 	}
2696 
2697 	if (mdb_vread(&value, sizeof (value), addr) == -1) {
2698 		mdb_warn("failed to read 32-bit value at %p", addr);
2699 		return (DCMD_ERR);
2700 	}
2701 
2702 	mdb_printf(fmt, value);
2703 
2704 	return (0);
2705 }
2706 
2707 /*ARGSUSED*/
2708 static int
2709 printf_ptr(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2710 {
2711 	uintptr_t value;
2712 	mdb_ctf_id_t base;
2713 
2714 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2715 		mdb_warn("could not resolve type\n");
2716 		return (DCMD_ABORT);
2717 	}
2718 
2719 	if (mdb_ctf_type_kind(base) != CTF_K_POINTER) {
2720 		mdb_warn("expected pointer type\n");
2721 		return (DCMD_ABORT);
2722 	}
2723 
2724 	if (mdb_vread(&value, sizeof (value), addr) == -1) {
2725 		mdb_warn("failed to read pointer at %llx", addr);
2726 		return (DCMD_ERR);
2727 	}
2728 
2729 	mdb_printf(fmt, value);
2730 
2731 	return (0);
2732 }
2733 
2734 /*ARGSUSED*/
2735 static int
2736 printf_string(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2737 {
2738 	mdb_ctf_id_t base;
2739 	mdb_ctf_arinfo_t r;
2740 	char buf[1024];
2741 	ssize_t size;
2742 
2743 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2744 		mdb_warn("could not resolve type");
2745 		return (DCMD_ABORT);
2746 	}
2747 
2748 	if (mdb_ctf_type_kind(base) == CTF_K_POINTER) {
2749 		uintptr_t value;
2750 
2751 		if (mdb_vread(&value, sizeof (value), addr) == -1) {
2752 			mdb_warn("failed to read pointer at %llx", addr);
2753 			return (DCMD_ERR);
2754 		}
2755 
2756 		if (mdb_readstr(buf, sizeof (buf) - 1, value) < 0) {
2757 			mdb_warn("failed to read string at %llx", value);
2758 			return (DCMD_ERR);
2759 		}
2760 
2761 		mdb_printf(fmt, buf);
2762 		return (0);
2763 	}
2764 
2765 	if (mdb_ctf_type_kind(base) == CTF_K_ENUM) {
2766 		const char *strval;
2767 		int value;
2768 
2769 		if (mdb_vread(&value, sizeof (value), addr) == -1) {
2770 			mdb_warn("failed to read pointer at %llx", addr);
2771 			return (DCMD_ERR);
2772 		}
2773 
2774 		if ((strval = mdb_ctf_enum_name(id, value))) {
2775 			mdb_printf(fmt, strval);
2776 		} else {
2777 			(void) mdb_snprintf(buf, sizeof (buf), "<%d>", value);
2778 			mdb_printf(fmt, buf);
2779 		}
2780 
2781 		return (0);
2782 	}
2783 
2784 	if (mdb_ctf_type_kind(base) != CTF_K_ARRAY) {
2785 		mdb_warn("exepected pointer or array type\n");
2786 		return (DCMD_ABORT);
2787 	}
2788 
2789 	if (mdb_ctf_array_info(base, &r) == -1 ||
2790 	    mdb_ctf_type_resolve(r.mta_contents, &base) == -1 ||
2791 	    (size = mdb_ctf_type_size(base)) == -1) {
2792 		mdb_warn("can't determine array type");
