xref: /illumos-gate/usr/src/cmd/fs.d/ufs/mkfs/mkfs.c (revision c8343062f6e25afd9c2a31b65df357030e69fa55)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 
43 /*
44  * The maximum supported file system size (in sectors) is the
45  * number of frags that can be represented in an int32_t field
46  * (INT_MAX) times the maximum number of sectors per frag.  Since
47  * the maximum frag size is MAXBSIZE, the maximum number of sectors
48  * per frag is MAXBSIZE/DEV_BSIZE.
49  */
50 #define	FS_MAX	(((diskaddr_t)INT_MAX) * (MAXBSIZE/DEV_BSIZE))
51 
52 /*
53  * make file system for cylinder-group style file systems
54  *
55  * usage:
56  *
57  *    mkfs [-F FSType] [-V] [-G [-P]] [-M dirname] [-m] [options]
58  *	[-o specific_options]  special size
59  *	[nsect ntrack bsize fsize cpg	minfree	rps nbpi opt apc rotdelay
60  *	  2     3      4     5     6	7	8   9	 10  11  12
61  *	nrpos maxcontig mtb]
62  *	13    14	15
63  *
64  *  where specific_options are:
65  *	N - no create
66  *	nsect - The number of sectors per track
67  *	ntrack - The number of tracks per cylinder
68  *	bsize - block size
69  *	fragsize - fragment size
70  *	cgsize - The number of disk cylinders per cylinder group.
71  * 	free - minimum free space
72  *	rps - rotational speed (rev/sec).
73  *	nbpi - number of data bytes per allocated inode
74  *	opt - optimization (space, time)
75  *	apc - number of alternates
76  *	gap - gap size
77  *	nrpos - number of rotational positions
78  *	maxcontig - maximum number of logical blocks that will be
79  *		allocated contiguously before inserting rotational delay
80  *	mtb - if "y", set up file system for eventual growth to over a
81  *		a terabyte
82  * -P Do not grow the file system, but print on stdout the maximal
83  *    size in sectors to which the file system can be increased. The calculated
84  *    size is limited by the value provided by the operand size.
85  *
86  * Note that -P is a project-private interface and together with -G intended
87  * to be used only by the growfs script. It is therefore purposely not
88  * documented in the man page.
89  * The -P option is covered by PSARC case 2003/422.
90  */
91 
92 /*
93  * The following constants set the defaults used for the number
94  * of sectors/track (fs_nsect), and number of tracks/cyl (fs_ntrak).
95  *
96  *			NSECT		NTRAK
97  *	72MB CDC	18		9
98  *	30MB CDC	18		5
99  *	720KB Diskette	9		2
100  *
101  * However the defaults will be different for disks larger than CHSLIMIT.
102  */
103 
104 #define	DFLNSECT	32
105 #define	DFLNTRAK	16
106 
107 /*
108  * The following default sectors and tracks values are used for
109  * non-efi disks that are larger than the CHS addressing limit. The
110  * existing default cpg of 16 (DESCPG) holds good for larger disks too.
111  */
112 #define	DEF_SECTORS_EFI	128
113 #define	DEF_TRACKS_EFI	48
114 
115 /*
116  * The maximum number of cylinders in a group depends upon how much
117  * information can be stored on a single cylinder. The default is to
118  * use 16 cylinders per group.  This is effectively tradition - it was
119  * the largest value acceptable under SunOs 4.1
120  */
121 #define	DESCPG		16	/* desired fs_cpg */
122 
123 /*
124  * The following two constants set the default block and fragment sizes.
125  * Both constants must be a power of 2 and meet the following constraints:
126  *	MINBSIZE <= DESBLKSIZE <= MAXBSIZE
127  *	DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE
128  *	DESBLKSIZE / DESFRAGSIZE <= 8
129  */
130 #define	DESBLKSIZE	8192
131 #define	DESFRAGSIZE	1024
132 
133 /*
134  * MINFREE gives the minimum acceptable percentage of file system
135  * blocks which may be free. If the freelist drops below this level
136  * only the superuser may continue to allocate blocks. This may
137  * be set to 0 if no reserve of free blocks is deemed necessary,
138  * however throughput drops by fifty percent if the file system
139  * is run at between 90% and 100% full; thus the default value of
140  * fs_minfree is 10%. With 10% free space, fragmentation is not a
141  * problem, so we choose to optimize for time.
142  */
143 #define	MINFREE		10
144 #define	DEFAULTOPT	FS_OPTTIME
145 
146 /*
147  * ROTDELAY gives the minimum number of milliseconds to initiate
148  * another disk transfer on the same cylinder. It is no longer used
149  * and will always default to 0.
150  */
151 #define	ROTDELAY	0
152 
153 /*
154  * MAXBLKPG determines the maximum number of data blocks which are
155  * placed in a single cylinder group. The default is one indirect
156  * block worth of data blocks.
157  */
158 #define	MAXBLKPG(bsize)	((bsize) / sizeof (daddr32_t))
159 
160 /*
161  * Each file system has a number of inodes statically allocated.
162  * We allocate one inode slot per NBPI bytes, expecting this
163  * to be far more than we will ever need.
164  */
165 #define	NBPI		2048	/* Number Bytes Per Inode */
166 #define	MTB_NBPI	(MB)	/* Number Bytes Per Inode for multi-terabyte */
167 
168 /*
169  * Disks are assumed to rotate at 60HZ, unless otherwise specified.
170  */
171 #define	DEFHZ		60
172 
173 /*
174  * Cylinder group related limits.
175  *
176  * For each cylinder we keep track of the availability of blocks at different
177  * rotational positions, so that we can lay out the data to be picked
178  * up with minimum rotational latency.  NRPOS is the number of rotational
179  * positions which we distinguish.  With NRPOS 8 the resolution of our
180  * summary information is 2ms for a typical 3600 rpm drive.
181  */
182 #define	NRPOS		8	/* number distinct rotational positions */
183 
184 #ifdef DEBUG
185 #define	dprintf(x)	printf x
186 #else
187 #define	dprintf(x)
188 #endif
189 
190 /*
191  * For the -N option, when calculating the backup superblocks, do not print
192  * them if we are not really sure. We may have to try an alternate method of
193  * arriving at the superblocks. So defer printing till a handful of superblocks
194  * look good.
195  */
196 #define	tprintf(x)	if (Nflag && retry) \
197 				strncat(tmpbuf, x, strlen(x)); \
198 			else \
199 				(void) fprintf(stderr, x);
200 
201 #define	ALTSB		32	/* Location of first backup superblock */
202 
203 /*
204  * range_check "user_supplied" flag values.
205  */
206 #define	RC_DEFAULT	0
207 #define	RC_KEYWORD	1
208 #define	RC_POSITIONAL	2
209 
210 /*
211  * ufs hole
212  */
213 #define	UFS_HOLE	-1
214 
215 #ifndef	STANDALONE
216 #include	<stdio.h>
217 #include	<sys/mnttab.h>
218 #endif
219 
220 #include	<stdlib.h>
221 #include	<unistd.h>
222 #include	<malloc.h>
223 #include	<string.h>
224 #include	<strings.h>
225 #include	<ctype.h>
226 #include	<errno.h>
227 #include	<sys/param.h>
228 #include	<time.h>
229 #include	<sys/types.h>
230 #include	<sys/sysmacros.h>
231 #include	<sys/vnode.h>
232 #include	<sys/fs/ufs_fsdir.h>
233 #include	<sys/fs/ufs_inode.h>
234 #include	<sys/fs/ufs_fs.h>
235 #include	<sys/fs/ufs_log.h>
236 #include	<sys/mntent.h>
237 #include	<sys/filio.h>
238 #include	<limits.h>
239 #include	<sys/int_const.h>
240 #include	<signal.h>
241 #include	<sys/efi_partition.h>
242 #include	"roll_log.h"
243 
244 #define	bcopy(f, t, n)    (void) memcpy(t, f, n)
245 #define	bzero(s, n)	(void) memset(s, 0, n)
246 #define	bcmp(s, d, n)	memcmp(s, d, n)
247 
248 #define	index(s, r)	strchr(s, r)
249 #define	rindex(s, r)	strrchr(s, r)
250 
251 #include	<sys/stat.h>
252 #include	<sys/statvfs.h>
253 #include	<locale.h>
254 #include	<fcntl.h>
255 #include 	<sys/isa_defs.h>	/* for ENDIAN defines */
256 #include	<sys/vtoc.h>
257 
258 #include	<sys/dkio.h>
259 #include	<sys/asynch.h>
260 
261 extern offset_t	llseek();
262 extern char	*getfullblkname();
263 extern long	lrand48();
264 
265 extern int	optind;
266 extern char	*optarg;
267 
268 
269 /*
270  * The size of a cylinder group is calculated by CGSIZE. The maximum size
271  * is limited by the fact that cylinder groups are at most one block.
272  * Its size is derived from the size of the maps maintained in the
273  * cylinder group and the (struct cg) size.
274  */
275 #define	CGSIZE(fs) \
276 	/* base cg		*/ (sizeof (struct cg) + \
277 	/* blktot size	*/ (fs)->fs_cpg * sizeof (long) + \
278 	/* blks size	*/ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof (short) + \
279 	/* inode map	*/ howmany((fs)->fs_ipg, NBBY) + \
280 	/* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY))
281 
282 /*
283  * We limit the size of the inode map to be no more than a
284  * third of the cylinder group space, since we must leave at
285  * least an equal amount of space for the block map.
286  *
287  * N.B.: MAXIpG must be a multiple of INOPB(fs).
288  */
289 #define	MAXIpG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
290 
291 /*
292  * Same as MAXIpG, but parameterized by the block size (b) and the
293  * cylinder group divisor (d), which is the reciprocal of the fraction of the
294  * cylinder group overhead block that is used for the inode map.  So for
295  * example, if d = 5, the macro's computation assumes that 1/5 of the
296  * cylinder group overhead block can be dedicated to the inode map.
297  */
298 #define	MAXIpG_B(b, d)	roundup((b) * NBBY / (d), (b) / sizeof (struct dinode))
299 
300 #define	UMASK		0755
301 #define	MAXINOPB	(MAXBSIZE / sizeof (struct dinode))
302 #define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
303 #define	MB		(1024*1024)
304 #define	BETWEEN(x, l, h)	((x) >= (l) && (x) <= (h))
305 
306 /*
307  * Used to set the inode generation number. Since both inodes and dinodes
308  * are dealt with, we really need a pointer to an icommon here.
309  */
310 #define	IRANDOMIZE(icp)	(icp)->ic_gen = lrand48();
311 
312 /*
313  * Flags for number()
314  */
315 #define	ALLOW_PERCENT	0x01	/* allow trailing `%' on number */
316 #define	ALLOW_MS1	0x02	/* allow trailing `ms', state 1 */
317 #define	ALLOW_MS2	0x04	/* allow trailing `ms', state 2 */
318 #define	ALLOW_END_ONLY	0x08	/* must be at end of number & suffixes */
319 
320 #define	MAXAIO	1000	/* maximum number of outstanding I/O's we'll manage */
321 #define	BLOCK	1	/* block in aiowait */
322 #define	NOBLOCK	0	/* don't block in aiowait */
323 
324 #define	RELEASE 1	/* free an aio buffer after use */
325 #define	SAVE	0	/* don't free the buffer */
326 
327 typedef struct aio_trans {
328 	aio_result_t resultbuf;
329 	diskaddr_t bno;
330 	char *buffer;
331 	int size;
332 	int release;
333 	struct aio_trans *next;
334 } aio_trans;
335 
336 typedef struct aio_results {
337 	int max;
338 	int outstanding;
339 	int maxpend;
340 	aio_trans *trans;
341 } aio_results;
342 
343 int aio_inited = 0;
344 aio_results results;
345 
346 /*
347  * Allow up to MAXBUF aio requests that each have a unique buffer.
348  * More aio's might be done, but not using memory through the getbuf()
349  * interface.  This can be raised, but you run into the potential of
350  * using more memory than is physically available on the machine,
351  * and if you start swapping, you can forget about performance.
352  * To prevent this, we also limit the total memory used for a given
353  * type of buffer to MAXBUFMEM.
354  *
355  * Tests indicate a cylinder group's worth of inodes takes:
356  *
357  *	NBPI	Size of Inode Buffer
358  *	 2k	1688k
359  *	 8k	 424k
360  *
361  * initcg() stores all the inodes for a cylinder group in one buffer,
362  * so allowing 20 buffers could take 32 MB if not limited by MAXBUFMEM.
363  */
364 #define	MAXBUF		20
365 #define	MAXBUFMEM	(8 * 1024 * 1024)
366 
367 /*
368  * header information for buffers managed by getbuf() and freebuf()
369  */
370 typedef struct bufhdr {
371 	struct bufhdr *head;
372 	struct bufhdr *next;
373 } bufhdr;
374 
375 int bufhdrsize;
376 
377 bufhdr inodebuf = { NULL, NULL };
378 bufhdr cgsumbuf = { NULL, NULL };
379 
380 #define	SECTORS_PER_TERABYTE	(1LL << 31)
381 /*
382  * The following constant specifies an upper limit for file system size
383  * that is actually a lot bigger than we expect to support with UFS. (Since
384  * it's specified in sectors, the file system size would be 2**44 * 512,
385  * which is 2**53, which is 8192 Terabytes.)  However, it's useful
386  * for checking the basic sanity of a size value that is input on the
387  * command line.
388  */
389 #define	FS_SIZE_UPPER_LIMIT	0x100000000000LL
390 
391 /*
392  * Forward declarations
393  */
394 static char *getbuf(bufhdr *bufhead, int size);
395 static void freebuf(char *buf);
396 static void freetrans(aio_trans *transp);
397 static aio_trans *get_aiop();
398 static aio_trans *wait_for_write(int block);
399 static void initcg(int cylno);
400 static void fsinit();
401 static int makedir(struct direct *protodir, int entries);
402 static void iput(struct inode *ip);
403 static void rdfs(diskaddr_t bno, int size, char *bf);
404 static void wtfs(diskaddr_t bno, int size, char *bf);
405 static void awtfs(diskaddr_t bno, int size, char *bf, int release);
406 static void wtfs_breakup(diskaddr_t bno, int size, char *bf);
407 static int isblock(struct fs *fs, unsigned char *cp, int h);
408 static void clrblock(struct fs *fs, unsigned char *cp, int h);
409 static void setblock(struct fs *fs, unsigned char *cp, int h);
410 static void usage();
411 static void dump_fscmd(char *fsys, int fsi);
412 static uint64_t number(uint64_t d_value, char *param, int flags);
413 static int match(char *s);
414 static char checkopt(char *optim);
415 static char checkmtb(char *mtbarg);
416 static void range_check(long *varp, char *name, long minimum,
417     long maximum, long def_val, int user_supplied);
418 static void range_check_64(uint64_t *varp, char *name, uint64_t minimum,
419     uint64_t maximum, uint64_t def_val, int user_supplied);
420 static daddr32_t alloc(int size, int mode);
421 static diskaddr_t get_max_size(int fd);
422 static long get_max_track_size(int fd);
423 static void block_sigint(sigset_t *old_mask);
424 static void unblock_sigint(sigset_t *old_mask);
425 static void recover_from_sigint(int signum);
426 static int confirm_abort(void);
427 static int getline(FILE *fp, char *loc, int maxlen);
428 static void flush_writes(void);
429 static long compute_maxcpg(long, long, long, long, long);
430 static int in_64bit_mode(void);
431 static int validate_size(int fd, diskaddr_t size);
432 static void dump_sblock(void);
433 
434 union {
435 	struct fs fs;
436 	char pad[SBSIZE];
437 } fsun, altfsun;
438 #define	sblock	fsun.fs
439 #define	altsblock	altfsun.fs
440 
441 struct	csum *fscs;
442 
443 union cgun {
444 	struct cg cg;
445 	char pad[MAXBSIZE];
446 } cgun;
447 
448 #define	acg	cgun.cg
449 /*
450  * Size of screen in cols in which to fit output
451  */
452 #define	WIDTH	80
453 
454 struct dinode zino[MAXBSIZE / sizeof (struct dinode)];
455 
456 /*
457  * file descriptors used for rdfs(fsi) and wtfs(fso).
458  * Initialized to an illegal file descriptor number.
459  */
460 int	fsi = -1;
461 int	fso = -1;
462 
463 /*
464  * The BIG parameter is machine dependent.  It should be a longlong integer
465  * constant that can be used by the number parser to check the validity
466  * of numeric parameters.
467  */
468 
469 #define	BIG		0x7fffffffffffffffLL
470 
471 /* Used to indicate to number() that a bogus value should cause us to exit */
472 #define	NO_DEFAULT	LONG_MIN
473 
474 /*
475  * INVALIDSBLIMIT is the number of bad backup superblocks that will be
476  * tolerated before we decide to try arriving at a different set of them
477  * using a different logic. This is applicable for non-EFI disks only.
478  */
479 #define	INVALIDSBLIMIT	10
480 
481 /*
482  * The *_flag variables are used to indicate that the user specified
483  * the values, rather than that we made them up ourselves.  We can
484  * complain about the user giving us bogus values.
485  */
486 
487 /* semi-constants */
488 long	sectorsize = DEV_BSIZE;		/* bytes/sector from param.h */
489 long	bbsize = BBSIZE;		/* boot block size */
490 long	sbsize = SBSIZE;		/* superblock size */
491 
492 /* parameters */
493 diskaddr_t	fssize_db;		/* file system size in disk blocks */
494 diskaddr_t	fssize_frag;		/* file system size in frags */
495 long	cpg;				/* cylinders/cylinder group */
496 int	cpg_flag = RC_DEFAULT;
497 long	rotdelay = -1;			/* rotational delay between blocks */
498 int	rotdelay_flag = RC_DEFAULT;
499 long	maxcontig;			/* max contiguous blocks to allocate */
500 int	maxcontig_flag = RC_DEFAULT;
501 long	nsect = DFLNSECT;		/* sectors per track */
502 int	nsect_flag = RC_DEFAULT;
503 long	ntrack = DFLNTRAK;		/* tracks per cylinder group */
504 int	ntrack_flag = RC_DEFAULT;
505 long	bsize = DESBLKSIZE;		/* filesystem block size */
506 int	bsize_flag = RC_DEFAULT;
507 long	fragsize = DESFRAGSIZE; 	/* filesystem fragment size */
508 int	fragsize_flag = RC_DEFAULT;
509 long	minfree = MINFREE; 		/* fs_minfree */
510 int	minfree_flag = RC_DEFAULT;
511 long	rps = DEFHZ;			/* revolutions/second of drive */
512 int	rps_flag = RC_DEFAULT;
513 long	nbpi = NBPI;			/* number of bytes per inode */
514 int	nbpi_flag = RC_DEFAULT;
515 long	nrpos = NRPOS;			/* number of rotational positions */
516 int	nrpos_flag = RC_DEFAULT;
517 long	apc = 0;			/* alternate sectors per cylinder */
518 int	apc_flag = RC_DEFAULT;
519 char	opt = 't';			/* optimization style, `t' or `s' */
520 char	mtb = 'n';			/* multi-terabyte format, 'y' or 'n' */
521 
522 long	debug = 0;			/* enable debugging output */
523 
524 int	spc_flag = 0;			/* alternate sectors specified or */
525 					/* found */
526 
527 /* global state */
528 int	Nflag;		/* do not write to disk */
529 int	mflag;		/* return the command line used to create this FS */
530 int	rflag;		/* report the superblock in an easily-parsed form */
531 int	Rflag;		/* dump the superblock in binary */
532 char	*fsys;
533 time_t	mkfstime;
534 char	*string;
535 int	label_type;
536 
537 /*
538  * logging support
539  */
540 int	ismdd;			/* true if device is a SVM device */
541 int	islog;			/* true if ufs or SVM logging is enabled */
542 int	islogok;		/* true if ufs/SVM log state is good */
543 
544 static int	isufslog;	/* true if ufs logging is enabled */
545 static int	waslog;		/* true when ufs logging disabled during grow */
546 
547 /*
548  * growfs defines, globals, and forward references
549  */
550 #define	NOTENOUGHSPACE 33
551 int		grow;
552 static int	Pflag;		/* probe to which size the fs can be grown */
553 int		ismounted;
554 char		*directory;
555 diskaddr_t	grow_fssize;
556 long		grow_fs_size;
557 long		grow_fs_ncg;
558 diskaddr_t		grow_fs_csaddr;
559 long		grow_fs_cssize;
560 int		grow_fs_clean;
561 struct csum	*grow_fscs;
562 diskaddr_t		grow_sifrag;
563 int		test;
564 int		testforce;
565 diskaddr_t		testfrags;
566 int		inlockexit;
567 int		isbad;
568 
569 void		lockexit(int);
570 void		randomgeneration(void);
571 void		checksummarysize(void);
572 int		checksblock(struct fs, int);
573 void		growinit(char *);
574 void		checkdev(char *, char  *);
575 void		checkmount(struct mnttab *, char *);
576 struct dinode	*gdinode(ino_t);
577 int		csfraginrange(daddr32_t);
578 struct csfrag	*findcsfrag(daddr32_t, struct csfrag **);
579 void		checkindirect(ino_t, daddr32_t *, daddr32_t, int);
580 void		addcsfrag(ino_t, daddr32_t, struct csfrag **);
581 void		delcsfrag(daddr32_t, struct csfrag **);
582 void		checkdirect(ino_t, daddr32_t *, daddr32_t *, int);
583 void		findcsfragino(void);
584 void		fixindirect(daddr32_t, int);
585 void		fixdirect(caddr_t, daddr32_t, daddr32_t *, int);
586 void		fixcsfragino(void);
587 void		extendsummaryinfo(void);
588 int		notenoughspace(void);
589 void		unalloccsfragino(void);
590 void		unalloccsfragfree(void);
591 void		findcsfragfree(void);
592 void		copycsfragino(void);
593 void		rdcg(long);
594 void		wtcg(void);
595 void		flcg(void);
596 void		allocfrags(long, daddr32_t *, long *);
597 void		alloccsfragino(void);
598 void		alloccsfragfree(void);
599 void		freefrags(daddr32_t, long, long);
600 int		findfreerange(long *, long *);
601 void		resetallocinfo(void);
602 void		extendcg(long);
603 void		ulockfs(void);
604 void		wlockfs(void);
605 void		clockfs(void);
606 void		wtsb(void);
607 static int64_t	checkfragallocated(daddr32_t);
608 static struct csum 	*read_summaryinfo(struct fs *);
609 static diskaddr_t 	probe_summaryinfo();
610 
611 void
612 main(int argc, char *argv[])
613 {
614 	long i, mincpc, mincpg, ibpcl;
615 	long cylno, rpos, blk, j, warn = 0;
616 	long mincpgcnt, maxcpg;
617 	uint64_t used, bpcg, inospercg;
618 	long mapcramped, inodecramped;
619 	long postblsize, rotblsize, totalsbsize;
620 	FILE *mnttab;
621 	struct mnttab mntp;
622 	char *special;
623 	struct statvfs64 fs;
624 	struct dk_geom dkg;
625 	struct dk_cinfo dkcinfo;
626 	char pbuf[sizeof (uint64_t) * 3 + 1];
627 	char *tmpbuf;
628 	int width, plen;
629 	uint64_t num;
630 	int c, saverr;
631 	diskaddr_t max_fssize;
632 	long tmpmaxcontig = -1;
633 	struct sigaction sigact;
634 	uint64_t nbytes64;
635 	int remaining_cg;
636 	int do_dot = 0;
637 	int use_efi_dflts = 0, retry = 0;
638 	int invalid_sb_cnt, ret, skip_this_sb;
639 	int save_nsect, save_ntrack, save_cpg;
640 
641 	(void) setlocale(LC_ALL, "");
642 
643 #if !defined(TEXT_DOMAIN)
644 #define	TEXT_DOMAIN "SYS_TEST"
645 #endif
646 	(void) textdomain(TEXT_DOMAIN);
647 
648 	while ((c = getopt(argc, argv, "F:bmo:VPGM:T:t:")) != EOF) {
649 		switch (c) {
650 
651 		case 'F':
652 			string = optarg;
653 			if (strcmp(string, "ufs") != 0)
654 				usage();
655 			break;
656 
657 		case 'm':	/* return command line used to create this FS */
658 			mflag++;
659 			break;
660 
661 		case 'o':
662 			/*
663 			 * ufs specific options.
664 			 */
665 			string = optarg;
666 			while (*string != '\0') {
667 				if (match("nsect=")) {
668 					nsect = number(DFLNSECT, "nsect", 0);
669 					nsect_flag = RC_KEYWORD;
670 				} else if (match("ntrack=")) {
671 					ntrack = number(DFLNTRAK, "ntrack", 0);
672 					ntrack_flag = RC_KEYWORD;
673 				} else if (match("bsize=")) {
674 					bsize = number(DESBLKSIZE, "bsize", 0);
675 					bsize_flag = RC_KEYWORD;
676 				} else if (match("fragsize=")) {
677 					fragsize = number(DESFRAGSIZE,
678 					    "fragsize", 0);
679 					fragsize_flag = RC_KEYWORD;
680 				} else if (match("cgsize=")) {
681 					cpg = number(DESCPG, "cgsize", 0);
682 					cpg_flag = RC_KEYWORD;
683 				} else if (match("free=")) {
684 					minfree = number(MINFREE, "free",
685 					    ALLOW_PERCENT);
686 					minfree_flag = RC_KEYWORD;
687 				} else if (match("maxcontig=")) {
688 					tmpmaxcontig =
689 					    number(-1, "maxcontig", 0);
690 					maxcontig_flag = RC_KEYWORD;
691 				} else if (match("nrpos=")) {
692 					nrpos = number(NRPOS, "nrpos", 0);
693 					nrpos_flag = RC_KEYWORD;
694 				} else if (match("rps=")) {
695 					rps = number(DEFHZ, "rps", 0);
696 					rps_flag = RC_KEYWORD;
697 				} else if (match("nbpi=")) {
698 					nbpi = number(NBPI, "nbpi", 0);
699 					nbpi_flag = RC_KEYWORD;
700 				} else if (match("opt=")) {
701 					opt = checkopt(string);
702 				} else if (match("mtb=")) {
703 					mtb = checkmtb(string);
704 				} else if (match("apc=")) {
705 					apc = number(0, "apc", 0);
706 					apc_flag = RC_KEYWORD;
707 				} else if (match("gap=")) {
708 					(void) number(0, "gap", ALLOW_MS1);
709 					rotdelay = ROTDELAY;
710 					rotdelay_flag = RC_DEFAULT;
711 				} else if (match("debug=")) {
712 					debug = number(0, "debug", 0);
713 				} else if (match("N")) {
714 					Nflag++;
715 				} else if (match("calcsb")) {
716 					rflag++;
717 					Nflag++;
718 				} else if (match("calcbinsb")) {
719 					rflag++;
720 					Rflag++;
721 					Nflag++;
722 				} else if (*string == '\0') {
723 					break;
724 				} else {
725 					(void) fprintf(stderr, gettext(
726 						"illegal option: %s\n"),
727 						string);
728 					usage();
729 				}
730 
731 				if (*string == ',') string++;
732 				if (*string == ' ') string++;
733 			}
734 			break;
735 
736 		case 'V':
737 			{
738 				char	*opt_text;
739 				int	opt_count;
740 
741 				(void) fprintf(stdout, gettext("mkfs -F ufs "));
742 				for (opt_count = 1; opt_count < argc;
743 								opt_count++) {
744 					opt_text = argv[opt_count];
745 					if (opt_text)
746 					    (void) fprintf(stdout, " %s ",
747 								opt_text);
748 				}
749 				(void) fprintf(stdout, "\n");
750 			}
751 			break;
752 
753 		case 'b':	/* do nothing for this */
754 			break;
755 
756 		case 'M':	/* grow the mounted file system */
757 			directory = optarg;
758 
759 			/* FALLTHROUGH */
760 		case 'G':	/* grow the file system */
761 			grow = 1;
762 			break;
763 		case 'P':	/* probe the file system growing size 	*/
764 			Pflag = 1;
765 			grow = 1; /* probe mode implies fs growing	*/
766 			break;
767 		case 'T':	/* For testing */
768 			testforce = 1;
769 
770 			/* FALLTHROUGH */
771 		case 't':
772 			test = 1;
773 			string = optarg;
774 			testfrags = number(NO_DEFAULT, "testfrags", 0);
775 			break;
776 
777 		case '?':
778 			usage();
779 			break;
780 		}
781 	}
782 #ifdef MKFS_DEBUG
783 	/*
784 	 * Turning on MKFS_DEBUG causes mkfs to produce a filesystem
785 	 * that can be reproduced by setting the time to 0 and seeding
786 	 * the random number generator to a constant.
