1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 42 /* 43 * The maximum supported file system size (in sectors) is the 44 * number of frags that can be represented in an int32_t field 45 * (INT_MAX) times the maximum number of sectors per frag. Since 46 * the maximum frag size is MAXBSIZE, the maximum number of sectors 47 * per frag is MAXBSIZE/DEV_BSIZE. 48 */ 49 #define FS_MAX (((diskaddr_t)INT_MAX) * (MAXBSIZE/DEV_BSIZE)) 50 51 /* 52 * make file system for cylinder-group style file systems 53 * 54 * usage: 55 * 56 * mkfs [-F FSType] [-V] [-G [-P]] [-M dirname] [-m] [options] 57 * [-o specific_options] special size 58 * [nsect ntrack bsize fsize cpg minfree rps nbpi opt apc rotdelay 59 * 2 3 4 5 6 7 8 9 10 11 12 60 * nrpos maxcontig mtb] 61 * 13 14 15 62 * 63 * where specific_options are: 64 * N - no create 65 * nsect - The number of sectors per track 66 * ntrack - The number of tracks per cylinder 67 * bsize - block size 68 * fragsize - fragment size 69 * cgsize - The number of disk cylinders per cylinder group. 70 * free - minimum free space 71 * rps - rotational speed (rev/sec). 72 * nbpi - number of data bytes per allocated inode 73 * opt - optimization (space, time) 74 * apc - number of alternates 75 * gap - gap size 76 * nrpos - number of rotational positions 77 * maxcontig - maximum number of logical blocks that will be 78 * allocated contiguously before inserting rotational delay 79 * mtb - if "y", set up file system for eventual growth to over a 80 * a terabyte 81 * -P Do not grow the file system, but print on stdout the maximal 82 * size in sectors to which the file system can be increased. The calculated 83 * size is limited by the value provided by the operand size. 84 * 85 * Note that -P is a project-private interface and together with -G intended 86 * to be used only by the growfs script. It is therefore purposely not 87 * documented in the man page. 88 * The -P option is covered by PSARC case 2003/422. 89 */ 90 91 /* 92 * The following constants set the defaults used for the number 93 * of sectors/track (fs_nsect), and number of tracks/cyl (fs_ntrak). 94 * 95 * NSECT NTRAK 96 * 72MB CDC 18 9 97 * 30MB CDC 18 5 98 * 720KB Diskette 9 2 99 * 100 * However the defaults will be different for disks larger than CHSLIMIT. 101 */ 102 103 #define DFLNSECT 32 104 #define DFLNTRAK 16 105 106 /* 107 * The following default sectors and tracks values are used for 108 * non-efi disks that are larger than the CHS addressing limit. The 109 * existing default cpg of 16 (DESCPG) holds good for larger disks too. 110 */ 111 #define DEF_SECTORS_EFI 128 112 #define DEF_TRACKS_EFI 48 113 114 /* 115 * The maximum number of cylinders in a group depends upon how much 116 * information can be stored on a single cylinder. The default is to 117 * use 16 cylinders per group. This is effectively tradition - it was 118 * the largest value acceptable under SunOs 4.1 119 */ 120 #define DESCPG 16 /* desired fs_cpg */ 121 122 /* 123 * The following two constants set the default block and fragment sizes. 124 * Both constants must be a power of 2 and meet the following constraints: 125 * MINBSIZE <= DESBLKSIZE <= MAXBSIZE 126 * DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE 127 * DESBLKSIZE / DESFRAGSIZE <= 8 128 */ 129 #define DESBLKSIZE 8192 130 #define DESFRAGSIZE 1024 131 132 /* 133 * MINFREE gives the minimum acceptable percentage of file system 134 * blocks which may be free. If the freelist drops below this level 135 * only the superuser may continue to allocate blocks. This may 136 * be set to 0 if no reserve of free blocks is deemed necessary, 137 * however throughput drops by fifty percent if the file system 138 * is run at between 90% and 100% full; thus the default value of 139 * fs_minfree is 10%. With 10% free space, fragmentation is not a 140 * problem, so we choose to optimize for time. 141 */ 142 #define MINFREE 10 143 #define DEFAULTOPT FS_OPTTIME 144 145 /* 146 * ROTDELAY gives the minimum number of milliseconds to initiate 147 * another disk transfer on the same cylinder. It is no longer used 148 * and will always default to 0. 149 */ 150 #define ROTDELAY 0 151 152 /* 153 * MAXBLKPG determines the maximum number of data blocks which are 154 * placed in a single cylinder group. The default is one indirect 155 * block worth of data blocks. 156 */ 157 #define MAXBLKPG(bsize) ((bsize) / sizeof (daddr32_t)) 158 159 /* 160 * Each file system has a number of inodes statically allocated. 161 * We allocate one inode slot per NBPI bytes, expecting this 162 * to be far more than we will ever need. 163 */ 164 #define NBPI 2048 /* Number Bytes Per Inode */ 165 #define MTB_NBPI (MB) /* Number Bytes Per Inode for multi-terabyte */ 166 167 /* 168 * Disks are assumed to rotate at 60HZ, unless otherwise specified. 169 */ 170 #define DEFHZ 60 171 172 /* 173 * Cylinder group related limits. 174 * 175 * For each cylinder we keep track of the availability of blocks at different 176 * rotational positions, so that we can lay out the data to be picked 177 * up with minimum rotational latency. NRPOS is the number of rotational 178 * positions which we distinguish. With NRPOS 8 the resolution of our 179 * summary information is 2ms for a typical 3600 rpm drive. 180 */ 181 #define NRPOS 8 /* number distinct rotational positions */ 182 183 #ifdef DEBUG 184 #define dprintf(x) printf x 185 #else 186 #define dprintf(x) 187 #endif 188 189 /* 190 * For the -N option, when calculating the backup superblocks, do not print 191 * them if we are not really sure. We may have to try an alternate method of 192 * arriving at the superblocks. So defer printing till a handful of superblocks 193 * look good. 194 */ 195 #define tprintf(x) if (Nflag && retry) \ 196 (void) strncat(tmpbuf, x, strlen(x)); \ 197 else \ 198 (void) fprintf(stderr, x); 199 200 #define ALTSB 32 /* Location of first backup superblock */ 201 202 /* 203 * range_check "user_supplied" flag values. 204 */ 205 #define RC_DEFAULT 0 206 #define RC_KEYWORD 1 207 #define RC_POSITIONAL 2 208 209 /* 210 * ufs hole 211 */ 212 #define UFS_HOLE -1 213 214 #ifndef STANDALONE 215 #include <stdio.h> 216 #include <sys/mnttab.h> 217 #endif 218 219 #include <stdlib.h> 220 #include <unistd.h> 221 #include <malloc.h> 222 #include <string.h> 223 #include <strings.h> 224 #include <ctype.h> 225 #include <errno.h> 226 #include <sys/param.h> 227 #include <time.h> 228 #include <sys/types.h> 229 #include <sys/sysmacros.h> 230 #include <sys/vnode.h> 231 #include <sys/fs/ufs_fsdir.h> 232 #include <sys/fs/ufs_inode.h> 233 #include <sys/fs/ufs_fs.h> 234 #include <sys/fs/ufs_log.h> 235 #include <sys/mntent.h> 236 #include <sys/filio.h> 237 #include <limits.h> 238 #include <sys/int_const.h> 239 #include <signal.h> 240 #include <sys/efi_partition.h> 241 #include "roll_log.h" 242 243 #define bcopy(f, t, n) (void) memcpy(t, f, n) 244 #define bzero(s, n) (void) memset(s, 0, n) 245 #define bcmp(s, d, n) memcmp(s, d, n) 246 247 #define index(s, r) strchr(s, r) 248 #define rindex(s, r) strrchr(s, r) 249 250 #include <sys/stat.h> 251 #include <sys/statvfs.h> 252 #include <locale.h> 253 #include <fcntl.h> 254 #include <sys/isa_defs.h> /* for ENDIAN defines */ 255 #include <sys/vtoc.h> 256 257 #include <sys/dkio.h> 258 #include <sys/asynch.h> 259 260 extern offset_t llseek(); 261 extern char *getfullblkname(); 262 extern long lrand48(); 263 264 extern int optind; 265 extern char *optarg; 266 267 268 /* 269 * The size of a cylinder group is calculated by CGSIZE. The maximum size 270 * is limited by the fact that cylinder groups are at most one block. 271 * Its size is derived from the size of the maps maintained in the 272 * cylinder group and the (struct cg) size. 273 */ 274 #define CGSIZE(fs) \ 275 /* base cg */ (sizeof (struct cg) + \ 276 /* blktot size */ (fs)->fs_cpg * sizeof (long) + \ 277 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof (short) + \ 278 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \ 279 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY)) 280 281 /* 282 * We limit the size of the inode map to be no more than a 283 * third of the cylinder group space, since we must leave at 284 * least an equal amount of space for the block map. 285 * 286 * N.B.: MAXIpG must be a multiple of INOPB(fs). 287 */ 288 #define MAXIpG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 289 290 /* 291 * Same as MAXIpG, but parameterized by the block size (b) and the 292 * cylinder group divisor (d), which is the reciprocal of the fraction of the 293 * cylinder group overhead block that is used for the inode map. So for 294 * example, if d = 5, the macro's computation assumes that 1/5 of the 295 * cylinder group overhead block can be dedicated to the inode map. 296 */ 297 #define MAXIpG_B(b, d) roundup((b) * NBBY / (d), (b) / sizeof (struct dinode)) 298 299 #define UMASK 0755 300 #define MAXINOPB (MAXBSIZE / sizeof (struct dinode)) 301 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 302 #define MB (1024*1024) 303 #define BETWEEN(x, l, h) ((x) >= (l) && (x) <= (h)) 304 305 /* 306 * Used to set the inode generation number. Since both inodes and dinodes 307 * are dealt with, we really need a pointer to an icommon here. 308 */ 309 #define IRANDOMIZE(icp) (icp)->ic_gen = lrand48(); 310 311 /* 312 * Flags for number() 313 */ 314 #define ALLOW_PERCENT 0x01 /* allow trailing `%' on number */ 315 #define ALLOW_MS1 0x02 /* allow trailing `ms', state 1 */ 316 #define ALLOW_MS2 0x04 /* allow trailing `ms', state 2 */ 317 #define ALLOW_END_ONLY 0x08 /* must be at end of number & suffixes */ 318 319 #define MAXAIO 1000 /* maximum number of outstanding I/O's we'll manage */ 320 #define BLOCK 1 /* block in aiowait */ 321 #define NOBLOCK 0 /* don't block in aiowait */ 322 323 #define RELEASE 1 /* free an aio buffer after use */ 324 #define SAVE 0 /* don't free the buffer */ 325 326 typedef struct aio_trans { 327 aio_result_t resultbuf; 328 diskaddr_t bno; 329 char *buffer; 330 int size; 331 int release; 332 struct aio_trans *next; 333 } aio_trans; 334 335 typedef struct aio_results { 336 int max; 337 int outstanding; 338 int maxpend; 339 aio_trans *trans; 340 } aio_results; 341 342 int aio_inited = 0; 343 aio_results results; 344 345 /* 346 * Allow up to MAXBUF aio requests that each have a unique buffer. 347 * More aio's might be done, but not using memory through the getbuf() 348 * interface. This can be raised, but you run into the potential of 349 * using more memory than is physically available on the machine, 350 * and if you start swapping, you can forget about performance. 351 * To prevent this, we also limit the total memory used for a given 352 * type of buffer to MAXBUFMEM. 353 * 354 * Tests indicate a cylinder group's worth of inodes takes: 355 * 356 * NBPI Size of Inode Buffer 357 * 2k 1688k 358 * 8k 424k 359 * 360 * initcg() stores all the inodes for a cylinder group in one buffer, 361 * so allowing 20 buffers could take 32 MB if not limited by MAXBUFMEM. 