2793 		return (DCMD_ABORT);
2794 	}
2795 
2796 	if (size != 1) {
2797 		mdb_warn("string format specifier requires "
2798 		    "an array of characters\n");
2799 		return (DCMD_ABORT);
2800 	}
2801 
2802 	bzero(buf, sizeof (buf));
2803 
2804 	if (mdb_vread(buf, MIN(r.mta_nelems, sizeof (buf) - 1), addr) == -1) {
2805 		mdb_warn("failed to read array at %p", addr);
2806 		return (DCMD_ERR);
2807 	}
2808 
2809 	mdb_printf(fmt, buf);
2810 
2811 	return (0);
2812 }
2813 
2814 /*ARGSUSED*/
2815 static int
2816 printf_ipv6(mdb_ctf_id_t id, uintptr_t addr, ulong_t off, char *fmt)
2817 {
2818 	mdb_ctf_id_t base;
2819 	mdb_ctf_id_t ipv6_type, ipv6_base;
2820 	in6_addr_t ipv6;
2821 
2822 	if (mdb_ctf_lookup_by_name("in6_addr_t", &ipv6_type) == -1) {
2823 		mdb_warn("could not resolve in6_addr_t type\n");
2824 		return (DCMD_ABORT);
2825 	}
2826 
2827 	if (mdb_ctf_type_resolve(id, &base) == -1) {
2828 		mdb_warn("could not resolve type\n");
2829 		return (DCMD_ABORT);
2830 	}
2831 
2832 	if (mdb_ctf_type_resolve(ipv6_type, &ipv6_base) == -1) {
2833 		mdb_warn("could not resolve in6_addr_t type\n");
2834 		return (DCMD_ABORT);
2835 	}
2836 
2837 	if (mdb_ctf_type_cmp(base, ipv6_base) != 0) {
2838 		mdb_warn("requires argument of type in6_addr_t\n");
2839 		return (DCMD_ABORT);
2840 	}
2841 
2842 	if (mdb_vread(&ipv6, sizeof (ipv6), addr) == -1) {
2843 		mdb_warn("couldn't read in6_addr_t at %p", addr);
2844 		return (DCMD_ERR);
2845 	}
2846 
2847 	mdb_printf(fmt, &ipv6);
2848 
2849 	return (0);
2850 }
2851 
2852 /*
2853  * To validate the format string specified to ::printf, we run the format
2854  * string through a very simple state machine that restricts us to a subset
2855  * of mdb_printf() functionality.
2856  */
2857 enum {
2858 	PRINTF_NOFMT = 1,		/* no current format specifier */
2859 	PRINTF_PERC,			/* processed '%' */
2860 	PRINTF_FMT,			/* processing format specifier */
2861 	PRINTF_LEFT,			/* processed '-', expecting width */
2862 	PRINTF_WIDTH,			/* processing width */
2863 	PRINTF_QUES			/* processed '?', expecting format */
2864 };
2865 
2866 int
2867 cmd_printf_tab(mdb_tab_cookie_t *mcp, uint_t flags, int argc,
2868     const mdb_arg_t *argv)
2869 {
2870 	int ii;
2871 	char *f;
2872 
2873 	/*
2874 	 * If argc doesn't have more than what should be the format string,
2875 	 * ignore it.
2876 	 */
2877 	if (argc <= 1)
2878 		return (0);
2879 
2880 	/*
2881 	 * Because we aren't leveraging the lex and yacc engine, we have to
2882 	 * manually walk the arguments to find both the first and last
2883 	 * open/close quote of the format string.