787 	 */
788 	mkfstime = 0;	/* reproducible results */
789 #else
790 	(void) time(&mkfstime);
791 #endif
792 
793 	if (optind >= (argc - 1)) {
794 		if (optind > (argc - 1)) {
795 			(void) fprintf(stderr,
796 			    gettext("special not specified\n"));
797 			usage();
798 		} else if (mflag == 0) {
799 			(void) fprintf(stderr,
800 			    gettext("size not specified\n"));
801 			usage();
802 		}
803 	}
804 	argc -= optind;
805 	argv = &argv[optind];
806 
807 	fsys = argv[0];
808 	fsi = open64(fsys, O_RDONLY);
809 	if (fsi < 0) {
810 		(void) fprintf(stderr, gettext("%s: cannot open\n"), fsys);
811 		lockexit(32);
812 	}
813 
814 	if (mflag) {
815 		dump_fscmd(fsys, fsi);
816 		lockexit(0);
817 	}
818 
819 	/*
820 	 * The task of setting all of the configuration parameters for a
821 	 * UFS file system is basically a matter of solving n equations
822 	 * in m variables.  Typically, m is greater than n, so there is
823 	 * usually more than one valid solution.  Since this is usually
824 	 * an under-constrained problem, it's not always obvious what the
825 	 * "best" configuration is.
826 	 *
827 	 * In general, the approach is to
828 	 * 1. Determine the values for the file system parameters
829 	 *    that are externally contrained and therefore not adjustable
830 	 *    by mkfs (such as the device's size and maxtransfer size).
831 	 * 2. Acquire the user's requested setting for all configuration
832 	 *    values that can be set on the command line.
833 	 * 3. Determine the final value of all configuration values, by
834 	 *    the following approach:
835 	 *	- set the file system block size (fs_bsize).  Although
836 	 *	  this could be regarded as an adjustable parameter, in
837 	 *	  fact, it's pretty much a constant.  At this time, it's
838 	 *	  generally set to 8k (with older hardware, it can
839 	 *	  sometimes make sense to set it to 4k, but those
840 	 *	  situations are pretty rare now).
841 	 *	- re-adjust the maximum file system size based on the
842 	 *	  value of the file system block size.  Since the
843 	 *	  frag size can't be any larger than a file system
844 	 *	  block, and the number of frags in the file system
845 	 *	  has to fit into 31 bits, the file system block size
846 	 *	  affects the maximum file system size.
847 	 *	- now that the real maximum file system is known, set the
848 	 *	  actual size of the file system to be created to
849 	 *	  MIN(requested size, maximum file system size).
850 	 *	- now validate, and if necessary, adjust the following
851 	 *	  values:
852 	 *		rotdelay
853 	 *		nsect
854 	 *		maxcontig
855 	 *		apc
856 	 *		frag_size
857 	 *		rps
858 	 *		minfree
859 	 *		nrpos
860 	 *		nrack
861 	 *		nbpi
862 	 *	- calculate maxcpg (the maximum value of the cylinders-per-
863 	 *	  cylinder-group configuration parameters).  There are two
864 	 *	  algorithms for calculating maxcpg:  an old one, which is
865 	 *	  used for file systems of less than 1 terabyte, and a
866 	 *	  new one, implemented in the function compute_maxcpg(),
867 	 *	  which is used for file systems of greater than 1 TB.
868 	 *	  The difference between them is that compute_maxcpg()
869 	 *	  really tries to maximize the cpg value.  The old
870 	 *	  algorithm fails to take advantage of smaller frags and
871 	 *	  lower inode density when determining the maximum cpg,
872 	 *	  and thus comes up with much lower numbers in some
873 	 *	  configurations.  At some point, we might use the
874 	 *	  new algorithm for determining maxcpg for all file
875 	 *	  systems, but at this time, the changes implemented for
876 	 *	  multi-terabyte UFS are NOT being automatically applied
877 	 *	  to UFS file systems of less than a terabyte (in the
878 	 *	  interest of not changing existing UFS policy too much
879 	 *	  until the ramifications of the changes are well-understood
880 	 *	  and have been evaluated for their effects on performance.)
881 	 *	- check the current values of the configuration parameters
882 	 *	  against the various constraints imposed by UFS.  These
883 	 *	  include:
884 	 *		* There must be at least one inode in each
885 	 *		  cylinder group.
886 	 *		* The cylinder group overhead block, which
887 	 *		  contains the inode and frag bigmaps, must fit
888 	 *		  within one file system block.
889 	 *		* The space required for inode maps should
890 	 *		  occupy no more than a third of the cylinder
891 	 *		  group overhead block.
892 	 *		* The rotational position tables have to fit
893 	 *		  within the available space in the super block.
894 	 *	  Adjust the configuration values that can be adjusted
895 	 *	  so that these constraints are satisfied.  The
896 	 *	  configuration values that are adjustable are:
897 	 *		* frag size
898 	 *		* cylinders per group
899 	 *		* inode density (can be increased)
900 	 *		* number of rotational positions (the rotational
901 	 *		  position tables are eliminated altogether if
902 	 *		  there isn't enough room for them.)
903 	 * 4. Set the values for all the dependent configuration
904 	 *    values (those that aren't settable on the command
905 	 *    line and which are completely dependent on the
906 	 *    adjustable parameters).  This include cpc (cycles
907 	 *    per cylinder, spc (sectors-per-cylinder), and many others.
908 	 */
909 
910 	max_fssize = get_max_size(fsi);
911 
912 	/*
913 	 * Get and check positional arguments, if any.
914 	 */
915 	switch (argc - 1) {
916 	default:
917 		usage();
918 		/*NOTREACHED*/
919 	case 15:
920 		mtb = checkmtb(argv[15]);
921 		/* FALLTHROUGH */
922 	case 14:
923 		string = argv[14];
924 		tmpmaxcontig = number(-1, "maxcontig", 0);
925 		maxcontig_flag = RC_POSITIONAL;
926 		/* FALLTHROUGH */
927 	case 13:
928 		string = argv[13];
929 		nrpos = number(NRPOS, "nrpos", 0);
930 		nrpos_flag = RC_POSITIONAL;
931 		/* FALLTHROUGH */
932 	case 12:
933 		string = argv[12];
934 		rotdelay = ROTDELAY;
935 		rotdelay_flag = RC_DEFAULT;
936 		/* FALLTHROUGH */
937 	case 11:
938 		string = argv[11];
939 		apc = number(0, "apc", 0);
940 		apc_flag = RC_POSITIONAL;
941 		/* FALLTHROUGH */
942 	case 10:
943 		opt = checkopt(argv[10]);
944 		/* FALLTHROUGH */
945 	case 9:
946 		string = argv[9];
947 		nbpi = number(NBPI, "nbpi", 0);
948 		nbpi_flag = RC_POSITIONAL;
949 		/* FALLTHROUGH */
950 	case 8:
951 		string = argv[8];
952 		rps = number(DEFHZ, "rps", 0);
953 		rps_flag = RC_POSITIONAL;
954 		/* FALLTHROUGH */
955 	case 7:
956 		string = argv[7];
957 		minfree = number(MINFREE, "free", ALLOW_PERCENT);
958 		minfree_flag = RC_POSITIONAL;
959 		/* FALLTHROUGH */
960 	case 6:
961 		string = argv[6];
962 		cpg = number(DESCPG, "cgsize", 0);
963 		cpg_flag = RC_POSITIONAL;
964 		/* FALLTHROUGH */
965 	case 5:
966 		string = argv[5];
967 		fragsize = number(DESFRAGSIZE, "fragsize", 0);
968 		fragsize_flag = RC_POSITIONAL;
969 		/* FALLTHROUGH */
970 	case 4:
971 		string = argv[4];
972 		bsize = number(DESBLKSIZE, "bsize", 0);
973 		bsize_flag = RC_POSITIONAL;
974 		/* FALLTHROUGH */
975 	case 3:
976 		string = argv[3];
977 		ntrack = number(DFLNTRAK, "ntrack", 0);
978 		ntrack_flag = RC_POSITIONAL;
979 		/* FALLTHROUGH */
980 	case 2:
981 		string = argv[2];
982 		nsect = number(DFLNSECT, "nsect", 0);
983 		nsect_flag = RC_POSITIONAL;
984 		/* FALLTHROUGH */
985 	case 1:
986 		string = argv[1];
987 		fssize_db = number(max_fssize, "size", 0);
988 	}
989 
990 
991 	if ((maxcontig_flag == RC_DEFAULT) || (tmpmaxcontig == -1) ||
992 		(maxcontig == -1)) {
993 		long maxtrax = get_max_track_size(fsi);
994 		maxcontig = maxtrax / bsize;
995 
996 	} else {
997 		maxcontig = tmpmaxcontig;
998 	}
999 	dprintf(("DeBuG maxcontig : %ld\n", maxcontig));
1000 
1001 	if (rotdelay == -1) {	/* default by newfs and mkfs */
1002 		rotdelay = ROTDELAY;
1003 	}
1004 
1005 	if (cpg_flag == RC_DEFAULT) { /* If not explicity set, use default */
1006 		cpg = DESCPG;
1007 	}
1008 	dprintf(("DeBuG cpg : %ld\n", cpg));
1009 
1010 	/*
1011 	 * Now that we have the semi-sane args, either positional, via -o,
1012 	 * or by defaulting, handle inter-dependencies and range checks.
1013 	 */
1014 
1015 	/*
1016 	 * Settle the file system block size first, since it's a fixed
1017 	 * parameter once set and so many other parameters, including
1018 	 * max_fssize, depend on it.
1019 	 */
1020 	range_check(&bsize, "bsize", MINBSIZE, MAXBSIZE, DESBLKSIZE,
1021 	    bsize_flag);
1022 
1023 	if (!POWEROF2(bsize)) {
1024 		(void) fprintf(stderr,
1025 		    gettext("block size must be a power of 2, not %ld\n"),
1026 		    bsize);
1027 		bsize = DESBLKSIZE;
1028 		(void) fprintf(stderr,
1029 		    gettext("mkfs: bsize reset to default %ld\n"),
1030 		    bsize);
1031 	}
1032 
1033 	if (fssize_db > max_fssize && validate_size(fsi, fssize_db)) {
1034 		(void) fprintf(stderr, gettext(
1035 		    "Warning: the requested size of this file system\n"
1036 		    "(%lld sectors) is greater than the size of the\n"
1037 		    "device reported by the driver (%lld sectors).\n"
1038 		    "However, a read of the device at the requested size\n"
1039 		    "does succeed, so the requested size will be used.\n"),
1040 		    fssize_db, max_fssize);
1041 		max_fssize = fssize_db;
1042 	}
1043 	/*
1044 	 * Since the maximum allocatable unit (the frag) must be less than
1045 	 * or equal to bsize, and the number of frags must be less than or
1046 	 * equal to INT_MAX, the total size of the file system (in
1047 	 * bytes) must be less than or equal to bsize * INT_MAX.
1048 	 */
1049 
1050 	if (max_fssize > ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX)
1051 		max_fssize = ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX;
1052 	range_check_64(&fssize_db, "size", 1024LL, max_fssize, max_fssize, 1);
1053 
1054 	if (fssize_db >= SECTORS_PER_TERABYTE) {
1055 		mtb = 'y';
1056 		if (!in_64bit_mode()) {
1057 			(void) fprintf(stderr, gettext(
1058 "mkfs:  Warning: Creating a file system greater than 1 terabyte on a\n"
1059 "       system running a 32-bit kernel.  This file system will not be\n"
1060 "       accessible until the system is rebooted with a 64-bit kernel.\n"));
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * With newer and much larger disks, the newfs(1M) and mkfs_ufs(1M)
1066 	 * commands had problems in correctly handling the "native" geometries
1067 	 * for various storage devices.
1068 	 *
1069 	 * To handle the new age disks, mkfs_ufs(1M) will use the EFI style
1070 	 * for non-EFI disks that are larger than the CHS addressing limit
1071 	 * ( > 8GB approx ) and ignore the disk geometry information for
1072 	 * these drives. This is what is currently done for multi-terrabyte
1073 	 * filesystems on EFI disks.
1074 	 *
1075 	 * However if the user asked for a specific layout by supplying values
1076 	 * for these parameters, honour the user supplied parameters.
1077 	 */
1078 
1079 	if (mtb != 'y' && label_type == LABEL_TYPE_VTOC &&
1080 	    ((nsect == -1 && ntrack == -1) ||
1081 	    (grow && ntrack_flag == RC_DEFAULT))) {
1082 		/*
1083 		 * "-1" indicates that we were called from newfs and these
1084 		 * arguments were not passed in command line. Calculate nsect
1085 		 * and ntrack in the same manner as newfs.
1086 		 *
1087 		 * This is required because, the defaults for nsect and ntrack
1088 		 * is hardcoded in mkfs, whereas to generate the alternate
1089 		 * superblock locations for the -N option, there is a need for
1090 		 * the geometry based values that newfs would have arrived at.
1091 		 * Newfs would have arrived at these values as below.
1092 		 */
1093 
1094 		if (ioctl(fsi, DKIOCGGEOM, &dkg)) {
1095 		    dprintf(("%s: Unable to read Disk geometry", fsys));
1096 		    perror(gettext("Unable to read Disk geometry"));
1097 		    lockexit(32);
1098 		} else {
1099 		    nsect = dkg.dkg_nsect;
1100 		    ntrack = dkg.dkg_nhead;
1101 #ifdef i386	/* Bug 1170182 */
1102 		    if (ntrack > 32 && (ntrack % 16) != 0) {
1103 			ntrack -= (ntrack % 16);
1104 		    }
1105 #endif
1106 		    if ((dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect)
1107 				> CHSLIMIT) {
1108 			use_efi_dflts = 1;
1109 			retry = 1;
1110 		    }
1111 		}
1112 		dprintf(("DeBuG mkfs: geom = %ld CHSLIMIT = %d\n",
1113 			dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect,
1114 			CHSLIMIT));
1115 	}
1116 
1117 	/*
1118 	 * For the newfs -N case, even if the disksize is > CHSLIMIT, do not
1119 	 * blindly follow EFI style. If the fs_version indicates a geometry
1120 	 * based layout, try that one first. If it fails we can always try the
1121 	 * other logic.
1122 	 *
1123 	 * If we were called from growfs, we will have a problem if we mix
1124 	 * and match the filesystem creation and growth styles. For example,
1125 	 * if we create using EFI style and we have to also grow using EFI
1126 	 * style. So follow the style indicated by the fs_version.
1127 	 *
1128 	 * Read and verify the primary superblock. If it looks sane, use the
1129 	 * fs_version from the superblock. If the primary superblock does
1130 	 * not look good, read and verify the first alternate superblock at
1131 	 * ALTSB. Use the fs_version to decide whether to use the
1132 	 * EFI style logic or the old geometry based logic to calculate
1133 	 * the alternate superblock locations.
1134 	 */
1135 	if ((Nflag && use_efi_dflts) || (grow)) {
1136 		if (grow && ntrack_flag != RC_DEFAULT)
1137 			goto retry_alternate_logic;
1138 		rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize,
1139 			(char *)&altsblock);
1140 		ret = checksblock(altsblock, 1);
1141 
1142 		if (!ret) {
1143 			if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1144 				mtb = 'y';
1145 				goto retry_alternate_logic;
1146 			}
1147 			use_efi_dflts = (altsblock.fs_version ==
1148 				UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1149 		} else {
1150 			/*
1151 			 * The primary superblock didn't help in determining
1152 			 * the fs_version. Try the first alternate superblock.
1153 			 */
1154 			dprintf(("DeBuG checksblock() failed - error : %d"
1155 				" for sb : %d\n", ret, SBOFF/sectorsize));
1156 			rdfs((diskaddr_t)ALTSB, (int)sbsize,
1157 				(char *)&altsblock);
1158 			ret = checksblock(altsblock, 1);
1159 
1160 			if (!ret) {
1161 			    if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1162 				mtb = 'y';
1163 				goto retry_alternate_logic;
1164 			    }
1165 			    use_efi_dflts = (altsblock.fs_version ==
1166 				UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1167 			} else
1168 			    dprintf(("DeBuG checksblock() failed - error : %d"
1169 				" for sb : %d\n", ret, ALTSB));
1170 		}
1171 	}
1172 
1173 retry_alternate_logic:
1174 	invalid_sb_cnt = 0;
1175 	if (use_efi_dflts) {
1176 		save_nsect = nsect;
1177 		save_ntrack = ntrack;
1178 		save_cpg = cpg;
1179 
1180 		nsect = DEF_SECTORS_EFI;
1181 		ntrack = DEF_TRACKS_EFI;
1182 		cpg = DESCPG;
1183 
1184 		dprintf(("\nDeBuG Using EFI defaults\n"));
1185 		dprintf(("DeBuG save_nsect=%d, save_ntrack=%d, save_cpg=%d\n",
1186 		    save_nsect, save_ntrack, save_cpg));
1187 	} else {
1188 		save_nsect = DEF_SECTORS_EFI;
1189 		save_ntrack = DEF_TRACKS_EFI;
1190 		save_cpg = DESCPG;
1191 		dprintf(("\n\nDeBuG mkfs: Using Geometry\n"));
1192 		dprintf(("DeBuG save_nsect=%d, save_ntrack=%d, save_cpg=%d\n",
1193 		    save_nsect, save_ntrack, save_cpg));
1194 		/*
1195 		 * 32K based on max block size of 64K, and rotational layout
1196 		 * test of nsect <= (256 * sectors/block).  Current block size
1197 		 * limit is not 64K, but it's growing soon.
1198 		 */
1199 		range_check(&nsect, "nsect", 1, 32768, DFLNSECT, nsect_flag);
1200 		/*
1201 		 * ntrack is the number of tracks per cylinder.
1202 		 * The ntrack value must be between 1 and the total number of
1203 		 * sectors in the file system.
1204 		 */
1205 		range_check(&ntrack, "ntrack", 1,
1206 		    fssize_db > INT_MAX ? INT_MAX : (uint32_t)fssize_db,
1207 		    DFLNTRAK, ntrack_flag);
1208 	}
1209 
1210 	range_check(&apc, "apc", 0, nsect - 1, 0, apc_flag);
1211 
1212 	if (mtb == 'y')
1213 		fragsize = bsize;
1214 
1215 	range_check(&fragsize, "fragsize", sectorsize, bsize,
1216 	    MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize)), fragsize_flag);
1217 
1218 	if ((bsize / MAXFRAG) > fragsize) {
1219 		(void) fprintf(stderr, gettext(
1220 "fragment size %ld is too small, minimum with block size %ld is %ld\n"),
1221 		    fragsize, bsize, bsize / MAXFRAG);
1222 		(void) fprintf(stderr,
1223 		    gettext("mkfs: fragsize reset to minimum %ld\n"),
1224 		    bsize / MAXFRAG);
1225 		fragsize = bsize / MAXFRAG;
1226 	}
1227 
1228 	if (!POWEROF2(fragsize)) {
1229 		(void) fprintf(stderr,
1230 		    gettext("fragment size must be a power of 2, not %ld\n"),
1231 		    fragsize);
1232 		fragsize = MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize));
1233 		(void) fprintf(stderr,
1234 		    gettext("mkfs: fragsize reset to %ld\n"),
1235 		    fragsize);
1236 	}
1237 
1238 	/* At this point, bsize must be >= fragsize, so no need to check it */
1239 
1240 	if (bsize < PAGESIZE) {
1241 		(void) fprintf(stderr, gettext(
1242 		    "WARNING: filesystem block size (%ld) is smaller than "
1243 		    "memory page size (%ld).\nResulting filesystem can not be "
1244 		    "mounted on this system.\n\n"),
1245 		    bsize, (long)PAGESIZE);
1246 	}
1247 
1248 	range_check(&rps, "rps", 1, 1000, DEFHZ, rps_flag);
1249 	range_check(&minfree, "free", 0, 99, MINFREE, minfree_flag);
1250 	range_check(&nrpos, "nrpos", 1, nsect, MIN(nsect, NRPOS), nrpos_flag);
1251 
1252 	/*
1253 	 * nbpi is variable, but 2MB seems a reasonable upper limit,
1254 	 * as 4MB tends to cause problems (using otherwise-default
1255 	 * parameters).  The true limit is where we end up with one
1256 	 * inode per cylinder group.  If this file system is being
1257 	 * configured for multi-terabyte access, nbpi must be at least 1MB.
1258 	 */
1259 	if (mtb == 'y' && nbpi < MTB_NBPI) {
1260 		(void) fprintf(stderr, gettext("mkfs: bad value for nbpi: "
1261 			"must be at least 1048576 for multi-terabyte, "
1262 			"nbpi reset to default 1048576\n"));
1263 		nbpi = MTB_NBPI;
1264 	}
1265 
1266 	if (mtb == 'y')
1267 		range_check(&nbpi, "nbpi", MTB_NBPI, 2 * MB, MTB_NBPI,
1268 			nbpi_flag);
1269 	else
1270 		range_check(&nbpi, "nbpi", DEV_BSIZE, 2 * MB, NBPI, nbpi_flag);
1271 
1272 	/*
1273 	 * maxcpg is another variably-limited parameter.  Calculate
1274 	 * the limit based on what we've got for its dependent
1275 	 * variables.  Effectively, it's how much space is left in the
1276 	 * superblock after all the other bits are accounted for.  We
1277 	 * only fill in sblock fields so we can use MAXIpG.
1278 	 *
1279 	 * If the calculation of maxcpg below (for the mtb == 'n'
1280 	 * case) is changed, update newfs as well.
1281 	 *
1282 	 * For old-style, non-MTB format file systems, use the old
1283 	 * algorithm for calculating the maximum cylinder group size,
1284 	 * even though it limits the cylinder group more than necessary.
1285 	 * Since layout can affect performance, we don't want to change
1286 	 * the default layout for non-MTB file systems at this time.
1287 	 * However, for MTB file systems, use the new maxcpg calculation,
1288 	 * which really maxes out the cylinder group size.
1289 	 */
1290 
1291 	sblock.fs_bsize = bsize;
1292 	sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1293 
1294 	if (mtb == 'n') {
1295 		maxcpg = (bsize - sizeof (struct cg) -
1296 		    howmany(MAXIpG(&sblock), NBBY)) /
1297 		    (sizeof (long) + nrpos * sizeof (short) +
1298 		    nsect / (MAXFRAG * NBBY));
1299 	} else {
1300 		maxcpg = compute_maxcpg(bsize, fragsize, nbpi, nrpos,
1301 		    nsect * ntrack);
1302 	}
1303 
1304 	dprintf(("DeBuG cpg : %ld\n", cpg));
1305 	if (cpg == -1)
1306 		cpg = maxcpg;
1307 	dprintf(("DeBuG cpg : %ld\n", cpg));
1308 
1309 	/*
1310 	 * mincpg is variable in complex ways, so we really can't
1311 	 * do a sane lower-end limit check at this point.
1312 	 */
1313 	range_check(&cpg, "cgsize", 1, maxcpg, MIN(maxcpg, DESCPG), cpg_flag);
1314 
1315 	/*
1316 	 * get the controller info
1317 	 */
1318 	ismdd = 0;
1319 	islog = 0;
1320 	islogok = 0;
1321 	waslog = 0;
1322 
1323 	if (ioctl(fsi, DKIOCINFO, &dkcinfo) == 0)
1324 		/*
1325 		 * if it is an MDD (disksuite) device
1326 		 */
1327 		if (dkcinfo.dki_ctype == DKC_MD) {
1328 			ismdd++;
1329 			/*
1330 			 * check the logging device
1331 			 */
1332 			if (ioctl(fsi, _FIOISLOG, NULL) == 0) {
1333 				islog++;
1334 				if (ioctl(fsi, _FIOISLOGOK, NULL) == 0)
1335 					islogok++;
1336 			}
1337 		}
1338 
1339 	/*
1340 	 * Do not grow the file system, but print on stdout the maximum
1341 	 * size in sectors to which the file system can be increased.
1342 	 * The calculated size is limited by fssize_db.
1343 	 * Note that we don't lock the filesystem and therefore under rare
1344 	 * conditions (the filesystem is mounted, the free block count is
1345 	 * almost zero, and the superuser is still changing it) the calculated
1346 	 * size can be imprecise.
1347 	 */
1348 	if (Pflag) {
1349 		(void) printf("%llu\n", probe_summaryinfo());
1350 		exit(0);
1351 	}
1352 
1353 	/*
1354 	 * If we're growing an existing filesystem, then we're about
1355 	 * to start doing things that can require recovery efforts if
1356 	 * we get interrupted, so make sure we get a chance to do so.
1357 	 */
1358 	if (grow) {
1359 		sigact.sa_handler = recover_from_sigint;
1360 		sigemptyset(&sigact.sa_mask);
1361 		sigact.sa_flags = SA_RESTART;
1362 
1363 		if (sigaction(SIGINT, &sigact, (struct sigaction *)NULL) < 0) {
1364 			perror(gettext("Could not register SIGINT handler"));
1365 			lockexit(3);
1366 		}
1367 	}
1368 
1369 	if (!Nflag) {
1370 		/*
1371 		 * Check if MNTTAB is trustable
1372 		 */
1373 		if (statvfs64(MNTTAB, &fs) < 0) {
1374 			(void) fprintf(stderr, gettext("can't statvfs %s\n"),
1375 				MNTTAB);
1376 			exit(32);
1377 		}
1378 
1379 		if (strcmp(MNTTYPE_MNTFS, fs.f_basetype) != 0) {
1380 			(void) fprintf(stderr, gettext(
1381 				"%s file system type is not %s, can't mkfs\n"),
1382 				MNTTAB, MNTTYPE_MNTFS);
1383 			exit(32);
1384 		}
1385 
1386 		special = getfullblkname(fsys);
1387 		checkdev(fsys, special);
1388 
1389 		/*
1390 		 * If we found the block device name,
1391 		 * then check the mount table.
1392 		 * if mounted, and growing write lock the file system
1393 		 *
1394 		 */
1395 		if ((special != NULL) && (*special != '\0')) {
1396 			if ((mnttab = fopen(MNTTAB, "r")) == NULL) {
1397 				(void) fprintf(stderr, gettext(
1398 					"can't open %s\n"), MNTTAB);
1399 				exit(32);
1400 			}
1401 			while ((getmntent(mnttab, &mntp)) == NULL) {
1402 				if (grow) {
1403 					checkmount(&mntp, special);
1404 					continue;
1405 				}
1406 				if (strcmp(special, mntp.mnt_special) == 0) {
1407 					(void) fprintf(stderr, gettext(
1408 					    "%s is mounted, can't mkfs\n"),
1409 					    special);
1410 					exit(32);
1411 				}
1412 			}
1413 			(void) fclose(mnttab);
1414 		}
1415 
1416 		if (directory && (ismounted == 0)) {
1417 			(void) fprintf(stderr, gettext("%s is not mounted\n"),
1418 			    special);
1419 			lockexit(32);
1420 		}
1421 
1422 		fso = (grow) ? open64(fsys, O_WRONLY) : creat64(fsys, 0666);
1423 		if (fso < 0) {
1424 			saverr = errno;
1425 			(void) fprintf(stderr,
1426 			    gettext("%s: cannot create: %s\n"),
1427 			    fsys, strerror(saverr));
1428 			lockexit(32);
1429 		}
1430 
1431 	} else {
1432 
1433 		/*
1434 		 * For the -N case, a file descriptor is needed for the llseek()
1435 		 * in wtfs(). See the comment in wtfs() for more information.