362 */ 363 #define MAXBUF 20 364 #define MAXBUFMEM (8 * 1024 * 1024) 365 366 /* 367 * header information for buffers managed by getbuf() and freebuf() 368 */ 369 typedef struct bufhdr { 370 struct bufhdr *head; 371 struct bufhdr *next; 372 } bufhdr; 373 374 int bufhdrsize; 375 376 bufhdr inodebuf = { NULL, NULL }; 377 bufhdr cgsumbuf = { NULL, NULL }; 378 379 #define SECTORS_PER_TERABYTE (1LL << 31) 380 /* 381 * The following constant specifies an upper limit for file system size 382 * that is actually a lot bigger than we expect to support with UFS. (Since 383 * it's specified in sectors, the file system size would be 2**44 * 512, 384 * which is 2**53, which is 8192 Terabytes.) However, it's useful 385 * for checking the basic sanity of a size value that is input on the 386 * command line. 387 */ 388 #define FS_SIZE_UPPER_LIMIT 0x100000000000LL 389 390 /* 391 * Forward declarations 392 */ 393 static char *getbuf(bufhdr *bufhead, int size); 394 static void freebuf(char *buf); 395 static void freetrans(aio_trans *transp); 396 static aio_trans *get_aiop(); 397 static aio_trans *wait_for_write(int block); 398 static void initcg(int cylno); 399 static void fsinit(); 400 static int makedir(struct direct *protodir, int entries); 401 static void iput(struct inode *ip); 402 static void rdfs(diskaddr_t bno, int size, char *bf); 403 static void wtfs(diskaddr_t bno, int size, char *bf); 404 static void awtfs(diskaddr_t bno, int size, char *bf, int release); 405 static void wtfs_breakup(diskaddr_t bno, int size, char *bf); 406 static int isblock(struct fs *fs, unsigned char *cp, int h); 407 static void clrblock(struct fs *fs, unsigned char *cp, int h); 408 static void setblock(struct fs *fs, unsigned char *cp, int h); 409 static void usage(); 410 static void dump_fscmd(char *fsys, int fsi); 411 static uint64_t number(uint64_t d_value, char *param, int flags); 412 static int match(char *s); 413 static char checkopt(char *optim); 414 static char checkmtb(char *mtbarg); 415 static void range_check(long *varp, char *name, long minimum, 416 long maximum, long def_val, int user_supplied); 417 static void range_check_64(uint64_t *varp, char *name, uint64_t minimum, 418 uint64_t maximum, uint64_t def_val, int user_supplied); 419 static daddr32_t alloc(int size, int mode); 420 static diskaddr_t get_max_size(int fd); 421 static long get_max_track_size(int fd); 422 static void block_sigint(sigset_t *old_mask); 423 static void unblock_sigint(sigset_t *old_mask); 424 static void recover_from_sigint(int signum); 425 static int confirm_abort(void); 426 static int getline(FILE *fp, char *loc, int maxlen); 427 static void flush_writes(void); 428 static long compute_maxcpg(long, long, long, long, long); 429 static int in_64bit_mode(void); 430 static int validate_size(int fd, diskaddr_t size); 431 static void dump_sblock(void); 432 433 /* 434 * Workaround for mkfs to function properly on disks attached to XMIT 2.X 435 * controller. If the address is not aligned at 8 byte boundary, mkfs on 436 * disks attached to XMIT 2.X controller exhibts un-predictable behaviour. 437 */ 438 #define XMIT_2_X_ALIGN 8 439 #pragma align XMIT_2_X_ALIGN(fsun, altfsun, cgun) 440 441 union { 442 struct fs fs; 443 char pad[SBSIZE]; 444 } fsun, altfsun; 445 #define sblock fsun.fs 446 #define altsblock altfsun.fs 447 448 struct csum *fscs; 449 450 union cgun { 451 struct cg cg; 452 char pad[MAXBSIZE]; 453 } cgun; 454 455 #define acg cgun.cg 456 /* 457 * Size of screen in cols in which to fit output 458 */ 459 #define WIDTH 80 460 461 struct dinode zino[MAXBSIZE / sizeof (struct dinode)]; 462 463 /* 464 * file descriptors used for rdfs(fsi) and wtfs(fso). 465 * Initialized to an illegal file descriptor number. 466 */ 467 int fsi = -1; 468 int fso = -1; 469 470 /* 471 * The BIG parameter is machine dependent. It should be a longlong integer 472 * constant that can be used by the number parser to check the validity 473 * of numeric parameters. 474 */ 475 476 #define BIG 0x7fffffffffffffffLL 477 478 /* Used to indicate to number() that a bogus value should cause us to exit */ 479 #define NO_DEFAULT LONG_MIN 480 481 /* 482 * INVALIDSBLIMIT is the number of bad backup superblocks that will be 483 * tolerated before we decide to try arriving at a different set of them 484 * using a different logic. This is applicable for non-EFI disks only. 485 */ 486 #define INVALIDSBLIMIT 10 487 488 /* 489 * The *_flag variables are used to indicate that the user specified 490 * the values, rather than that we made them up ourselves. We can 491 * complain about the user giving us bogus values. 492 */ 493 494 /* semi-constants */ 495 long sectorsize = DEV_BSIZE; /* bytes/sector from param.h */ 496 long bbsize = BBSIZE; /* boot block size */ 497 long sbsize = SBSIZE; /* superblock size */ 498 499 /* parameters */ 500 diskaddr_t fssize_db; /* file system size in disk blocks */ 501 diskaddr_t fssize_frag; /* file system size in frags */ 502 long cpg; /* cylinders/cylinder group */ 503 int cpg_flag = RC_DEFAULT; 504 long rotdelay = -1; /* rotational delay between blocks */ 505 int rotdelay_flag = RC_DEFAULT; 506 long maxcontig; /* max contiguous blocks to allocate */ 507 int maxcontig_flag = RC_DEFAULT; 508 long nsect = DFLNSECT; /* sectors per track */ 509 int nsect_flag = RC_DEFAULT; 510 long ntrack = DFLNTRAK; /* tracks per cylinder group */ 511 int ntrack_flag = RC_DEFAULT; 512 long bsize = DESBLKSIZE; /* filesystem block size */ 513 int bsize_flag = RC_DEFAULT; 514 long fragsize = DESFRAGSIZE; /* filesystem fragment size */ 515 int fragsize_flag = RC_DEFAULT; 516 long minfree = MINFREE; /* fs_minfree */ 517 int minfree_flag = RC_DEFAULT; 518 long rps = DEFHZ; /* revolutions/second of drive */ 519 int rps_flag = RC_DEFAULT; 520 long nbpi = NBPI; /* number of bytes per inode */ 521 int nbpi_flag = RC_DEFAULT; 522 long nrpos = NRPOS; /* number of rotational positions */ 523 int nrpos_flag = RC_DEFAULT; 524 long apc = 0; /* alternate sectors per cylinder */ 525 int apc_flag = RC_DEFAULT; 526 char opt = 't'; /* optimization style, `t' or `s' */ 527 char mtb = 'n'; /* multi-terabyte format, 'y' or 'n' */ 528 #define DEFAULT_SECT_TRAK_CPG (nsect_flag == RC_DEFAULT && \ 529 ntrack_flag == RC_DEFAULT && \ 530 cpg_flag == RC_DEFAULT) 531 532 long debug = 0; /* enable debugging output */ 533 534 int spc_flag = 0; /* alternate sectors specified or */ 535 /* found */ 536 537 /* global state */ 538 int Nflag; /* do not write to disk */ 539 int mflag; /* return the command line used to create this FS */ 540 int rflag; /* report the superblock in an easily-parsed form */ 541 int Rflag; /* dump the superblock in binary */ 542 char *fsys; 543 time_t mkfstime; 544 char *string; 545 int label_type; 546 547 /* 548 * logging support 549 */ 550 int ismdd; /* true if device is a SVM device */ 551 int islog; /* true if ufs or SVM logging is enabled */ 552 int islogok; /* true if ufs/SVM log state is good */ 553 554 static int isufslog; /* true if ufs logging is enabled */ 555 static int waslog; /* true when ufs logging disabled during grow */ 556 557 /* 558 * growfs defines, globals, and forward references 559 */ 560 #define NOTENOUGHSPACE 33 561 int grow; 562 #define GROW_WITH_DEFAULT_TRAK (grow && ntrack_flag == RC_DEFAULT) 563 564 static int Pflag; /* probe to which size the fs can be grown */ 565 int ismounted; 566 char *directory; 567 diskaddr_t grow_fssize; 568 long grow_fs_size; 569 long grow_fs_ncg; 570 diskaddr_t grow_fs_csaddr; 571 long grow_fs_cssize; 572 int grow_fs_clean; 573 struct csum *grow_fscs; 574 diskaddr_t grow_sifrag; 575 int test; 576 int testforce; 577 diskaddr_t testfrags; 578 int inlockexit; 579 int isbad; 580 581 void lockexit(int); 582 void randomgeneration(void); 583 void checksummarysize(void); 584 int checksblock(struct fs, int); 585 void growinit(char *); 586 void checkdev(char *, char *); 587 void checkmount(struct mnttab *, char *); 588 struct dinode *gdinode(ino_t); 589 int csfraginrange(daddr32_t); 590 struct csfrag *findcsfrag(daddr32_t, struct csfrag **); 591 void checkindirect(ino_t, daddr32_t *, daddr32_t, int); 592 void addcsfrag(ino_t, daddr32_t, struct csfrag **); 593 void delcsfrag(daddr32_t, struct csfrag **); 594 void checkdirect(ino_t, daddr32_t *, daddr32_t *, int); 595 void findcsfragino(void); 596 void fixindirect(daddr32_t, int); 597 void fixdirect(caddr_t, daddr32_t, daddr32_t *, int); 598 void fixcsfragino(void); 599 void extendsummaryinfo(void); 600 int notenoughspace(void); 601 void unalloccsfragino(void); 602 void unalloccsfragfree(void); 603 void findcsfragfree(void); 604 void copycsfragino(void); 605 void rdcg(long); 606 void wtcg(void); 607 void flcg(void); 608 void allocfrags(long, daddr32_t *, long *); 609 void alloccsfragino(void); 610 void alloccsfragfree(void); 611 void freefrags(daddr32_t, long, long); 612 int findfreerange(long *, long *); 613 void resetallocinfo(void); 614 void extendcg(long); 615 void ulockfs(void); 616 void wlockfs(void); 617 void clockfs(void); 618 void wtsb(void); 619 static int64_t checkfragallocated(daddr32_t); 620 static struct csum *read_summaryinfo(struct fs *); 621 static diskaddr_t probe_summaryinfo(); 622 623 int 624 main(int argc, char *argv[]) 625 { 626 long i, mincpc, mincpg, ibpcl; 627 long cylno, rpos, blk, j, warn = 0; 628 long mincpgcnt, maxcpg; 629 uint64_t used, bpcg, inospercg; 630 long mapcramped, inodecramped; 631 long postblsize, rotblsize, totalsbsize; 632 FILE *mnttab; 633 struct mnttab mntp; 634 char *special; 635 struct statvfs64 fs; 636 struct dk_geom dkg; 637 struct dk_cinfo dkcinfo; 638 char pbuf[sizeof (uint64_t) * 3 + 1]; 639 char *tmpbuf; 640 int width, plen; 641 uint64_t num; 642 int c, saverr; 643 diskaddr_t max_fssize; 644 long tmpmaxcontig = -1; 645 struct sigaction sigact; 646 uint64_t nbytes64; 647 int remaining_cg; 648 int do_dot = 0; 649 int use_efi_dflts = 0, retry = 0, isremovable = 0; 650 int invalid_sb_cnt, ret, skip_this_sb, cg_too_small; 651 int geom_nsect, geom_ntrack, geom_cpg; 652 653 (void) setlocale(LC_ALL, ""); 654 655 #if !defined(TEXT_DOMAIN) 656 #define TEXT_DOMAIN "SYS_TEST" 657 #endif 658 (void) textdomain(TEXT_DOMAIN); 659 660 while ((c = getopt(argc, argv, "F:bmo:VPGM:T:t:")) != EOF) { 661 switch (c) { 662 663 case 'F': 664 string = optarg; 665 if (strcmp(string, "ufs") != 0) 666 usage(); 667 break; 668 669 case 'm': /* return command line used to create this FS */ 670 mflag++; 671 break; 672 673 case 'o': 674 /* 675 * ufs specific options. 676 */ 677 string = optarg; 678 while (*string != '\0') { 679 if (match("nsect=")) { 680 nsect = number(DFLNSECT, "nsect", 0); 681 nsect_flag = RC_KEYWORD; 682 } else if (match("ntrack=")) { 683 ntrack = number(DFLNTRAK, "ntrack", 0); 684 ntrack_flag = RC_KEYWORD; 685 } else if (match("bsize=")) { 686 bsize = number(DESBLKSIZE, "bsize", 0); 687 bsize_flag = RC_KEYWORD; 688 } else if (match("fragsize=")) { 689 fragsize = number(DESFRAGSIZE, 690 "fragsize", 0); 691 fragsize_flag = RC_KEYWORD; 692 } else if (match("cgsize=")) { 693 cpg = number(DESCPG, "cgsize", 0); 694 cpg_flag = RC_KEYWORD; 695 } else if (match("free=")) { 696 minfree = number(MINFREE, "free", 697 ALLOW_PERCENT); 698 minfree_flag = RC_KEYWORD; 699 } else if (match("maxcontig=")) { 700 tmpmaxcontig = 701 number(-1, "maxcontig", 0); 702 maxcontig_flag = RC_KEYWORD; 703 } else if (match("nrpos=")) { 704 nrpos = number(NRPOS, "nrpos", 0); 705 nrpos_flag = RC_KEYWORD; 706 } else if (match("rps=")) { 707 rps = number(DEFHZ, "rps", 0); 708 rps_flag = RC_KEYWORD; 709 } else if (match("nbpi=")) { 710 nbpi = number(NBPI, "nbpi", 0); 711 nbpi_flag = RC_KEYWORD; 712 } else if (match("opt=")) { 713 opt = checkopt(string); 714 } else if (match("mtb=")) { 715 mtb = checkmtb(string); 716 } else if (match("apc=")) { 717 apc = number(0, "apc", 0); 718 apc_flag = RC_KEYWORD; 719 } else if (match("gap=")) { 720 (void) number(0, "gap", ALLOW_MS1); 721 rotdelay = ROTDELAY; 722 rotdelay_flag = RC_DEFAULT; 723 } else if (match("debug=")) { 724 debug = number(0, "debug", 0); 725 } else if (match("N")) { 726 Nflag++; 727 } else if (match("calcsb")) { 728 rflag++; 729 Nflag++; 730 } else if (match("calcbinsb")) { 731 rflag++; 732 Rflag++; 733 Nflag++; 734 } else if (*string == '\0') { 735 break; 736 } else { 737 (void) fprintf(stderr, gettext( 738 "illegal option: %s\n"), string); 739 usage(); 740 } 741 742 if (*string == ',') string++; 743 if (*string == ' ') string++; 744 } 745 break; 746 747 case 'V': 748 { 749 char *opt_text; 750 int opt_count; 751 752 (void) fprintf(stdout, gettext("mkfs -F ufs ")); 753 for (opt_count = 1; opt_count < argc; 754 opt_count++) { 755 opt_text = argv[opt_count]; 756 if (opt_text) 757 (void) fprintf(stdout, " %s ", 758 opt_text); 759 } 760 (void) fprintf(stdout, "\n"); 761 } 762 break; 763 764 case 'b': /* do nothing for this */ 765 break; 766 767 case 'M': /* grow the mounted file system */ 768 directory = optarg; 769 770 /* FALLTHROUGH */ 771 case 'G': /* grow the file system */ 772 grow = 1; 773 break; 774 case 'P': /* probe the file system growing size */ 775 Pflag = 1; 776 grow = 1; /* probe mode implies fs growing */ 777 break; 778 case 'T': /* For testing */ 779 testforce = 1; 780 781 /* FALLTHROUGH */ 782 case 't': 783 test = 1; 784 string = optarg; 785 testfrags = number(NO_DEFAULT, "testfrags", 0); 786 break; 787 788 case '?': 789 usage(); 790 break; 791 } 792 } 793 #ifdef MKFS_DEBUG 794 /* 795 * Turning on MKFS_DEBUG causes mkfs to produce a filesystem 796 * that can be reproduced by setting the time to 0 and seeding 797 * the random number generator to a constant. 