2884 	 */
2885 	f = strchr(argv[0].a_un.a_str, '"');
2886 	if (f == NULL)
2887 		return (0);
2888 
2889 	f = strchr(f + 1, '"');
2890 	if (f != NULL) {
2891 		ii = 0;
2892 	} else {
2893 		for (ii = 1; ii < argc; ii++) {
2894 			if (argv[ii].a_type != MDB_TYPE_STRING)
2895 				continue;
2896 			f = strchr(argv[ii].a_un.a_str, '"');
2897 			if (f != NULL)
2898 				break;
2899 		}
2900 		/* Never found */
2901 		if (ii == argc)
2902 			return (0);
2903 	}
2904 
2905 	ii++;
2906 	argc -= ii;
2907 	argv += ii;
2908 
2909 	return (cmd_print_tab_common(mcp, flags, argc, argv));
2910 }
2911 
2912 int
2913 cmd_printf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2914 {
2915 	char type[MDB_SYM_NAMLEN];
2916 	int i, nfmts = 0, ret;
2917 	mdb_ctf_id_t id;
2918 	const char *fmt, *member;
2919 	char **fmts, *last, *dest, f;
2920 	int (**funcs)(mdb_ctf_id_t, uintptr_t, ulong_t, char *);
2921 	int state = PRINTF_NOFMT;
2922 	printarg_t pa;
2923 
2924 	if (!(flags & DCMD_ADDRSPEC))
2925 		return (DCMD_USAGE);
2926 
2927 	bzero(&pa, sizeof (pa));
2928 	pa.pa_as = MDB_TGT_AS_VIRT;
2929 	pa.pa_realtgt = pa.pa_tgt = mdb.m_target;
2930 
2931 	if (argc == 0 || argv[0].a_type != MDB_TYPE_STRING) {
2932 		mdb_warn("expected a format string\n");
2933 		return (DCMD_USAGE);
2934 	}
2935 
2936 	/*
2937 	 * Our first argument is a format string; rip it apart and run it
2938 	 * through our state machine to validate that our input is within the
2939 	 * subset of mdb_printf() format strings that we allow.
2940 	 */
2941 	fmt = argv[0].a_un.a_str;
2942 	/*
2943 	 * 'dest' must be large enough to hold a copy of the format string,
2944 	 * plus a NUL and up to 2 additional characters for each conversion
2945 	 * in the format string.  This gives us a bloat factor of 5/2 ~= 3.
2946 	 *   e.g. "%d" (strlen of 2) --> "%lld\0" (need 5 bytes)
2947 	 */
2948 	dest = mdb_zalloc(strlen(fmt) * 3, UM_SLEEP | UM_GC);
2949 	fmts = mdb_zalloc(strlen(fmt) * sizeof (char *), UM_SLEEP | UM_GC);
2950 	funcs = mdb_zalloc(strlen(fmt) * sizeof (void *), UM_SLEEP | UM_GC);
2951 	last = dest;
2952 
2953 	for (i = 0; fmt[i] != '\0'; i++) {
2954 		*dest++ = f = fmt[i];
2955 
2956 		switch (state) {
2957 		case PRINTF_NOFMT:
2958 			state = f == '%' ? PRINTF_PERC : PRINTF_NOFMT;
2959 			break;
2960 
2961 		case PRINTF_PERC:
2962 			state = f == '-' ? PRINTF_LEFT :
2963 			    f >= '0' && f <= '9' ? PRINTF_WIDTH :
2964 			    f == '?' ? PRINTF_QUES :
2965 			    f == '%' ? PRINTF_NOFMT : PRINTF_FMT;
2966 			break;
2967 
2968 		case PRINTF_LEFT:
2969 			state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
2970 			    f == '?' ? PRINTF_QUES : PRINTF_FMT;
2971 			break;
2972 
2973 		case PRINTF_WIDTH:
2974 			state = f >= '0' && f <= '9' ? PRINTF_WIDTH :
2975 			    PRINTF_FMT;
2976 			break;
2977 
2978 		case PRINTF_QUES:
2979 			state = PRINTF_FMT;
2980 			break;
2981 		}
2982 
2983 		if (state != PRINTF_FMT)
2984 			continue;
2985 
2986 		dest--;
2987 
2988 		/*
2989 		 * Now check that we have one of our valid format characters.