1436 		 *
1437 		 * Get a file descriptor that's read-only so that this code
1438 		 * doesn't accidentally write to the file.
1439 		 */
1440 		fso = open64(fsys, O_RDONLY);
1441 		if (fso < 0) {
1442 			saverr = errno;
1443 			(void) fprintf(stderr, gettext("%s: cannot open: %s\n"),
1444 			    fsys, strerror(saverr));
1445 			lockexit(32);
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * seed random # generator (for ic_generation)
1451 	 */
1452 #ifdef MKFS_DEBUG
1453 	srand48(12962);	/* reproducible results */
1454 #else
1455 	srand48((long)(time((time_t *)NULL) + getpid()));
1456 #endif
1457 
1458 	if (grow) {
1459 		growinit(fsys);
1460 		goto grow00;
1461 	}
1462 
1463 	/*
1464 	 * Validate the given file system size.
1465 	 * Verify that its last block can actually be accessed.
1466 	 *
1467 	 * Note: it's ok to use sblock as a buffer because it is immediately
1468 	 * overwritten by the rdfs() of the superblock in the next line.
1469 	 *
1470 	 * ToDo: Because the size checking is done in rdfs()/wtfs(), the
1471 	 * error message for specifying an illegal size is very unfriendly.
1472 	 * In the future, one could replace the rdfs()/wtfs() calls
1473 	 * below with in-line calls to read() or write(). This allows better
1474 	 * error messages to be put in place.
1475 	 */
1476 	rdfs(fssize_db - 1, (int)sectorsize, (char *)&sblock);
1477 
1478 	/*
1479 	 * make the fs unmountable
1480 	 */
1481 	rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1482 	sblock.fs_magic = -1;
1483 	sblock.fs_clean = FSBAD;
1484 	sblock.fs_state = FSOKAY - sblock.fs_time;
1485 	wtfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1486 	bzero(&sblock, (size_t)sbsize);
1487 
1488 	sblock.fs_nsect = nsect;
1489 	sblock.fs_ntrak = ntrack;
1490 
1491 	/*
1492 	 * Validate specified/determined spc
1493 	 * and calculate minimum cylinders per group.
1494 	 */
1495 
1496 	/*
1497 	 * sectors/cyl = tracks/cyl * sectors/track
1498 	 */
1499 	sblock.fs_spc = sblock.fs_ntrak * sblock.fs_nsect;
1500 
1501 grow00:
1502 	if (apc_flag) {
1503 		sblock.fs_spc -= apc;
1504 	}
1505 	/*
1506 	 * Have to test for this separately from apc_flag, due to
1507 	 * the growfs case....
1508 	 */
1509 	if (sblock.fs_spc != sblock.fs_ntrak * sblock.fs_nsect) {
1510 		spc_flag = 1;
1511 	}
1512 	if (grow)
1513 		goto grow10;
1514 
1515 	sblock.fs_nrpos = nrpos;
1516 	sblock.fs_bsize = bsize;
1517 	sblock.fs_fsize = fragsize;
1518 	sblock.fs_minfree = minfree;
1519 
1520 grow10:
1521 	if (nbpi < sblock.fs_fsize) {
1522 		(void) fprintf(stderr, gettext(
1523 		"warning: wasteful data byte allocation / inode (nbpi):\n"));
1524 		(void) fprintf(stderr, gettext(
1525 		    "%ld smaller than allocatable fragment size of %d\n"),
1526 		    nbpi, sblock.fs_fsize);
1527 	}
1528 	if (grow)
1529 		goto grow20;
1530 
1531 	if (opt == 's')
1532 		sblock.fs_optim = FS_OPTSPACE;
1533 	else
1534 		sblock.fs_optim = FS_OPTTIME;
1535 
1536 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
1537 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
1538 	/*
1539 	 * Planning now for future expansion.
1540 	 */
1541 #if defined(_BIG_ENDIAN)
1542 		sblock.fs_qbmask.val[0] = 0;
1543 		sblock.fs_qbmask.val[1] = ~sblock.fs_bmask;
1544 		sblock.fs_qfmask.val[0] = 0;
1545 		sblock.fs_qfmask.val[1] = ~sblock.fs_fmask;
1546 #endif
1547 #if defined(_LITTLE_ENDIAN)
1548 		sblock.fs_qbmask.val[0] = ~sblock.fs_bmask;
1549 		sblock.fs_qbmask.val[1] = 0;
1550 		sblock.fs_qfmask.val[0] = ~sblock.fs_fmask;
1551 		sblock.fs_qfmask.val[1] = 0;
1552 #endif
1553 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
1554 		sblock.fs_bshift++;
1555 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
1556 		sblock.fs_fshift++;
1557 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
1558 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
1559 		sblock.fs_fragshift++;
1560 	if (sblock.fs_frag > MAXFRAG) {
1561 		(void) fprintf(stderr, gettext(
1562 	"fragment size %d is too small, minimum with block size %d is %d\n"),
1563 		    sblock.fs_fsize, sblock.fs_bsize,
1564 		    sblock.fs_bsize / MAXFRAG);
1565 		lockexit(32);
1566 	}
1567 	sblock.fs_nindir = sblock.fs_bsize / sizeof (daddr32_t);
1568 	sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1569 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
1570 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
1571 		sblock.fs_fsbtodb++;
1572 
1573 	/*
1574 	 * Compute the super-block, cylinder group, and inode blocks.
1575 	 * Note that these "blkno" are really fragment addresses.
1576 	 * For example, on an 8K/1K (block/fragment) system, fs_sblkno is 16,
1577 	 * fs_cblkno is 24, and fs_iblkno is 32. This is why CGSIZE is so
1578 	 * important: only 1 FS block is allocated for the cg struct (fragment
1579 	 * numbers 24 through 31).
1580 	 */
1581 	sblock.fs_sblkno =
1582 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
1583 	sblock.fs_cblkno = (daddr32_t)(sblock.fs_sblkno +
1584 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
1585 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
1586 
1587 	sblock.fs_cgoffset = roundup(
1588 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
1589 	for (sblock.fs_cgmask = -1, i = sblock.fs_ntrak; i > 1; i >>= 1)
1590 		sblock.fs_cgmask <<= 1;
1591 	if (!POWEROF2(sblock.fs_ntrak))
1592 		sblock.fs_cgmask <<= 1;
1593 	/*
1594 	 * Validate specified/determined spc
1595 	 * and calculate minimum cylinders per group.
1596 	 */
1597 
1598 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
1599 	    sblock.fs_cpc > 1 && (i & 1) == 0;
1600 	    sblock.fs_cpc >>= 1, i >>= 1)
1601 		/* void */;
1602 	mincpc = sblock.fs_cpc;
1603 
1604 	/* if these calculations are changed, check dump_fscmd also */
1605 	bpcg = (uint64_t)sblock.fs_spc * sectorsize;
1606 	inospercg = (uint64_t)roundup(bpcg / sizeof (struct dinode),
1607 	    INOPB(&sblock));
1608 	if (inospercg > MAXIpG(&sblock))
1609 		inospercg = MAXIpG(&sblock);
1610 	used = (uint64_t)(sblock.fs_iblkno + inospercg /
1611 	    INOPF(&sblock)) * NSPF(&sblock);
1612 	mincpgcnt = (long)howmany((uint64_t)sblock.fs_cgoffset *
1613 	    (~sblock.fs_cgmask) + used, sblock.fs_spc);
1614 	mincpg = roundup(mincpgcnt, mincpc);
1615 	/*
1616 	 * Insure that cylinder group with mincpg has enough space
1617 	 * for block maps
1618 	 */
1619 	sblock.fs_cpg = mincpg;
1620 	sblock.fs_ipg = (int32_t)inospercg;
1621 	mapcramped = 0;
1622 
1623 	/*
1624 	 * Make sure the cg struct fits within the file system block.
1625 	 * Use larger block sizes until it fits
1626 	 */
1627 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
1628 		mapcramped = 1;
1629 		if (sblock.fs_bsize < MAXBSIZE) {
1630 			sblock.fs_bsize <<= 1;
1631 			if ((i & 1) == 0) {
1632 				i >>= 1;
1633 			} else {
1634 				sblock.fs_cpc <<= 1;
1635 				mincpc <<= 1;
1636 				mincpg = roundup(mincpgcnt, mincpc);
1637 				sblock.fs_cpg = mincpg;
1638 			}
1639 			sblock.fs_frag <<= 1;
1640 			sblock.fs_fragshift += 1;
1641 			if (sblock.fs_frag <= MAXFRAG)
1642 				continue;
1643 		}
1644 
1645 		/*
1646 		 * Looped far enough. The fragment is now as large as the
1647 		 * filesystem block!
1648 		 */
1649 		if (sblock.fs_fsize == sblock.fs_bsize) {
1650 			(void) fprintf(stderr, gettext(
1651 		    "There is no block size that can support this disk\n"));
1652 			lockexit(32);
1653 		}
1654 
1655 		/*
1656 		 * Try a larger fragment. Double the fragment size.
1657 		 */
1658 		sblock.fs_frag >>= 1;
1659 		sblock.fs_fragshift -= 1;
1660 		sblock.fs_fsize <<= 1;
1661 		sblock.fs_nspf <<= 1;
1662 	}
1663 	/*
1664 	 * Insure that cylinder group with mincpg has enough space for inodes
1665 	 */
1666 	inodecramped = 0;
1667 	used *= sectorsize;
1668 	nbytes64 = (uint64_t)mincpg * bpcg - used;
1669 	inospercg = (uint64_t)roundup((nbytes64 / nbpi), INOPB(&sblock));
1670 	sblock.fs_ipg = (int32_t)inospercg;
1671 	while (inospercg > MAXIpG(&sblock)) {
1672 		inodecramped = 1;
1673 		if (mincpc == 1 || sblock.fs_frag == 1 ||
1674 		    sblock.fs_bsize == MINBSIZE)
1675 			break;
1676 		nbytes64 = (uint64_t)mincpg * bpcg - used;
1677 		(void) fprintf(stderr,
1678 		    gettext("With a block size of %d %s %lu\n"),
1679 		    sblock.fs_bsize, gettext("minimum bytes per inode is"),
1680 		    (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1681 		sblock.fs_bsize >>= 1;
1682 		sblock.fs_frag >>= 1;
1683 		sblock.fs_fragshift -= 1;
1684 		mincpc >>= 1;
1685 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
1686 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
1687 			sblock.fs_bsize <<= 1;
1688 			break;
1689 		}
1690 		mincpg = sblock.fs_cpg;
1691 		nbytes64 = (uint64_t)mincpg * bpcg - used;
1692 		inospercg = (uint64_t)roundup((nbytes64 / nbpi),
1693 			INOPB(&sblock));
1694 		sblock.fs_ipg = (int32_t)inospercg;
1695 	}
1696 	if (inodecramped) {
1697 		if (inospercg > MAXIpG(&sblock)) {
1698 			nbytes64 = (uint64_t)mincpg * bpcg - used;
1699 			(void) fprintf(stderr, gettext(
1700 			    "Minimum bytes per inode is %d\n"),
1701 			    (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1702 		} else if (!mapcramped) {
1703 			(void) fprintf(stderr, gettext(
1704 	    "With %ld bytes per inode, minimum cylinders per group is %ld\n"),
1705 			    nbpi, mincpg);
1706 		}
1707 	}
1708 	if (mapcramped) {
1709 		(void) fprintf(stderr, gettext(
1710 		    "With %d sectors per cylinder, minimum cylinders "
1711 		    "per group is %ld\n"),
1712 		    sblock.fs_spc, mincpg);
1713 	}
1714 	if (inodecramped || mapcramped) {
1715 		/*
1716 		 * To make this at least somewhat comprehensible in
1717 		 * the world of i18n, figure out what we're going to
1718 		 * say and then say it all at one time.  The days of
1719 		 * needing to scrimp on string space are behind us....
1720 		 */
1721 		if ((sblock.fs_bsize != bsize) &&
1722 		    (sblock.fs_fsize != fragsize)) {
1723 			(void) fprintf(stderr, gettext(
1724 	    "This requires the block size to be changed from %ld to %d\n"
1725 	    "and the fragment size to be changed from %ld to %d\n"),
1726 			    bsize, sblock.fs_bsize,
1727 			    fragsize, sblock.fs_fsize);
1728 		} else if (sblock.fs_bsize != bsize) {
1729 			(void) fprintf(stderr, gettext(
1730 	    "This requires the block size to be changed from %ld to %d\n"),
1731 			    bsize, sblock.fs_bsize);
1732 		} else if (sblock.fs_fsize != fragsize) {
1733 			(void) fprintf(stderr, gettext(
1734 	    "This requires the fragment size to be changed from %ld to %d\n"),
1735 			    fragsize, sblock.fs_fsize);
1736 		} else {
1737 			(void) fprintf(stderr, gettext(
1738 	    "Unable to make filesystem fit with the given constraints\n"));
1739 		}
1740 		(void) fprintf(stderr, gettext(
1741 		    "Please re-run mkfs with corrected parameters\n"));
1742 		lockexit(32);
1743 	}
1744 	/*
1745 	 * Calculate the number of cylinders per group
1746 	 */
1747 	sblock.fs_cpg = cpg;
1748 	if (sblock.fs_cpg % mincpc != 0) {
1749 		(void) fprintf(stderr, gettext(
1750 		    "Warning: cylinder groups must have a multiple "
1751 		    "of %ld cylinders with the given\n         parameters\n"),
1752 		    mincpc);
1753 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
1754 		(void) fprintf(stderr, gettext("Rounded cgsize up to %d\n"),
1755 		    sblock.fs_cpg);
1756 	}
1757 	/*
1758 	 * Must insure there is enough space for inodes
1759 	 */
1760 	/* if these calculations are changed, check dump_fscmd also */
1761 	nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1762 	sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi), INOPB(&sblock));
1763 
1764 	/*
1765 	 * Slim down cylinders per group, until the inodes can fit.
1766 	 */
1767 	while (sblock.fs_ipg > MAXIpG(&sblock)) {
1768 		inodecramped = 1;
1769 		sblock.fs_cpg -= mincpc;
1770 		nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1771 		sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1772 			INOPB(&sblock));
1773 	}
1774 	/*
1775 	 * Must insure there is enough space to hold block map.
1776 	 * Cut down on cylinders per group, until the cg struct fits in a
1777 	 * filesystem block.
1778 	 */
1779 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
1780 		mapcramped = 1;
1781 		sblock.fs_cpg -= mincpc;
1782 		nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1783 		sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1784 			INOPB(&sblock));
1785 	}
1786 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
1787 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
1788 		(void) fprintf(stderr,
1789 		gettext("newfs: panic (fs_cpg * fs_spc) %% NSPF != 0\n"));
1790 		lockexit(32);
1791 	}
1792 	if (sblock.fs_cpg < mincpg) {
1793 		(void) fprintf(stderr, gettext(
1794 "With the given parameters, cgsize must be at least %ld; please re-run mkfs\n"),
1795 			mincpg);
1796 		lockexit(32);
1797 	}
1798 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
1799 grow20:
1800 	/*
1801 	 * Now have size for file system and nsect and ntrak.
1802 	 * Determine number of cylinders and blocks in the file system.
1803 	 */
1804 	fssize_frag = (int64_t)dbtofsb(&sblock, fssize_db);
1805 	if (fssize_frag > INT_MAX) {
1806 		(void) fprintf(stderr, gettext(
1807 "There are too many fragments in the system, increase fragment size\n"),
1808 		    mincpg);
1809 		lockexit(32);
1810 	}
1811 	sblock.fs_size = (int32_t)fssize_frag;
1812 	sblock.fs_ncyl = (int32_t)(fssize_frag * NSPF(&sblock) / sblock.fs_spc);
1813 	if (fssize_frag * NSPF(&sblock) >
1814 	    (uint64_t)sblock.fs_ncyl * sblock.fs_spc) {
1815 		sblock.fs_ncyl++;
1816 		warn = 1;
1817 	}
1818 	if (sblock.fs_ncyl < 1) {
1819 		(void) fprintf(stderr, gettext(
1820 			"file systems must have at least one cylinder\n"));
1821 		lockexit(32);
1822 	}
1823 	if (grow)
1824 		goto grow30;
1825 	/*
1826 	 * Determine feasability/values of rotational layout tables.
1827 	 *
1828 	 * The size of the rotational layout tables is limited by the size
1829 	 * of the file system block, fs_bsize.  The amount of space
1830 	 * available for tables is calculated as (fs_bsize - sizeof (struct
1831 	 * fs)).  The size of these tables is inversely proportional to the
1832 	 * block size of the file system. The size increases if sectors per
1833 	 * track are not powers of two, because more cylinders must be
1834 	 * described by the tables before the rotational pattern repeats
1835 	 * (fs_cpc).
1836 	 */
1837 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
1838 	sblock.fs_sbsize = fragroundup(&sblock, sizeof (struct fs));
1839 	sblock.fs_npsect = sblock.fs_nsect;
1840 	if (sblock.fs_ntrak == 1) {
1841 		sblock.fs_cpc = 0;
1842 		goto next;
1843 	}
1844 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof (short);
1845 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
1846 	totalsbsize = sizeof (struct fs) + rotblsize;
1847 
1848 	/* do static allocation if nrpos == 8 and fs_cpc == 16  */
1849 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
1850 		/* use old static table space */
1851 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
1852 		    (char *)(&sblock.fs_link);
1853 		sblock.fs_rotbloff = &sblock.fs_space[0] -
1854 		    (uchar_t *)(&sblock.fs_link);
1855 	} else {
1856 		/* use 4.3 dynamic table space */
1857 		sblock.fs_postbloff = &sblock.fs_space[0] -
1858 		    (uchar_t *)(&sblock.fs_link);
1859 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
1860 		totalsbsize += postblsize;
1861 	}
1862 	if (totalsbsize > sblock.fs_bsize ||
1863 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
1864 		(void) fprintf(stderr, gettext(
1865 		    "Warning: insufficient space in super block for\n"
1866 		    "rotational layout tables with nsect %d, ntrack %d, "
1867 		    "and nrpos %d.\nOmitting tables - file system "
1868 		    "performance may be impaired.\n"),
1869 		    sblock.fs_nsect, sblock.fs_ntrak, sblock.fs_nrpos);
1870 
1871 		/*
1872 		 * Setting fs_cpc to 0 tells alloccgblk() in ufs_alloc.c to
1873 		 * ignore the positional layout table and rotational
1874 		 * position table.
1875 		 */
1876 		sblock.fs_cpc = 0;
1877 		goto next;
1878 	}
1879 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
1880 
1881 
1882 	/*
1883 	 * calculate the available blocks for each rotational position
1884 	 */
1885 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
1886 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
1887 			fs_postbl(&sblock, cylno)[rpos] = -1;
1888 	for (i = (rotblsize - 1) * sblock.fs_frag;
1889 	    i >= 0; i -= sblock.fs_frag) {
1890 		cylno = cbtocylno(&sblock, i);
1891 		rpos = cbtorpos(&sblock, i);
1892 		blk = fragstoblks(&sblock, i);
1893 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
1894 			fs_rotbl(&sblock)[blk] = 0;
1895 		else
1896 			fs_rotbl(&sblock)[blk] =
1897 			    fs_postbl(&sblock, cylno)[rpos] - blk;
1898 		fs_postbl(&sblock, cylno)[rpos] = blk;
1899 	}
1900 next:
1901 grow30:
1902 	/*
1903 	 * Compute/validate number of cylinder groups.
1904 	 * Note that if an excessively large filesystem is specified
1905 	 * (e.g., more than 16384 cylinders for an 8K filesystem block), it
1906 	 * does not get detected until checksummarysize()
1907 	 */
1908 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
1909 	if (sblock.fs_ncyl % sblock.fs_cpg)
1910 		sblock.fs_ncg++;
1911 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
1912 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
1913 	ibpcl = cgdmin(&sblock, i) - cgbase(&sblock, i);
1914 	if (ibpcl >= sblock.fs_fpg) {
1915 		(void) fprintf(stderr, gettext(
1916 		    "inode blocks/cyl group (%d) >= data blocks (%d)\n"),
1917 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
1918 		    sblock.fs_fpg / sblock.fs_frag);
1919 		if ((ibpcl < 0) || (sblock.fs_fpg < 0)) {
1920 			(void) fprintf(stderr, gettext(
1921 	    "number of cylinders per cylinder group (%d) must be decreased.\n"),
1922 			    sblock.fs_cpg);
1923 		} else {
1924 			(void) fprintf(stderr, gettext(
1925 	    "number of cylinders per cylinder group (%d) must be increased.\n"),
1926 			    sblock.fs_cpg);
1927 		}
1928 		(void) fprintf(stderr, gettext(
1929 "Note that cgsize may have been adjusted to allow struct cg to fit.\n"));
1930 		lockexit(32);
1931 	}
1932 	j = sblock.fs_ncg - 1;
1933 	if ((i = fssize_frag - j * sblock.fs_fpg) < sblock.fs_fpg &&
1934 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
1935 		(void) fprintf(stderr, gettext(
1936 		    "Warning: inode blocks/cyl group (%d) >= data "
1937 		    "blocks (%ld) in last\n    cylinder group. This "
1938 		    "implies %ld sector(s) cannot be allocated.\n"),
1939 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
1940 		    i / sblock.fs_frag, i * NSPF(&sblock));
1941 		sblock.fs_ncg--;
1942 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
1943 		sblock.fs_size = fssize_frag =
1944 		    (int64_t)sblock.fs_ncyl * (int64_t)sblock.fs_spc /
1945 		    (int64_t)NSPF(&sblock);
1946 		warn = 0;
1947 	}
1948 	if (warn && !spc_flag) {
1949 		(void) fprintf(stderr, gettext(
1950 		    "Warning: %d sector(s) in last cylinder unallocated\n"),
1951 		    sblock.fs_spc - (uint32_t)(fssize_frag * NSPF(&sblock) -
1952 		    (uint64_t)(sblock.fs_ncyl - 1) * sblock.fs_spc));
1953 	}
1954 	/*
1955 	 * fill in remaining fields of the super block
1956 	 */
1957 
1958 	/*
1959 	 * The csum records are stored in cylinder group 0, starting at
1960 	 * cgdmin, the first data block.
1961 	 */
1962 	sblock.fs_csaddr = cgdmin(&sblock, 0);
1963 	sblock.fs_cssize =
1964 	    fragroundup(&sblock, sblock.fs_ncg * sizeof (struct csum));
1965 	i = sblock.fs_bsize / sizeof (struct csum);
1966 	sblock.fs_csmask = ~(i - 1);
1967 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
1968 		sblock.fs_csshift++;
1969 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
1970 
1971 	checksummarysize();
1972 	if (mtb == 'y') {
1973 		sblock.fs_magic = MTB_UFS_MAGIC;
1974 		sblock.fs_version = MTB_UFS_VERSION_1;
1975 	} else {
1976 		sblock.fs_magic = FS_MAGIC;
1977 		if (use_efi_dflts)
1978 			sblock.fs_version = UFS_EFISTYLE4NONEFI_VERSION_2;
1979 		else
1980 			sblock.fs_version = UFS_VERSION_MIN;
1981 	}
1982 
1983 	if (grow) {
1984 		bcopy((caddr_t)grow_fscs, (caddr_t)fscs, (int)grow_fs_cssize);
1985 		extendsummaryinfo();
1986 		goto grow40;
1987 	}
1988 	sblock.fs_rotdelay = rotdelay;
1989 	sblock.fs_maxcontig = maxcontig;
1990 	sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
1991 
1992 	sblock.fs_rps = rps;
1993 	sblock.fs_cgrotor = 0;
1994 	sblock.fs_cstotal.cs_ndir = 0;
1995 	sblock.fs_cstotal.cs_nbfree = 0;
1996 	sblock.fs_cstotal.cs_nifree = 0;
1997 	sblock.fs_cstotal.cs_nffree = 0;
1998 	sblock.fs_fmod = 0;
1999 	sblock.fs_ronly = 0;
2000 	sblock.fs_time = mkfstime;
2001 	sblock.fs_state = FSOKAY - sblock.fs_time;
2002 	sblock.fs_clean = FSCLEAN;
2003 grow40:
2004 
2005 	/*
2006 	 * If all that's needed is a dump of the superblock we
2007 	 * would use by default, we've got it now.  So, splat it
2008 	 * out and leave.
2009 	 */
2010 	if (rflag) {
2011 		dump_sblock();
2012 		lockexit(0);
2013 	}
2014 	/*
2015 	 * Dump out summary information about file system.
2016 	 */
2017 	(void) fprintf(stderr, gettext(
2018 	    "%s:\t%lld sectors in %d cylinders of %d tracks, %d sectors\n"),
2019 	    fsys, (uint64_t)sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
2020 	    sblock.fs_ntrak, sblock.fs_nsect);
2021 	(void) fprintf(stderr, gettext(
2022 	    "\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n"),
2023 	    (float)sblock.fs_size * sblock.fs_fsize / MB, sblock.fs_ncg,
2024 	    sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize / MB,
2025 	    sblock.fs_ipg);
2026 
2027 	tmpbuf = calloc(sblock.fs_ncg / 50 + 500, 1);
2028 	if (tmpbuf == NULL) {
2029 		perror("calloc");
2030 		lockexit(32);
2031 	}
2032 	/*
2033 	 * Now build the cylinders group blocks and
2034 	 * then print out indices of cylinder groups.
2035 	 */
2036 	tprintf(gettext(
2037 	    "super-block backups (for fsck -F ufs -o b=#) at:\n"));
2038 	for (width = cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++) {
2039 		if ((grow == 0) || (cylno >= grow_fs_ncg))
2040 			initcg(cylno);
2041 		num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2042 		/*
2043 		 * If Nflag and if the disk is larger than the CHSLIMIT,
2044 		 * then sanity test the superblocks before reporting. If there
2045 		 * are too many superblocks which look insane, we probably
2046 		 * have to retry with alternate logic. If we are already
2047 		 * retrying, then our efforts to arrive at alternate
2048 		 * superblocks failed, so complain and exit.
2049 		 */
2050 		if (Nflag && retry) {
2051 		    skip_this_sb = 0;
2052 		    rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2053 		    ret = checksblock(altsblock, 1);
2054 		    if (ret) {
2055 			skip_this_sb = 1;
2056 			invalid_sb_cnt++;
2057 			dprintf(("DeBuG checksblock() failed - error : %d"
2058 			    " for sb : %llu invalid_sb_cnt : %d\n",
2059 			    ret, num, invalid_sb_cnt));
2060 		    } else {
2061 			/*
2062 			 * Though the superblock looks sane, verify if the
2063 			 * fs_version in the superblock and the logic that
2064 			 * we are using to arrive at the superblocks match.