798 */ 799 mkfstime = 0; /* reproducible results */ 800 #else 801 (void) time(&mkfstime); 802 #endif 803 804 if (optind >= (argc - 1)) { 805 if (optind > (argc - 1)) { 806 (void) fprintf(stderr, 807 gettext("special not specified\n")); 808 usage(); 809 } else if (mflag == 0) { 810 (void) fprintf(stderr, 811 gettext("size not specified\n")); 812 usage(); 813 } 814 } 815 argc -= optind; 816 argv = &argv[optind]; 817 818 fsys = argv[0]; 819 fsi = open64(fsys, O_RDONLY); 820 if (fsi < 0) { 821 (void) fprintf(stderr, gettext("%s: cannot open\n"), fsys); 822 lockexit(32); 823 } 824 825 if (mflag) { 826 dump_fscmd(fsys, fsi); 827 lockexit(0); 828 } 829 830 /* 831 * The task of setting all of the configuration parameters for a 832 * UFS file system is basically a matter of solving n equations 833 * in m variables. Typically, m is greater than n, so there is 834 * usually more than one valid solution. Since this is usually 835 * an under-constrained problem, it's not always obvious what the 836 * "best" configuration is. 837 * 838 * In general, the approach is to 839 * 1. Determine the values for the file system parameters 840 * that are externally contrained and therefore not adjustable 841 * by mkfs (such as the device's size and maxtransfer size). 842 * 2. Acquire the user's requested setting for all configuration 843 * values that can be set on the command line. 844 * 3. Determine the final value of all configuration values, by 845 * the following approach: 846 * - set the file system block size (fs_bsize). Although 847 * this could be regarded as an adjustable parameter, in 848 * fact, it's pretty much a constant. At this time, it's 849 * generally set to 8k (with older hardware, it can 850 * sometimes make sense to set it to 4k, but those 851 * situations are pretty rare now). 852 * - re-adjust the maximum file system size based on the 853 * value of the file system block size. Since the 854 * frag size can't be any larger than a file system 855 * block, and the number of frags in the file system 856 * has to fit into 31 bits, the file system block size 857 * affects the maximum file system size. 858 * - now that the real maximum file system is known, set the 859 * actual size of the file system to be created to 860 * MIN(requested size, maximum file system size). 861 * - now validate, and if necessary, adjust the following 862 * values: 863 * rotdelay 864 * nsect 865 * maxcontig 866 * apc 867 * frag_size 868 * rps 869 * minfree 870 * nrpos 871 * nrack 872 * nbpi 873 * - calculate maxcpg (the maximum value of the cylinders-per- 874 * cylinder-group configuration parameters). There are two 875 * algorithms for calculating maxcpg: an old one, which is 876 * used for file systems of less than 1 terabyte, and a 877 * new one, implemented in the function compute_maxcpg(), 878 * which is used for file systems of greater than 1 TB. 879 * The difference between them is that compute_maxcpg() 880 * really tries to maximize the cpg value. The old 881 * algorithm fails to take advantage of smaller frags and 882 * lower inode density when determining the maximum cpg, 883 * and thus comes up with much lower numbers in some 884 * configurations. At some point, we might use the 885 * new algorithm for determining maxcpg for all file 886 * systems, but at this time, the changes implemented for 887 * multi-terabyte UFS are NOT being automatically applied 888 * to UFS file systems of less than a terabyte (in the 889 * interest of not changing existing UFS policy too much 890 * until the ramifications of the changes are well-understood 891 * and have been evaluated for their effects on performance.) 892 * - check the current values of the configuration parameters 893 * against the various constraints imposed by UFS. These 894 * include: 895 * * There must be at least one inode in each 896 * cylinder group. 897 * * The cylinder group overhead block, which 898 * contains the inode and frag bigmaps, must fit 899 * within one file system block. 900 * * The space required for inode maps should 901 * occupy no more than a third of the cylinder 902 * group overhead block. 903 * * The rotational position tables have to fit 904 * within the available space in the super block. 905 * Adjust the configuration values that can be adjusted 906 * so that these constraints are satisfied. The 907 * configuration values that are adjustable are: 908 * * frag size 909 * * cylinders per group 910 * * inode density (can be increased) 911 * * number of rotational positions (the rotational 912 * position tables are eliminated altogether if 913 * there isn't enough room for them.) 914 * 4. Set the values for all the dependent configuration 915 * values (those that aren't settable on the command 916 * line and which are completely dependent on the 917 * adjustable parameters). This include cpc (cycles 918 * per cylinder, spc (sectors-per-cylinder), and many others. 919 */ 920 921 /* 922 * Figure out the partition size and initialize the label_type. 923 */ 924 max_fssize = get_max_size(fsi); 925 926 /* 927 * Get and check positional arguments, if any. 928 */ 929 switch (argc - 1) { 930 default: 931 usage(); 932 /*NOTREACHED*/ 933 case 15: 934 mtb = checkmtb(argv[15]); 935 /* FALLTHROUGH */ 936 case 14: 937 string = argv[14]; 938 tmpmaxcontig = number(-1, "maxcontig", 0); 939 maxcontig_flag = RC_POSITIONAL; 940 /* FALLTHROUGH */ 941 case 13: 942 string = argv[13]; 943 nrpos = number(NRPOS, "nrpos", 0); 944 nrpos_flag = RC_POSITIONAL; 945 /* FALLTHROUGH */ 946 case 12: 947 string = argv[12]; 948 rotdelay = ROTDELAY; 949 rotdelay_flag = RC_DEFAULT; 950 /* FALLTHROUGH */ 951 case 11: 952 string = argv[11]; 953 apc = number(0, "apc", 0); 954 apc_flag = RC_POSITIONAL; 955 /* FALLTHROUGH */ 956 case 10: 957 opt = checkopt(argv[10]); 958 /* FALLTHROUGH */ 959 case 9: 960 string = argv[9]; 961 nbpi = number(NBPI, "nbpi", 0); 962 nbpi_flag = RC_POSITIONAL; 963 /* FALLTHROUGH */ 964 case 8: 965 string = argv[8]; 966 rps = number(DEFHZ, "rps", 0); 967 rps_flag = RC_POSITIONAL; 968 /* FALLTHROUGH */ 969 case 7: 970 string = argv[7]; 971 minfree = number(MINFREE, "free", ALLOW_PERCENT); 972 minfree_flag = RC_POSITIONAL; 973 /* FALLTHROUGH */ 974 case 6: 975 string = argv[6]; 976 cpg = number(DESCPG, "cgsize", 0); 977 cpg_flag = RC_POSITIONAL; 978 /* FALLTHROUGH */ 979 case 5: 980 string = argv[5]; 981 fragsize = number(DESFRAGSIZE, "fragsize", 0); 982 fragsize_flag = RC_POSITIONAL; 983 /* FALLTHROUGH */ 984 case 4: 985 string = argv[4]; 986 bsize = number(DESBLKSIZE, "bsize", 0); 987 bsize_flag = RC_POSITIONAL; 988 /* FALLTHROUGH */ 989 case 3: 990 string = argv[3]; 991 ntrack = number(DFLNTRAK, "ntrack", 0); 992 ntrack_flag = RC_POSITIONAL; 993 /* FALLTHROUGH */ 994 case 2: 995 string = argv[2]; 996 nsect = number(DFLNSECT, "nsect", 0); 997 nsect_flag = RC_POSITIONAL; 998 /* FALLTHROUGH */ 999 case 1: 1000 string = argv[1]; 1001 fssize_db = number(max_fssize, "size", 0); 1002 } 1003 1004 /* 1005 * Initialize the parameters in the same way as newfs so that 1006 * newfs and mkfs would result in the same file system layout 1007 * for EFI labelled disks. Do this only in the absence of user 1008 * specified values for these parameters. 1009 */ 1010 if (label_type == LABEL_TYPE_EFI) { 1011 if (apc_flag == RC_DEFAULT) apc = 0; 1012 if (nrpos_flag == RC_DEFAULT) nrpos = 1; 1013 if (ntrack_flag == RC_DEFAULT) ntrack = DEF_TRACKS_EFI; 1014 if (rps_flag == RC_DEFAULT) rps = DEFHZ; 1015 if (nsect_flag == RC_DEFAULT) nsect = DEF_SECTORS_EFI; 1016 } 1017 1018 if ((maxcontig_flag == RC_DEFAULT) || (tmpmaxcontig == -1) || 1019 (maxcontig == -1)) { 1020 long maxtrax = get_max_track_size(fsi); 1021 maxcontig = maxtrax / bsize; 1022 1023 } else { 1024 maxcontig = tmpmaxcontig; 1025 } 1026 dprintf(("DeBuG maxcontig : %ld\n", maxcontig)); 1027 1028 if (rotdelay == -1) { /* default by newfs and mkfs */ 1029 rotdelay = ROTDELAY; 1030 } 1031 1032 if (cpg_flag == RC_DEFAULT) { /* If not explicity set, use default */ 1033 cpg = DESCPG; 1034 } 1035 dprintf(("DeBuG cpg : %ld\n", cpg)); 1036 1037 /* 1038 * Now that we have the semi-sane args, either positional, via -o, 1039 * or by defaulting, handle inter-dependencies and range checks. 1040 */ 1041 1042 /* 1043 * Settle the file system block size first, since it's a fixed 1044 * parameter once set and so many other parameters, including 1045 * max_fssize, depend on it. 1046 */ 1047 range_check(&bsize, "bsize", MINBSIZE, MAXBSIZE, DESBLKSIZE, 1048 bsize_flag); 1049 1050 if (!POWEROF2(bsize)) { 1051 (void) fprintf(stderr, 1052 gettext("block size must be a power of 2, not %ld\n"), 1053 bsize); 1054 bsize = DESBLKSIZE; 1055 (void) fprintf(stderr, 1056 gettext("mkfs: bsize reset to default %ld\n"), 1057 bsize); 1058 } 1059 1060 if (fssize_db > max_fssize && validate_size(fsi, fssize_db)) { 1061 (void) fprintf(stderr, gettext( 1062 "Warning: the requested size of this file system\n" 1063 "(%lld sectors) is greater than the size of the\n" 1064 "device reported by the driver (%lld sectors).\n" 1065 "However, a read of the device at the requested size\n" 1066 "does succeed, so the requested size will be used.\n"), 1067 fssize_db, max_fssize); 1068 max_fssize = fssize_db; 1069 } 1070 /* 1071 * Since the maximum allocatable unit (the frag) must be less than 1072 * or equal to bsize, and the number of frags must be less than or 1073 * equal to INT_MAX, the total size of the file system (in 1074 * bytes) must be less than or equal to bsize * INT_MAX. 1075 */ 1076 1077 if (max_fssize > ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX) 1078 max_fssize = ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX; 1079 1080 range_check_64(&fssize_db, "size", 1024LL, max_fssize, max_fssize, 1); 1081 1082 if (fssize_db >= SECTORS_PER_TERABYTE) { 1083 mtb = 'y'; 1084 if (!in_64bit_mode()) { 1085 (void) fprintf(stderr, gettext( 1086 "mkfs: Warning: Creating a file system greater than 1 terabyte on a\n" 1087 " system running a 32-bit kernel. This file system will not be\n" 1088 " accessible until the system is rebooted with a 64-bit kernel.\n")); 1089 } 1090 } 1091 dprintf(("DeBuG mtb : %c\n", mtb)); 1092 1093 /* 1094 * With newer and much larger disks, the newfs(1M) and mkfs_ufs(1M) 1095 * commands had problems in correctly handling the "native" geometries 1096 * for various storage devices. 1097 * 1098 * To handle the new age disks, mkfs_ufs(1M) will use the EFI style 1099 * for non-EFI disks that are larger than the CHS addressing limit 1100 * ( > 8GB approx ) and ignore the disk geometry information for 1101 * these drives. This is what is currently done for multi-terrabyte 1102 * filesystems on EFI disks. 1103 * 1104 * However if the user asked for a specific layout by supplying values 1105 * for even one of the three parameters (nsect, ntrack, cpg), honour 1106 * the user supplied parameters. 1107 * 1108 * Choosing EFI style or native geometry style can make a lot of 1109 * difference, because the size of a cylinder group is dependent on 1110 * this choice. This in turn means that the position of alternate 1111 * superblocks varies depending on the style chosen. It is not 1112 * necessary that all disks of size > CHSLIMIT have EFI style layout. 1113 * There can be disks which are > CHSLIMIT size, but have native 1114 * geometry style layout, thereby warranting the need for alternate 1115 * logic in superblock detection. 1116 */ 1117 if (mtb != 'y' && (ntrack == -1 || GROW_WITH_DEFAULT_TRAK || 1118 DEFAULT_SECT_TRAK_CPG)) { 1119 /* 1120 * "-1" indicates that we were called from newfs and ntracks 1121 * was not specified in newfs command line. Calculate nsect 1122 * and ntrack in the same manner as newfs. 1123 * 1124 * This is required because, the defaults for nsect and ntrack 1125 * is hardcoded in mkfs, whereas to generate the alternate 1126 * superblock locations for the -N option, there is a need for 1127 * the geometry based values that newfs would have arrived at. 1128 * Newfs would have arrived at these values as below. 1129 */ 1130 if (label_type == LABEL_TYPE_EFI || 1131 label_type == LABEL_TYPE_OTHER) { 1132 use_efi_dflts = 1; 1133 retry = 1; 1134 } else if (ioctl(fsi, DKIOCGGEOM, &dkg)) { 1135 dprintf(("%s: Unable to read Disk geometry", fsys)); 1136 perror(gettext("Unable to read Disk geometry")); 1137 lockexit(32); 1138 } else { 1139 nsect = dkg.dkg_nsect; 1140 ntrack = dkg.dkg_nhead; 1141 #ifdef i386 /* Bug 1170182 */ 1142 if (ntrack > 32 && (ntrack % 16) != 0) { 1143 ntrack -= (ntrack % 16); 1144 } 1145 #endif 1146 if (ioctl(fsi, DKIOCREMOVABLE, &isremovable)) { 1147 dprintf(("DeBuG Unable to determine if %s is" 1148 " Removable Media. Proceeding with system" 1149 " determined parameters.