2990 		 */
2991 		switch (f) {
2992 		case 'a':
2993 		case 'A':
2994 		case 'p':
2995 			funcs[nfmts] = printf_ptr;
2996 			break;
2997 
2998 		case 'd':
2999 		case 'q':
3000 		case 'R':
3001 			funcs[nfmts] = printf_int;
3002 			*dest++ = 'l';
3003 			*dest++ = 'l';
3004 			break;
3005 
3006 		case 'I':
3007 			funcs[nfmts] = printf_uint32;
3008 			break;
3009 
3010 		case 'N':
3011 			funcs[nfmts] = printf_ipv6;
3012 			break;
3013 
3014 		case 'H':
3015 		case 'o':
3016 		case 'r':
3017 		case 'u':
3018 		case 'x':
3019 		case 'X':
3020 			funcs[nfmts] = printf_uint;
3021 			*dest++ = 'l';
3022 			*dest++ = 'l';
3023 			break;
3024 
3025 		case 's':
3026 			funcs[nfmts] = printf_string;
3027 			break;
3028 
3029 		case 'Y':
3030 			funcs[nfmts] = sizeof (time_t) == sizeof (int) ?
3031 			    printf_uint32 : printf_uint;
3032 			break;
3033 
3034 		default:
3035 			mdb_warn("illegal format string at or near "
3036 			    "'%c' (position %d)\n", f, i + 1);
3037 			return (DCMD_ABORT);
3038 		}
3039 
3040 		*dest++ = f;
3041 		*dest++ = '\0';
3042 		fmts[nfmts++] = last;
3043 		last = dest;
3044 		state = PRINTF_NOFMT;
3045 	}
3046 
3047 	argc--;
3048 	argv++;
3049 
3050 	/*
3051 	 * Now we expect a type name.
3052 	 */
3053 	if ((ret = args_to_typename(&argc, &argv, type, sizeof (type))) != 0)
3054 		return (ret);
3055 
3056 	argv++;
3057 	argc--;
3058 
3059 	if (mdb_ctf_lookup_by_name(type, &id) != 0) {
3060 		mdb_warn("failed to look up type %s", type);
3061 		return (DCMD_ABORT);
3062 	}
3063 
3064 	if (argc == 0) {
3065 		mdb_warn("at least one member must be specified\n");
3066 		return (DCMD_USAGE);
3067 	}
3068 
3069 	if (argc != nfmts) {
3070 		mdb_warn("%s format specifiers (found %d, expected %d)\n",
3071 		    argc > nfmts ? "missing" : "extra", nfmts, argc);
3072 		return (DCMD_ABORT);
3073 	}
3074 
3075 	for (i = 0; i < argc; i++) {
3076 		mdb_ctf_id_t mid;
3077 		ulong_t off;
3078 		int ignored;
3079 
3080 		if (argv[i].a_type != MDB_TYPE_STRING) {
3081 			mdb_warn("expected only type member arguments\n");
3082 			return (DCMD_ABORT);
3083 		}
3084 
3085 		if (strcmp((member = argv[i].a_un.a_str), ".") == 0) {
3086 			/*
3087 			 * We allow "." to be specified to denote the current
3088 			 * value of dot.