2065 			 */
2066 			if (use_efi_dflts && altsblock.fs_version
2067 			    != UFS_EFISTYLE4NONEFI_VERSION_2) {
2068 				skip_this_sb = 1;
2069 				invalid_sb_cnt++;
2070 			}
2071 		    }
2072 		    if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2073 			if (retry > 1) {
2074 			    (void) fprintf(stderr, gettext(
2075 				"Error determining alternate "
2076 				"superblock locations\n"));
2077 			    free(tmpbuf);
2078 			    lockexit(32);
2079 			}
2080 			retry++;
2081 			use_efi_dflts = !use_efi_dflts;
2082 			nsect = save_nsect;
2083 			ntrack = save_ntrack;
2084 			cpg = save_cpg;
2085 			free(tmpbuf);
2086 			goto retry_alternate_logic;
2087 		    }
2088 		    if (skip_this_sb)
2089 			continue;
2090 		}
2091 		(void) sprintf(pbuf, " %llu,", num);
2092 		plen = strlen(pbuf);
2093 		if ((width + plen) > (WIDTH - 1)) {
2094 			width = plen;
2095 			tprintf("\n");
2096 		} else {
2097 			width += plen;
2098 		}
2099 		if (Nflag && retry)
2100 			strncat(tmpbuf, pbuf, strlen(pbuf));
2101 		else
2102 			(void) fprintf(stderr, "%s", pbuf);
2103 	}
2104 	tprintf("\n");
2105 
2106 	remaining_cg = sblock.fs_ncg - cylno;
2107 
2108 	/*
2109 	 * If there are more than 300 cylinder groups still to be
2110 	 * initialized, print a "." for every 50 cylinder groups.
2111 	 */
2112 	if (remaining_cg > 300) {
2113 		tprintf(gettext("Initializing cylinder groups:\n"));
2114 		do_dot = 1;
2115 	}
2116 
2117 	/*
2118 	 * Now initialize all cylinder groups between the first ten
2119 	 * and the last ten.
2120 	 *
2121 	 * If the number of cylinder groups was less than 10, all of the
2122 	 * cylinder group offsets would have printed in the last loop
2123 	 * and cylno will already be equal to sblock.fs_ncg and so this
2124 	 * loop will not be entered.  If there are less than 20 cylinder
2125 	 * groups, cylno is already less than fs_ncg - 10, so this loop
2126 	 * won't be entered in that case either.
2127 	 */
2128 
2129 	i = 0;
2130 	for (; cylno < sblock.fs_ncg - 10; cylno++) {
2131 		if ((grow == 0) || (cylno >= grow_fs_ncg))
2132 			initcg(cylno);
2133 		if (do_dot && cylno % 50 == 0) {
2134 			tprintf(".");
2135 			i++;
2136 			if (i == WIDTH - 1) {
2137 				tprintf("\n");
2138 				i = 0;
2139 			}
2140 		}
2141 	}
2142 
2143 	/*
2144 	 * Now print the cylinder group offsets for the last 10
2145 	 * cylinder groups, if any are left.
2146 	 */
2147 
2148 	if (do_dot) {
2149 		tprintf(gettext(
2150 	    "\nsuper-block backups for last 10 cylinder groups at:\n"));
2151 	}
2152 	for (width = 0; cylno < sblock.fs_ncg; cylno++) {
2153 		if ((grow == 0) || (cylno >= grow_fs_ncg))
2154 			initcg(cylno);
2155 		num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2156 		if (Nflag && retry) {
2157 		    skip_this_sb = 0;
2158 		    rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2159 		    ret = checksblock(altsblock, 1);
2160 		    if (ret) {
2161 			skip_this_sb = 1;
2162 			invalid_sb_cnt++;
2163 			dprintf(("DeBuG checksblock() failed - error : %d"
2164 			    " for sb : %llu invalid_sb_cnt : %d\n",
2165 			    ret, num, invalid_sb_cnt));
2166 		    } else {
2167 			/*
2168 			 * Though the superblock looks sane, verify if the
2169 			 * fs_version in the superblock and the logic that
2170 			 * we are using to arrive at the superblocks match.
2171 			 */
2172 			if (use_efi_dflts && altsblock.fs_version
2173 			    != UFS_EFISTYLE4NONEFI_VERSION_2) {
2174 				skip_this_sb = 1;
2175 				invalid_sb_cnt++;
2176 			}
2177 		    }
2178 		    if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2179 			if (retry > 1) {
2180 			    (void) fprintf(stderr, gettext(
2181 				"Error determining alternate "
2182 				"superblock locations\n"));
2183 			    free(tmpbuf);
2184 			    lockexit(32);
2185 			}
2186 			retry++;
2187 			use_efi_dflts = !use_efi_dflts;
2188 			nsect = save_nsect;
2189 			ntrack = save_ntrack;
2190 			cpg = save_cpg;
2191 			free(tmpbuf);
2192 			goto retry_alternate_logic;
2193 		    }
2194 		    if (skip_this_sb)
2195 			continue;
2196 		}
2197 		/* Don't print ',' for the last superblock */
2198 		if (cylno == sblock.fs_ncg-1)
2199 			(void) sprintf(pbuf, " %llu", num);
2200 		else
2201 			(void) sprintf(pbuf, " %llu,", num);
2202 		plen = strlen(pbuf);
2203 		if ((width + plen) > (WIDTH - 1)) {
2204 			width = plen;
2205 			tprintf("\n");
2206 		} else {
2207 			width += plen;
2208 		}
2209 		if (Nflag && retry)
2210 			strncat(tmpbuf, pbuf, strlen(pbuf));
2211 		else
2212 			(void) fprintf(stderr, "%s", pbuf);
2213 	}
2214 	tprintf("\n");
2215 	if (Nflag) {
2216 		if (retry)
2217 			fprintf(stderr, "%s", tmpbuf);
2218 		free(tmpbuf);
2219 		lockexit(0);
2220 	}
2221 
2222 	free(tmpbuf);
2223 	if (grow)
2224 		goto grow50;
2225 
2226 	/*
2227 	 * Now construct the initial file system,
2228 	 * then write out the super-block.
2229 	 */
2230 	fsinit();
2231 grow50:
2232 	/*
2233 	 * write the superblock and csum information
2234 	 */
2235 	wtsb();
2236 
2237 	/*
2238 	 * extend the last cylinder group in the original file system
2239 	 */
2240 	if (grow) {
2241 		extendcg(grow_fs_ncg-1);
2242 		wtsb();
2243 	}
2244 
2245 	/*
2246 	 * Write out the duplicate super blocks to the first 10
2247 	 * cylinder groups (or fewer, if there are fewer than 10
2248 	 * cylinder groups).
2249 	 */
2250 	for (cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++)
2251 		awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2252 		    (int)sbsize, (char *)&sblock, SAVE);
2253 
2254 	/*
2255 	 * Now write out duplicate super blocks to the remaining
2256 	 * cylinder groups.  In the case of multi-terabyte file
2257 	 * systems, just write out the super block to the last ten
2258 	 * cylinder groups (or however many are left).
2259 	 */
2260 	if (mtb == 'y') {
2261 		if (sblock.fs_ncg <= 10)
2262 			cylno = sblock.fs_ncg;
2263 		else if (sblock.fs_ncg <= 20)
2264 			cylno = 10;
2265 		else
2266 			cylno = sblock.fs_ncg - 10;
2267 	}
2268 
2269 	for (; cylno < sblock.fs_ncg; cylno++)
2270 		awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2271 		    (int)sbsize, (char *)&sblock, SAVE);
2272 
2273 	/*
2274 	 * Flush out all the AIO writes we've done.  It's not
2275 	 * necessary to do this explicitly, but it's the only
2276 	 * way to report any errors from those writes.
2277 	 */
2278 	flush_writes();
2279 
2280 	/*
2281 	 * set clean flag
2282 	 */
2283 	if (grow)
2284 		sblock.fs_clean = grow_fs_clean;
2285 	else
2286 		sblock.fs_clean = FSCLEAN;
2287 	sblock.fs_time = mkfstime;
2288 	sblock.fs_state = FSOKAY - sblock.fs_time;
2289 	wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
2290 	isbad = 0;
2291 
2292 	if (fsync(fso) == -1) {
2293 		saverr = errno;
2294 		(void) fprintf(stderr,
2295 		    gettext("mkfs: fsync failed on write disk: %s\n"),
2296 		    strerror(saverr));
2297 		/* we're just cleaning up, so keep going */
2298 	}
2299 	if (close(fsi) == -1) {
2300 		saverr = errno;
2301 		(void) fprintf(stderr,
2302 		    gettext("mkfs: close failed on read disk: %s\n"),
2303 		    strerror(saverr));
2304 		/* we're just cleaning up, so keep going */
2305 	}
2306 	if (close(fso) == -1) {
2307 		saverr = errno;
2308 		(void) fprintf(stderr,
2309 		    gettext("mkfs: close failed on write disk: %s\n"),
2310 		    strerror(saverr));
2311 		/* we're just cleaning up, so keep going */
2312 	}
2313 	fsi = fso = -1;
2314 
2315 #ifndef STANDALONE
2316 	lockexit(0);
2317 #endif
2318 }
2319 
2320 /*
2321  * Figure out how big the partition we're dealing with is.
2322  * The value returned is in disk blocks (sectors);
2323  */
2324 static diskaddr_t
2325 get_max_size(int fd)
2326 {
2327 	struct vtoc vtoc;
2328 	dk_gpt_t *efi_vtoc;
2329 	diskaddr_t	slicesize;
2330 
2331 	int index = read_vtoc(fd, &vtoc);
2332 
2333 	if (index >= 0) {
2334 		label_type = LABEL_TYPE_VTOC;
2335 	} else {
2336 		if (index == VT_ENOTSUP || index == VT_ERROR) {
2337 			/* it might be an EFI label */
2338 			index = efi_alloc_and_read(fd, &efi_vtoc);
2339 			label_type = LABEL_TYPE_EFI;
2340 		}
2341 	}
2342 
2343 	if (index < 0) {
2344 		switch (index) {
2345 		case VT_ERROR:
2346 			break;
2347 		case VT_EIO:
2348 			errno = EIO;
2349 			break;
2350 		case VT_EINVAL:
2351 			errno = EINVAL;
2352 		}
2353 		perror(gettext("Can not determine partition size"));
2354 		lockexit(32);
2355 	}
2356 
2357 	if (label_type == LABEL_TYPE_EFI) {
2358 		slicesize = efi_vtoc->efi_parts[index].p_size;
2359 		efi_free(efi_vtoc);
2360 	} else {
2361 		/*
2362 		 * In the vtoc struct, p_size is a 32-bit signed quantity.
2363 		 * In the dk_gpt struct (efi's version of the vtoc), p_size
2364 		 * is an unsigned 64-bit quantity.  By casting the vtoc's
2365 		 * psize to an unsigned 32-bit quantity, it will be copied
2366 		 * to 'slicesize' (an unsigned 64-bit diskaddr_t) without
2367 		 * sign extension.
2368 		 */
2369 
2370 		slicesize = (uint32_t)vtoc.v_part[index].p_size;
2371 	}
2372 
2373 	dprintf(("DeBuG get_max_size index = %d, p_size = %lld, dolimit = %d\n",
2374 	    index, slicesize, (slicesize > FS_MAX)));
2375 
2376 	/*
2377 	 * The next line limits a UFS file system to the maximum
2378 	 * supported size.
2379 	 */
2380 
2381 	if (slicesize > FS_MAX)
2382 		return (FS_MAX);
2383 	return (slicesize);
2384 }
2385 
2386 static long
2387 get_max_track_size(int fd)
2388 {
2389 	struct dk_cinfo ci;
2390 	long track_size = -1;
2391 
2392 	if (ioctl(fd, DKIOCINFO, &ci) == 0) {
2393 		track_size = ci.dki_maxtransfer * DEV_BSIZE;
2394 	}
2395 
2396 	if ((track_size < 0)) {
2397 		int	error = 0;
2398 		int	maxphys;
2399 		int	gotit = 0;
2400 
2401 		gotit = fsgetmaxphys(&maxphys, &error);
2402 		if (gotit) {
2403 			track_size = MIN(MB, maxphys);
2404 		} else {
2405 			(void) fprintf(stderr, gettext(
2406 "Warning: Could not get system value for maxphys. The value for\n"
2407 "maxcontig will default to 1MB.\n"));
2408 			track_size = MB;
2409 		}
2410 	}
2411 	return (track_size);
2412 }
2413 
2414 /*
2415  * Initialize a cylinder group.
2416  */
2417 static void
2418 initcg(int cylno)
2419 {
2420 	diskaddr_t cbase, d;
2421 	diskaddr_t dlower;	/* last data block before cg metadata */
2422 	diskaddr_t dupper;	/* first data block after cg metadata */
2423 	diskaddr_t dmax;
2424 	int64_t i;
2425 	struct csum *cs;
2426 	struct dinode *inode_buffer;
2427 	int size;
2428 
2429 	/*
2430 	 * Variables used to store intermediate results as a part of
2431 	 * the internal implementation of the cbtocylno() macros.
2432 	 */
2433 	diskaddr_t bno;		/* UFS block number (not sector number) */
2434 	int	cbcylno;	/* current cylinder number */
2435 	int	cbcylno_sect;	/* sector offset within cylinder */
2436 	int	cbsect_incr;	/* amount to increment sector offset */
2437 
2438 	/*
2439 	 * Variables used to store intermediate results as a part of
2440 	 * the internal implementation of the cbtorpos() macros.
2441 	 */
2442 	short	*cgblks;	/* pointer to array of free blocks in cg */
2443 	int	trackrpos;	/* tmp variable for rotation position */
2444 	int	trackoff;	/* offset within a track */
2445 	int	trackoff_incr;	/* amount to increment trackoff */
2446 	int	rpos;		/* rotation position of current block */
2447 	int	rpos_incr;	/* amount to increment rpos per block */
2448 
2449 	union cgun *icgun;	/* local pointer to a cg summary block */
2450 #define	icg	(icgun->cg)
2451 
2452 	icgun = (union cgun *)getbuf(&cgsumbuf, sizeof (union cgun));
2453 
2454 	/*
2455 	 * Determine block bounds for cylinder group.
2456 	 * Allow space for super block summary information in first
2457 	 * cylinder group.
2458 	 */
2459 	cbase = cgbase(&sblock, cylno);
2460 	dmax = cbase + sblock.fs_fpg;
2461 	if (dmax > sblock.fs_size)	/* last cg may be smaller than normal */
2462 		dmax = sblock.fs_size;
2463 	dlower = cgsblock(&sblock, cylno) - cbase;
2464 	dupper = cgdmin(&sblock, cylno) - cbase;
2465 	if (cylno == 0)
2466 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
2467 	cs = fscs + cylno;
2468 	icg.cg_time = mkfstime;
2469 	icg.cg_magic = CG_MAGIC;
2470 	icg.cg_cgx = cylno;
2471 	/* last one gets whatever's left */
2472 	if (cylno == sblock.fs_ncg - 1)
2473 		icg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
2474 	else
2475 		icg.cg_ncyl = sblock.fs_cpg;
2476 	icg.cg_niblk = sblock.fs_ipg;
2477 	icg.cg_ndblk = dmax - cbase;
2478 	icg.cg_cs.cs_ndir = 0;
2479 	icg.cg_cs.cs_nffree = 0;
2480 	icg.cg_cs.cs_nbfree = 0;
2481 	icg.cg_cs.cs_nifree = 0;
2482 	icg.cg_rotor = 0;
2483 	icg.cg_frotor = 0;
2484 	icg.cg_irotor = 0;
2485 	icg.cg_btotoff = &icg.cg_space[0] - (uchar_t *)(&icg.cg_link);
2486 	icg.cg_boff = icg.cg_btotoff + sblock.fs_cpg * sizeof (long);
2487 	icg.cg_iusedoff = icg.cg_boff +
2488 		sblock.fs_cpg * sblock.fs_nrpos * sizeof (short);
2489 	icg.cg_freeoff = icg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
2490 	icg.cg_nextfreeoff = icg.cg_freeoff +
2491 		howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
2492 	for (i = 0; i < sblock.fs_frag; i++) {
2493 		icg.cg_frsum[i] = 0;
2494 	}
2495 	bzero((caddr_t)cg_inosused(&icg), icg.cg_freeoff - icg.cg_iusedoff);
2496 	icg.cg_cs.cs_nifree += sblock.fs_ipg;
2497 	if (cylno == 0)
2498 		for (i = 0; i < UFSROOTINO; i++) {
2499 			setbit(cg_inosused(&icg), i);
2500 			icg.cg_cs.cs_nifree--;
2501 		}
2502 
2503 	/*
2504 	 * Initialize all the inodes in the cylinder group using
2505 	 * random numbers.
2506 	 */
2507 	size = sblock.fs_ipg * sizeof (struct dinode);
2508 	inode_buffer = (struct dinode *)getbuf(&inodebuf, size);
2509 
2510 	for (i = 0; i < sblock.fs_ipg; i++) {
2511 		IRANDOMIZE(&(inode_buffer[i].di_ic));
2512 	}
2513 
2514 	/*
2515 	 * Write all inodes in a single write for performance.
2516 	 */
2517 	awtfs(fsbtodb(&sblock, (uint64_t)cgimin(&sblock, cylno)), (int)size,
2518 	    (char *)inode_buffer, RELEASE);
2519 
2520 	bzero((caddr_t)cg_blktot(&icg), icg.cg_boff - icg.cg_btotoff);
2521 	bzero((caddr_t)cg_blks(&sblock, &icg, 0),
2522 	    icg.cg_iusedoff - icg.cg_boff);
2523 	bzero((caddr_t)cg_blksfree(&icg), icg.cg_nextfreeoff - icg.cg_freeoff);
2524 
2525 	if (cylno > 0) {
2526 		for (d = 0; d < dlower; d += sblock.fs_frag) {
2527 			setblock(&sblock, cg_blksfree(&icg), d/sblock.fs_frag);
2528 			icg.cg_cs.cs_nbfree++;
2529 			cg_blktot(&icg)[cbtocylno(&sblock, d)]++;
2530 			cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2531 			    [cbtorpos(&sblock, d)]++;
2532 		}
2533 		sblock.fs_dsize += dlower;
2534 	}
2535 	sblock.fs_dsize += icg.cg_ndblk - dupper;
2536 	if ((i = dupper % sblock.fs_frag) != 0) {
2537 		icg.cg_frsum[sblock.fs_frag - i]++;
2538 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
2539 			setbit(cg_blksfree(&icg), dupper);
2540 			icg.cg_cs.cs_nffree++;
2541 		}
2542 	}
2543 
2544 	/*
2545 	 * WARNING: The following code is somewhat confusing, but
2546 	 * results in a substantial performance improvement in mkfs.
2547 	 *
2548 	 * Instead of using cbtocylno() and cbtorpos() macros, we
2549 	 * keep track of all the intermediate state of those macros
2550 	 * in some variables.  This allows simple addition to be
2551 	 * done to calculate the results as we step through the
2552 	 * blocks in an orderly fashion instead of the slower
2553 	 * multiplication and division the macros are forced to
2554 	 * used so they can support random input.  (Multiplication,
2555 	 * division, and remainder operations typically take about
2556 	 * 10x as many processor cycles as other operations.)
2557 	 *
2558 	 * The basic idea is to take code:
2559 	 *
2560 	 *	for (x = starting_x; x < max; x++)
2561 	 *		y = (x * c) / z
2562 	 *
2563 	 * and rewrite it to take advantage of the fact that
2564 	 * the variable x is incrementing in an orderly way:
2565 	 *
2566 	 *	intermediate = starting_x * c
2567 	 *	yval = intermediate / z
2568 	 *	for (x = starting_x; x < max; x++) {
2569 	 *		y = yval;
2570 	 *		intermediate += c
2571 	 *		if (intermediate > z) {
2572 	 *			yval++;
2573 	 *			intermediate -= z
2574 	 *		}
2575 	 *	}
2576 	 *
2577 	 * Performance has improved as much as 4X using this code.
2578 	 */
2579 
2580 	/*
2581 	 * Initialize the starting points for all the cbtocylno()
2582 	 * macro variables and figure out the increments needed each
2583 	 * time through the loop.
2584 	 */
2585 	cbcylno_sect = dupper * NSPF(&sblock);
2586 	cbsect_incr = sblock.fs_frag * NSPF(&sblock);
2587 	cbcylno = cbcylno_sect / sblock.fs_spc;
2588 	cbcylno_sect %= sblock.fs_spc;
2589 	cgblks = cg_blks(&sblock, &icg, cbcylno);
2590 	bno = dupper / sblock.fs_frag;
2591 
2592 	/*
2593 	 * Initialize the starting points for all the cbtorpos()
2594 	 * macro variables and figure out the increments needed each
2595 	 * time through the loop.
2596 	 *
2597 	 * It's harder to simplify the cbtorpos() macro if there were
2598 	 * alternate sectors specified (or if they previously existed
2599 	 * in the growfs case).  Since this is rare, we just revert to
2600 	 * using the macros in this case and skip the variable setup.
2601 	 */
2602 	if (!spc_flag) {
2603 		trackrpos = (cbcylno_sect % sblock.fs_nsect) * sblock.fs_nrpos;
2604 		rpos = trackrpos / sblock.fs_nsect;
2605 		trackoff = trackrpos % sblock.fs_nsect;
2606 		trackoff_incr = cbsect_incr * sblock.fs_nrpos;
2607 		rpos_incr = (trackoff_incr / sblock.fs_nsect) % sblock.fs_nrpos;
2608 		trackoff_incr = trackoff_incr % sblock.fs_nsect;
2609 	}
2610 
2611 	/*
2612 	 * Loop through all the blocks, marking them free and
2613 	 * updating totals kept in the superblock and cg summary.
2614 	 */
2615 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
2616 		setblock(&sblock, cg_blksfree(&icg),  bno);
2617 		icg.cg_cs.cs_nbfree++;
2618 
2619 		cg_blktot(&icg)[cbcylno]++;
2620 
2621 		if (!spc_flag)
2622 			cgblks[rpos]++;
2623 		else
2624 			cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2625 			    [cbtorpos(&sblock, d)]++;
2626 
2627 		d += sblock.fs_frag;
2628 		bno++;
2629 
2630 		/*
2631 		 * Increment the sector offset within the cylinder
2632 		 * for the cbtocylno() macro reimplementation.  If
2633 		 * we're beyond the end of the cylinder, update the
2634 		 * cylinder number, calculate the offset in the
2635 		 * new cylinder, and update the cgblks pointer
2636 		 * to the next rotational position.
2637 		 */
2638 		cbcylno_sect += cbsect_incr;
2639 		if (cbcylno_sect >= sblock.fs_spc) {
2640 			cbcylno++;
2641 			cbcylno_sect -= sblock.fs_spc;
2642 			cgblks += sblock.fs_nrpos;
2643 		}
2644 
2645 		/*
2646 		 * If there aren't alternate sectors, increment the
2647 		 * rotational position variables for the cbtorpos()
2648 		 * reimplementation.  Note that we potentially
2649 		 * increment rpos twice.  Once by rpos_incr, and one
2650 		 * more time when we wrap to a new track because
2651 		 * trackoff >= fs_nsect.
2652 		 */
2653 		if (!spc_flag) {
2654 			trackoff += trackoff_incr;
2655 			rpos += rpos_incr;
2656 			if (trackoff >= sblock.fs_nsect) {
2657 				trackoff -= sblock.fs_nsect;
2658 				rpos++;
2659 			}
2660 			if (rpos >= sblock.fs_nrpos)
2661 				rpos -= sblock.fs_nrpos;
2662 		}
2663 	}
2664 
2665 	if (d < dmax - cbase) {
2666 		icg.cg_frsum[dmax - cbase - d]++;
2667 		for (; d < dmax - cbase; d++) {
2668 			setbit(cg_blksfree(&icg), d);
2669 			icg.cg_cs.cs_nffree++;
2670 		}
2671 	}
2672 	sblock.fs_cstotal.cs_ndir += icg.cg_cs.cs_ndir;
2673 	sblock.fs_cstotal.cs_nffree += icg.cg_cs.cs_nffree;
2674 	sblock.fs_cstotal.cs_nbfree += icg.cg_cs.cs_nbfree;
2675 	sblock.fs_cstotal.cs_nifree += icg.cg_cs.cs_nifree;
2676 	*cs = icg.cg_cs;
2677 	awtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, cylno)),
2678 		sblock.fs_bsize, (char *)&icg, RELEASE);
2679 }
2680 
2681 /*
2682  * initialize the file system
2683  */
2684 struct inode node;
2685 
2686 #define	LOSTDIR
2687 #ifdef LOSTDIR
2688 #define	PREDEFDIR 3
2689 #else
2690 #define	PREDEFDIR 2
2691 #endif
2692 
2693 struct direct root_dir[] = {
2694 	{ UFSROOTINO, sizeof (struct direct), 1, "." },
2695 	{ UFSROOTINO, sizeof (struct direct), 2, ".." },
2696 #ifdef LOSTDIR
2697 	{ LOSTFOUNDINO, sizeof (struct direct), 10, "lost+found" },
2698 #endif
2699 };
2700 #ifdef LOSTDIR
2701 struct direct lost_found_dir[] = {
2702 	{ LOSTFOUNDINO, sizeof (struct direct), 1, "." },
2703 	{ UFSROOTINO, sizeof (struct direct), 2, ".." },
2704 	{ 0, DIRBLKSIZ, 0, 0 },
2705 };
2706 #endif
2707 char buf[MAXBSIZE];
2708 
2709 static void
2710 fsinit()
2711 {
2712 	int i;
2713 
2714 
2715 	/*
2716 	 * initialize the node
2717 	 */
2718 	node.i_atime = mkfstime;
2719 	node.i_mtime = mkfstime;
2720 	node.i_ctime = mkfstime;
2721 #ifdef LOSTDIR
2722 	/*
2723 	 * create the lost+found directory
2724 	 */
2725 	(void) makedir(lost_found_dir, 2);
2726 	for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) {
2727 		bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2]));
2728 	}
2729 	node.i_number = LOSTFOUNDINO;
2730 	node.i_smode = node.i_mode = IFDIR | 0700;
2731 	node.i_nlink = 2;
2732 	node.i_size = sblock.fs_bsize;
2733 	node.i_db[0] = alloc((int)node.i_size, node.i_mode);
2734 	node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2735 	IRANDOMIZE(&node.i_ic);
2736 	wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), (int)node.i_size, buf);
2737 	iput(&node);
2738 #endif
2739 	/*
2740 	 * create the root directory
2741 	 */
2742 	node.i_number = UFSROOTINO;
2743 	node.i_mode = node.i_smode = IFDIR | UMASK;
2744 	node.i_nlink = PREDEFDIR;
2745 	node.i_size = makedir(root_dir, PREDEFDIR);
2746 	node.i_db[0] = alloc(sblock.fs_fsize, node.i_mode);
2747 	/* i_size < 2GB because we are initializing the file system */
2748 	node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2749 	IRANDOMIZE(&node.i_ic);
2750 	wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), sblock.fs_fsize, buf);
2751 	iput(&node);
2752 }
2753 
2754 /*
2755  * construct a set of directory entries in "buf".
2756  * return size of directory.