\n", fsys)); 1150 isremovable = 0; 1151 } 1152 if (((dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect) 1153 > CHSLIMIT) || isremovable) { 1154 use_efi_dflts = 1; 1155 retry = 1; 1156 } 1157 } 1158 } 1159 dprintf(("DeBuG CHSLIMIT = %d geom = %ld\n", CHSLIMIT, 1160 dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect)); 1161 dprintf(("DeBuG label_type = %d isremovable = %d use_efi_dflts = %d\n", 1162 label_type, isremovable, use_efi_dflts)); 1163 1164 /* 1165 * For the newfs -N case, even if the disksize is > CHSLIMIT, do not 1166 * blindly follow EFI style. If the fs_version indicates a geometry 1167 * based layout, try that one first. If it fails we can always try the 1168 * other logic. 1169 * 1170 * If we were called from growfs, we will have a problem if we mix 1171 * and match the filesystem creation and growth styles. For example, 1172 * if we create using EFI style, we have to also grow using EFI 1173 * style. So follow the style indicated by the fs_version. 1174 * 1175 * Read and verify the primary superblock. If it looks sane, use the 1176 * fs_version from the superblock. If the primary superblock does 1177 * not look good, read and verify the first alternate superblock at 1178 * ALTSB. Use the fs_version to decide whether to use the 1179 * EFI style logic or the old geometry based logic to calculate 1180 * the alternate superblock locations. 1181 */ 1182 if ((Nflag && use_efi_dflts) || (grow)) { 1183 if (grow && ntrack_flag != RC_DEFAULT) 1184 goto start_fs_creation; 1185 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, 1186 (char *)&altsblock); 1187 ret = checksblock(altsblock, 1); 1188 1189 if (!ret) { 1190 if (altsblock.fs_magic == MTB_UFS_MAGIC) { 1191 mtb = 'y'; 1192 goto start_fs_creation; 1193 } 1194 use_efi_dflts = (altsblock.fs_version == 1195 UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0; 1196 } else { 1197 /* 1198 * The primary superblock didn't help in determining 1199 * the fs_version. Try the first alternate superblock. 1200 */ 1201 dprintf(("DeBuG checksblock() failed - error : %d" 1202 " for sb : %d\n", ret, SBOFF/sectorsize)); 1203 rdfs((diskaddr_t)ALTSB, (int)sbsize, 1204 (char *)&altsblock); 1205 ret = checksblock(altsblock, 1); 1206 1207 if (!ret) { 1208 if (altsblock.fs_magic == MTB_UFS_MAGIC) { 1209 mtb = 'y'; 1210 goto start_fs_creation; 1211 } 1212 use_efi_dflts = (altsblock.fs_version == 1213 UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0; 1214 } 1215 dprintf(("DeBuG checksblock() returned : %d" 1216 " for sb : %d\n", ret, ALTSB)); 1217 } 1218 } 1219 1220 geom_nsect = nsect; 1221 geom_ntrack = ntrack; 1222 geom_cpg = cpg; 1223 dprintf(("DeBuG geom_nsect=%d, geom_ntrack=%d, geom_cpg=%d\n", 1224 geom_nsect, geom_ntrack, geom_cpg)); 1225 1226 start_fs_creation: 1227 retry_alternate_logic: 1228 invalid_sb_cnt = 0; 1229 cg_too_small = 0; 1230 if (use_efi_dflts) { 1231 nsect = DEF_SECTORS_EFI; 1232 ntrack = DEF_TRACKS_EFI; 1233 cpg = DESCPG; 1234 dprintf(("\nDeBuG Using EFI defaults\n")); 1235 } else { 1236 nsect = geom_nsect; 1237 ntrack = geom_ntrack; 1238 cpg = geom_cpg; 1239 dprintf(("\nDeBuG Using Geometry\n")); 1240 /* 1241 * 32K based on max block size of 64K, and rotational layout 1242 * test of nsect <= (256 * sectors/block). Current block size 1243 * limit is not 64K, but it's growing soon. 1244 */ 1245 range_check(&nsect, "nsect", 1, 32768, DFLNSECT, nsect_flag); 1246 /* 1247 * ntrack is the number of tracks per cylinder. 1248 * The ntrack value must be between 1 and the total number of 1249 * sectors in the file system. 1250 */ 1251 range_check(&ntrack, "ntrack", 1, 1252 fssize_db > INT_MAX ? INT_MAX : (uint32_t)fssize_db, 1253 DFLNTRAK, ntrack_flag); 1254 } 1255 1256 range_check(&apc, "apc", 0, nsect - 1, 0, apc_flag); 1257 1258 if (mtb == 'y') 1259 fragsize = bsize; 1260 1261 range_check(&fragsize, "fragsize", sectorsize, bsize, 1262 MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize)), fragsize_flag); 1263 1264 if ((bsize / MAXFRAG) > fragsize) { 1265 (void) fprintf(stderr, gettext( 1266 "fragment size %ld is too small, minimum with block size %ld is %ld\n"), 1267 fragsize, bsize, bsize / MAXFRAG); 1268 (void) fprintf(stderr, 1269 gettext("mkfs: fragsize reset to minimum %ld\n"), 1270 bsize / MAXFRAG); 1271 fragsize = bsize / MAXFRAG; 1272 } 1273 1274 if (!POWEROF2(fragsize)) { 1275 (void) fprintf(stderr, 1276 gettext("fragment size must be a power of 2, not %ld\n"), 1277 fragsize); 1278 fragsize = MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize)); 1279 (void) fprintf(stderr, 1280 gettext("mkfs: fragsize reset to %ld\n"), 1281 fragsize); 1282 } 1283 1284 /* At this point, bsize must be >= fragsize, so no need to check it */ 1285 1286 if (bsize < PAGESIZE) { 1287 (void) fprintf(stderr, gettext( 1288 "WARNING: filesystem block size (%ld) is smaller than " 1289 "memory page size (%ld).\nResulting filesystem can not be " 1290 "mounted on this system.\n\n"), 1291 bsize, (long)PAGESIZE); 1292 } 1293 1294 range_check(&rps, "rps", 1, 1000, DEFHZ, rps_flag); 1295 range_check(&minfree, "free", 0, 99, MINFREE, minfree_flag); 1296 range_check(&nrpos, "nrpos", 1, nsect, MIN(nsect, NRPOS), nrpos_flag); 1297 1298 /* 1299 * nbpi is variable, but 2MB seems a reasonable upper limit, 1300 * as 4MB tends to cause problems (using otherwise-default 1301 * parameters). The true limit is where we end up with one 1302 * inode per cylinder group. If this file system is being 1303 * configured for multi-terabyte access, nbpi must be at least 1MB. 1304 */ 1305 if (mtb == 'y' && nbpi < MTB_NBPI) { 1306 if (nbpi_flag != RC_DEFAULT) 1307 (void) fprintf(stderr, gettext("mkfs: bad value for " 1308 "nbpi: must be at least 1048576 for multi-terabyte," 1309 " nbpi reset to default 1048576\n")); 1310 nbpi = MTB_NBPI; 1311 } 1312 1313 if (mtb == 'y') 1314 range_check(&nbpi, "nbpi", MTB_NBPI, 2 * MB, MTB_NBPI, 1315 nbpi_flag); 1316 else 1317 range_check(&nbpi, "nbpi", DEV_BSIZE, 2 * MB, NBPI, nbpi_flag); 1318 1319 /* 1320 * maxcpg is another variably-limited parameter. Calculate 1321 * the limit based on what we've got for its dependent 1322 * variables. Effectively, it's how much space is left in the 1323 * superblock after all the other bits are accounted for. We 1324 * only fill in sblock fields so we can use MAXIpG. 1325 * 1326 * If the calculation of maxcpg below (for the mtb == 'n' 1327 * case) is changed, update newfs as well. 1328 * 1329 * For old-style, non-MTB format file systems, use the old 1330 * algorithm for calculating the maximum cylinder group size, 1331 * even though it limits the cylinder group more than necessary. 1332 * Since layout can affect performance, we don't want to change 1333 * the default layout for non-MTB file systems at this time. 1334 * However, for MTB file systems, use the new maxcpg calculation, 1335 * which really maxes out the cylinder group size. 1336 */ 1337 1338 sblock.fs_bsize = bsize; 1339 sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode); 1340 1341 if (mtb == 'n') { 1342 maxcpg = (bsize - sizeof (struct cg) - 1343 howmany(MAXIpG(&sblock), NBBY)) / 1344 (sizeof (long) + nrpos * sizeof (short) + 1345 nsect / (MAXFRAG * NBBY)); 1346 } else { 1347 maxcpg = compute_maxcpg(bsize, fragsize, nbpi, nrpos, 1348 nsect * ntrack); 1349 } 1350 1351 dprintf(("DeBuG cpg : %ld\n", cpg)); 1352 /* 1353 * Increase the cpg to maxcpg if either newfs was invoked 1354 * with -T option or if mkfs wants to create a mtb file system 1355 * and if the user has not specified the cpg. 1356 */ 1357 if (cpg == -1 || (mtb == 'y' && cpg_flag == RC_DEFAULT)) 1358 cpg = maxcpg; 1359 dprintf(("DeBuG cpg : %ld\n", cpg)); 1360 1361 /* 1362 * mincpg is variable in complex ways, so we really can't 1363 * do a sane lower-end limit check at this point. 1364 */ 1365 range_check(&cpg, "cgsize", 1, maxcpg, MIN(maxcpg, DESCPG), cpg_flag); 1366 1367 /* 1368 * get the controller info 1369 */ 1370 ismdd = 0; 1371 islog = 0; 1372 islogok = 0; 1373 waslog = 0; 1374 1375 if (ioctl(fsi, DKIOCINFO, &dkcinfo) == 0) 1376 /* 1377 * if it is an MDD (disksuite) device 1378 */ 1379 if (dkcinfo.dki_ctype == DKC_MD) { 1380 ismdd++; 1381 /* 1382 * check the logging device 1383 */ 1384 if (ioctl(fsi, _FIOISLOG, NULL) == 0) { 1385 islog++; 1386 if (ioctl(fsi, _FIOISLOGOK, NULL) == 0) 1387 islogok++; 1388 } 1389 } 1390 1391 /* 1392 * Do not grow the file system, but print on stdout the maximum 1393 * size in sectors to which the file system can be increased. 1394 * The calculated size is limited by fssize_db. 1395 * Note that we don't lock the filesystem and therefore under rare 1396 * conditions (the filesystem is mounted, the free block count is 1397 * almost zero, and the superuser is still changing it) the calculated 1398 * size can be imprecise. 1399 */ 1400 if (Pflag) { 1401 (void) printf("%llu\n", probe_summaryinfo()); 1402 exit(0); 1403 } 1404 1405 /* 1406 * If we're growing an existing filesystem, then we're about 1407 * to start doing things that can require recovery efforts if 1408 * we get interrupted, so make sure we get a chance to do so. 1409 */ 1410 if (grow) { 1411 sigact.sa_handler = recover_from_sigint; 1412 sigemptyset(&sigact.sa_mask); 1413 sigact.sa_flags = SA_RESTART; 1414 1415 if (sigaction(SIGINT, &sigact, (struct sigaction *)NULL) < 0) { 1416 perror(gettext("Could not register SIGINT handler")); 1417 lockexit(3); 1418 } 1419 } 1420 1421 if (!Nflag) { 1422 /* 1423 * Check if MNTTAB is trustable 1424 */ 1425 if (statvfs64(MNTTAB, &fs) < 0) { 1426 (void) fprintf(stderr, gettext("can't statvfs %s\n"), 1427 MNTTAB); 1428 exit(32); 1429 } 1430 1431 if (strcmp(MNTTYPE_MNTFS, fs.f_basetype) != 0) { 1432 (void) fprintf(stderr, gettext( 1433 "%s file system type is not %s, can't mkfs\n"), 1434 MNTTAB, MNTTYPE_MNTFS); 1435 exit(32); 1436 } 1437 1438 special = getfullblkname(fsys); 1439 checkdev(fsys, special); 1440 1441 /* 1442 * If we found the block device name, 1443 * then check the mount table. 1444 * if mounted, and growing write lock the file system 1445 * 1446 */ 1447 if ((special != NULL) && (*special != '\0')) { 1448 if ((mnttab = fopen(MNTTAB, "r")) == NULL) { 1449 (void) fprintf(stderr, gettext( 1450 "can't open %s\n"), MNTTAB); 1451 exit(32); 1452 } 1453 while ((getmntent(mnttab, &mntp)) == NULL) { 1454 if (grow) { 1455 checkmount(&mntp, special); 1456 continue; 1457 } 1458 if (strcmp(special, mntp.mnt_special) == 0) { 1459 (void) fprintf(stderr, gettext( 1460 "%s is mounted, can't mkfs\n"), 1461 special); 1462 exit(32); 1463 } 1464 } 1465 (void) fclose(mnttab); 1466 } 1467 1468 if (directory && (ismounted == 0)) { 1469 (void) fprintf(stderr, gettext("%s is not mounted\n"), 1470 special); 1471 lockexit(32); 1472 } 1473 1474 fso = (grow) ? open64(fsys, O_WRONLY) : creat64(fsys, 0666); 1475 if (fso < 0) { 1476 saverr = errno; 1477 (void) fprintf(stderr, 1478 gettext("%s: cannot create: %s\n"), 1479 fsys, strerror(saverr)); 1480 lockexit(32); 1481 } 1482 1483 } else { 1484 1485 /* 1486 * For the -N case, a file descriptor is needed for the llseek() 1487 * in wtfs(). See the comment in wtfs() for more information. 1488 * 1489 * Get a file descriptor that's read-only so that this code 1490 * doesn't accidentally write to the file. 1491 */ 1492 fso = open64(fsys, O_RDONLY); 1493 if (fso < 0) { 1494 saverr = errno; 1495 (void) fprintf(stderr, gettext("%s: cannot open: %s\n"), 1496 fsys, strerror(saverr)); 1497 lockexit(32); 1498 } 1499 } 1500 1501 /* 1502 * seed random # generator (for ic_generation) 1503 */ 1504 #ifdef MKFS_DEBUG 1505 srand48(12962); /* reproducible results */ 1506 #else 1507 srand48((long)(time((time_t *)NULL) + getpid())); 1508 #endif 1509 1510 if (grow) { 1511 growinit(fsys); 1512 goto grow00; 1513 } 1514 1515 /* 1516 * Validate the given file system size. 1517 * Verify that its last block can actually be accessed. 1518 * 1519 * Note: it's ok to use sblock as a buffer because it is immediately 1520 * overwritten by the rdfs() of the superblock in the next line. 1521 * 1522 * ToDo: Because the size checking is done in rdfs()/wtfs(), the 1523 * error message for specifying an illegal size is very unfriendly. 1524 * In the future, one could replace the rdfs()/wtfs() calls 1525 * below with in-line calls to read() or write(). This allows better 1526 * error messages to be put in place. 