3089 			 */
3090 			if (funcs[i] != printf_ptr && funcs[i] != printf_uint &&
3091 			    funcs[i] != printf_int) {
3092 				mdb_warn("expected integer or pointer format "
3093 				    "specifier for '.'\n");
3094 				return (DCMD_ABORT);
3095 			}
3096 
3097 			mdb_printf(fmts[i], mdb_get_dot());
3098 			continue;
3099 		}
3100 
3101 		pa.pa_addr = addr;
3102 
3103 		if (parse_member(&pa, member, id, &mid, &off, &ignored) != 0)
3104 			return (DCMD_ABORT);
3105 
3106 		if ((ret = funcs[i](mid, pa.pa_addr, off, fmts[i])) != 0) {
3107 			mdb_warn("failed to print member '%s'\n", member);
3108 			return (ret);
3109 		}
3110 	}
3111 
3112 	mdb_printf("%s", last);
3113 	mdb_set_dot(addr + mdb_ctf_type_size(id));
3114 
3115 	return (DCMD_OK);
3116 }
3117 
3118 static char _mdb_printf_help[] =
3119 "The format string argument is a printf(3C)-like format string that is a\n"
3120 "subset of the format strings supported by mdb_printf().  The type argument\n"
3121 "is the name of a type to be used to interpret the memory referenced by dot.\n"
3122 "The member should either be a field in the specified structure, or the\n"
3123 "special member '.', denoting the value of dot (and treated as a pointer).\n"
3124 "The number of members must match the number of format specifiers in the\n"
3125 "format string.\n"
3126 "\n"
3127 "The following format specifiers are recognized by ::printf:\n"
3128 "\n"
3129 "  %%    Prints the '%' symbol.\n"
3130 "  %a    Prints the member in symbolic form.\n"
3131 "  %d    Prints the member as a decimal integer.  If the member is a signed\n"
3132 "        integer type, the output will be signed.\n"
3133 "  %H    Prints the member as a human-readable size.\n"
3134 "  %I    Prints the member as an IPv4 address (must be 32-bit integer type).\n"
3135 "  %N    Prints the member as an IPv6 address (must be of type in6_addr_t).\n"
3136 "  %o    Prints the member as an unsigned octal integer.\n"
3137 "  %p    Prints the member as a pointer, in hexadecimal.\n"
3138 "  %q    Prints the member in signed octal.  Honk if you ever use this!\n"
3139 "  %r    Prints the member as an unsigned value in the current output radix.\n"
3140 "  %R    Prints the member as a signed value in the current output radix.\n"
3141 "  %s    Prints the member as a string (requires a pointer or an array of\n"
3142 "        characters).\n"
3143 "  %u    Prints the member as an unsigned decimal integer.\n"
3144 "  %x    Prints the member in hexadecimal.\n"
3145 "  %X    Prints the member in hexadecimal, using the characters A-F as the\n"
3146 "        digits for the values 10-15.\n"
3147 "  %Y    Prints the member as a time_t as the string "
3148 	    "'year month day HH:MM:SS'.\n"
3149 "\n"
3150 "The following field width specifiers are recognized by ::printf:\n"
3151 "\n"
3152 "  %n    Field width is set to the specified decimal value.\n"
3153 "  %?    Field width is set to the maximum width of a hexadecimal pointer\n"
3154 "        value.  This is 8 in an ILP32 environment, and 16 in an LP64\n"
3155 "        environment.\n"
3156 "\n"
3157 "The following flag specifers are recognized by ::printf:\n"
3158 "\n"
3159 "  %-    Left-justify the output within the specified field width.  If the\n"
3160 "        width of the output is less than the specified field width, the\n"
3161 "        output will be padded with blanks on the right-hand side.  Without\n"
3162 "        %-, values are right-justified by default.\n"
3163 "\n"
3164 "  %0    Zero-fill the output field if the output is right-justified and the\n"
3165 "        width of the output is less than the specified field width.  Without\n"
3166 "        %0, right-justified values are prepended with blanks in order to\n"
3167 "        fill the field.\n"
3168 "\n"
3169 "Examples: \n"
3170 "\n"
3171 "  ::walk proc | "
3172 	"::printf \"%-6d %s\\n\" proc_t p_pidp->pid_id p_user.u_psargs\n"
3173 "  ::walk thread | "
3174 	"::printf \"%?p %3d %a\\n\" kthread_t . t_pri t_startpc\n"
3175 "  ::walk zone | "
3176 	"::printf \"%-40s %20s\\n\" zone_t zone_name zone_nodename\n"
3177 "  ::walk ire | "
3178 	"::printf \"%Y %I\\n\" ire_t ire_create_time ire_u.ire4_u.ire4_addr\n"
3179 "\n";
3180 
3181 void
3182 printf_help(void)
3183 {
3184 	mdb_printf("%s", _mdb_printf_help);
3185 }
3186