2757  */
2758 static int
2759 makedir(struct direct *protodir, int entries)
2760 {
2761 	char *cp;
2762 	int i;
2763 	ushort_t spcleft;
2764 
2765 	spcleft = DIRBLKSIZ;
2766 	for (cp = buf, i = 0; i < entries - 1; i++) {
2767 		protodir[i].d_reclen = DIRSIZ(&protodir[i]);
2768 		bcopy(&protodir[i], cp, protodir[i].d_reclen);
2769 		cp += protodir[i].d_reclen;
2770 		spcleft -= protodir[i].d_reclen;
2771 	}
2772 	protodir[i].d_reclen = spcleft;
2773 	bcopy(&protodir[i], cp, DIRSIZ(&protodir[i]));
2774 	return (DIRBLKSIZ);
2775 }
2776 
2777 /*
2778  * allocate a block or frag
2779  */
2780 static daddr32_t
2781 alloc(int size, int mode)
2782 {
2783 	int i, frag;
2784 	daddr32_t d;
2785 
2786 	rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2787 	    (char *)&acg);
2788 	if (acg.cg_magic != CG_MAGIC) {
2789 		(void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2790 		lockexit(32);
2791 	}
2792 	if (acg.cg_cs.cs_nbfree == 0) {
2793 		(void) fprintf(stderr,
2794 			gettext("first cylinder group ran out of space\n"));
2795 		lockexit(32);
2796 	}
2797 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
2798 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
2799 			goto goth;
2800 	(void) fprintf(stderr,
2801 	    gettext("internal error: can't find block in cyl 0\n"));
2802 	lockexit(32);
2803 goth:
2804 	clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
2805 	acg.cg_cs.cs_nbfree--;
2806 	sblock.fs_cstotal.cs_nbfree--;
2807 	fscs[0].cs_nbfree--;
2808 	if (mode & IFDIR) {
2809 		acg.cg_cs.cs_ndir++;
2810 		sblock.fs_cstotal.cs_ndir++;
2811 		fscs[0].cs_ndir++;
2812 	}
2813 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
2814 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
2815 	if (size != sblock.fs_bsize) {
2816 		frag = howmany(size, sblock.fs_fsize);
2817 		fscs[0].cs_nffree += sblock.fs_frag - frag;
2818 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
2819 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
2820 		acg.cg_frsum[sblock.fs_frag - frag]++;
2821 		for (i = frag; i < sblock.fs_frag; i++)
2822 			setbit(cg_blksfree(&acg), d + i);
2823 	}
2824 	wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2825 	    (char *)&acg);
2826 	return (d);
2827 }
2828 
2829 /*
2830  * Allocate an inode on the disk
2831  */
2832 static void
2833 iput(struct inode *ip)
2834 {
2835 	struct dinode buf[MAXINOPB];
2836 	diskaddr_t d;
2837 
2838 	rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2839 	    (char *)&acg);
2840 	if (acg.cg_magic != CG_MAGIC) {
2841 		(void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2842 		lockexit(32);
2843 	}
2844 	acg.cg_cs.cs_nifree--;
2845 	setbit(cg_inosused(&acg), ip->i_number);
2846 	wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2847 	    (char *)&acg);
2848 	sblock.fs_cstotal.cs_nifree--;
2849 	fscs[0].cs_nifree--;
2850 	if ((int)ip->i_number >= sblock.fs_ipg * sblock.fs_ncg) {
2851 		(void) fprintf(stderr,
2852 			gettext("fsinit: inode value out of range (%d).\n"),
2853 			ip->i_number);
2854 		lockexit(32);
2855 	}
2856 	d = fsbtodb(&sblock, (uint64_t)itod(&sblock, (int)ip->i_number));
2857 	rdfs(d, sblock.fs_bsize, (char *)buf);
2858 	buf[itoo(&sblock, (int)ip->i_number)].di_ic = ip->i_ic;
2859 	wtfs(d, sblock.fs_bsize, (char *)buf);
2860 }
2861 
2862 /*
2863  * getbuf()	-- Get a buffer for use in an AIO operation.  Buffer
2864  *		is zero'd the first time returned, left with whatever
2865  *		was in memory after that.  This function actually gets
2866  *		enough memory the first time it's called to support
2867  *		MAXBUF buffers like a slab allocator.  When all the
2868  *		buffers are in use, it waits for an aio to complete
2869  *		and make a buffer available.
2870  *
2871  *		Never returns an error.  Either succeeds or exits.
2872  */
2873 static char *
2874 getbuf(bufhdr *bufhead, int size)
2875 {
2876 	bufhdr *pbuf;
2877 	bufhdr *prev;
2878 	int i;
2879 	int buf_size, max_bufs;
2880 
2881 	/*
2882 	 * Initialize all the buffers
2883 	 */
2884 	if (bufhead->head == NULL) {
2885 		/*
2886 		 * round up the size of our buffer header to a
2887 		 * 16 byte boundary so the address we return to
2888 		 * the caller is "suitably aligned".
2889 		 */
2890 		bufhdrsize = (sizeof (bufhdr) + 15) & ~15;
2891 
2892 		/*
2893 		 * Add in our header to the buffer and round it all up to
2894 		 * a 16 byte boundry so each member of the slab is aligned.
2895 		 */
2896 		buf_size = (size + bufhdrsize + 15) & ~15;
2897 
2898 		/*
2899 		 * Limit number of buffers to lesser of MAXBUFMEM's worth
2900 		 * or MAXBUF, whichever is less.
2901 		 */
2902 		max_bufs = MAXBUFMEM / buf_size;
2903 		if (max_bufs > MAXBUF)
2904 			max_bufs = MAXBUF;
2905 
2906 		pbuf = (bufhdr *)calloc(max_bufs, buf_size);
2907 		if (pbuf == NULL) {
2908 			perror("calloc");
2909 			lockexit(32);
2910 		}
2911 
2912 		bufhead->head = bufhead;
2913 		prev = bufhead;
2914 		for (i = 0; i < max_bufs; i++) {
2915 			pbuf->head = bufhead;
2916 			prev->next = pbuf;
2917 			prev = pbuf;
2918 			pbuf = (bufhdr *)((char *)pbuf + buf_size);
2919 		}
2920 	}
2921 
2922 	/*
2923 	 * Get an available buffer, waiting for I/O if necessary
2924 	 */
2925 	wait_for_write(NOBLOCK);
2926 	while (bufhead->next == NULL)
2927 		wait_for_write(BLOCK);
2928 
2929 	/*
2930 	 * Take the buffer off the list
2931 	 */
2932 	pbuf = bufhead->next;
2933 	bufhead->next = pbuf->next;
2934 	pbuf->next = NULL;
2935 
2936 	/*
2937 	 * return the empty buffer space just past the header
2938 	 */
2939 	return ((char *)pbuf + bufhdrsize);
2940 }
2941 
2942 /*
2943  * freebuf()	-- Free a buffer gotten previously through getbuf.
2944  *		Puts the buffer back on the appropriate list for
2945  *		later use.  Never calls free().
2946  *
2947  * Assumes that SIGINT is blocked.
2948  */
2949 static void
2950 freebuf(char *buf)
2951 {
2952 	bufhdr *pbuf;
2953 	bufhdr *bufhead;
2954 
2955 	/*
2956 	 * get the header for this buffer
2957 	 */
2958 	pbuf = (bufhdr *)(buf - bufhdrsize);
2959 
2960 	/*
2961 	 * Put it back on the list of available buffers
2962 	 */
2963 	bufhead = pbuf->head;
2964 	pbuf->next = bufhead->next;
2965 	bufhead->next = pbuf;
2966 }
2967 
2968 /*
2969  * freetrans()	-- Free a transaction gotten previously through getaiop.
2970  *		Puts the transaction struct back on the appropriate list for
2971  *		later use.  Never calls free().
2972  *
2973  * Assumes that SIGINT is blocked.
2974  */
2975 static void
2976 freetrans(aio_trans *transp)
2977 {
2978 	/*
2979 	 * free the buffer associated with this AIO if needed
2980 	 */
2981 	if (transp->release == RELEASE)
2982 		freebuf(transp->buffer);
2983 
2984 	/*
2985 	 * Put transaction on the free list
2986 	 */
2987 	transp->next = results.trans;
2988 	results.trans = transp;
2989 }
2990 
2991 /*
2992  * wait_for_write()	-- Wait for an aio write to complete.  Return
2993  *			the transaction structure for that write.
2994  *
2995  * Blocks SIGINT if necessary.
2996  */
2997 aio_trans *
2998 wait_for_write(int block)
2999 {
3000 	aio_trans	*transp;
3001 	aio_result_t	*resultp;
3002 	static struct timeval  zero_wait = { 0, 0 };
3003 	sigset_t	old_mask;
3004 
3005 	/*
3006 	 * If we know there aren't any outstanding transactions, just return
3007 	 */
3008 	if (results.outstanding == 0)
3009 		return ((aio_trans *) 0);
3010 
3011 	block_sigint(&old_mask);
3012 
3013 	resultp = aiowait(block ? NULL : &zero_wait);
3014 	if (resultp == NULL ||
3015 	    (resultp == (aio_result_t *)-1 && errno == EINVAL)) {
3016 		unblock_sigint(&old_mask);
3017 		return ((aio_trans *) 0);
3018 	}
3019 
3020 	results.outstanding--;
3021 	transp = (aio_trans *)resultp;
3022 
3023 	if (resultp->aio_return != transp->size) {
3024 		if (resultp->aio_return == -1) {
3025 			/*
3026 			 * The aiowrite() may have failed because the
3027 			 * kernel didn't have enough memory to do the job.
3028 			 * Flush all pending writes and try a normal
3029 			 * write().  wtfs_breakup() will call exit if it
3030 			 * fails, so we don't worry about errors here.
3031 			 */
3032 			flush_writes();
3033 			wtfs_breakup(transp->bno, transp->size, transp->buffer);
3034 		} else {
3035 			(void) fprintf(stderr, gettext(
3036 			    "short write (%d of %d bytes) on sector %lld\n"),
3037 			    resultp->aio_return, transp->size,
3038 			    transp->bno);
3039 			/*
3040 			 * Don't unblock SIGINT, to avoid potential
3041 			 * looping due to queued interrupts and
3042 			 * error handling.
3043 			 */
3044 			lockexit(32);
3045 		}
3046 	}
3047 
3048 	resultp->aio_return = 0;
3049 	freetrans(transp);
3050 	unblock_sigint(&old_mask);
3051 	return (transp);
3052 }
3053 
3054 /*
3055  * flush_writes()	-- flush all the outstanding aio writes.
3056  */
3057 static void
3058 flush_writes(void)
3059 {
3060 	while (wait_for_write(BLOCK))
3061 		;
3062 }
3063 
3064 /*
3065  * get_aiop()	-- find and return an aio_trans structure on which a new
3066  *		aio can be done.  Blocks on aiowait() if needed.  Reaps
3067  *		all outstanding completed aio's.
3068  *
3069  * Assumes that SIGINT is blocked.
3070  */
3071 aio_trans *
3072 get_aiop()
3073 {
3074 	int i;
3075 	aio_trans *transp;
3076 	aio_trans *prev;
3077 
3078 	/*
3079 	 * initialize aio stuff
3080 	 */
3081 	if (!aio_inited) {
3082 		aio_inited = 1;
3083 
3084 		results.maxpend = 0;
3085 		results.outstanding = 0;
3086 		results.max = MAXAIO;
3087 
3088 		results.trans = (aio_trans *)calloc(results.max,
3089 						sizeof (aio_trans));
3090 		if (results.trans == NULL) {
3091 			perror("calloc");
3092 			lockexit(32);
3093 		}
3094 
3095 		/*
3096 		 * Initialize the linked list of aio transaction
3097 		 * structures.  Note that the final "next" pointer
3098 		 * will be NULL since we got the buffer from calloc().
3099 		 */
3100 		prev = results.trans;
3101 		for (i = 1; i < results.max; i++) {
3102 			prev->next = &(results.trans[i]);
3103 			prev = prev->next;
3104 		}
3105 	}
3106 
3107 	wait_for_write(NOBLOCK);
3108 	while (results.trans == NULL)
3109 		wait_for_write(BLOCK);
3110 	transp = results.trans;
3111 	results.trans = results.trans->next;
3112 
3113 	transp->next = 0;
3114 	transp->resultbuf.aio_return = AIO_INPROGRESS;
3115 	return (transp);
3116 }
3117 
3118 /*
3119  * read a block from the file system
3120  */
3121 static void
3122 rdfs(diskaddr_t bno, int size, char *bf)
3123 {
3124 	int n, saverr;
3125 
3126 	/*
3127 	 * In case we need any data that's pending in an aiowrite(),
3128 	 * we wait for them all to complete before doing a read.
3129 	 */
3130 	flush_writes();
3131 
3132 	/*
3133 	 * Note: the llseek() can succeed, even if the offset is out of range.
3134 	 * It's not until the file i/o operation (the read()) that one knows
3135 	 * for sure if the raw device can handle the offset.
3136 	 */
3137 	if (llseek(fsi, (offset_t)bno * sectorsize, 0) < 0) {
3138 		saverr = errno;
3139 		(void) fprintf(stderr,
3140 		    gettext("seek error on sector %lld: %s\n"),
3141 		    bno, strerror(saverr));
3142 		lockexit(32);
3143 	}
3144 	n = read(fsi, bf, size);
3145 	if (n != size) {
3146 		saverr = errno;
3147 		if (n == -1)
3148 			(void) fprintf(stderr,
3149 			    gettext("read error on sector %lld: %s\n"),
3150 			    bno, strerror(saverr));
3151 		else
3152 			(void) fprintf(stderr, gettext(
3153 			    "short read (%d of %d bytes) on sector %lld\n"),
3154 			    n, size, bno);
3155 		lockexit(32);
3156 	}
3157 }
3158 
3159 /*
3160  * write a block to the file system
3161  */
3162 static void
3163 wtfs(diskaddr_t bno, int size, char *bf)
3164 {
3165 	int n, saverr;
3166 
3167 	if (fso == -1)
3168 		return;
3169 
3170 	/*
3171 	 * Note: the llseek() can succeed, even if the offset is out of range.
3172 	 * It's not until the file i/o operation (the write()) that one knows
3173 	 * for sure if the raw device can handle the offset.
3174 	 */
3175 	if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3176 		saverr = errno;
3177 		(void) fprintf(stderr,
3178 		    gettext("seek error on sector %lld: %s\n"),
3179 		    bno, strerror(saverr));
3180 		lockexit(32);
3181 	}
3182 	if (Nflag)
3183 		return;
3184 	n = write(fso, bf, size);
3185 	if (n != size) {
3186 		saverr = errno;
3187 		if (n == -1)
3188 			(void) fprintf(stderr,
3189 			    gettext("write error on sector %lld: %s\n"),
3190 			    bno, strerror(saverr));
3191 		else
3192 			(void) fprintf(stderr, gettext(
3193 			    "short write (%d of %d bytes) on sector %lld\n"),
3194 			    n, size, bno);
3195 		lockexit(32);
3196 	}
3197 }
3198 
3199 /*
3200  * write a block to the file system -- buffered with aio
3201  */
3202 static void
3203 awtfs(diskaddr_t bno, int size, char *bf, int release)
3204 {
3205 	int n;
3206 	aio_trans 	*transp;
3207 	sigset_t 	old_mask;
3208 
3209 	if (fso == -1)
3210 		return;
3211 
3212 	/*
3213 	 * We need to keep things consistent if we get interrupted,
3214 	 * so defer any expected interrupts for the time being.
3215 	 */
3216 	block_sigint(&old_mask);
3217 
3218 	if (Nflag) {
3219 		if (release == RELEASE)
3220 			freebuf(bf);
3221 	} else {
3222 		transp = get_aiop();
3223 		transp->bno = bno;
3224 		transp->buffer = bf;
3225 		transp->size = size;
3226 		transp->release = release;
3227 
3228 		n = aiowrite(fso, bf, size, (off_t)bno * sectorsize,
3229 				SEEK_SET, &transp->resultbuf);
3230 
3231 		if (n < 0) {
3232 			/*
3233 			 * The aiowrite() may have failed because the
3234 			 * kernel didn't have enough memory to do the job.
3235 			 * Flush all pending writes and try a normal
3236 			 * write().  wtfs_breakup() will call exit if it
3237 			 * fails, so we don't worry about errors here.
3238 			 */
3239 			flush_writes();
3240 			wtfs_breakup(transp->bno, transp->size, transp->buffer);
3241 			freetrans(transp);
3242 		} else {
3243 			/*
3244 			 * Keep track of our pending writes.
3245 			 */
3246 			results.outstanding++;
3247 			if (results.outstanding > results.maxpend)
3248 			    results.maxpend = results.outstanding;
3249 		}
3250 	}
3251 
3252 	unblock_sigint(&old_mask);
3253 }
3254 
3255 
3256 /*
3257  * write a block to the file system, but break it up into sbsize
3258  * chunks to avoid forcing a large amount of memory to be locked down.
3259  * Only used as a fallback when an aio write has failed.
3260  */
3261 static void
3262 wtfs_breakup(diskaddr_t bno, int size, char *bf)
3263 {
3264 	int n, saverr;
3265 	int wsize;
3266 	int block_incr = sbsize / sectorsize;
3267 
3268 	if (size < sbsize)
3269 		wsize = size;
3270 	else
3271 		wsize = sbsize;
3272 
3273 	n = 0;
3274 	while (size) {
3275 		/*
3276 		 * Note: the llseek() can succeed, even if the offset is
3277 		 * out of range.  It's not until the file i/o operation
3278 		 * (the write()) that one knows for sure if the raw device
3279 		 * can handle the offset.
3280 		 */
3281 		if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3282 			saverr = errno;
3283 			(void) fprintf(stderr,
3284 			    gettext("seek error on sector %lld: %s\n"),
3285 			    bno, strerror(saverr));
3286 			lockexit(32);
3287 		}
3288 
3289 		n = write(fso, bf, wsize);
3290 		if (n == -1) {
3291 			saverr = errno;
3292 			(void) fprintf(stderr,
3293 			    gettext("write error on sector %lld: %s\n"),
3294 			    bno, strerror(saverr));
3295 			lockexit(32);
3296 		}
3297 		if (n != wsize) {
3298 			saverr = errno;
3299 			(void) fprintf(stderr, gettext(
3300 			    "short write (%d of %d bytes) on sector %lld\n"),
3301 			    n, size, bno);
3302 			lockexit(32);
3303 		}
3304 
3305 		bno += block_incr;
3306 		bf += wsize;
3307 		size -= wsize;
3308 		if (size < wsize)
3309 			wsize = size;
3310 	}
3311 }
3312 
3313 
3314 /*
3315  * check if a block is available
3316  */
3317 static int
3318 isblock(struct fs *fs, unsigned char *cp, int h)
3319 {
3320 	unsigned char mask;
3321 
3322 	switch (fs->fs_frag) {
3323 	case 8:
3324 		return (cp[h] == 0xff);
3325 	case 4:
3326 		mask = 0x0f << ((h & 0x1) << 2);
3327 		return ((cp[h >> 1] & mask) == mask);
3328 	case 2:
3329 		mask = 0x03 << ((h & 0x3) << 1);
3330 		return ((cp[h >> 2] & mask) == mask);
3331 	case 1:
3332 		mask = 0x01 << (h & 0x7);
3333 		return ((cp[h >> 3] & mask) == mask);
3334 	default:
3335 		(void) fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
3336 		return (0);
3337 	}
3338 }
3339 
3340 /*
3341  * take a block out of the map
3342  */
3343 static void
3344 clrblock(struct fs *fs, unsigned char *cp, int h)
3345 {
3346 	switch ((fs)->fs_frag) {
3347 	case 8:
3348 		cp[h] = 0;
3349 		return;
3350 	case 4:
3351 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
3352 		return;
3353 	case 2:
3354 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
3355 		return;
3356 	case 1:
3357 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
3358 		return;
3359 	default:
3360 		(void) fprintf(stderr,
3361 		    gettext("clrblock: bad fs_frag value %d\n"), fs->fs_frag);
3362 		return;
3363 	}
3364 }
3365 
3366 /*
3367  * put a block into the map
3368  */
3369 static void
3370 setblock(struct fs *fs, unsigned char *cp, int h)
3371 {
3372 	switch (fs->fs_frag) {
3373 	case 8:
3374 		cp[h] = 0xff;
3375 		return;
3376 	case 4:
3377 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
3378 		return;
3379 	case 2:
3380 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
3381 		return;
3382 	case 1:
3383 		cp[h >> 3] |= (0x01 << (h & 0x7));
3384 		return;
3385 	default:
3386 		(void) fprintf(stderr,
3387 		    gettext("setblock: bad fs_frag value %d\n"), fs->fs_frag);
3388 		return;
3389 	}
3390 }
3391 
3392 static void
3393 usage()
3394 {
3395 	(void) fprintf(stderr,
3396 	    gettext("ufs usage: mkfs [-F FSType] [-V] [-m] [-o options] "
3397 		"special "			/* param 0 */
3398 		"size(sectors) \\ \n"));	/* param 1 */
3399 	(void) fprintf(stderr,
3400 		"[nsect "			/* param 2 */
3401 		"ntrack "			/* param 3 */
3402 		"bsize "			/* param 4 */
3403 		"fragsize "			/* param 5 */
3404 		"cpg "				/* param 6 */
3405 		"free "				/* param 7 */
3406 		"rps "				/* param 8 */
3407 		"nbpi "				/* param 9 */
3408 		"opt "				/* param 10 */
3409 		"apc "				/* param 11 */
3410 		"gap "				/* param 12 */
3411 		"nrpos "			/* param 13 */
3412 		"maxcontig "			/* param 14 */
3413 		"mtb]\n");			/* param 15 */
3414 	(void) fprintf(stderr,
3415 		gettext(" -m : dump fs cmd line used to make this partition\n"
3416 		" -V :print this command line and return\n"
3417 		" -o :ufs options: :nsect=%d,ntrack=%d,bsize=%d,fragsize=%d\n"
3418 		" -o :ufs options: :cgsize=%d,free=%d,rps=%d,nbpi=%d,opt=%c\n"
3419 		" -o :ufs options: :apc=%d,gap=%d,nrpos=%d,maxcontig=%d\n"
3420 		" -o :ufs options: :mtb=%c,calcsb,calcbinsb\n"
3421 "NOTE that all -o suboptions: must be separated only by commas so as to\n"
3422 "be parsed as a single argument\n"),
3423 		nsect, ntrack, bsize, fragsize, cpg, sblock.fs_minfree, rps,
3424 		nbpi, opt, apc, (rotdelay == -1) ? 0 : rotdelay,
3425 		sblock.fs_nrpos, maxcontig, mtb);
3426 	lockexit(32);
3427 }
3428 
3429 /*ARGSUSED*/
3430 static void
3431 dump_fscmd(char *fsys, int fsi)
3432 {
3433 	int64_t used, bpcg, inospercg;
3434 	int64_t nbpi;
3435 	uint64_t nbytes64;
3436 
3437 	bzero((char *)&sblock, sizeof (sblock));
3438 	rdfs((diskaddr_t)SBLOCK, SBSIZE, (char *)&sblock);
3439 
3440 	/*
3441 	 * ensure a valid file system and if not, exit with error or else
3442 	 * we will end up computing block numbers etc and dividing by zero
3443 	 * which will cause floating point errors in this routine.
3444 	 */
3445 
3446 	if ((sblock.fs_magic != FS_MAGIC) &&
3447 	    (sblock.fs_magic != MTB_UFS_MAGIC)) {
3448 	    (void) fprintf(stderr, gettext(
3449 		"[not currently a valid file system - bad superblock]\n"));
3450 		lockexit(32);
3451 	}
3452 
3453 	if (sblock.fs_magic == FS_MAGIC &&
3454 	    (sblock.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3455 	    sblock.fs_version != UFS_VERSION_MIN)) {
3456 	    (void) fprintf(stderr, gettext(
3457 		"Unknown version of UFS format: %d\n"), sblock.fs_version);
3458 		lockexit(32);
3459 	}
3460 
3461 	if (sblock.fs_magic == MTB_UFS_MAGIC &&
3462 	    (sblock.fs_version > MTB_UFS_VERSION_1 ||
3463 	    sblock.fs_version < MTB_UFS_VERSION_MIN)) {
3464 	    (void) fprintf(stderr, gettext(
3465 		"Unknown version of UFS format: %d\n"), sblock.fs_version);
3466 		lockexit(32);
3467 	}
3468 
3469 	/*
3470 	 * Compute a reasonable nbpi value.
3471 	 * The algorithm for "used" is copied from code
3472 	 * in main() verbatim.
3473 	 * The nbpi equation is taken from main where the
3474 	 * fs_ipg value is set for the last time.  The INOPB(...) - 1
3475 	 * is used to account for the roundup.
3476 	 * The problem is that a range of nbpi values map to
3477 	 * the same file system layout.  So it is not possible
3478 	 * to calculate the exact value specified when the file
3479 	 * system was created.  So instead we determine the top
3480 	 * end of the range of values.
3481 	 */
3482 	bpcg = sblock.fs_spc * sectorsize;
3483 	inospercg = (int64_t)roundup(bpcg / sizeof (struct dinode),
3484 	    INOPB(&sblock));
3485 	if (inospercg > MAXIpG(&sblock))
3486 		inospercg = MAXIpG(&sblock);
3487 	used = (int64_t)
3488 	    (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
3489 	used *= sectorsize;
3490 	nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
3491 
3492 	/*
3493 	 * The top end of the range of values for nbpi may not be
3494 	 * a valid command line value for mkfs. Report the bottom
3495 	 * end instead.