1527 */ 1528 rdfs(fssize_db - 1, (int)sectorsize, (char *)&sblock); 1529 1530 /* 1531 * make the fs unmountable 1532 */ 1533 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock); 1534 sblock.fs_magic = -1; 1535 sblock.fs_clean = FSBAD; 1536 sblock.fs_state = FSOKAY - sblock.fs_time; 1537 wtfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock); 1538 bzero(&sblock, (size_t)sbsize); 1539 1540 sblock.fs_nsect = nsect; 1541 sblock.fs_ntrak = ntrack; 1542 1543 /* 1544 * Validate specified/determined spc 1545 * and calculate minimum cylinders per group. 1546 */ 1547 1548 /* 1549 * sectors/cyl = tracks/cyl * sectors/track 1550 */ 1551 sblock.fs_spc = sblock.fs_ntrak * sblock.fs_nsect; 1552 1553 grow00: 1554 if (apc_flag) { 1555 sblock.fs_spc -= apc; 1556 } 1557 /* 1558 * Have to test for this separately from apc_flag, due to 1559 * the growfs case.... 1560 */ 1561 if (sblock.fs_spc != sblock.fs_ntrak * sblock.fs_nsect) { 1562 spc_flag = 1; 1563 } 1564 if (grow) 1565 goto grow10; 1566 1567 sblock.fs_nrpos = nrpos; 1568 sblock.fs_bsize = bsize; 1569 sblock.fs_fsize = fragsize; 1570 sblock.fs_minfree = minfree; 1571 1572 grow10: 1573 if (nbpi < sblock.fs_fsize) { 1574 (void) fprintf(stderr, gettext( 1575 "warning: wasteful data byte allocation / inode (nbpi):\n")); 1576 (void) fprintf(stderr, gettext( 1577 "%ld smaller than allocatable fragment size of %d\n"), 1578 nbpi, sblock.fs_fsize); 1579 } 1580 if (grow) 1581 goto grow20; 1582 1583 if (opt == 's') 1584 sblock.fs_optim = FS_OPTSPACE; 1585 else 1586 sblock.fs_optim = FS_OPTTIME; 1587 1588 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 1589 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 1590 /* 1591 * Planning now for future expansion. 1592 */ 1593 #if defined(_BIG_ENDIAN) 1594 sblock.fs_qbmask.val[0] = 0; 1595 sblock.fs_qbmask.val[1] = ~sblock.fs_bmask; 1596 sblock.fs_qfmask.val[0] = 0; 1597 sblock.fs_qfmask.val[1] = ~sblock.fs_fmask; 1598 #endif 1599 #if defined(_LITTLE_ENDIAN) 1600 sblock.fs_qbmask.val[0] = ~sblock.fs_bmask; 1601 sblock.fs_qbmask.val[1] = 0; 1602 sblock.fs_qfmask.val[0] = ~sblock.fs_fmask; 1603 sblock.fs_qfmask.val[1] = 0; 1604 #endif 1605 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 1606 sblock.fs_bshift++; 1607 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 1608 sblock.fs_fshift++; 1609 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 1610 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 1611 sblock.fs_fragshift++; 1612 if (sblock.fs_frag > MAXFRAG) { 1613 (void) fprintf(stderr, gettext( 1614 "fragment size %d is too small, minimum with block size %d is %d\n"), 1615 sblock.fs_fsize, sblock.fs_bsize, 1616 sblock.fs_bsize / MAXFRAG); 1617 lockexit(32); 1618 } 1619 sblock.fs_nindir = sblock.fs_bsize / sizeof (daddr32_t); 1620 sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode); 1621 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 1622 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 1623 sblock.fs_fsbtodb++; 1624 1625 /* 1626 * Compute the super-block, cylinder group, and inode blocks. 1627 * Note that these "blkno" are really fragment addresses. 1628 * For example, on an 8K/1K (block/fragment) system, fs_sblkno is 16, 1629 * fs_cblkno is 24, and fs_iblkno is 32. This is why CGSIZE is so 1630 * important: only 1 FS block is allocated for the cg struct (fragment 1631 * numbers 24 through 31). 1632 */ 1633 sblock.fs_sblkno = 1634 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 1635 sblock.fs_cblkno = (daddr32_t)(sblock.fs_sblkno + 1636 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 1637 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 1638 1639 sblock.fs_cgoffset = roundup( 1640 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 1641 for (sblock.fs_cgmask = -1, i = sblock.fs_ntrak; i > 1; i >>= 1) 1642 sblock.fs_cgmask <<= 1; 1643 if (!POWEROF2(sblock.fs_ntrak)) 1644 sblock.fs_cgmask <<= 1; 1645 /* 1646 * Validate specified/determined spc 1647 * and calculate minimum cylinders per group. 1648 */ 1649 1650 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 1651 sblock.fs_cpc > 1 && (i & 1) == 0; 1652 sblock.fs_cpc >>= 1, i >>= 1) 1653 /* void */; 1654 mincpc = sblock.fs_cpc; 1655 1656 /* if these calculations are changed, check dump_fscmd also */ 1657 bpcg = (uint64_t)sblock.fs_spc * sectorsize; 1658 inospercg = (uint64_t)roundup(bpcg / sizeof (struct dinode), 1659 INOPB(&sblock)); 1660 if (inospercg > MAXIpG(&sblock)) 1661 inospercg = MAXIpG(&sblock); 1662 used = (uint64_t)(sblock.fs_iblkno + inospercg / 1663 INOPF(&sblock)) * NSPF(&sblock); 1664 mincpgcnt = (long)howmany((uint64_t)sblock.fs_cgoffset * 1665 (~sblock.fs_cgmask) + used, sblock.fs_spc); 1666 mincpg = roundup(mincpgcnt, mincpc); 1667 /* 1668 * Insure that cylinder group with mincpg has enough space 1669 * for block maps 1670 */ 1671 sblock.fs_cpg = mincpg; 1672 sblock.fs_ipg = (int32_t)inospercg; 1673 mapcramped = 0; 1674 1675 /* 1676 * Make sure the cg struct fits within the file system block. 1677 * Use larger block sizes until it fits 1678 */ 1679 while (CGSIZE(&sblock) > sblock.fs_bsize) { 1680 mapcramped = 1; 1681 if (sblock.fs_bsize < MAXBSIZE) { 1682 sblock.fs_bsize <<= 1; 1683 if ((i & 1) == 0) { 1684 i >>= 1; 1685 } else { 1686 sblock.fs_cpc <<= 1; 1687 mincpc <<= 1; 1688 mincpg = roundup(mincpgcnt, mincpc); 1689 sblock.fs_cpg = mincpg; 1690 } 1691 sblock.fs_frag <<= 1; 1692 sblock.fs_fragshift += 1; 1693 if (sblock.fs_frag <= MAXFRAG) 1694 continue; 1695 } 1696 1697 /* 1698 * Looped far enough. The fragment is now as large as the 1699 * filesystem block! 1700 */ 1701 if (sblock.fs_fsize == sblock.fs_bsize) { 1702 (void) fprintf(stderr, gettext( 1703 "There is no block size that can support this disk\n")); 1704 lockexit(32); 1705 } 1706 1707 /* 1708 * Try a larger fragment. Double the fragment size. 1709 */ 1710 sblock.fs_frag >>= 1; 1711 sblock.fs_fragshift -= 1; 1712 sblock.fs_fsize <<= 1; 1713 sblock.fs_nspf <<= 1; 1714 } 1715 /* 1716 * Insure that cylinder group with mincpg has enough space for inodes 1717 */ 1718 inodecramped = 0; 1719 used *= sectorsize; 1720 nbytes64 = (uint64_t)mincpg * bpcg - used; 1721 inospercg = (uint64_t)roundup((nbytes64 / nbpi), INOPB(&sblock)); 1722 sblock.fs_ipg = (int32_t)inospercg; 1723 while (inospercg > MAXIpG(&sblock)) { 1724 inodecramped = 1; 1725 if (mincpc == 1 || sblock.fs_frag == 1 || 1726 sblock.fs_bsize == MINBSIZE) 1727 break; 1728 nbytes64 = (uint64_t)mincpg * bpcg - used; 1729 (void) fprintf(stderr, 1730 gettext("With a block size of %d %s %lu\n"), 1731 sblock.fs_bsize, gettext("minimum bytes per inode is"), 1732 (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1)); 1733 sblock.fs_bsize >>= 1; 1734 sblock.fs_frag >>= 1; 1735 sblock.fs_fragshift -= 1; 1736 mincpc >>= 1; 1737 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 1738 if (CGSIZE(&sblock) > sblock.fs_bsize) { 1739 sblock.fs_bsize <<= 1; 1740 break; 1741 } 1742 mincpg = sblock.fs_cpg; 1743 nbytes64 = (uint64_t)mincpg * bpcg - used; 1744 inospercg = (uint64_t)roundup((nbytes64 / nbpi), 1745 INOPB(&sblock)); 1746 sblock.fs_ipg = (int32_t)inospercg; 1747 } 1748 if (inodecramped) { 1749 if (inospercg > MAXIpG(&sblock)) { 1750 nbytes64 = (uint64_t)mincpg * bpcg - used; 1751 (void) fprintf(stderr, gettext( 1752 "Minimum bytes per inode is %d\n"), 1753 (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1)); 1754 } else if (!mapcramped) { 1755 (void) fprintf(stderr, gettext( 1756 "With %ld bytes per inode, minimum cylinders per group is %ld\n"), 1757 nbpi, mincpg); 1758 } 1759 } 1760 if (mapcramped) { 1761 (void) fprintf(stderr, gettext( 1762 "With %d sectors per cylinder, minimum cylinders " 1763 "per group is %ld\n"), 1764 sblock.fs_spc, mincpg); 1765 } 1766 if (inodecramped || mapcramped) { 1767 /* 1768 * To make this at least somewhat comprehensible in 1769 * the world of i18n, figure out what we're going to 1770 * say and then say it all at one time. The days of 1771 * needing to scrimp on string space are behind us.... 1772 */ 1773 if ((sblock.fs_bsize != bsize) && 1774 (sblock.fs_fsize != fragsize)) { 1775 (void) fprintf(stderr, gettext( 1776 "This requires the block size to be changed from %ld to %d\n" 1777 "and the fragment size to be changed from %ld to %d\n"), 1778 bsize, sblock.fs_bsize, 1779 fragsize, sblock.fs_fsize); 1780 } else if (sblock.fs_bsize != bsize) { 1781 (void) fprintf(stderr, gettext( 1782 "This requires the block size to be changed from %ld to %d\n"), 1783 bsize, sblock.fs_bsize); 1784 } else if (sblock.fs_fsize != fragsize) { 1785 (void) fprintf(stderr, gettext( 1786 "This requires the fragment size to be changed from %ld to %d\n"), 1787 fragsize, sblock.fs_fsize); 1788 } else { 1789 (void) fprintf(stderr, gettext( 1790 "Unable to make filesystem fit with the given constraints\n")); 1791 } 1792 (void) fprintf(stderr, gettext( 1793 "Please re-run mkfs with corrected parameters\n")); 1794 lockexit(32); 1795 } 1796 /* 1797 * Calculate the number of cylinders per group 1798 */ 1799 sblock.fs_cpg = cpg; 1800 if (sblock.fs_cpg % mincpc != 0) { 1801 (void) fprintf(stderr, gettext( 1802 "Warning: cylinder groups must have a multiple " 1803 "of %ld cylinders with the given\n parameters\n"), 1804 mincpc); 1805 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 1806 (void) fprintf(stderr, gettext("Rounded cgsize up to %d\n"), 1807 sblock.fs_cpg); 1808 } 1809 /* 1810 * Must insure there is enough space for inodes 1811 */ 1812 /* if these calculations are changed, check dump_fscmd also */ 1813 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used; 1814 sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi), INOPB(&sblock)); 1815 1816 /* 1817 * Slim down cylinders per group, until the inodes can fit. 1818 */ 1819 while (sblock.fs_ipg > MAXIpG(&sblock)) { 1820 inodecramped = 1; 1821 sblock.fs_cpg -= mincpc; 1822 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used; 1823 sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi), 1824 INOPB(&sblock)); 1825 } 1826 /* 1827 * Must insure there is enough space to hold block map. 1828 * Cut down on cylinders per group, until the cg struct fits in a 1829 * filesystem block. 1830 */ 1831 while (CGSIZE(&sblock) > sblock.fs_bsize) { 1832 mapcramped = 1; 1833 sblock.fs_cpg -= mincpc; 1834 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used; 1835 sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi), 1836 INOPB(&sblock)); 1837 } 1838 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 1839 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 1840 (void) fprintf(stderr, 1841 gettext("newfs: panic (fs_cpg * fs_spc) %% NSPF != 0\n")); 1842 lockexit(32); 1843 } 1844 if (sblock.fs_cpg < mincpg) { 1845 (void) fprintf(stderr, gettext( 1846 "With the given parameters, cgsize must be at least %ld; please re-run mkfs\n"), 1847 mincpg); 1848 lockexit(32); 1849 } 1850 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 1851 grow20: 1852 /* 1853 * Now have size for file system and nsect and ntrak. 1854 * Determine number of cylinders and blocks in the file system. 1855 */ 1856 fssize_frag = (int64_t)dbtofsb(&sblock, fssize_db); 1857 if (fssize_frag > INT_MAX) { 1858 (void) fprintf(stderr, gettext( 1859 "There are too many fragments in the system, increase fragment size\n"), 1860 mincpg); 1861 lockexit(32); 1862 } 1863 sblock.fs_size = (int32_t)fssize_frag; 1864 sblock.fs_ncyl = (int32_t)(fssize_frag * NSPF(&sblock) / sblock.fs_spc); 1865 if (fssize_frag * NSPF(&sblock) > 1866 (uint64_t)sblock.fs_ncyl * sblock.fs_spc) { 1867 sblock.fs_ncyl++; 1868 warn = 1; 1869 } 1870 if (sblock.fs_ncyl < 1) { 1871 (void) fprintf(stderr, gettext( 1872 "file systems must have at least one cylinder\n")); 1873 lockexit(32); 1874 } 1875 if (grow) 1876 goto grow30; 1877 /* 1878 * Determine feasability/values of rotational layout tables. 1879 * 1880 * The size of the rotational layout tables is limited by the size 1881 * of the file system block, fs_bsize. The amount of space 1882 * available for tables is calculated as (fs_bsize - sizeof (struct 1883 * fs)). The size of these tables is inversely proportional to the 1884 * block size of the file system. The size increases if sectors per 1885 * track are not powers of two, because more cylinders must be 1886 * described by the tables before the rotational pattern repeats 1887 * (fs_cpc). 