3496 	 */
3497 	nbpi = (int64_t)(nbytes64 / (sblock.fs_ipg));
3498 
3499 	(void) fprintf(stdout, gettext("mkfs -F ufs -o "), fsys);
3500 	(void) fprintf(stdout, "nsect=%d,ntrack=%d,",
3501 	    sblock.fs_nsect, sblock.fs_ntrak);
3502 	(void) fprintf(stdout, "bsize=%d,fragsize=%d,cgsize=%d,free=%d,",
3503 	    sblock.fs_bsize, sblock.fs_fsize, sblock.fs_cpg, sblock.fs_minfree);
3504 	(void) fprintf(stdout, "rps=%d,nbpi=%lld,opt=%c,apc=%d,gap=%d,",
3505 	    sblock.fs_rps, nbpi, (sblock.fs_optim == FS_OPTSPACE) ? 's' : 't',
3506 	    (sblock.fs_ntrak * sblock.fs_nsect) - sblock.fs_spc,
3507 	    sblock.fs_rotdelay);
3508 	(void) fprintf(stdout, "nrpos=%d,maxcontig=%d,mtb=%c ",
3509 	    sblock.fs_nrpos, sblock.fs_maxcontig,
3510 	    ((sblock.fs_magic == MTB_UFS_MAGIC) ? 'y' : 'n'));
3511 	(void) fprintf(stdout, "%s %lld\n", fsys,
3512 	    fsbtodb(&sblock, sblock.fs_size));
3513 
3514 	bzero((char *)&sblock, sizeof (sblock));
3515 }
3516 
3517 /* number ************************************************************* */
3518 /*									*/
3519 /* Convert a numeric string arg to binary				*/
3520 /*									*/
3521 /* Args:	d_value - default value, if have parse error		*/
3522 /*		param - the name of the argument, for error messages	*/
3523 /*		flags - parser state and what's allowed in the arg	*/
3524 /* Global arg:  string - pointer to command arg				*/
3525 /*									*/
3526 /* Valid forms: 123 | 123k | 123*123 | 123x123				*/
3527 /*									*/
3528 /* Return:	converted number					*/
3529 /*									*/
3530 /* ******************************************************************** */
3531 
3532 static uint64_t
3533 number(uint64_t d_value, char *param, int flags)
3534 {
3535 	char *cs;
3536 	uint64_t n, t;
3537 	uint64_t cut = BIG / 10;    /* limit to avoid overflow */
3538 	int minus = 0;
3539 
3540 	cs = string;
3541 	if (*cs == '-') {
3542 		minus = 1;
3543 		cs += 1;
3544 	}
3545 	if ((*cs < '0') || (*cs > '9')) {
3546 		goto bail_out;
3547 	}
3548 	n = 0;
3549 	while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) {
3550 		n = n*10 + *cs++ - '0';
3551 	}
3552 	if (minus)
3553 	    n = -n;
3554 	for (;;) {
3555 		switch (*cs++) {
3556 		case 'k':
3557 			if (flags & ALLOW_END_ONLY)
3558 				goto bail_out;
3559 			if (n > (BIG / 1024))
3560 				goto overflow;
3561 			n *= 1024;
3562 			continue;
3563 
3564 		case '*':
3565 		case 'x':
3566 			if (flags & ALLOW_END_ONLY)
3567 				goto bail_out;
3568 			string = cs;
3569 			t = number(d_value, param, flags);
3570 			if (n > (BIG / t))
3571 				goto overflow;
3572 			n *= t;
3573 			cs = string + 1; /* adjust for -- below */
3574 
3575 			/* recursion has read rest of expression */
3576 			/* FALLTHROUGH */
3577 
3578 		case ',':
3579 		case '\0':
3580 			cs--;
3581 			string = cs;
3582 			return (n);
3583 
3584 		case '%':
3585 			if (flags & ALLOW_END_ONLY)
3586 				goto bail_out;
3587 			if (flags & ALLOW_PERCENT) {
3588 				flags &= ~ALLOW_PERCENT;
3589 				flags |= ALLOW_END_ONLY;
3590 				continue;
3591 			}
3592 			goto bail_out;
3593 
3594 		case 'm':
3595 			if (flags & ALLOW_END_ONLY)
3596 				goto bail_out;
3597 			if (flags & ALLOW_MS1) {
3598 				flags &= ~ALLOW_MS1;
3599 				flags |= ALLOW_MS2;
3600 				continue;
3601 			}
3602 			goto bail_out;
3603 
3604 		case 's':
3605 			if (flags & ALLOW_END_ONLY)
3606 				goto bail_out;
3607 			if (flags & ALLOW_MS2) {
3608 				flags &= ~ALLOW_MS2;
3609 				flags |= ALLOW_END_ONLY;
3610 				continue;
3611 			}
3612 			goto bail_out;
3613 
3614 		case '0': case '1': case '2': case '3': case '4':
3615 		case '5': case '6': case '7': case '8': case '9':
3616 overflow:
3617 			(void) fprintf(stderr,
3618 			    gettext("mkfs: value for %s overflowed\n"),
3619 			    param);
3620 			while ((*cs != '\0') && (*cs != ','))
3621 				cs++;
3622 			string = cs;
3623 			return (BIG);
3624 
3625 		default:
3626 bail_out:
3627 			(void) fprintf(stderr, gettext(
3628 			    "mkfs: bad numeric arg for %s: \"%s\"\n"),
3629 			    param, string);
3630 			while ((*cs != '\0') && (*cs != ','))
3631 				cs++;
3632 			string = cs;
3633 			if (d_value != NO_DEFAULT) {
3634 				(void) fprintf(stderr,
3635 				    gettext("mkfs: %s reset to default %lld\n"),
3636 				    param, d_value);
3637 				return (d_value);
3638 			}
3639 			lockexit(2);
3640 
3641 		}
3642 	} /* never gets here */
3643 }
3644 
3645 /* match ************************************************************** */
3646 /*									*/
3647 /* Compare two text strings for equality				*/
3648 /*									*/
3649 /* Arg:	 s - pointer to string to match with a command arg		*/
3650 /* Global arg:  string - pointer to command arg				*/
3651 /*									*/
3652 /* Return:	1 if match, 0 if no match				*/
3653 /*		If match, also reset `string' to point to the text	*/
3654 /*		that follows the matching text.				*/
3655 /*									*/
3656 /* ******************************************************************** */
3657 
3658 static int
3659 match(char *s)
3660 {
3661 	char *cs;
3662 
3663 	cs = string;
3664 	while (*cs++ == *s) {
3665 		if (*s++ == '\0') {
3666 			goto true;
3667 		}
3668 	}
3669 	if (*s != '\0') {
3670 		return (0);
3671 	}
3672 
3673 true:
3674 	cs--;
3675 	string = cs;
3676 	return (1);
3677 }
3678 
3679 /*
3680  * GROWFS ROUTINES
3681  */
3682 
3683 /* ARGSUSED */
3684 void
3685 lockexit(int exitstatus)
3686 {
3687 	if (Pflag) {
3688 		/* the probe mode neither changes nor locks the filesystem */
3689 		exit(exitstatus);
3690 	}
3691 
3692 	/*
3693 	 * flush the dirty cylinder group
3694 	 */
3695 	if (inlockexit == 0) {
3696 		inlockexit = 1;
3697 		flcg();
3698 	}
3699 
3700 	if (aio_inited) {
3701 		flush_writes();
3702 	}
3703 
3704 	/*
3705 	 * make sure the file system is unlocked before exiting
3706 	 */
3707 	if ((inlockexit == 1) && (!isbad)) {
3708 		inlockexit = 2;
3709 		ulockfs();
3710 		/*
3711 		 * if logging was enabled, then re-enable it
3712 		 */
3713 		if (waslog) {
3714 			if (rl_log_control(fsys, _FIOLOGENABLE) != RL_SUCCESS) {
3715 				(void) fprintf(stderr, gettext(
3716 					"failed to re-enable logging\n"));
3717 			}
3718 		}
3719 	} else if (grow) {
3720 		if (isbad) {
3721 			(void) fprintf(stderr, gettext(
3722 				"Filesystem is currently inconsistent.  It "
3723 				"must be repaired with fsck(1M)\nbefore being "
3724 				"used.  Use the following command to "
3725 				"do this:\n\n\tfsck %s\n\n"),
3726 					fsys);
3727 
3728 			if (ismounted) {
3729 				(void) fprintf(stderr, gettext(
3730 					"You will be told that the filesystem "
3731 					"is already mounted, and asked if you\n"
3732 					"wish to continue.  Answer `yes' to "
3733 					"this question.\n\n"));
3734 			}
3735 
3736 			(void) fprintf(stderr, gettext(
3737 					"One problem should be reported, that "
3738 					"the summary information is bad.\n"
3739 					"You will then be asked if it "
3740 					"should be salvaged.  Answer `yes' "
3741 					"to\nthis question.\n\n"));
3742 		}
3743 
3744 		if (ismounted) {
3745 			/*
3746 			 * In theory, there's no way to get here without
3747 			 * isbad also being set, but be robust in the
3748 			 * face of future code changes.
3749 			 */
3750 			(void) fprintf(stderr, gettext(
3751 				"The filesystem is currently mounted "
3752 				"read-only and write-locked.  "));
3753 			if (isbad) {
3754 				(void) fprintf(stderr, gettext(
3755 					"After\nrunning fsck, unlock the "
3756 					"filesystem and "));
3757 			} else {
3758 				(void) fprintf(stderr, gettext(
3759 					"Unlock the filesystem\nand "));
3760 			}
3761 
3762 			(void) fprintf(stderr, gettext(
3763 				"re-enable writing with\nthe following "
3764 				"command:\n\n\tlockfs -u %s\n\n"),
3765 					directory);
3766 		}
3767 	}
3768 
3769 	exit(exitstatus);
3770 }
3771 
3772 void
3773 randomgeneration()
3774 {
3775 	int		 i;
3776 	struct dinode	*dp;
3777 
3778 	/*
3779 	 * always perform fsirand(1) function... newfs will notice that
3780 	 * the inodes have been randomized and will not call fsirand itself
3781 	 */
3782 	for (i = 0, dp = zino; i < sblock.fs_inopb; ++i, ++dp)
3783 		IRANDOMIZE(&dp->di_ic);
3784 }
3785 
3786 /*
3787  * Check the size of the summary information.
3788  * Fields in sblock are not changed in this function.
3789  *
3790  * For an 8K filesystem block, the maximum number of cylinder groups is 16384.
3791  *     MAXCSBUFS {32}  *   8K  {FS block size}
3792  *                         divided by (sizeof csum) {16}
3793  *
3794  * Note that MAXCSBUFS is not used in the kernel; as of Solaris 2.6 build 32,
3795  * this is the only place where it's referenced.
3796  */
3797 void
3798 checksummarysize()
3799 {
3800 	diskaddr_t	dmax;
3801 	diskaddr_t	dmin;
3802 	int64_t	cg0frags;
3803 	int64_t	cg0blocks;
3804 	int64_t	maxncg;
3805 	int64_t	maxfrags;
3806 	uint64_t	fs_size;
3807 	uint64_t maxfs_blocks; /* filesystem blocks for max filesystem size */
3808 
3809 	/*
3810 	 * compute the maximum summary info size
3811 	 */
3812 	dmin = cgdmin(&sblock, 0);
3813 	dmax = cgbase(&sblock, 0) + sblock.fs_fpg;
3814 	fs_size = (grow) ? grow_fs_size : sblock.fs_size;
3815 	if (dmax > fs_size)
3816 		dmax = fs_size;
3817 	cg0frags  = dmax - dmin;
3818 	cg0blocks = cg0frags / sblock.fs_frag;
3819 	cg0frags = cg0blocks * sblock.fs_frag;
3820 	maxncg   = (longlong_t)cg0blocks *
3821 	    (longlong_t)(sblock.fs_bsize / sizeof (struct csum));
3822 
3823 	maxfs_blocks = FS_MAX;
3824 
3825 	if (maxncg > ((longlong_t)maxfs_blocks / (longlong_t)sblock.fs_fpg) + 1)
3826 		maxncg = ((longlong_t)maxfs_blocks /
3827 		    (longlong_t)sblock.fs_fpg) + 1;
3828 
3829 	maxfrags = maxncg * (longlong_t)sblock.fs_fpg;
3830 
3831 	if (maxfrags > maxfs_blocks)
3832 		maxfrags = maxfs_blocks;
3833 
3834 
3835 	/*
3836 	 * remember for later processing in extendsummaryinfo()
3837 	 */
3838 	if (test)
3839 		grow_sifrag = dmin + (cg0blocks * sblock.fs_frag);
3840 	if (testfrags == 0)
3841 		testfrags = cg0frags;
3842 	if (testforce)
3843 		if (testfrags > cg0frags) {
3844 			(void) fprintf(stderr,
3845 				gettext("Too many test frags (%lld); "
3846 				"try %lld\n"), testfrags, cg0frags);
3847 			lockexit(32);
3848 		}
3849 
3850 	/*
3851 	 * if summary info is too large (too many cg's) tell the user and exit
3852 	 */
3853 	if ((longlong_t)sblock.fs_size > maxfrags) {
3854 		(void) fprintf(stderr, gettext(
3855 		    "Too many cylinder groups with %llu sectors;\n    try "
3856 		    "increasing cgsize, or decreasing fssize to %llu\n"),
3857 		    fsbtodb(&sblock, (uint64_t)sblock.fs_size),
3858 		    fsbtodb(&sblock, (uint64_t)maxfrags));
3859 		lockexit(32);
3860 	}
3861 }
3862 
3863 /*
3864  * checksblock() has two uses:
3865  *	- One is to sanity test the superblock and is used when newfs(1M)
3866  *	  is invoked with the "-N" option. If any discrepancy was found,
3867  *	  just return whatever error was found and do not exit.
3868  *	- the other use of it is in places where you expect the superblock
3869  *	  to be sane, and if it isn't, then we exit.
3870  * Which of the above two actions to take is indicated with the second argument.
3871  */
3872 
3873 int
3874 checksblock(struct fs sb, int proceed)
3875 {
3876 	int err = 0;
3877 	char *errmsg;
3878 
3879 	if ((sb.fs_magic != FS_MAGIC) && (sb.fs_magic != MTB_UFS_MAGIC)) {
3880 	    err = 1;
3881 	    errmsg = gettext("Bad superblock; magic number wrong\n");
3882 	} else if ((sb.fs_magic == FS_MAGIC &&
3883 		(sb.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3884 		sb.fs_version != UFS_VERSION_MIN)) ||
3885 		(sb.fs_magic == MTB_UFS_MAGIC &&
3886 		(sb.fs_version > MTB_UFS_VERSION_1 ||
3887 		sb.fs_version < MTB_UFS_VERSION_MIN))) {
3888 	    err = 2;
3889 	    errmsg = gettext("Unrecognized version of UFS\n");
3890 	} else if (sb.fs_ncg < 1) {
3891 	    err = 3;
3892 	    errmsg = gettext("Bad superblock; ncg out of range\n");
3893 	} else if (sb.fs_cpg < 1) {
3894 	    err = 4;
3895 	    errmsg = gettext("Bad superblock; cpg out of range\n");
3896 	} else if (sb.fs_ncg * sb.fs_cpg < sb.fs_ncyl ||
3897 		(sb.fs_ncg - 1) * sb.fs_cpg >= sb.fs_ncyl) {
3898 	    err = 5;
3899 	    errmsg = gettext("Bad superblock; ncyl out of range\n");
3900 	} else if (sb.fs_sbsize <= 0 || sb.fs_sbsize > sb.fs_bsize) {
3901 	    err = 6;
3902 	    errmsg = gettext("Bad superblock; superblock size out of range\n");
3903 	}
3904 
3905 
3906 	if (proceed) {
3907 		if (err) dprintf(("%s", errmsg));
3908 		return (err);
3909 	}
3910 
3911 	if (err) {
3912 		fprintf(stderr, "%s", errmsg);
3913 		lockexit(32);
3914 	}
3915 }
3916 
3917 /*
3918  * Roll the embedded log, if any, and set up the global variables
3919  * islog, islogok and isufslog.
3920  */
3921 static void
3922 logsetup(char *devstr)
3923 {
3924 	void		*buf, *ud_buf;
3925 	extent_block_t	*ebp;
3926 	ml_unit_t	*ul;
3927 	ml_odunit_t	*ud;
3928 
3929 	/*
3930 	 * Does the superblock indicate that we are supposed to have a log ?
3931 	 */
3932 	if (sblock.fs_logbno == 0) {
3933 		/*
3934 		 * No log present, nothing to do.
3935 		 */
3936 		islogok = 0;
3937 		islog = 0;
3938 		isufslog = 0;
3939 		return;
3940 	} else {
3941 		/*
3942 		 * There's a log in a yet unknown state, attempt to roll it.
3943 		 */
3944 		islog = 1;
3945 		islogok = 0;
3946 		isufslog = 0;
3947 
3948 		/*
3949 		 * We failed to roll the log, bail out.
3950 		 */
3951 		if (rl_roll_log(devstr) != RL_SUCCESS)
3952 			return;
3953 
3954 		isufslog = 1;
3955 
3956 		/* log is not okay; check the fs */
3957 		if ((FSOKAY != (sblock.fs_state + sblock.fs_time)) ||
3958 		    (sblock.fs_clean != FSLOG))
3959 			return;
3960 
3961 		/* get the log allocation block */
3962 		buf = (void *)malloc(DEV_BSIZE);
3963 		if (buf == (void *) NULL)
3964 			return;
3965 
3966 		ud_buf = (void *)malloc(DEV_BSIZE);
3967 		if (ud_buf == (void *) NULL) {
3968 			free(buf);
3969 			return;
3970 		}
3971 
3972 		rdfs((diskaddr_t)logbtodb(&sblock, sblock.fs_logbno),
3973 		    DEV_BSIZE, buf);
3974 		ebp = (extent_block_t *)buf;
3975 
3976 		/* log allocation block is not okay; check the fs */
3977 		if (ebp->type != LUFS_EXTENTS) {
3978 			free(buf);
3979 			free(ud_buf);
3980 			return;
3981 		}
3982 
3983 		/* get the log state block(s) */
3984 		rdfs((diskaddr_t)logbtodb(&sblock, ebp->extents[0].pbno),
3985 		    DEV_BSIZE, ud_buf);
3986 		ud = (ml_odunit_t *)ud_buf;
3987 		ul = (ml_unit_t *)malloc(sizeof (*ul));
3988 		ul->un_ondisk = *ud;
3989 
3990 		/* log state is okay */
3991 		if ((ul->un_chksum == ul->un_head_ident + ul->un_tail_ident) &&
3992 		    (ul->un_version == LUFS_VERSION_LATEST) &&
3993 		    (ul->un_badlog == 0))
3994 			islogok = 1;
3995 		free(ud_buf);
3996 		free(buf);
3997 		free(ul);
3998 	}
3999 }
4000 
4001 void
4002 growinit(char *devstr)
4003 {
4004 	int	i;
4005 	char	buf[DEV_BSIZE];
4006 
4007 	/*
4008 	 * Read and verify the superblock
4009 	 */
4010 	rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4011 	(void) checksblock(sblock, 0);
4012 	if (sblock.fs_postblformat != FS_DYNAMICPOSTBLFMT) {
4013 		(void) fprintf(stderr,
4014 			gettext("old file system format; can't growfs\n"));
4015 		lockexit(32);
4016 	}
4017 
4018 	/*
4019 	 * can't shrink a file system
4020 	 */
4021 	grow_fssize = fsbtodb(&sblock, (uint64_t)sblock.fs_size);
4022 	if (fssize_db < grow_fssize) {
4023 		(void) fprintf(stderr,
4024 		    gettext("%lld sectors < current size of %lld sectors\n"),
4025 		    fssize_db, grow_fssize);
4026 		lockexit(32);
4027 	}
4028 
4029 	/*
4030 	 * can't grow a system to over a terabyte unless it was set up
4031 	 * as an MTB UFS file system.
4032 	 */
4033 	if (mtb == 'y' && sblock.fs_magic != MTB_UFS_MAGIC) {
4034 		if (fssize_db >= SECTORS_PER_TERABYTE) {
4035 			(void) fprintf(stderr, gettext(
4036 "File system was not set up with the multi-terabyte format.\n"));
4037 			(void) fprintf(stderr, gettext(
4038 "Its size cannot be increased to a terabyte or more.\n"));
4039 		} else {
4040 			(void) fprintf(stderr, gettext(
4041 "Cannot convert file system to multi-terabyte format.\n"));
4042 		}
4043 		lockexit(32);
4044 	}
4045 
4046 	logsetup(devstr);
4047 
4048 	/*
4049 	 * can't growfs when logging device has errors
4050 	 */
4051 	if ((islog && !islogok) ||
4052 	    ((FSOKAY == (sblock.fs_state + sblock.fs_time)) &&
4053 	    (sblock.fs_clean == FSLOG && !islog))) {
4054 		(void) fprintf(stderr,
4055 			gettext("logging device has errors; can't growfs\n"));
4056 		lockexit(32);
4057 	}
4058 
4059 	/*
4060 	 * disable ufs logging for growing
4061 	 */
4062 	if (isufslog) {
4063 		if (rl_log_control(devstr, _FIOLOGDISABLE) != RL_SUCCESS) {
4064 			(void) fprintf(stderr, gettext(
4065 				"failed to disable logging\n"));
4066 			lockexit(32);
4067 		}
4068 		islog = 0;
4069 		waslog = 1;
4070 	}
4071 
4072 	/*
4073 	 * if mounted write lock the file system to be grown
4074 	 */
4075 	if (ismounted)
4076 		wlockfs();
4077 
4078 	/*
4079 	 * refresh dynamic superblock state - disabling logging will have
4080 	 * changed the amount of free space available in the file system
4081 	 */
4082 	rdfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4083 
4084 	/*
4085 	 * make sure device is big enough
4086 	 */
4087 	rdfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4088 	wtfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4089 
4090 	/*
4091 	 * read current summary information
4092 	 */
4093 	grow_fscs = read_summaryinfo(&sblock);
4094 
4095 	/*
4096 	 * save some current size related fields from the superblock
4097 	 * These are used in extendsummaryinfo()
4098 	 */
4099 	grow_fs_size	= sblock.fs_size;
4100 	grow_fs_ncg	= sblock.fs_ncg;
4101 	grow_fs_csaddr	= (diskaddr_t)sblock.fs_csaddr;
4102 	grow_fs_cssize	= sblock.fs_cssize;
4103 
4104 	/*
4105 	 * save and reset the clean flag
4106 	 */
4107 	if (FSOKAY == (sblock.fs_state + sblock.fs_time))
4108 		grow_fs_clean = sblock.fs_clean;
4109 	else
4110 		grow_fs_clean = FSBAD;
4111 	sblock.fs_clean = FSBAD;
4112 	sblock.fs_state = FSOKAY - sblock.fs_time;
4113 	isbad = 1;
4114 	wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4115 }
4116 
4117 void
4118 checkdev(char *rdev, char *bdev)
4119 {
4120 	struct stat64	statarea;
4121 
4122 	if (stat64(bdev, &statarea) < 0) {
4123 		(void) fprintf(stderr, gettext("can't check mount point; "));
4124 		(void) fprintf(stderr, gettext("can't stat %s\n"), bdev);
4125 		lockexit(32);
4126 	}
4127 	if ((statarea.st_mode & S_IFMT) != S_IFBLK) {
4128 		(void) fprintf(stderr, gettext(
4129 		    "can't check mount point; %s is not a block device\n"),
4130 		    bdev);
4131 		lockexit(32);
4132 	}
4133 	if (stat64(rdev, &statarea) < 0) {
4134 		(void) fprintf(stderr, gettext("can't stat %s\n"), rdev);
4135 		lockexit(32);
4136 	}
4137 	if ((statarea.st_mode & S_IFMT) != S_IFCHR) {
4138 		(void) fprintf(stderr,
4139 			gettext("%s is not a character device\n"), rdev);
4140 		lockexit(32);
4141 	}
4142 }
4143 
4144 void
4145 checkmount(struct mnttab *mntp, char *bdevname)
4146 {
4147 	struct stat64	statdir;
4148 	struct stat64	statdev;
4149 
4150 	if (strcmp(bdevname, mntp->mnt_special) == 0) {
4151 		if (stat64(mntp->mnt_mountp, &statdir) == -1) {
4152 			(void) fprintf(stderr, gettext("can't stat %s\n"),
4153 				mntp->mnt_mountp);
4154 			lockexit(32);
4155 		}
4156 		if (stat64(mntp->mnt_special, &statdev) == -1) {
4157 			(void) fprintf(stderr, gettext("can't stat %s\n"),
4158 				mntp->mnt_special);
4159 			lockexit(32);
4160 		}
4161 		if (statdir.st_dev != statdev.st_rdev) {
4162 			(void) fprintf(stderr, gettext(
4163 				"%s is not mounted on %s; mnttab(4) wrong\n"),
4164 				mntp->mnt_special, mntp->mnt_mountp);
4165 			lockexit(32);
4166 		}
4167 		ismounted = 1;
4168 		if (directory) {
4169 			if (strcmp(mntp->mnt_mountp, directory) != 0) {
4170 				(void) fprintf(stderr,
4171 				gettext("%s is mounted on %s, not %s\n"),
4172 				    bdevname, mntp->mnt_mountp, directory);
4173 				lockexit(32);
4174 			}
4175 		} else {
4176 			if (grow)
4177 				(void) fprintf(stderr, gettext(
4178 				    "%s is mounted on %s; can't growfs\n"),
4179 				    bdevname, mntp->mnt_mountp);
4180 			else
4181 				(void) fprintf(stderr,
4182 				    gettext("%s is mounted, can't mkfs\n"),
4183 				    bdevname);
4184 			lockexit(32);
4185 		}
4186 	}
4187 }
4188 
4189 struct dinode	*dibuf	= 0;
4190 diskaddr_t	difrag	= 0;
4191 
4192 struct dinode *
4193 gdinode(ino_t ino)
4194 {
4195 	/*
4196 	 * read the block of inodes containing inode number ino
4197 	 */
4198 	if (dibuf == 0)
4199 		dibuf = (struct dinode *)malloc((unsigned)sblock.fs_bsize);
4200 	if (itod(&sblock, ino) != difrag) {
4201 		difrag = itod(&sblock, ino);
4202 		rdfs(fsbtodb(&sblock, (uint64_t)difrag), (int)sblock.fs_bsize,
4203 			(char *)dibuf);
4204 	}
4205 	return (dibuf + (ino % INOPB(&sblock)));
4206 }
4207 
4208 /*
4209  * structure that manages the frags we need for extended summary info
4210  *	These frags can be:
4211  *		free
4212  *		data  block
4213  *		alloc block
4214  */
4215 struct csfrag {
4216 	struct csfrag	*next;		/* next entry */
4217 	daddr32_t	 ofrag;		/* old frag */
4218 	daddr32_t	 nfrag;		/* new frag */
4219 	long		 cylno;		/* cylno of nfrag */
4220 	long		 frags;		/* number of frags */
4221 	long		 size;		/* size in bytes */
4222 	ino_t		 ino;		/* inode number */
4223 	long		 fixed;		/* Boolean - Already fixed? */
4224 };
4225 struct csfrag	*csfrag;		/* state unknown */
4226 struct csfrag	*csfragino;		/* frags belonging to an inode */
4227 struct csfrag	*csfragfree;		/* frags that are free */
4228 
4229 daddr32_t maxcsfrag	= 0;		/* maximum in range */
4230 daddr32_t mincsfrag	= 0x7fffffff;	/* minimum in range */
4231 
4232 int
4233 csfraginrange(daddr32_t frag)
4234 {
4235 	return ((frag >= mincsfrag) && (frag <= maxcsfrag));
4236 }
4237 
4238 struct csfrag *
4239 findcsfrag(daddr32_t frag, struct csfrag **cfap)
4240 {
4241 	struct csfrag	*cfp;
4242 
4243 	if (!csfraginrange(frag))
4244 		return (NULL);
4245 
4246 	for (cfp = *cfap; cfp; cfp = cfp->next)
4247 		if (cfp->ofrag == frag)
4248 			return (cfp);
4249 	return (NULL);
4250 }
4251 
4252 void
4253 checkindirect(ino_t ino, daddr32_t *fragsp, daddr32_t frag, int level)
4254 {
4255 	int			i;
4256 	int			ne	= sblock.fs_bsize / sizeof (daddr32_t);
4257 	daddr32_t			fsb[MAXBSIZE / sizeof (daddr32_t)];
4258 
4259 	if (frag == 0)
4260 		return;
4261 
4262 	rdfs(fsbtodb(&sblock, frag), (int)sblock.fs_bsize,
4263 	    (char *)fsb);
4264 
4265 	checkdirect(ino, fragsp, fsb, sblock.fs_bsize / sizeof (daddr32_t));
4266 
4267 	if (level)
4268 		for (i = 0; i < ne && *fragsp; ++i)
4269 			checkindirect(ino, fragsp, fsb[i], level-1);
4270 }
4271 
4272 void
4273 addcsfrag(ino_t ino, daddr32_t frag, struct csfrag **cfap)
4274 {
4275 	struct csfrag	*cfp, *curr, *prev;
4276 
4277 	/*
4278 	 * establish a range for faster checking in csfraginrange()
4279 	 */
4280 	if (frag > maxcsfrag)
4281 		maxcsfrag = frag;
4282 	if (frag < mincsfrag)
4283 		mincsfrag = frag;
4284 
4285 	/*
4286 	 * if this frag belongs to an inode and is not the start of a block
4287 	 *	then see if it is part of a frag range for this inode
4288 	 */
4289 	if (ino && (frag % sblock.fs_frag))
4290 		for (cfp = *cfap; cfp; cfp = cfp->next) {
4291 			if (ino != cfp->ino)
4292 				continue;
4293 			if (frag != cfp->ofrag + cfp->frags)
4294 				continue;
4295 			cfp->frags++;
4296 			cfp->size += sblock.fs_fsize;
4297 			return;
4298 		}
4299 	/*
4300 	 * allocate a csfrag entry and insert it in an increasing order into the
4301 	 * specified list
4302 	 */
4303 	cfp = (struct csfrag *)calloc(1, sizeof (struct csfrag));
4304 	cfp->ino	= ino;
4305 	cfp->ofrag	= frag;
4306 	cfp->frags	= 1;
4307 	cfp->size	= sblock.fs_fsize;
4308 	for (prev = NULL, curr = *cfap; curr != NULL;
4309 		prev = curr, curr = curr->next) {
4310 		if (frag < curr->ofrag) {
4311 			cfp->next = curr;
4312 			if (prev)
4313 				prev->next = cfp;	/* middle element */
4314 			else
4315 				*cfap = cfp;		/* first element */
4316 			break;
4317 		}
4318 		if (curr->next == NULL) {
4319 			curr->next = cfp;		/* last element	*/
4320 			break;
4321 		}
4322 	}
4323 	if (*cfap == NULL)	/* will happen only once */
4324 		*cfap = cfp;
4325 }
4326 
4327 void
4328 delcsfrag(daddr32_t frag, struct csfrag **cfap)
4329 {
4330 	struct csfrag	*cfp;
4331 	struct csfrag	**cfpp;
4332 
4333 	/*
4334 	 * free up entry whose beginning frag matches
4335 	 */
4336 	for (cfpp = cfap; *cfpp; cfpp = &(*cfpp)->next) {
4337 		if (frag == (*cfpp)->ofrag) {
4338 			cfp = *cfpp;
4339 			*cfpp = (*cfpp)->next;
4340 			free((char *)cfp);
4341 			return;
4342 		}
4343 	}
4344 }
4345 
4346 /*
4347  * See whether any of the direct blocks in the array pointed by "db" and of
4348  * length "ne" are within the range of frags needed to extend the cylinder
4349  * summary. If so, remove those frags from the "as-yet-unclassified" list
4350  * (csfrag) and add them to the "owned-by-inode" list (csfragino).