1888 */ 1889 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 1890 sblock.fs_sbsize = fragroundup(&sblock, sizeof (struct fs)); 1891 sblock.fs_npsect = sblock.fs_nsect; 1892 if (sblock.fs_ntrak == 1) { 1893 sblock.fs_cpc = 0; 1894 goto next; 1895 } 1896 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof (short); 1897 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 1898 totalsbsize = sizeof (struct fs) + rotblsize; 1899 1900 /* do static allocation if nrpos == 8 and fs_cpc == 16 */ 1901 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 1902 /* use old static table space */ 1903 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 1904 (char *)(&sblock.fs_link); 1905 sblock.fs_rotbloff = &sblock.fs_space[0] - 1906 (uchar_t *)(&sblock.fs_link); 1907 } else { 1908 /* use 4.3 dynamic table space */ 1909 sblock.fs_postbloff = &sblock.fs_space[0] - 1910 (uchar_t *)(&sblock.fs_link); 1911 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 1912 totalsbsize += postblsize; 1913 } 1914 if (totalsbsize > sblock.fs_bsize || 1915 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 1916 (void) fprintf(stderr, gettext( 1917 "Warning: insufficient space in super block for\n" 1918 "rotational layout tables with nsect %d, ntrack %d, " 1919 "and nrpos %d.\nOmitting tables - file system " 1920 "performance may be impaired.\n"), 1921 sblock.fs_nsect, sblock.fs_ntrak, sblock.fs_nrpos); 1922 1923 /* 1924 * Setting fs_cpc to 0 tells alloccgblk() in ufs_alloc.c to 1925 * ignore the positional layout table and rotational 1926 * position table. 1927 */ 1928 sblock.fs_cpc = 0; 1929 goto next; 1930 } 1931 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 1932 1933 1934 /* 1935 * calculate the available blocks for each rotational position 1936 */ 1937 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 1938 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 1939 fs_postbl(&sblock, cylno)[rpos] = -1; 1940 for (i = (rotblsize - 1) * sblock.fs_frag; 1941 i >= 0; i -= sblock.fs_frag) { 1942 cylno = cbtocylno(&sblock, i); 1943 rpos = cbtorpos(&sblock, i); 1944 blk = fragstoblks(&sblock, i); 1945 if (fs_postbl(&sblock, cylno)[rpos] == -1) 1946 fs_rotbl(&sblock)[blk] = 0; 1947 else 1948 fs_rotbl(&sblock)[blk] = 1949 fs_postbl(&sblock, cylno)[rpos] - blk; 1950 fs_postbl(&sblock, cylno)[rpos] = blk; 1951 } 1952 next: 1953 grow30: 1954 /* 1955 * Compute/validate number of cylinder groups. 1956 * Note that if an excessively large filesystem is specified 1957 * (e.g., more than 16384 cylinders for an 8K filesystem block), it 1958 * does not get detected until checksummarysize() 1959 */ 1960 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 1961 if (sblock.fs_ncyl % sblock.fs_cpg) 1962 sblock.fs_ncg++; 1963 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 1964 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 1965 ibpcl = cgdmin(&sblock, i) - cgbase(&sblock, i); 1966 if (ibpcl >= sblock.fs_fpg) { 1967 (void) fprintf(stderr, gettext( 1968 "inode blocks/cyl group (%d) >= data blocks (%d)\n"), 1969 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 1970 sblock.fs_fpg / sblock.fs_frag); 1971 if ((ibpcl < 0) || (sblock.fs_fpg < 0)) { 1972 (void) fprintf(stderr, gettext( 1973 "number of cylinders per cylinder group (%d) must be decreased.\n"), 1974 sblock.fs_cpg); 1975 } else { 1976 (void) fprintf(stderr, gettext( 1977 "number of cylinders per cylinder group (%d) must be increased.\n"), 1978 sblock.fs_cpg); 1979 } 1980 (void) fprintf(stderr, gettext( 1981 "Note that cgsize may have been adjusted to allow struct cg to fit.\n")); 1982 lockexit(32); 1983 } 1984 j = sblock.fs_ncg - 1; 1985 if ((i = fssize_frag - j * sblock.fs_fpg) < sblock.fs_fpg && 1986 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 1987 (void) fprintf(stderr, gettext( 1988 "Warning: inode blocks/cyl group (%d) >= data " 1989 "blocks (%ld) in last\n cylinder group. This " 1990 "implies %ld sector(s) cannot be allocated.\n"), 1991 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 1992 i / sblock.fs_frag, i * NSPF(&sblock)); 1993 /* 1994 * If there is only one cylinder group and that is not even 1995 * big enough to hold the inodes, exit. 1996 */ 1997 if (sblock.fs_ncg == 1) 1998 cg_too_small = 1; 1999 sblock.fs_ncg--; 2000 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 2001 sblock.fs_size = fssize_frag = 2002 (int64_t)sblock.fs_ncyl * (int64_t)sblock.fs_spc / 2003 (int64_t)NSPF(&sblock); 2004 warn = 0; 2005 } 2006 if (warn && !spc_flag) { 2007 (void) fprintf(stderr, gettext( 2008 "Warning: %d sector(s) in last cylinder unallocated\n"), 2009 sblock.fs_spc - (uint32_t)(fssize_frag * NSPF(&sblock) - 2010 (uint64_t)(sblock.fs_ncyl - 1) * sblock.fs_spc)); 2011 } 2012 /* 2013 * fill in remaining fields of the super block 2014 */ 2015 2016 /* 2017 * The csum records are stored in cylinder group 0, starting at 2018 * cgdmin, the first data block. 2019 */ 2020 sblock.fs_csaddr = cgdmin(&sblock, 0); 2021 sblock.fs_cssize = 2022 fragroundup(&sblock, sblock.fs_ncg * sizeof (struct csum)); 2023 i = sblock.fs_bsize / sizeof (struct csum); 2024 sblock.fs_csmask = ~(i - 1); 2025 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 2026 sblock.fs_csshift++; 2027 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 2028 2029 checksummarysize(); 2030 if (mtb == 'y') { 2031 sblock.fs_magic = MTB_UFS_MAGIC; 2032 sblock.fs_version = MTB_UFS_VERSION_1; 2033 } else { 2034 sblock.fs_magic = FS_MAGIC; 2035 if (use_efi_dflts) 2036 sblock.fs_version = UFS_EFISTYLE4NONEFI_VERSION_2; 2037 else 2038 sblock.fs_version = UFS_VERSION_MIN; 2039 } 2040 2041 if (grow) { 2042 bcopy((caddr_t)grow_fscs, (caddr_t)fscs, (int)grow_fs_cssize); 2043 extendsummaryinfo(); 2044 goto grow40; 2045 } 2046 sblock.fs_rotdelay = rotdelay; 2047 sblock.fs_maxcontig = maxcontig; 2048 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); 2049 2050 sblock.fs_rps = rps; 2051 sblock.fs_cgrotor = 0; 2052 sblock.fs_cstotal.cs_ndir = 0; 2053 sblock.fs_cstotal.cs_nbfree = 0; 2054 sblock.fs_cstotal.cs_nifree = 0; 2055 sblock.fs_cstotal.cs_nffree = 0; 2056 sblock.fs_fmod = 0; 2057 sblock.fs_ronly = 0; 2058 sblock.fs_time = mkfstime; 2059 sblock.fs_state = FSOKAY - sblock.fs_time; 2060 sblock.fs_clean = FSCLEAN; 2061 grow40: 2062 2063 /* 2064 * If all that's needed is a dump of the superblock we 2065 * would use by default, we've got it now. So, splat it 2066 * out and leave. 2067 */ 2068 if (rflag) { 2069 dump_sblock(); 2070 lockexit(0); 2071 } 2072 /* 2073 * Dump out summary information about file system. 2074 */ 2075 (void) fprintf(stderr, gettext( 2076 "%s:\t%lld sectors in %d cylinders of %d tracks, %d sectors\n"), 2077 fsys, (uint64_t)sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 2078 sblock.fs_ntrak, sblock.fs_nsect); 2079 (void) fprintf(stderr, gettext( 2080 "\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n"), 2081 (float)sblock.fs_size * sblock.fs_fsize / MB, sblock.fs_ncg, 2082 sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize / MB, 2083 sblock.fs_ipg); 2084 2085 tmpbuf = calloc(sblock.fs_ncg / 50 + 500, 1); 2086 if (tmpbuf == NULL) { 2087 perror("calloc"); 2088 lockexit(32); 2089 } 2090 if (cg_too_small) { 2091 (void) fprintf(stderr, gettext("File system creation failed. " 2092 "There is only one cylinder group and\nthat is " 2093 "not even big enough to hold the inodes.\n")); 2094 lockexit(32); 2095 } 2096 /* 2097 * Now build the cylinders group blocks and 2098 * then print out indices of cylinder groups. 2099 */ 2100 tprintf(gettext( 2101 "super-block backups (for fsck -F ufs -o b=#) at:\n")); 2102 for (width = cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++) { 2103 if ((grow == 0) || (cylno >= grow_fs_ncg)) 2104 initcg(cylno); 2105 num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)); 2106 /* 2107 * If Nflag and if the disk is larger than the CHSLIMIT, 2108 * then sanity test the superblocks before reporting. If there 2109 * are too many superblocks which look insane, we have 2110 * to retry with alternate logic. If both methods have 2111 * failed, then our efforts to arrive at alternate 2112 * superblocks failed, so complain and exit. 2113 */ 2114 if (Nflag && retry) { 2115 skip_this_sb = 0; 2116 rdfs((diskaddr_t)num, sbsize, (char *)&altsblock); 2117 ret = checksblock(altsblock, 1); 2118 if (ret) { 2119 skip_this_sb = 1; 2120 invalid_sb_cnt++; 2121 dprintf(("DeBuG checksblock() failed - error :" 2122 " %d for sb : %llu invalid_sb_cnt : %d\n", 2123 ret, num, invalid_sb_cnt)); 2124 } else { 2125 /* 2126 * Though the superblock looks sane, verify if 2127 * the fs_version in the superblock and the 2128 * logic that we are using to arrive at the 2129 * superblocks match. 2130 */ 2131 if (use_efi_dflts && altsblock.fs_version 2132 != UFS_EFISTYLE4NONEFI_VERSION_2) { 2133 skip_this_sb = 1; 2134 invalid_sb_cnt++; 2135 } 2136 } 2137 if (invalid_sb_cnt >= INVALIDSBLIMIT) { 2138 if (retry > 1) { 2139 (void) fprintf(stderr, gettext( 2140 "Error determining alternate " 2141 "superblock locations\n")); 2142 free(tmpbuf); 2143 lockexit(32); 2144 } 2145 retry++; 2146 use_efi_dflts = !use_efi_dflts; 2147 free(tmpbuf); 2148 goto retry_alternate_logic; 2149 } 2150 if (skip_this_sb) 2151 continue; 2152 } 2153 (void) sprintf(pbuf, " %llu,", num); 2154 plen = strlen(pbuf); 2155 if ((width + plen) > (WIDTH - 1)) { 2156 width = plen; 2157 tprintf("\n"); 2158 } else { 2159 width += plen; 2160 } 2161 if (Nflag && retry) 2162 (void) strncat(tmpbuf, pbuf, strlen(pbuf)); 2163 else 2164 (void) fprintf(stderr, "%s", pbuf); 2165 } 2166 tprintf("\n"); 2167 2168 remaining_cg = sblock.fs_ncg - cylno; 2169 2170 /* 2171 * If there are more than 300 cylinder groups still to be 2172 * initialized, print a "." for every 50 cylinder groups. 2173 */ 2174 if (remaining_cg > 300) { 2175 tprintf(gettext("Initializing cylinder groups:\n")); 2176 do_dot = 1; 2177 } 2178 2179 /* 2180 * Now initialize all cylinder groups between the first ten 2181 * and the last ten. 2182 * 2183 * If the number of cylinder groups was less than 10, all of the 2184 * cylinder group offsets would have printed in the last loop 2185 * and cylno will already be equal to sblock.fs_ncg and so this 2186 * loop will not be entered. If there are less than 20 cylinder 2187 * groups, cylno is already less than fs_ncg - 10, so this loop 2188 * won't be entered in that case either. 2189 */ 2190 2191 i = 0; 2192 for (; cylno < sblock.fs_ncg - 10; cylno++) { 2193 if ((grow == 0) || (cylno >= grow_fs_ncg)) 2194 initcg(cylno); 2195 if (do_dot && cylno % 50 == 0) { 2196 tprintf("."); 2197 i++; 2198 if (i == WIDTH - 1) { 2199 tprintf("\n"); 2200 i = 0; 2201 } 2202 } 2203 } 2204 2205 /* 2206 * Now print the cylinder group offsets for the last 10 2207 * cylinder groups, if any are left. 2208 */ 2209 2210 if (do_dot) { 2211 tprintf(gettext( 2212 "\nsuper-block backups for last 10 cylinder groups at:\n")); 2213 } 2214 for (width = 0; cylno < sblock.fs_ncg; cylno++) { 2215 if ((grow == 0) || (cylno >= grow_fs_ncg)) 2216 initcg(cylno); 2217 num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)); 2218 if (Nflag && retry) { 2219 skip_this_sb = 0; 2220 rdfs((diskaddr_t)num, sbsize, (char *)&altsblock); 2221 ret = checksblock(altsblock, 1); 2222 if (ret) { 2223 skip_this_sb = 1; 2224 invalid_sb_cnt++; 2225 dprintf(("DeBuG checksblock() failed - error :" 2226 " %d for sb : %llu invalid_sb_cnt : %d\n", 2227 ret, num, invalid_sb_cnt)); 2228 } else { 2229 /* 2230 * Though the superblock looks sane, verify if 2231 * the fs_version in the superblock and the 2232 * logic that we are using to arrive at the 2233 * superblocks match. 2234 */ 2235 if (use_efi_dflts && altsblock.fs_version 2236 != UFS_EFISTYLE4NONEFI_VERSION_2) { 2237 skip_this_sb = 1; 2238 invalid_sb_cnt++; 2239 } 2240 } 2241 if (invalid_sb_cnt >= INVALIDSBLIMIT) { 2242 if (retry > 1) { 2243 (void) fprintf(stderr, gettext( 2244 "Error determining alternate " 2245 "superblock locations\n")); 2246 free(tmpbuf); 2247 lockexit(32); 2248 } 2249 retry++; 2250 use_efi_dflts = !use_efi_dflts; 2251 free(tmpbuf); 2252 goto retry_alternate_logic; 2253 } 2254 if (skip_this_sb) 2255 continue; 2256 } 2257 /* Don't print ',' for the last superblock */ 2258 if (cylno == sblock.fs_ncg-1) 2259 (void) sprintf(pbuf, " %llu", num); 2260 else 2261 (void) sprintf(pbuf, " %llu,", num); 2262 plen = strlen(pbuf); 2263 if ((width + plen) > (WIDTH - 1)) { 2264 width = plen; 2265 tprintf("\n"); 2266 } else { 2267 width += plen; 2268 } 2269 if (Nflag && retry) 2270 (void) strncat(tmpbuf, pbuf, strlen(pbuf)); 2271 else 2272 (void) fprintf(stderr, "%s", pbuf); 2273 } 2274 tprintf("\n"); 2275 if (Nflag) { 2276 if (retry) 2277 (void) fprintf(stderr, "%s", tmpbuf); 2278 free(tmpbuf); 2279 lockexit(0); 2280 } 2281 2282 free(tmpbuf); 2283 if (grow) 2284 goto grow50; 2285 2286 /* 2287 * Now construct the initial file system, 2288 * then write out the super-block. 2289 */ 2290 fsinit(); 2291 grow50: 2292 /* 2293 * write the superblock and csum information 2294 */ 2295 wtsb(); 2296 2297 /* 2298 * extend the last cylinder group in the original file system 2299 */ 2300 if (grow) { 2301 extendcg(grow_fs_ncg-1); 2302 wtsb(); 2303 } 2304 2305 /* 2306 * Write out the duplicate super blocks to the first 10 2307 * cylinder groups (or fewer, if there are fewer than 10 2308 * cylinder groups). 2309 */ 2310 for (cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++) 2311 awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)), 2312 (int)sbsize, (char *)&sblock, SAVE); 2313 2314 /* 2315 * Now write out duplicate super blocks to the remaining 2316 * cylinder groups. In the case of multi-terabyte file 2317 * systems, just write out the super block to the last ten 2318 * cylinder groups (or however many are left). 2319 */ 2320 if (mtb == 'y') { 2321 if (sblock.fs_ncg <= 10) 2322 cylno = sblock.fs_ncg; 2323 else if (sblock.fs_ncg <= 20) 2324 cylno = 10; 2325 else 2326 cylno = sblock.fs_ncg - 10; 2327 } 2328 2329 for (; cylno < sblock.fs_ncg; cylno++) 2330 awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)), 2331 (int)sbsize, (char *)&sblock, SAVE); 2332 2333 /* 2334 * Flush out all the AIO writes we've done. It's not 2335 * necessary to do this explicitly, but it's the only 2336 * way to report any errors from those writes. 2337 */ 2338 flush_writes(); 2339 2340 /* 2341 * set clean flag 2342 */ 2343 if (grow) 2344 sblock.fs_clean = grow_fs_clean; 2345 else 2346 sblock.fs_clean = FSCLEAN; 2347 sblock.fs_time = mkfstime; 2348 sblock.fs_state = FSOKAY - sblock.fs_time; 2349 wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock); 2350 isbad = 0; 2351 2352 if (fsync(fso) == -1) { 2353 saverr = errno; 2354 (void) fprintf(stderr, 2355 gettext("mkfs: fsync failed on write disk: %s\n"), 2356 strerror(saverr)); 2357 /* we're just cleaning up, so keep going */ 2358 } 2359 if (close(fsi) == -1) { 2360 saverr = errno; 2361 (void) fprintf(stderr, 2362 gettext("mkfs: close failed on read disk: %s\n"), 2363 strerror(saverr)); 2364 /* we're just cleaning up, so keep going */ 2365 } 2366 if (close(fso) == -1) { 2367 saverr = errno; 2368 (void) fprintf(stderr, 2369 gettext("mkfs: close failed on write disk: %s\n"), 2370 strerror(saverr)); 2371 /* we're just cleaning up, so keep going */ 2372 } 2373 fsi = fso = -1; 2374 2375 #ifndef STANDALONE 2376 lockexit(0); 2377 #endif 2378 2379 return (0); 2380 } 2381 2382 /* 2383 * Figure out how big the partition we're dealing with is. 2384 * The value returned is in disk blocks (sectors); 2385 */ 2386 static diskaddr_t 2387 get_max_size(int fd) 2388 { 2389 struct vtoc vtoc; 2390 dk_gpt_t *efi_vtoc; 2391 diskaddr_t slicesize; 2392 2393 int index = read_vtoc(fd, &vtoc); 2394 2395 if (index >= 0) { 2396 label_type = LABEL_TYPE_VTOC; 2397 } else { 2398 if (index == VT_ENOTSUP || index == VT_ERROR) { 2399 /* it might be an EFI label */ 2400 index = efi_alloc_and_read(fd, &efi_vtoc); 2401 label_type = LABEL_TYPE_EFI; 2402 } 2403 } 2404 2405 if (index < 0) { 2406 switch (index) { 2407 case VT_ERROR: 2408 break; 2409 case VT_EIO: 2410 errno = EIO; 2411 break; 2412 case VT_EINVAL: 2413 errno = EINVAL; 2414 } 2415 perror(gettext("Can not determine partition size")); 2416 lockexit(32); 2417 } 2418 2419 if (label_type == LABEL_TYPE_EFI) { 2420 slicesize = efi_vtoc->efi_parts[index].p_size; 2421 efi_free(efi_vtoc); 2422 } else { 2423 /* 2424 * In the vtoc struct, p_size is a 32-bit signed quantity. 2425 * In the dk_gpt struct (efi's version of the vtoc), p_size 2426 * is an unsigned 64-bit quantity. By casting the vtoc's 2427 * psize to an unsigned 32-bit quantity, it will be copied 2428 * to 'slicesize' (an unsigned 64-bit diskaddr_t) without 2429 * sign extension. 2430 */ 2431 2432 slicesize = (uint32_t)vtoc.v_part[index].p_size; 2433 } 2434 2435 dprintf(("DeBuG get_max_size index = %d, p_size = %lld, dolimit = %d\n", 2436 index, slicesize, (slicesize > FS_MAX))); 2437 2438 /* 2439 * The next line limits a UFS file system to the maximum 2440 * supported size. 2441 */ 2442 2443 if (slicesize > FS_MAX) 2444 return (FS_MAX); 2445 return (slicesize); 2446 } 2447 2448 static long 2449 get_max_track_size(int fd) 2450 { 2451 struct dk_cinfo ci; 2452 long track_size = -1; 2453 2454 if (ioctl(fd, DKIOCINFO, &ci) == 0) { 2455 track_size = ci.dki_maxtransfer * DEV_BSIZE; 2456 } 2457 2458 if ((track_size < 0)) { 2459 int error = 0; 2460 int maxphys; 2461 int gotit = 0; 2462 2463 gotit = fsgetmaxphys(&maxphys, &error); 2464 if (gotit) { 2465 track_size = MIN(MB, maxphys); 2466 } else { 2467 (void) fprintf(stderr, gettext( 2468 "Warning: Could not get system value for maxphys. The value for\n" 2469 "maxcontig will default to 1MB.\n")); 2470 track_size = MB; 2471 } 2472 } 2473 return (track_size); 2474 } 2475 2476 /* 2477 * Initialize a cylinder group. 2478 */ 2479 static void 2480 initcg(int cylno) 2481 { 2482 diskaddr_t cbase, d; 2483 diskaddr_t dlower; /* last data block before cg metadata */ 2484 diskaddr_t dupper; /* first data block after cg metadata */ 2485 diskaddr_t dmax; 2486 int64_t i; 2487 struct csum *cs; 2488 struct dinode *inode_buffer; 2489 int size; 2490 2491 /* 2492 * Variables used to store intermediate results as a part of 2493 * the internal implementation of the cbtocylno() macros. 2494 */ 2495 diskaddr_t bno; /* UFS block number (not sector number) */ 2496 int cbcylno; /* current cylinder number */ 2497 int cbcylno_sect; /* sector offset within cylinder */ 2498 int cbsect_incr; /* amount to increment sector offset */ 2499 2500 /* 2501 * Variables used to store intermediate results as a part of 2502 * the internal implementation of the cbtorpos() macros. 2503 */ 2504 short *cgblks; /* pointer to array of free blocks in cg */ 2505 int trackrpos; /* tmp variable for rotation position */ 2506 int trackoff; /* offset within a track */ 2507 int trackoff_incr; /* amount to increment trackoff */ 2508 int rpos; /* rotation position of current block */ 2509 int rpos_incr; /* amount to increment rpos per block */ 2510 2511 union cgun *icgun; /* local pointer to a cg summary block */ 2512 #define icg (icgun->cg) 2513 2514 icgun = (union cgun *)getbuf(&cgsumbuf, sizeof (union cgun)); 2515 2516 /* 2517 * Determine block bounds for cylinder group. 2518 * Allow space for super block summary information in first 2519 * cylinder group. 2520 */ 2521 cbase = cgbase(&sblock, cylno); 2522 dmax = cbase + sblock.fs_fpg; 2523 if (dmax > sblock.fs_size) /* last cg may be smaller than normal */ 2524 dmax = sblock.fs_size; 2525 dlower = cgsblock(&sblock, cylno) - cbase; 2526 dupper = cgdmin(&sblock, cylno) - cbase; 2527 if (cylno == 0) 2528 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 2529 cs = fscs + cylno; 2530 icg.cg_time = mkfstime; 2531 icg.cg_magic = CG_MAGIC; 2532 icg.cg_cgx = cylno; 2533 /* last one gets whatever's left */ 2534 if (cylno == sblock.fs_ncg - 1) 2535 icg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno); 2536 else 2537 icg.cg_ncyl = sblock.fs_cpg; 2538 icg.cg_niblk = sblock.fs_ipg; 2539 icg.cg_ndblk = dmax - cbase; 2540 icg.cg_cs.cs_ndir = 0; 2541 icg.cg_cs.cs_nffree = 0; 2542 icg.cg_cs.cs_nbfree = 0; 2543 icg.cg_cs.cs_nifree = 0; 2544 icg.cg_rotor = 0; 2545 icg.cg_frotor = 0; 2546 icg.cg_irotor = 0; 2547 icg.cg_btotoff = &icg.cg_space[0] - (uchar_t *)(&icg.cg_link); 2548 icg.cg_boff = icg.cg_btotoff + sblock.fs_cpg * sizeof (long); 2549 icg.cg_iusedoff = icg.cg_boff + 2550 sblock.fs_cpg * sblock.fs_nrpos * sizeof (short); 2551 icg.cg_freeoff = icg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 2552 icg.cg_nextfreeoff = icg.cg_freeoff + 2553 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 2554 for (i = 0; i < sblock.fs_frag; i++) { 2555 icg.cg_frsum[i] = 0; 2556 } 2557 bzero((caddr_t)cg_inosused(&icg), icg.cg_freeoff - icg.cg_iusedoff); 2558 icg.cg_cs.cs_nifree += sblock.fs_ipg; 2559 if (cylno == 0) 2560 for (i = 0; i < UFSROOTINO; i++) { 2561 setbit(cg_inosused(&icg), i); 2562 icg.cg_cs.cs_nifree--; 2563 } 2564 2565 /* 2566 * Initialize all the inodes in the cylinder group using 2567 * random numbers. 2568 */ 2569 size = sblock.fs_ipg * sizeof (struct dinode); 2570 inode_buffer = (struct dinode *)getbuf(&inodebuf, size); 2571 2572 for (i = 0; i < sblock.fs_ipg; i++) { 2573 IRANDOMIZE(&(inode_buffer[i].di_ic)); 2574 } 2575 2576 /* 2577 * Write all inodes in a single write for performance. 2578 */ 2579 awtfs(fsbtodb(&sblock, (uint64_t)cgimin(&sblock, cylno)), (int)size, 2580 (char *)inode_buffer, RELEASE); 2581 2582 bzero((caddr_t)cg_blktot(&icg), icg.cg_boff - icg.cg_btotoff); 2583 bzero((caddr_t)cg_blks(&sblock, &icg, 0), 2584 icg.cg_iusedoff - icg.cg_boff); 2585 bzero((caddr_t)cg_blksfree(&icg), icg.cg_nextfreeoff - icg.cg_freeoff); 2586 2587 if (cylno > 0) { 2588 for (d = 0; d < dlower; d += sblock.fs_frag) { 2589 setblock(&sblock, cg_blksfree(&icg), d/sblock.fs_frag); 2590 icg.cg_cs.cs_nbfree++; 2591 cg_blktot(&icg)[cbtocylno(&sblock, d)]++; 2592 cg_blks(&sblock, &icg, cbtocylno(&sblock, d)) 2593 [cbtorpos(&sblock, d)]++; 2594 } 2595 sblock.fs_dsize += dlower; 2596 } 2597 sblock.fs_dsize += icg.cg_ndblk - dupper; 2598 if ((i = dupper % sblock.fs_frag) != 0) { 2599 icg.cg_frsum[sblock.fs_frag - i]++; 2600 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 2601 setbit(cg_blksfree(&icg), dupper); 2602 icg.cg_cs.cs_nffree++; 2603 } 2604 } 2605 2606 /* 2607 * WARNING: The following code is somewhat confusing, but 2608 * results in a substantial performance improvement in mkfs. 2609 * 2610 * Instead of using cbtocylno() and cbtorpos() macros, we 2611 * keep track of all the intermediate state of those macros 2612 * in some variables. This allows simple addition to be 2613 * done to calculate the results as we step through the 2614 * blocks in an orderly fashion instead of the slower 2615 * multiplication and division the macros are forced to 2616 * used so they can support random input. (Multiplication, 2617 * division, and remainder operations typically take about 2618 * 10x as many processor cycles as other operations.) 2619 * 2620 * The basic idea is to take code: 2621 * 2622 * for (x = starting_x; x < max; x++) 2623 * y = (x * c) / z 2624 * 2625 * and rewrite it to take advantage of the fact that 2626 * the variable x is incrementing in an orderly way: 2627 * 2628 * intermediate = starting_x * c 2629 * yval = intermediate / z 2630 * for (x = starting_x; x < max; x++) { 2631 * y = yval; 2632 * intermediate += c 2633 * if (intermediate > z) { 2634 * yval++; 2635 * intermediate -= z 2636 * } 2637 * } 2638 * 2639 * Performance has improved as much as 4X using this code. 2640 */ 2641 2642 /* 2643 * Initialize the starting points for all the cbtocylno() 2644 * macro variables and figure out the increments needed each 2645 * time through the loop. 2646 */ 2647 cbcylno_sect = dupper * NSPF(&sblock); 2648 cbsect_incr = sblock.fs_frag * NSPF(&sblock); 2649 cbcylno = cbcylno_sect / sblock.fs_spc; 2650 cbcylno_sect %= sblock.fs_spc; 2651 cgblks = cg_blks(&sblock, &icg, cbcylno); 2652 bno = dupper / sblock.fs_frag; 2653 2654 /* 2655 * Initialize the starting points for all the cbtorpos() 2656 * macro variables and figure out the increments needed each 2657 * time through the loop. 2658 * 2659 * It's harder to simplify the cbtorpos() macro if there were 2660 * alternate sectors specified (or if they previously existed 2661 * in the growfs case). Since this is rare, we just revert to 2662 * using the macros in this case and skip the variable setup. 2663 */ 2664 if (!spc_flag) { 2665 trackrpos = (cbcylno_sect % sblock.fs_nsect) * sblock.fs_nrpos; 2666 rpos = trackrpos / sblock.fs_nsect; 2667 trackoff = trackrpos % sblock.fs_nsect; 2668 trackoff_incr = cbsect_incr * sblock.fs_nrpos; 2669 rpos_incr = (trackoff_incr / sblock.fs_nsect) % sblock.fs_nrpos; 2670 trackoff_incr = trackoff_incr % sblock.fs_nsect; 2671 } 2672 2673 /* 2674 * Loop through all the blocks, marking them free and 2675 * updating totals kept in the superblock and cg summary. 