4351  * For each such frag found, decrement the frag count pointed to by fragsp.
4352  * "ino" is the inode that contains (either directly or indirectly) the frags
4353  * being checked.
4354  */
4355 void
4356 checkdirect(ino_t ino, daddr32_t *fragsp, daddr32_t *db, int ne)
4357 {
4358 	int	 i;
4359 	int	 j;
4360 	int	 found;
4361 	diskaddr_t	 frag;
4362 
4363 	/*
4364 	 * scan for allocation within the new summary info range
4365 	 */
4366 	for (i = 0; i < ne && *fragsp; ++i) {
4367 		if ((frag = *db++) != 0) {
4368 			found = 0;
4369 			for (j = 0; j < sblock.fs_frag && *fragsp; ++j) {
4370 				if (found || (found = csfraginrange(frag))) {
4371 					addcsfrag(ino, frag, &csfragino);
4372 					delcsfrag(frag, &csfrag);
4373 				}
4374 				++frag;
4375 				--(*fragsp);
4376 			}
4377 		}
4378 	}
4379 }
4380 
4381 void
4382 findcsfragino()
4383 {
4384 	int		 i;
4385 	int		 j;
4386 	daddr32_t		 frags;
4387 	struct dinode	*dp;
4388 
4389 	/*
4390 	 * scan all old inodes looking for allocations in the new
4391 	 * summary info range.  Move the affected frag from the
4392 	 * generic csfrag list onto the `owned-by-inode' list csfragino.
4393 	 */
4394 	for (i = UFSROOTINO; i < grow_fs_ncg*sblock.fs_ipg && csfrag; ++i) {
4395 		dp = gdinode((ino_t)i);
4396 		switch (dp->di_mode & IFMT) {
4397 			case IFSHAD	:
4398 			case IFLNK 	:
4399 			case IFDIR 	:
4400 			case IFREG 	: break;
4401 			default		: continue;
4402 		}
4403 
4404 		frags   = dbtofsb(&sblock, dp->di_blocks);
4405 
4406 		checkdirect((ino_t)i, &frags, &dp->di_db[0], NDADDR+NIADDR);
4407 		for (j = 0; j < NIADDR && frags; ++j) {
4408 			/* Negate the block if its an fallocate'd block */
4409 			if (dp->di_ib[j] < 0 && dp->di_ib[j] != UFS_HOLE)
4410 				checkindirect((ino_t)i, &frags,
4411 				    -(dp->di_ib[j]), j);
4412 			else
4413 				checkindirect((ino_t)i, &frags,
4414 				    dp->di_ib[j], j);
4415 		}
4416 	}
4417 }
4418 
4419 void
4420 fixindirect(daddr32_t frag, int level)
4421 {
4422 	int			 i;
4423 	int			 ne	= sblock.fs_bsize / sizeof (daddr32_t);
4424 	daddr32_t			fsb[MAXBSIZE / sizeof (daddr32_t)];
4425 
4426 	if (frag == 0)
4427 		return;
4428 
4429 	rdfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4430 	    (char *)fsb);
4431 
4432 	fixdirect((caddr_t)fsb, frag, fsb, ne);
4433 
4434 	if (level)
4435 		for (i = 0; i < ne; ++i)
4436 			fixindirect(fsb[i], level-1);
4437 }
4438 
4439 void
4440 fixdirect(caddr_t bp, daddr32_t frag, daddr32_t *db, int ne)
4441 {
4442 	int	 i;
4443 	struct csfrag	*cfp;
4444 
4445 	for (i = 0; i < ne; ++i, ++db) {
4446 		if (*db == 0)
4447 			continue;
4448 		if ((cfp = findcsfrag(*db, &csfragino)) == NULL)
4449 			continue;
4450 		*db = cfp->nfrag;
4451 		cfp->fixed = 1;
4452 		wtfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4453 		    bp);
4454 	}
4455 }
4456 
4457 void
4458 fixcsfragino()
4459 {
4460 	int		 i;
4461 	struct dinode	*dp;
4462 	struct csfrag	*cfp;
4463 
4464 	for (cfp = csfragino; cfp; cfp = cfp->next) {
4465 		if (cfp->fixed)
4466 			continue;
4467 		dp = gdinode((ino_t)cfp->ino);
4468 		fixdirect((caddr_t)dibuf, difrag, dp->di_db, NDADDR+NIADDR);
4469 		for (i = 0; i < NIADDR; ++i)
4470 			fixindirect(dp->di_ib[i], i);
4471 	}
4472 }
4473 
4474 /*
4475  * Read the cylinders summary information specified by settings in the
4476  * passed 'fs' structure into a new allocated array of csum structures.
4477  * The caller is responsible for freeing the returned array.
4478  * Return a pointer to an array of csum structures.
4479  */
4480 static struct csum *
4481 read_summaryinfo(struct	fs *fsp)
4482 {
4483 	struct csum 	*csp;
4484 	int		i;
4485 
4486 	if ((csp = malloc((size_t)fsp->fs_cssize)) == NULL) {
4487 		(void) fprintf(stderr, gettext("cannot create csum list,"
4488 			" not enough memory\n"));
4489 		exit(32);
4490 	}
4491 
4492 	for (i = 0; i < fsp->fs_cssize; i += fsp->fs_bsize) {
4493 		rdfs(fsbtodb(fsp,
4494 			(uint64_t)(fsp->fs_csaddr + numfrags(fsp, i))),
4495 			(int)(fsp->fs_cssize - i < fsp->fs_bsize ?
4496 			fsp->fs_cssize - i : fsp->fs_bsize),
4497 			((caddr_t)csp) + i);
4498 	}
4499 
4500 	return (csp);
4501 }
4502 
4503 /*
4504  * Check the allocation of fragments that are to be made part of a csum block.
4505  * A fragment is allocated if it is either in the csfragfree list or, it is
4506  * in the csfragino list and has new frags associated with it.
4507  * Return the number of allocated fragments.
4508  */
4509 int64_t
4510 checkfragallocated(daddr32_t frag)
4511 {
4512 	struct 	csfrag	*cfp;
4513 	/*
4514 	 * Since the lists are sorted we can break the search if the asked
4515 	 * frag is smaller then the one in the list.
4516 	 */
4517 	for (cfp = csfragfree; cfp != NULL && frag >= cfp->ofrag;
4518 		cfp = cfp->next) {
4519 		if (frag == cfp->ofrag)
4520 			return (1);
4521 	}
4522 	for (cfp = csfragino; cfp != NULL && frag >= cfp->ofrag;
4523 		cfp = cfp->next) {
4524 		if (frag == cfp->ofrag && cfp->nfrag != 0)
4525 			return (cfp->frags);
4526 	}
4527 
4528 	return (0);
4529 }
4530 
4531 /*
4532  * Figure out how much the filesystem can be grown. The limiting factor is
4533  * the available free space needed to extend the cg summary info block.
4534  * The free space is determined in three steps:
4535  * - Try to extend the cg summary block to the required size.
4536  * - Find free blocks in last cg.
4537  * - Find free space in the last already allocated fragment of the summary info
4538  *   block, and use it for additional csum structures.
4539  * Return the maximum size of the new filesystem or 0 if it can't be grown.
4540  * Please note that this function leaves the global list pointers csfrag,
4541  * csfragfree, and csfragino initialized, and the caller is responsible for
4542  * freeing the lists.
4543  */
4544 diskaddr_t
4545 probe_summaryinfo()
4546 {
4547 	/* fragments by which the csum block can be extended. */
4548 	int64_t 	growth_csum_frags = 0;
4549 	/* fragments by which the filesystem can be extended. */
4550 	int64_t		growth_fs_frags = 0;
4551 	int64_t		new_fs_cssize;	/* size of csum blk in the new FS */
4552 	int64_t		new_fs_ncg;	/* number of cg in the new FS */
4553 	int64_t 	spare_csum;
4554 	daddr32_t	oldfrag_daddr;
4555 	daddr32_t	newfrag_daddr;
4556 	daddr32_t	daddr;
4557 	int		i;
4558 
4559 	/*
4560 	 * read and verify the superblock
4561 	 */
4562 	rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4563 	(void) checksblock(sblock, 0);
4564 
4565 	/*
4566 	 * check how much we can extend the cg summary info block
4567 	 */
4568 
4569 	/*
4570 	 * read current summary information
4571 	 */
4572 	fscs = read_summaryinfo(&sblock);
4573 
4574 	/*
4575 	 * build list of frags needed for cg summary info block extension
4576 	 */
4577 	oldfrag_daddr = howmany(sblock.fs_cssize, sblock.fs_fsize) +
4578 		sblock.fs_csaddr;
4579 	new_fs_ncg = howmany(dbtofsb(&sblock, fssize_db), sblock.fs_fpg);
4580 	new_fs_cssize = fragroundup(&sblock, new_fs_ncg * sizeof (struct csum));
4581 	newfrag_daddr = howmany(new_fs_cssize, sblock.fs_fsize) +
4582 		sblock.fs_csaddr;
4583 	/*
4584 	 * add all of the frags that are required to grow the cyl summary to the
4585 	 * csfrag list, which is the generic/unknown list, since at this point
4586 	 * we don't yet know the state of those frags.
4587 	 */
4588 	for (daddr = oldfrag_daddr; daddr < newfrag_daddr; daddr++)
4589 		addcsfrag((ino_t)0, daddr, &csfrag);
4590 
4591 	/*
4592 	 * filter free fragments and allocate them. Note that the free frags
4593 	 * must be allocated first otherwise they could be grabbed by
4594 	 * alloccsfragino() for data frags.
4595 	 */
4596 	findcsfragfree();
4597 	alloccsfragfree();
4598 
4599 	/*
4600 	 * filter fragments owned by inodes and allocate them
4601 	 */
4602 	grow_fs_ncg = sblock.fs_ncg; /* findcsfragino() needs this glob. var. */
4603 	findcsfragino();
4604 	alloccsfragino();
4605 
4606 	if (notenoughspace()) {
4607 		/*
4608 		 * check how many consecutive fragments could be allocated
4609 		 * in both lists.
4610 		 */
4611 		int64_t tmp_frags;
4612 		for (daddr = oldfrag_daddr; daddr < newfrag_daddr;
4613 			daddr += tmp_frags) {
4614 			if ((tmp_frags = checkfragallocated(daddr)) > 0)
4615 				growth_csum_frags += tmp_frags;
4616 			else
4617 				break;
4618 		}
4619 	} else {
4620 		/*
4621 		 * We have all we need for the new desired size,
4622 		 * so clean up and report back.
4623 		 */
4624 		return (fssize_db);
4625 	}
4626 
4627 	/*
4628 	 * given the number of fragments by which the csum block can be grown
4629 	 * compute by how many new fragments the FS can be increased.
4630 	 * It is the number of csum instances per fragment multiplied by
4631 	 * `growth_csum_frags' and the number of fragments per cylinder group.
4632 	 */
4633 	growth_fs_frags = howmany(sblock.fs_fsize, sizeof (struct csum)) *
4634 		growth_csum_frags * sblock.fs_fpg;
4635 
4636 	/*
4637 	 * compute free fragments in the last cylinder group
4638 	 */
4639 	rdcg(sblock.fs_ncg - 1);
4640 	growth_fs_frags += sblock.fs_fpg - acg.cg_ndblk;
4641 
4642 	/*
4643 	 * compute how many csum instances are unused in the old csum block.
4644 	 * For each unused csum instance the FS can be grown by one cylinder
4645 	 * group without extending the csum block.
4646 	 */
4647 	spare_csum = howmany(sblock.fs_cssize, sizeof (struct csum)) -
4648 		sblock.fs_ncg;
4649 	if (spare_csum > 0)
4650 		growth_fs_frags += spare_csum * sblock.fs_fpg;
4651 
4652 	/*
4653 	 * recalculate the new filesystem size in sectors, shorten it by
4654 	 * the requested size `fssize_db' if necessary.
4655 	 */
4656 	if (growth_fs_frags > 0) {
4657 		diskaddr_t sect;
4658 		sect = (sblock.fs_size + growth_fs_frags) * sblock.fs_nspf;
4659 		return ((sect > fssize_db) ? fssize_db : sect);
4660 	}
4661 
4662 	return (0);
4663 }
4664 
4665 void
4666 extendsummaryinfo()
4667 {
4668 	int64_t		i;
4669 	int		localtest	= test;
4670 	int64_t		frags;
4671 	daddr32_t		oldfrag;
4672 	daddr32_t		newfrag;
4673 
4674 	/*
4675 	 * if no-write (-N), don't bother
4676 	 */
4677 	if (Nflag)
4678 		return;
4679 
4680 again:
4681 	flcg();
4682 	/*
4683 	 * summary info did not change size -- do nothing unless in test mode
4684 	 */
4685 	if (grow_fs_cssize == sblock.fs_cssize)
4686 		if (!localtest)
4687 			return;
4688 
4689 	/*
4690 	 * build list of frags needed for additional summary information
4691 	 */
4692 	oldfrag = howmany(grow_fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4693 	newfrag = howmany(sblock.fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4694 	/*
4695 	 * add all of the frags that are required to grow the cyl summary to the
4696 	 * csfrag list, which is the generic/unknown list, since at this point
4697 	 * we don't yet know the state of those frags.
4698 	 */
4699 	for (i = oldfrag, frags = 0; i < newfrag; ++i, ++frags)
4700 		addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4701 	/*
4702 	 * reduce the number of data blocks in the file system (fs_dsize) by
4703 	 * the number of frags that need to be added to the cyl summary
4704 	 */
4705 	sblock.fs_dsize -= (newfrag - oldfrag);
4706 
4707 	/*
4708 	 * In test mode, we move more data than necessary from
4709 	 * cylinder group 0.  The lookup/allocate/move code can be
4710 	 * better stressed without having to create HUGE file systems.
4711 	 */
4712 	if (localtest)
4713 		for (i = newfrag; i < grow_sifrag; ++i) {
4714 			if (frags >= testfrags)
4715 				break;
4716 			frags++;
4717 			addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4718 		}
4719 
4720 	/*
4721 	 * move frags to free or inode lists, depending on owner
4722 	 */
4723 	findcsfragfree();
4724 	findcsfragino();
4725 
4726 	/*
4727 	 * if not all frags can be located, file system must be inconsistent
4728 	 */
4729 	if (csfrag) {
4730 		isbad = 1;	/* should already be set, but make sure */
4731 		lockexit(32);
4732 	}
4733 
4734 	/*
4735 	 * allocate the free frags. Note that the free frags must be allocated
4736 	 * first otherwise they could be grabbed by alloccsfragino() for data
4737 	 * frags.
4738 	 */
4739 	alloccsfragfree();
4740 	/*
4741 	 * allocate extra space for inode frags
4742 	 */
4743 	alloccsfragino();
4744 
4745 	/*
4746 	 * not enough space
4747 	 */
4748 	if (notenoughspace()) {
4749 		unalloccsfragfree();
4750 		unalloccsfragino();
4751 		if (localtest && !testforce) {
4752 			localtest = 0;
4753 			goto again;
4754 		}
4755 		(void) fprintf(stderr, gettext("Not enough free space\n"));
4756 		lockexit(NOTENOUGHSPACE);
4757 	}
4758 
4759 	/*
4760 	 * copy the data from old frags to new frags
4761 	 */
4762 	copycsfragino();
4763 
4764 	/*
4765 	 * fix the inodes to point to the new frags
4766 	 */
4767 	fixcsfragino();
4768 
4769 	/*
4770 	 * We may have moved more frags than we needed.  Free them.
4771 	 */
4772 	rdcg((long)0);
4773 	for (i = newfrag; i <= maxcsfrag; ++i)
4774 		setbit(cg_blksfree(&acg), i-cgbase(&sblock, 0));
4775 	wtcg();
4776 
4777 	flcg();
4778 }
4779 
4780 /*
4781  * Check if all fragments in the `csfragino' list were reallocated.
4782  */
4783 int
4784 notenoughspace()
4785 {
4786 	struct csfrag	*cfp;
4787 
4788 	/*
4789 	 * If any element in the csfragino array has a "new frag location"
4790 	 * of 0, the allocfrags() function was unsuccessful in allocating
4791 	 * space for moving the frag represented by this array element.
4792 	 */
4793 	for (cfp = csfragino; cfp; cfp = cfp->next)
4794 		if (cfp->nfrag == 0)
4795 			return (1);
4796 	return (0);
4797 }
4798 
4799 void
4800 unalloccsfragino()
4801 {
4802 	struct csfrag	*cfp;
4803 
4804 	while ((cfp = csfragino) != NULL) {
4805 		if (cfp->nfrag)
4806 			freefrags(cfp->nfrag, cfp->frags, cfp->cylno);
4807 		delcsfrag(cfp->ofrag, &csfragino);
4808 	}
4809 }
4810 
4811 void
4812 unalloccsfragfree()
4813 {
4814 	struct csfrag	*cfp;
4815 
4816 	while ((cfp = csfragfree) != NULL) {
4817 		freefrags(cfp->ofrag, cfp->frags, cfp->cylno);
4818 		delcsfrag(cfp->ofrag, &csfragfree);
4819 	}
4820 }
4821 
4822 /*
4823  * For each frag in the "as-yet-unclassified" list (csfrag), see if
4824  * it's free (i.e., its bit is set in the free frag bit map).  If so,
4825  * move it from the "as-yet-unclassified" list to the csfragfree list.
4826  */
4827 void
4828 findcsfragfree()
4829 {
4830 	struct csfrag	*cfp;
4831 	struct csfrag	*cfpnext;
4832 
4833 	/*
4834 	 * move free frags onto the free-frag list
4835 	 */
4836 	rdcg((long)0);
4837 	for (cfp = csfrag; cfp; cfp = cfpnext) {
4838 		cfpnext = cfp->next;
4839 		if (isset(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0))) {
4840 			addcsfrag(cfp->ino, cfp->ofrag, &csfragfree);
4841 			delcsfrag(cfp->ofrag, &csfrag);
4842 		}
4843 	}
4844 }
4845 
4846 void
4847 copycsfragino()
4848 {
4849 	struct csfrag	*cfp;
4850 	char		buf[MAXBSIZE];
4851 
4852 	/*
4853 	 * copy data from old frags to newly allocated frags
4854 	 */
4855 	for (cfp = csfragino; cfp; cfp = cfp->next) {
4856 		rdfs(fsbtodb(&sblock, (uint64_t)cfp->ofrag), (int)cfp->size,
4857 		    buf);
4858 		wtfs(fsbtodb(&sblock, (uint64_t)cfp->nfrag), (int)cfp->size,
4859 		    buf);
4860 	}
4861 }
4862 
4863 long	curcylno	= -1;
4864 int	cylnodirty	= 0;
4865 
4866 void
4867 rdcg(long cylno)
4868 {
4869 	if (cylno != curcylno) {
4870 		flcg();
4871 		curcylno = cylno;
4872 		rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4873 			(int)sblock.fs_cgsize, (char *)&acg);
4874 	}
4875 }
4876 
4877 void
4878 flcg()
4879 {
4880 	if (cylnodirty) {
4881 		if (debug && Pflag) {
4882 			(void) fprintf(stderr,
4883 				"Assert: cylnodirty set in probe mode\n");
4884 			return;
4885 		}
4886 		resetallocinfo();
4887 		wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4888 			(int)sblock.fs_cgsize, (char *)&acg);
4889 		cylnodirty = 0;
4890 	}
4891 	curcylno = -1;
4892 }
4893 
4894 void
4895 wtcg()
4896 {
4897 	if (!Pflag) {
4898 		/* probe mode should never write to disk */
4899 		cylnodirty = 1;
4900 	}
4901 }
4902 
4903 void
4904 allocfrags(long frags, daddr32_t *fragp, long *cylnop)
4905 {
4906 	int	 i;
4907 	int	 j;
4908 	long	 bits;
4909 	long	 bit;
4910 
4911 	/*
4912 	 * Allocate a free-frag range in an old cylinder group
4913 	 */
4914 	for (i = 0, *fragp = 0; i < grow_fs_ncg; ++i) {
4915 		if (((fscs+i)->cs_nffree < frags) && ((fscs+i)->cs_nbfree == 0))
4916 			continue;
4917 		rdcg((long)i);
4918 		bit = bits = 0;
4919 		while (findfreerange(&bit, &bits)) {
4920 			if (frags <= bits)  {
4921 				for (j = 0; j < frags; ++j)
4922 					clrbit(cg_blksfree(&acg), bit+j);
4923 				wtcg();
4924 				*cylnop = i;
4925 				*fragp  = bit + cgbase(&sblock, i);
4926 				return;
4927 			}
4928 			bit += bits;
4929 		}
4930 	}
4931 }
4932 
4933 /*
4934  * Allocate space for frags that need to be moved in order to free up space for
4935  * expanding the cylinder summary info.
4936  * For each frag that needs to be moved (each frag or range of frags in
4937  * the csfragino list), allocate a new location and store the frag number
4938  * of that new location in the nfrag field of the csfrag struct.
4939  * If a new frag can't be allocated for any element in the csfragino list,
4940  * set the new frag number for that element to 0 and return immediately.
4941  * The notenoughspace() function will detect this condition.
4942  */
4943 void
4944 alloccsfragino()
4945 {
4946 	struct csfrag	*cfp;
4947 
4948 	/*
4949 	 * allocate space for inode frag ranges
4950 	 */
4951 	for (cfp = csfragino; cfp; cfp = cfp->next) {
4952 		allocfrags(cfp->frags, &cfp->nfrag, &cfp->cylno);
4953 		if (cfp->nfrag == 0)
4954 			break;
4955 	}
4956 }
4957 
4958 void
4959 alloccsfragfree()
4960 {
4961 	struct csfrag	*cfp;
4962 
4963 	/*
4964 	 * allocate the free frags needed for extended summary info
4965 	 */
4966 	rdcg((long)0);
4967 
4968 	for (cfp = csfragfree; cfp; cfp = cfp->next)
4969 		clrbit(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0));
4970 
4971 	wtcg();
4972 }
4973 
4974 void
4975 freefrags(daddr32_t frag, long frags, long cylno)
4976 {
4977 	int	i;
4978 
4979 	/*
4980 	 * free frags
4981 	 */
4982 	rdcg(cylno);
4983 	for (i = 0; i < frags; ++i) {
4984 		setbit(cg_blksfree(&acg), (frag+i) - cgbase(&sblock, cylno));
4985 	}
4986 	wtcg();
4987 }
4988 
4989 int
4990 findfreerange(long *bitp, long *bitsp)
4991 {
4992 	long	 bit;
4993 
4994 	/*
4995 	 * find a range of free bits in a cylinder group bit map
4996 	 */
4997 	for (bit = *bitp, *bitsp = 0; bit < acg.cg_ndblk; ++bit)
4998 		if (isset(cg_blksfree(&acg), bit))
4999 			break;
5000 
5001 	if (bit >= acg.cg_ndblk)
5002 		return (0);
5003 
5004 	*bitp  = bit;
5005 	*bitsp = 1;
5006 	for (++bit; bit < acg.cg_ndblk; ++bit, ++(*bitsp)) {
5007 		if ((bit % sblock.fs_frag) == 0)
5008 			break;
5009 		if (isclr(cg_blksfree(&acg), bit))
5010 			break;
5011 	}
5012 	return (1);
5013 }
5014 
5015 void
5016 resetallocinfo()
5017 {
5018 	long	cno;
5019 	long	bit;
5020 	long	bits;
5021 
5022 	/*
5023 	 * Compute the free blocks/frags info and update the appropriate
5024 	 * inmemory superblock, summary info, and cylinder group fields
5025 	 */
5026 	sblock.fs_cstotal.cs_nffree -= acg.cg_cs.cs_nffree;
5027 	sblock.fs_cstotal.cs_nbfree -= acg.cg_cs.cs_nbfree;
5028 
5029 	acg.cg_cs.cs_nffree = 0;
5030 	acg.cg_cs.cs_nbfree = 0;
5031 
5032 	bzero((caddr_t)acg.cg_frsum, sizeof (acg.cg_frsum));
5033 	bzero((caddr_t)cg_blktot(&acg), (int)(acg.cg_iusedoff-acg.cg_btotoff));
5034 
5035 	bit = bits = 0;
5036 	while (findfreerange(&bit, &bits)) {
5037 		if (bits == sblock.fs_frag) {
5038 			acg.cg_cs.cs_nbfree++;
5039 			cno = cbtocylno(&sblock, bit);
5040 			cg_blktot(&acg)[cno]++;
5041 			cg_blks(&sblock, &acg, cno)[cbtorpos(&sblock, bit)]++;
5042 		} else {
5043 			acg.cg_cs.cs_nffree += bits;
5044 			acg.cg_frsum[bits]++;
5045 		}
5046 		bit += bits;
5047 	}
5048 
5049 	*(fscs + acg.cg_cgx) = acg.cg_cs;
5050 
5051 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
5052 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
5053 }
5054 
5055 void
5056 extendcg(long cylno)
5057 {
5058 	int	i;
5059 	diskaddr_t	dupper;
5060 	diskaddr_t	cbase;
5061 	diskaddr_t	dmax;
5062 
5063 	/*
5064 	 * extend the cylinder group at the end of the old file system
5065 	 * if it was partially allocated becase of lack of space
5066 	 */
5067 	flcg();
5068 	rdcg(cylno);
5069 
5070 	dupper = acg.cg_ndblk;
5071 	if (cylno == sblock.fs_ncg - 1)
5072 		acg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
5073 	else
5074 		acg.cg_ncyl = sblock.fs_cpg;
5075 	cbase = cgbase(&sblock, cylno);
5076 	dmax = cbase + sblock.fs_fpg;
5077 	if (dmax > sblock.fs_size)
5078 		dmax = sblock.fs_size;
5079 	acg.cg_ndblk = dmax - cbase;
5080 
5081 	for (i = dupper; i < acg.cg_ndblk; ++i)
5082 		setbit(cg_blksfree(&acg), i);
5083 
5084 	sblock.fs_dsize += (acg.cg_ndblk - dupper);
5085 
5086 	wtcg();
5087 	flcg();
5088 }
5089 
5090 struct lockfs	lockfs;
5091 int		lockfd;
5092 int		islocked;
5093 int		lockfskey;
5094 char		lockfscomment[128];
5095 
5096 void
5097 ulockfs()
5098 {
5099 	/*
5100 	 * if the file system was locked, unlock it before exiting
5101 	 */
5102 	if (islocked == 0)
5103 		return;
5104 
5105 	/*
5106 	 * first, check if the lock held
5107 	 */
5108 	lockfs.lf_flags = LOCKFS_MOD;
5109 	if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5110 		perror(directory);
5111 		lockexit(32);
5112 	}
5113 
5114 	if (LOCKFS_IS_MOD(&lockfs)) {
5115 		(void) fprintf(stderr,
5116 			gettext("FILE SYSTEM CHANGED DURING GROWFS!\n"));
5117 		(void) fprintf(stderr,
5118 			gettext("   See lockfs(1), umount(1), and fsck(1)\n"));
5119 		lockexit(32);
5120 	}
5121 	/*
5122 	 * unlock the file system
5123 	 */
5124 	lockfs.lf_lock  = LOCKFS_ULOCK;
5125 	lockfs.lf_flags = 0;
5126 	lockfs.lf_key   = lockfskey;
5127 	clockfs();
5128 	if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5129 		perror(directory);
5130 		lockexit(32);
5131 	}
5132 }
5133 
5134 void
5135 wlockfs()
5136 {
5137 
5138 	/*
5139 	 * if no-write (-N), don't bother
5140 	 */
5141 	if (Nflag)
5142 		return;
5143 	/*
5144 	 * open the mountpoint, and write lock the file system
5145 	 */
5146 	if ((lockfd = open64(directory, O_RDONLY)) == -1) {
5147 		perror(directory);
5148 		lockexit(32);
5149 	}
5150 
5151 	/*
5152 	 * check if it is already locked
5153 	 */
5154 	if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5155 		perror(directory);
5156 		lockexit(32);
5157 	}
5158 
5159 	if (lockfs.lf_lock != LOCKFS_WLOCK) {
5160 		lockfs.lf_lock  = LOCKFS_WLOCK;
5161 		lockfs.lf_flags = 0;
5162 		lockfs.lf_key   = 0;
5163 		clockfs();
5164 		if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5165 			perror(directory);
5166 			lockexit(32);
5167 		}
5168 	}
5169 	islocked = 1;
5170 	lockfskey = lockfs.lf_key;
5171 }
5172 
5173 void
5174 clockfs()
5175 {
5176 	time_t	t;
5177 	char	*ct;
5178 
5179 	(void) time(&t);
5180 	ct = ctime(&t);
5181 	ct[strlen(ct)-1] = '\0';
5182 
5183 	(void) sprintf(lockfscomment, "%s -- mkfs pid %d", ct, getpid());
5184 	lockfs.lf_comlen  = strlen(lockfscomment)+1;
5185 	lockfs.lf_comment = lockfscomment;
5186 }
5187 
5188 /*
5189  * Write the csum records and the superblock
5190  */
5191 void
5192 wtsb()
5193 {
5194 	long	i;
5195 
5196 	/*
5197 	 * write summary information
5198 	 */
5199 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
5200 		wtfs(fsbtodb(&sblock, (uint64_t)(sblock.fs_csaddr +
5201 			numfrags(&sblock, i))),
5202 			(int)(sblock.fs_cssize - i < sblock.fs_bsize ?
5203 			sblock.fs_cssize - i : sblock.fs_bsize),
5204 			((char *)fscs) + i);
5205 
5206 	/*
5207 	 * write superblock
5208 	 */
5209 	sblock.fs_time = mkfstime;
5210 	wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
5211 }
5212 
5213 /*
5214  * Verify that the optimization selection is reasonable, and advance
5215  * the global "string" appropriately.
5216  */
5217 static char
5218 checkopt(char *optim)
5219 {
5220 	char	opt;
5221 	int	limit = strcspn(optim, ",");
5222 
5223 	switch (limit) {
5224 	case 0:	/* missing indicator (have comma or nul) */
5225 		(void) fprintf(stderr, gettext(
5226 		    "mkfs: missing optimization flag reset to `t' (time)\n"));
5227 		opt = 't';
5228 		break;
5229 
5230 	case 1: /* single-character indicator */
5231 		opt = *optim;
5232 		if ((opt != 's') && (opt != 't')) {
5233 			(void) fprintf(stderr, gettext(
5234 		    "mkfs: bad optimization value `%c' reset to `t' (time)\n"),
5235 			    opt);
5236 			opt = 't';
5237 		}
5238 		break;
5239 
5240 	default: /* multi-character indicator */
5241 		(void) fprintf(stderr, gettext(
5242 	    "mkfs: bad optimization value `%*.*s' reset to `t' (time)\n"),
5243 		    limit, limit, optim);
5244 		opt = 't';
5245 		break;
5246 	}
5247 
5248 	string += limit;
5249 
5250 	return (opt);
5251 }
5252 
5253 /*
5254  * Verify that the mtb selection is reasonable, and advance
5255  * the global "string" appropriately.
5256  */
5257 static char
5258 checkmtb(char *mtbarg)
5259 {
5260 	char	mtbc;
5261 	int	limit = strcspn(mtbarg, ",");
5262 
5263 	switch (limit) {
5264 	case 0:	/* missing indicator (have comma or nul) */
5265 		(void) fprintf(stderr, gettext(
5266 		    "mkfs: missing mtb flag reset to `n' (no mtb support)\n"));
5267 		mtbc = 'n';
5268 		break;
5269 
5270 	case 1: /* single-character indicator */
5271 		mtbc = tolower(*mtbarg);
5272 		if ((mtbc != 'y') && (mtbc != 'n')) {
5273 			(void) fprintf(stderr, gettext(
5274 		    "mkfs: bad mtb value `%c' reset to `n' (no mtb support)\n"),
5275 			    mtbc);
5276 			mtbc = 'n';
5277 		}
5278 		break;
5279 
5280 	default: /* multi-character indicator */
5281 		(void) fprintf(stderr, gettext(
5282 	    "mkfs: bad mtb value `%*.*s' reset to `n' (no mtb support)\n"),
5283 		    limit, limit, mtbarg);
5284 		opt = 'n';
5285 		break;
5286 	}
5287 
5288 	string += limit;
5289 
5290 	return (mtbc);
5291 }
5292 
5293 /*
5294  * Verify that a value is in a range.  If it is not, resets it to
5295  * its default value if one is supplied, exits otherwise.
5296  *
5297  * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5298  */
5299 static void
5300 range_check(long *varp, char *name, long minimum, long maximum,
5301     long def_val, int user_supplied)
5302 {
5303 	dprintf(("DeBuG %s : %ld (%ld %ld %ld)\n",
5304 		name, *varp, minimum, maximum, def_val));
5305 
5306 	if ((*varp < minimum) || (*varp > maximum)) {
5307 		if (user_supplied != RC_DEFAULT) {
5308 			(void) fprintf(stderr, gettext(
5309 	    "mkfs: bad value for %s: %ld must be between %ld and %ld\n"),
5310 			    name, *varp, minimum, maximum);
5311 		}
5312 		if (def_val != NO_DEFAULT) {
5313 			if (user_supplied) {
5314 				(void) fprintf(stderr,
5315 				    gettext("mkfs: %s reset to default %ld\n"),
5316 				    name, def_val);
5317 			}
5318 			*varp = def_val;
5319 			dprintf(("DeBuG %s : %ld\n", name, *varp));
5320 			return;
5321 		}
5322 		lockexit(2);
5323 		/*NOTREACHED*/
5324 	}
5325 }
5326 
5327 /*
5328  * Verify that a value is in a range.  If it is not, resets it to
5329  * its default value if one is supplied, exits otherwise.
5330  *
5331  * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5332  */
5333 static void
5334 range_check_64(uint64_t *varp, char *name, uint64_t minimum, uint64_t maximum,
5335     uint64_t def_val, int user_supplied)
5336 {
5337 	if ((*varp < minimum) || (*varp > maximum)) {
5338 		if (user_supplied != RC_DEFAULT) {
5339 			(void) fprintf(stderr, gettext(
5340 	    "mkfs: bad value for %s: %lld must be between %lld and %lld\n"),
5341 			    name, *varp, minimum, maximum);
5342 		}
5343 		if (def_val != NO_DEFAULT) {
5344 			if (user_supplied) {
5345 				(void) fprintf(stderr,
5346 				    gettext("mkfs: %s reset to default %lld\n"),
5347 				    name, def_val);
5348 			}
5349 			*varp = def_val;
5350 			return;
5351 		}
5352 		lockexit(2);
5353 		/*NOTREACHED*/
5354 	}
5355 }
5356 
5357 /*
5358  * Blocks SIGINT from delivery.  Returns the previous mask in the
5359  * buffer provided, so that mask may be later restored.
5360  */
5361 static void
5362 block_sigint(sigset_t *old_mask)
5363 {
5364 	sigset_t block_mask;
5365 
5366 	if (sigemptyset(&block_mask) < 0) {
5367 		fprintf(stderr, gettext("Could not clear signal mask\n"));
5368 		lockexit(3);
5369 	}
5370 	if (sigaddset(&block_mask, SIGINT) < 0) {
5371 		fprintf(stderr, gettext("Could not set signal mask\n"));
5372 		lockexit(3);
5373 	}
5374 	if (sigprocmask(SIG_BLOCK, &block_mask, old_mask) < 0) {
5375 		fprintf(stderr, gettext("Could not block SIGINT\n"));
5376 		lockexit(3);
5377 	}
5378 }
5379 
5380 /*
5381  * Restores the signal mask that was in force before a call
5382  * to block_sigint().  This may actually still have SIGINT blocked,
5383  * if we've been recursively invoked.
5384  */
5385 static void
5386 unblock_sigint(sigset_t *old_mask)
5387 {
5388 	if (sigprocmask(SIG_UNBLOCK, old_mask, (sigset_t *)NULL) < 0) {
5389 		fprintf(stderr, gettext("Could not restore signal mask\n"));
5390 		lockexit(3);
5391 	}
5392 }
5393 
5394 /*
5395  * Attempt to be somewhat graceful about being interrupted, rather than
5396  * just silently leaving the filesystem in an unusable state.
5397  *
5398  * The kernel has blocked SIGINT upon entry, so we don't have to worry
5399  * about recursion if the user starts pounding on the keyboard.
5400  */
5401 static void
5402 recover_from_sigint(int signum)
5403 {
5404 	if (fso > -1) {
5405 		if ((Nflag != 0) || confirm_abort()) {
5406 			lockexit(4);
5407 		}
5408 	}
5409 }
5410 
5411 static int
5412 confirm_abort(void)
5413 {
5414 	char line[80];
5415 
5416 	printf(gettext("\n\nAborting at this point will leave the filesystem "
5417 		"in an inconsistent\nstate.  If you do choose to stop, "
5418 		"you will be given instructions on how to\nrecover "
5419 		"the filesystem.  Do you wish to cancel the filesystem "
5420 		"grow\noperation (y/n)?"));
5421 	if (getline(stdin, line, sizeof (line)) == EOF)
5422 		line[0] = 'y';
5423 
5424 	printf("\n");
5425 	if (line[0] == 'y' || line[0] == 'Y')
5426 		return (1);
5427 	else {
5428 		return (0);
5429 	}
5430 }
5431 
5432 static int
5433 getline(FILE *fp, char *loc, int maxlen)
5434 {
5435 	int n;
5436 	char *p, *lastloc;
5437 
5438 	p = loc;
5439 	lastloc = &p[maxlen-1];
5440 	while ((n = getc(fp)) != '\n') {
5441 		if (n == EOF)
5442 			return (EOF);
5443 		if (!isspace(n) && p < lastloc)
5444 			*p++ = n;
5445 	}
5446 	*p = 0;
5447 	return (p - loc);
5448 }
5449 
5450 /*
5451  * Calculate the maximum value of cylinders-per-group for a file
5452  * system with the characteristics:
5453  *
5454  *	bsize - file system block size
5455  *	fragsize - frag size
5456  *	nbpi - number of bytes of disk space per inode
5457  *	nrpos - number of rotational positions
5458  *	spc - sectors per cylinder
5459  *
5460  * These five characteristic are not adjustable (by this function).
5461  * The only attribute of the file system which IS adjusted by this
5462  * function in order to maximize cylinders-per-group is the proportion
5463  * of the cylinder group overhead block used for the inode map.  The
5464  * inode map cannot occupy more than one-third of the cylinder group
5465  * overhead block, but it's OK for it to occupy less than one-third
5466  * of the overhead block.
5467  *
5468  * The setting of nbpi determines one possible value for the maximum
5469  * size of a cylinder group.  It does so because it determines the total
5470  * number of inodes in the file system (file system size is fixed, and
5471  * nbpi is fixed, so the total number of inodes is fixed too).  The
5472  * cylinder group has to be small enough so that the number of inodes
5473  * in the cylinder group is less than or equal to the number of bits
5474  * in one-third (or whatever proportion is assumed) of a file system
5475  * block.  The details of the calculation are:
5476  *
5477  *     The macro MAXIpG_B(bsize, inode_divisor) determines the maximum
5478  *     number of inodes that can be in a cylinder group, given the
5479  *     proportion of the cylinder group overhead block used for the
5480  *     inode bitmaps (an inode_divisor of 3 means that 1/3 of the
5481  *     block is used for inode bitmaps; an inode_divisor of 12 means
5482  *     that 1/12 of the block is used for inode bitmaps.)
5483  *
5484  *     Once the number of inodes per cylinder group is known, the
5485  *     maximum value of cylinders-per-group (determined by nbpi)
5486  *     is calculated by the formula
5487  *
5488  *     maxcpg_given_nbpi = (size of a cylinder group)/(size of a cylinder)
5489  *
5490  *			 = (inodes-per-cg * nbpi)/(spc * DEV_BSIZE)
5491  *
5492  *     (Interestingly, the size of the file system never enters
5493  *     into this calculation.)
5494  *
5495  * Another possible value for the maximum cylinder group size is determined
5496  * by frag_size and nrpos.  The frags in the cylinder group must be
5497  * representable in the frag bitmaps in the cylinder overhead block and the
5498  * rotational positions for each cylinder must be represented in the
5499  * rotational position tables.  The calculation of the maximum cpg
5500  * value, given the frag and nrpos vales, is:
5501  *
5502  *     maxcpg_given_fragsize =
5503  *	  (available space in the overhead block) / (size of per-cylinder data)
5504  *
5505  *     The available space in the overhead block =
5506  *	  bsize - sizeof (struct cg) - space_used_for_inode_bitmaps
5507  *
5508  *     The size of the per-cylinder data is:
5509  *	    sizeof(long)            # for the "blocks avail per cylinder" field
5510  *	    + nrpos * sizeof(short)   # for the rotational position table entry
5511  *	    + frags-per-cylinder/NBBY # number of bytes to represent this
5512  *				      # cylinder in the frag bitmap
5513  *
5514  * The two calculated maximum values of cylinder-per-group will typically
5515  * turn out to be different, since they are derived from two different
5516  * constraints.  Usually, maxcpg_given_nbpi is much bigger than
5517  * maxcpg_given_fragsize.  But they can be brought together by
5518  * adjusting the proportion of the overhead block dedicated to
5519  * the inode bitmaps.  Decreasing the proportion of the cylinder
5520  * group overhead block used for inode maps will decrease
5521  * maxcpg_given_nbpi and increase maxcpg_given_fragsize.
5522  *
5523  * This function calculates the initial values of maxcpg_given_nbpi
5524  * and maxcpg_given_fragsize assuming that 1/3 of the cg overhead
5525  * block is used for inode bitmaps.  Then it decreases the proportion
5526  * of the cg overhead block used for inode bitmaps (by increasing
5527  * the value of inode_divisor) until maxcpg_given_nbpi and
5528  * maxcpg_given_fragsize are the same, or stop changing, or
5529  * maxcpg_given_nbpi is less than maxcpg_given_fragsize.
5530  *
5531  * The loop terminates when any of the following occur:
5532  *	* maxcpg_given_fragsize is greater than or equal to
5533  *	  maxcpg_given_nbpi
5534  *	* neither maxcpg_given_fragsize nor maxcpg_given_nbpi
5535  *	  change in the expected direction
5536  *
5537  * The loop is guaranteed to terminate because it only continues
5538  * while maxcpg_given_fragsize and maxcpg_given_nbpi are approaching
5539  * each other.  As soon they cross each other, or neither one changes
5540  * in the direction of the other, or one of them moves in the wrong
5541  * direction, the loop completes.
5542  */
5543 
5544 static long
5545 compute_maxcpg(long bsize, long fragsize, long nbpi, long nrpos, long spc)
5546 {
5547 	int	maxcpg_given_nbpi;	/* in cylinders */
5548 	int	maxcpg_given_fragsize;	/* in cylinders */
5549 	int	spf;			/* sectors per frag */
5550 	int	inode_divisor;
5551 	int	old_max_given_frag = 0;
5552 	int	old_max_given_nbpi = INT_MAX;
5553 
5554 	spf = fragsize / DEV_BSIZE;
5555 	inode_divisor = 3;
5556 
5557 	while (1) {
5558 		maxcpg_given_nbpi =
5559 		    (((int64_t)(MAXIpG_B(bsize, inode_divisor))) * nbpi) /
5560 		    (DEV_BSIZE * ((int64_t)spc));
5561 		maxcpg_given_fragsize =
5562 		    (bsize - (sizeof (struct cg)) - (bsize / inode_divisor)) /
5563 		    (sizeof (long) + nrpos * sizeof (short) +
5564 						(spc / spf) / NBBY);
5565 
5566 		if (maxcpg_given_fragsize >= maxcpg_given_nbpi)
5567 			return (maxcpg_given_nbpi);
5568 
5569 		/*
5570 		 * If neither value moves toward the other, return the
5571 		 * least of the old values (we use the old instead of the
5572 		 * new because: if the old is the same as the new, it
5573 		 * doesn't matter which ones we use.  If one of the
5574 		 * values changed, but in the wrong direction, the
5575 		 * new values are suspect.  Better use the old.  This
5576 		 * shouldn't happen, but it's best to check.
5577 		 */
5578 
5579 		if (!(maxcpg_given_nbpi < old_max_given_nbpi) &&
5580 		    !(maxcpg_given_fragsize > old_max_given_frag))
5581 			return (MIN(old_max_given_nbpi, old_max_given_frag));
5582 
5583 		/*
5584 		 * This is probably impossible, but if one of the maxcpg
5585 		 * values moved in the "right" direction and one moved
5586 		 * in the "wrong" direction (that is, the two values moved
5587 		 * in the same direction), the previous conditional won't
5588 		 * recognize that the values aren't converging (since at
5589 		 * least one value moved in the "right" direction, the
5590 		 * last conditional says "keep going").
5591 		 *
5592 		 * Just to make absolutely certain that the loop terminates,
5593 		 * check for one of the values moving in the "wrong" direction
5594 		 * and terminate the loop if it happens.
5595 		 */
5596 
5597 		if (maxcpg_given_nbpi > old_max_given_nbpi ||
5598 		    maxcpg_given_fragsize < old_max_given_frag)
5599 			return (MIN(old_max_given_nbpi, old_max_given_frag));
5600 
5601 		old_max_given_nbpi = maxcpg_given_nbpi;
5602 		old_max_given_frag = maxcpg_given_fragsize;
5603 
5604 		inode_divisor++;
5605 	}
5606 }
5607 
5608 static int
5609 in_64bit_mode(void)
5610 {
5611 	/*  cmd must be an absolute path, for security */
5612 	char *cmd = "/usr/bin/isainfo -b";
5613 	char buf[BUFSIZ];
5614 	FILE *ptr;
5615 	int retval = 0;
5616 
5617 	putenv("IFS= \t");
5618 	if ((ptr = popen(cmd, "r")) != NULL) {
5619 		if (fgets(buf, BUFSIZ, ptr) != NULL &&
5620 		    strncmp(buf, "64", 2) == 0)
5621 			retval = 1;
5622 		(void) pclose(ptr);
5623 	}
5624 	return (retval);
5625 }
5626 
5627 /*
5628  * validate_size
5629  *
5630  * Return 1 if the device appears to be at least "size" sectors long.
5631  * Return 0 if it's shorter or we can't read it.
5632  */
5633 
5634 static int
5635 validate_size(int fd, diskaddr_t size)
5636 {
5637 	char 		buf[DEV_BSIZE];
5638 	int rc;
5639 
5640 	if ((llseek(fd, (offset_t)((size - 1) * DEV_BSIZE), SEEK_SET) == -1) ||
5641 	    (read(fd, buf, DEV_BSIZE)) != DEV_BSIZE)
5642 		rc = 0;
5643 	else
5644 		rc = 1;
5645 	return (rc);
5646 }
5647 
5648 /*
5649  * Print every field of the calculated superblock, along with
5650  * its value.  To make parsing easier on the caller, the value
5651  * is printed first, then the name.  Additionally, there's only
5652  * one name/value pair per line.  All values are reported in
5653  * hexadecimal (with the traditional 0x prefix), as that's slightly
5654  * easier for humans to read.  Not that they're expected to, but
5655  * debugging happens.
5656  */
5657 static void
5658 dump_sblock(void)
5659 {
5660 	int row, column, pending, written;
5661 	caddr_t source;
5662 
5663 	if (Rflag) {
5664 		pending = sizeof (sblock);
5665 		source = (caddr_t)&sblock;
5666 		do {
5667 			written = write(fileno(stdout), source, pending);
5668 			pending -= written;
5669 			source += written;
5670 		} while ((pending > 0) && (written > 0));
5671 
5672 		if (written < 0) {
5673 			perror(gettext("Binary dump of superblock failed"));
5674 			lockexit(1);
5675 		}
5676 		return;
5677 	} else {
5678 		printf("0x%x sblock.fs_link\n", sblock.fs_link);
5679 		printf("0x%x sblock.fs_rolled\n", sblock.fs_rolled);
5680 		printf("0x%x sblock.fs_sblkno\n", sblock.fs_sblkno);
5681 		printf("0x%x sblock.fs_cblkno\n", sblock.fs_cblkno);
5682 		printf("0x%x sblock.fs_iblkno\n", sblock.fs_iblkno);
5683 		printf("0x%x sblock.fs_dblkno\n", sblock.fs_dblkno);
5684 		printf("0x%x sblock.fs_cgoffset\n", sblock.fs_cgoffset);
5685 		printf("0x%x sblock.fs_cgmask\n", sblock.fs_cgmask);
5686 		printf("0x%x sblock.fs_time\n", sblock.fs_time);
5687 		printf("0x%x sblock.fs_size\n", sblock.fs_size);
5688 		printf("0x%x sblock.fs_dsize\n", sblock.fs_dsize);
5689 		printf("0x%x sblock.fs_ncg\n", sblock.fs_ncg);
5690 		printf("0x%x sblock.fs_bsize\n", sblock.fs_bsize);
5691 		printf("0x%x sblock.fs_fsize\n", sblock.fs_fsize);
5692 		printf("0x%x sblock.fs_frag\n", sblock.fs_frag);
5693 		printf("0x%x sblock.fs_minfree\n", sblock.fs_minfree);
5694 		printf("0x%x sblock.fs_rotdelay\n", sblock.fs_rotdelay);
5695 		printf("0x%x sblock.fs_rps\n", sblock.fs_rps);
5696 		printf("0x%x sblock.fs_bmask\n", sblock.fs_bmask);
5697 		printf("0x%x sblock.fs_fmask\n", sblock.fs_fmask);
5698 		printf("0x%x sblock.fs_bshift\n", sblock.fs_bshift);
5699 		printf("0x%x sblock.fs_fshift\n", sblock.fs_fshift);
5700 		printf("0x%x sblock.fs_maxcontig\n", sblock.fs_maxcontig);
5701 		printf("0x%x sblock.fs_maxbpg\n", sblock.fs_maxbpg);
5702 		printf("0x%x sblock.fs_fragshift\n", sblock.fs_fragshift);
5703 		printf("0x%x sblock.fs_fsbtodb\n", sblock.fs_fsbtodb);
5704 		printf("0x%x sblock.fs_sbsize\n", sblock.fs_sbsize);
5705 		printf("0x%x sblock.fs_csmask\n", sblock.fs_csmask);
5706 		printf("0x%x sblock.fs_csshift\n", sblock.fs_csshift);
5707 		printf("0x%x sblock.fs_nindir\n", sblock.fs_nindir);
5708 		printf("0x%x sblock.fs_inopb\n", sblock.fs_inopb);
5709 		printf("0x%x sblock.fs_nspf\n", sblock.fs_nspf);
5710 		printf("0x%x sblock.fs_optim\n", sblock.fs_optim);
5711 #ifdef _LITTLE_ENDIAN
5712 		printf("0x%x sblock.fs_state\n", sblock.fs_state);
5713 #else
5714 		printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5715 #endif
5716 		printf("0x%x sblock.fs_si\n", sblock.fs_si);
5717 		printf("0x%x sblock.fs_trackskew\n", sblock.fs_trackskew);
5718 		printf("0x%x sblock.fs_id[0]\n", sblock.fs_id[0]);
5719 		printf("0x%x sblock.fs_id[1]\n", sblock.fs_id[1]);
5720 		printf("0x%x sblock.fs_csaddr\n", sblock.fs_csaddr);
5721 		printf("0x%x sblock.fs_cssize\n", sblock.fs_cssize);
5722 		printf("0x%x sblock.fs_cgsize\n", sblock.fs_cgsize);
5723 		printf("0x%x sblock.fs_ntrak\n", sblock.fs_ntrak);
5724 		printf("0x%x sblock.fs_nsect\n", sblock.fs_nsect);
5725 		printf("0x%x sblock.fs_spc\n", sblock.fs_spc);
5726 		printf("0x%x sblock.fs_ncyl\n", sblock.fs_ncyl);
5727 		printf("0x%x sblock.fs_cpg\n", sblock.fs_cpg);
5728 		printf("0x%x sblock.fs_ipg\n", sblock.fs_ipg);
5729 		printf("0x%x sblock.fs_fpg\n", sblock.fs_fpg);
5730 		printf("0x%x sblock.fs_cstotal\n", sblock.fs_cstotal);
5731 		printf("0x%x sblock.fs_fmod\n", sblock.fs_fmod);
5732 		printf("0x%x sblock.fs_clean\n", sblock.fs_clean);
5733 		printf("0x%x sblock.fs_ronly\n", sblock.fs_ronly);
5734 		printf("0x%x sblock.fs_flags\n", sblock.fs_flags);
5735 		printf("0x%x sblock.fs_fsmnt\n", sblock.fs_fsmnt);
5736 		printf("0x%x sblock.fs_cgrotor\n", sblock.fs_cgrotor);
5737 		printf("0x%x sblock.fs_u.fs_csp\n", sblock.fs_u.fs_csp);
5738 		printf("0x%x sblock.fs_cpc\n", sblock.fs_cpc);
5739 
5740 		/*
5741 		 * No macros are defined for the dimensions of the
5742 		 * opostbl array.
5743 		 */
5744 		for (row = 0; row < 16; row++) {
5745 			for (column = 0; column < 8; column++) {
5746 				printf("0x%x sblock.fs_opostbl[%d][%d]\n",
5747 				    sblock.fs_opostbl[row][column],
5748 				    row, column);
5749 			}
5750 		}
5751 
5752 		/*
5753 		 * Ditto the size of sparecon.
5754 		 */
5755 		for (row = 0; row < 51; row++) {
5756 			printf("0x%x sblock.fs_sparecon[%d]\n",
5757 			    sblock.fs_sparecon[row], row);
5758 		}
5759 
5760 		printf("0x%x sblock.fs_version\n", sblock.fs_version);
5761 		printf("0x%x sblock.fs_logbno\n", sblock.fs_logbno);
5762 		printf("0x%x sblock.fs_reclaim\n", sblock.fs_reclaim);
5763 		printf("0x%x sblock.fs_sparecon2\n", sblock.fs_sparecon2);
5764 #ifdef _LITTLE_ENDIAN
5765 		printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5766 #else
5767 		printf("0x%x sblock.fs_state\n", sblock.fs_state);
5768 #endif
5769 		printf("0x%llx sblock.fs_qbmask\n", sblock.fs_qbmask);
5770 		printf("0x%llx sblock.fs_qfmask\n", sblock.fs_qfmask);
5771 		printf("0x%x sblock.fs_postblformat\n", sblock.fs_postblformat);
5772 		printf("0x%x sblock.fs_nrpos\n", sblock.fs_nrpos);
5773 		printf("0x%x sblock.fs_postbloff\n", sblock.fs_postbloff);
5774 		printf("0x%x sblock.fs_rotbloff\n", sblock.fs_rotbloff);
5775 		printf("0x%x sblock.fs_magic\n", sblock.fs_magic);
5776 
5777 		/*
5778 		 * fs_space isn't of much use in this context, so we'll
5779 		 * just ignore it for now.
5780 		 */
5781 	}
5782 }
5783