2676 */ 2677 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 2678 setblock(&sblock, cg_blksfree(&icg), bno); 2679 icg.cg_cs.cs_nbfree++; 2680 2681 cg_blktot(&icg)[cbcylno]++; 2682 2683 if (!spc_flag) 2684 cgblks[rpos]++; 2685 else 2686 cg_blks(&sblock, &icg, cbtocylno(&sblock, d)) 2687 [cbtorpos(&sblock, d)]++; 2688 2689 d += sblock.fs_frag; 2690 bno++; 2691 2692 /* 2693 * Increment the sector offset within the cylinder 2694 * for the cbtocylno() macro reimplementation. If 2695 * we're beyond the end of the cylinder, update the 2696 * cylinder number, calculate the offset in the 2697 * new cylinder, and update the cgblks pointer 2698 * to the next rotational position. 2699 */ 2700 cbcylno_sect += cbsect_incr; 2701 if (cbcylno_sect >= sblock.fs_spc) { 2702 cbcylno++; 2703 cbcylno_sect -= sblock.fs_spc; 2704 cgblks += sblock.fs_nrpos; 2705 } 2706 2707 /* 2708 * If there aren't alternate sectors, increment the 2709 * rotational position variables for the cbtorpos() 2710 * reimplementation. Note that we potentially 2711 * increment rpos twice. Once by rpos_incr, and one 2712 * more time when we wrap to a new track because 2713 * trackoff >= fs_nsect. 2714 */ 2715 if (!spc_flag) { 2716 trackoff += trackoff_incr; 2717 rpos += rpos_incr; 2718 if (trackoff >= sblock.fs_nsect) { 2719 trackoff -= sblock.fs_nsect; 2720 rpos++; 2721 } 2722 if (rpos >= sblock.fs_nrpos) 2723 rpos -= sblock.fs_nrpos; 2724 } 2725 } 2726 2727 if (d < dmax - cbase) { 2728 icg.cg_frsum[dmax - cbase - d]++; 2729 for (; d < dmax - cbase; d++) { 2730 setbit(cg_blksfree(&icg), d); 2731 icg.cg_cs.cs_nffree++; 2732 } 2733 } 2734 sblock.fs_cstotal.cs_ndir += icg.cg_cs.cs_ndir; 2735 sblock.fs_cstotal.cs_nffree += icg.cg_cs.cs_nffree; 2736 sblock.fs_cstotal.cs_nbfree += icg.cg_cs.cs_nbfree; 2737 sblock.fs_cstotal.cs_nifree += icg.cg_cs.cs_nifree; 2738 *cs = icg.cg_cs; 2739 awtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, cylno)), 2740 sblock.fs_bsize, (char *)&icg, RELEASE); 2741 } 2742 2743 /* 2744 * initialize the file system 2745 */ 2746 struct inode node; 2747 2748 #define LOSTDIR 2749 #ifdef LOSTDIR 2750 #define PREDEFDIR 3 2751 #else 2752 #define PREDEFDIR 2 2753 #endif 2754 2755 struct direct root_dir[] = { 2756 { UFSROOTINO, sizeof (struct direct), 1, "." }, 2757 { UFSROOTINO, sizeof (struct direct), 2, ".." }, 2758 #ifdef LOSTDIR 2759 { LOSTFOUNDINO, sizeof (struct direct), 10, "lost+found" }, 2760 #endif 2761 }; 2762 #ifdef LOSTDIR 2763 struct direct lost_found_dir[] = { 2764 { LOSTFOUNDINO, sizeof (struct direct), 1, "." }, 2765 { UFSROOTINO, sizeof (struct direct), 2, ".." }, 2766 { 0, DIRBLKSIZ, 0, 0 }, 2767 }; 2768 #endif 2769 char buf[MAXBSIZE]; 2770 2771 static void 2772 fsinit() 2773 { 2774 int i; 2775 2776 2777 /* 2778 * initialize the node 2779 */ 2780 node.i_atime = mkfstime; 2781 node.i_mtime = mkfstime; 2782 node.i_ctime = mkfstime; 2783 #ifdef LOSTDIR 2784 /* 2785 * create the lost+found directory 2786 */ 2787 (void) makedir(lost_found_dir, 2); 2788 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) { 2789 bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2])); 2790 } 2791 node.i_number = LOSTFOUNDINO; 2792 node.i_smode = node.i_mode = IFDIR | 0700; 2793 node.i_nlink = 2; 2794 node.i_size = sblock.fs_bsize; 2795 node.i_db[0] = alloc((int)node.i_size, node.i_mode); 2796 node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size)); 2797 IRANDOMIZE(&node.i_ic); 2798 wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), (int)node.i_size, buf); 2799 iput(&node); 2800 #endif 2801 /* 2802 * create the root directory 2803 */ 2804 node.i_number = UFSROOTINO; 2805 node.i_mode = node.i_smode = IFDIR | UMASK; 2806 node.i_nlink = PREDEFDIR; 2807 node.i_size = makedir(root_dir, PREDEFDIR); 2808 node.i_db[0] = alloc(sblock.fs_fsize, node.i_mode); 2809 /* i_size < 2GB because we are initializing the file system */ 2810 node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size)); 2811 IRANDOMIZE(&node.i_ic); 2812 wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), sblock.fs_fsize, buf); 2813 iput(&node); 2814 } 2815 2816 /* 2817 * construct a set of directory entries in "buf". 2818 * return size of directory. 2819 */ 2820 static int 2821 makedir(struct direct *protodir, int entries) 2822 { 2823 char *cp; 2824 int i; 2825 ushort_t spcleft; 2826 2827 spcleft = DIRBLKSIZ; 2828 for (cp = buf, i = 0; i < entries - 1; i++) { 2829 protodir[i].d_reclen = DIRSIZ(&protodir[i]); 2830 bcopy(&protodir[i], cp, protodir[i].d_reclen); 2831 cp += protodir[i].d_reclen; 2832 spcleft -= protodir[i].d_reclen; 2833 } 2834 protodir[i].d_reclen = spcleft; 2835 bcopy(&protodir[i], cp, DIRSIZ(&protodir[i])); 2836 return (DIRBLKSIZ); 2837 } 2838 2839 /* 2840 * allocate a block or frag 2841 */ 2842 static daddr32_t 2843 alloc(int size, int mode) 2844 { 2845 int i, frag; 2846 daddr32_t d; 2847 2848 rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize, 2849 (char *)&acg); 2850 if (acg.cg_magic != CG_MAGIC) { 2851 (void) fprintf(stderr, gettext("cg 0: bad magic number\n")); 2852 lockexit(32); 2853 } 2854 if (acg.cg_cs.cs_nbfree == 0) { 2855 (void) fprintf(stderr, 2856 gettext("first cylinder group ran out of space\n")); 2857 lockexit(32); 2858 } 2859 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 2860 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 2861 goto goth; 2862 (void) fprintf(stderr, 2863 gettext("internal error: can't find block in cyl 0\n")); 2864 lockexit(32); 2865 goth: 2866 clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag); 2867 acg.cg_cs.cs_nbfree--; 2868 sblock.fs_cstotal.cs_nbfree--; 2869 fscs[0].cs_nbfree--; 2870 if (mode & IFDIR) { 2871 acg.cg_cs.cs_ndir++; 2872 sblock.fs_cstotal.cs_ndir++; 2873 fscs[0].cs_ndir++; 2874 } 2875 cg_blktot(&acg)[cbtocylno(&sblock, d)]--; 2876 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; 2877 if (size != sblock.fs_bsize) { 2878 frag = howmany(size, sblock.fs_fsize); 2879 fscs[0].cs_nffree += sblock.fs_frag - frag; 2880 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 2881 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 2882 acg.cg_frsum[sblock.fs_frag - frag]++; 2883 for (i = frag; i < sblock.fs_frag; i++) 2884 setbit(cg_blksfree(&acg), d + i); 2885 } 2886 wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize, 2887 (char *)&acg); 2888 return (d); 2889 } 2890 2891 /* 2892 * Allocate an inode on the disk 2893 */ 2894 static void 2895 iput(struct inode *ip) 2896 { 2897 struct dinode buf[MAXINOPB]; 2898 diskaddr_t d; 2899 2900 rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize, 2901 (char *)&acg); 2902 if (acg.cg_magic != CG_MAGIC) { 2903 (void) fprintf(stderr, gettext("cg 0: bad magic number\n")); 2904 lockexit(32); 2905 } 2906 acg.cg_cs.cs_nifree--; 2907 setbit(cg_inosused(&acg), ip->i_number); 2908 wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize, 2909 (char *)&acg); 2910 sblock.fs_cstotal.cs_nifree--; 2911 fscs[0].cs_nifree--; 2912 if ((int)ip->i_number >= sblock.fs_ipg * sblock.fs_ncg) { 2913 (void) fprintf(stderr, 2914 gettext("fsinit: inode value out of range (%d).\n"), 2915 ip->i_number); 2916 lockexit(32); 2917 } 2918 d = fsbtodb(&sblock, (uint64_t)itod(&sblock, (int)ip->i_number)); 2919 rdfs(d, sblock.fs_bsize, (char *)buf); 2920 buf[itoo(&sblock, (int)ip->i_number)].di_ic = ip->i_ic; 2921 wtfs(d, sblock.fs_bsize, (char *)buf); 2922 } 2923 2924 /* 2925 * getbuf() -- Get a buffer for use in an AIO operation. Buffer 2926 * is zero'd the first time returned, left with whatever 2927 * was in memory after that. This function actually gets 2928 * enough memory the first time it's called to support 2929 * MAXBUF buffers like a slab allocator. When all the 2930 * buffers are in use, it waits for an aio to complete 2931 * and make a buffer available. 2932 * 2933 * Never returns an error. Either succeeds or exits. 2934 */ 2935 static char * 2936 getbuf(bufhdr *bufhead, int size) 2937 { 2938 bufhdr *pbuf; 2939 bufhdr *prev; 2940 int i; 2941 int buf_size, max_bufs; 2942 2943 /* 2944 * Initialize all the buffers 2945 */ 2946 if (bufhead->head == NULL) { 2947 /* 2948 * round up the size of our buffer header to a 2949 * 16 byte boundary so the address we return to 2950 * the caller is "suitably aligned". 2951 */ 2952 bufhdrsize = (sizeof (bufhdr) + 15) & ~15; 2953 2954 /* 2955 * Add in our header to the buffer and round it all up to 2956 * a 16 byte boundry so each member of the slab is aligned. 2957 */ 2958 buf_size = (size + bufhdrsize + 15) & ~15; 2959 2960 /* 2961 * Limit number of buffers to lesser of MAXBUFMEM's worth 2962 * or MAXBUF, whichever is less. 2963 */ 2964 max_bufs = MAXBUFMEM / buf_size; 2965 if (max_bufs > MAXBUF) 2966 max_bufs = MAXBUF; 2967 2968 pbuf = (bufhdr *)calloc(max_bufs, buf_size); 2969 if (pbuf == NULL) { 2970 perror("calloc"); 2971 lockexit(32); 2972 } 2973 2974 bufhead->head = bufhead; 2975 prev = bufhead; 2976 for (i = 0; i < max_bufs; i++) { 2977 pbuf->head = bufhead; 2978 prev->next = pbuf; 2979 prev = pbuf; 2980 pbuf = (bufhdr *)((char *)pbuf + buf_size); 2981 } 2982 } 2983 2984 /* 2985 * Get an available buffer, waiting for I/O if necessary 2986 */ 2987 wait_for_write(NOBLOCK); 2988 while (bufhead->next == NULL) 2989 wait_for_write(BLOCK); 2990 2991 /* 2992 * Take the buffer off the list 2993 */ 2994 pbuf = bufhead->next; 2995 bufhead->next = pbuf->next; 2996 pbuf->next = NULL; 2997 2998 /* 2999 * return the empty buffer space just past the header 3000 */ 3001 return ((char *)pbuf + bufhdrsize); 3002 } 3003 3004 /* 3005 * freebuf() -- Free a buffer gotten previously through getbuf. 3006 * Puts the buffer back on the appropriate list for 3007 * later use. Never calls free(). 3008 * 3009 * Assumes that SIGINT is blocked. 3010 */ 3011 static void 3012 freebuf(char *buf) 3013 { 3014 bufhdr *pbuf; 3015 bufhdr *bufhead; 3016 3017 /* 3018 * get the header for this buffer 3019 */ 3020 pbuf = (bufhdr *)(buf - bufhdrsize); 3021 3022 /* 3023 * Put it back on the list of available buffers 3024 */ 3025 bufhead = pbuf->head; 3026 pbuf->next = bufhead->next; 3027 bufhead->next = pbuf; 3028 } 3029 3030 /* 3031 * freetrans() -- Free a transaction gotten previously through getaiop. 3032 * Puts the transaction struct back on the appropriate list for 3033 * later use. Never calls free(). 3034 * 3035 * Assumes that SIGINT is blocked. 3036 */ 3037 static void 3038 freetrans(aio_trans *transp) 3039 { 3040 /* 3041 * free the buffer associated with this AIO if needed 3042 */ 3043 if (transp->release == RELEASE) 3044 freebuf(transp->buffer); 3045 3046 /* 3047 * Put transaction on the free list 3048 */ 3049 transp->next = results.trans; 3050 results.trans = transp; 3051 } 3052 3053 /* 3054 * wait_for_write() -- Wait for an aio write to complete. Return 3055 * the transaction structure for that write. 3056 * 3057 * Blocks SIGINT if necessary. 3058 */ 3059 aio_trans * 3060 wait_for_write(int block) 3061 { 3062 aio_trans *transp; 3063 aio_result_t *resultp; 3064 static struct timeval zero_wait = { 0, 0 }; 3065 sigset_t old_mask; 3066 3067 /* 3068 * If we know there aren't any outstanding transactions, just return 3069 */ 3070 if (results.outstanding == 0) 3071 return ((aio_trans *) 0); 3072 3073 block_sigint(&old_mask); 3074 3075 resultp = aiowait(block ? NULL : &zero_wait); 3076 if (resultp == NULL || 3077 (resultp == (aio_result_t *)-1 && errno == EINVAL)) { 3078 unblock_sigint(&old_mask); 3079 return ((aio_trans *) 0); 3080 } 3081 3082 results.outstanding--; 3083 transp = (aio_trans *)resultp; 3084 3085 if (resultp->aio_return != transp->size) { 3086 if (resultp->aio_return == -1) { 3087 /* 3088 * The aiowrite() may have failed because the 3089 * kernel didn't have enough memory to do the job. 3090 * Flush all pending writes and try a normal 3091 * write(). wtfs_breakup() will call exit if it 3092 * fails, so we don't worry about errors here. 3093 */ 3094 flush_writes(); 3095 wtfs_breakup(transp->bno, transp->size, transp->buffer); 3096 } else { 3097 (void) fprintf(stderr, gettext( 3098 "short write (%d of %d bytes) on sector %lld\n"), 3099 resultp->aio_return, transp->size, 3100 transp->bno); 3101 /* 3102 * Don't unblock SIGINT, to avoid potential 3103 * looping due to queued interrupts and 3104 * error handling. 3105 */ 3106 lockexit(32); 3107 } 3108 } 3109 3110 resultp->aio_return = 0; 3111 freetrans(transp); 3112 unblock_sigint(&old_mask); 3113 return (transp); 3114 } 3115 3116 /* 3117 * flush_writes() -- flush all the outstanding aio writes. 3118 */ 3119 static void 3120 flush_writes(void) 3121 { 3122 while (wait_for_write(BLOCK)) 3123 ; 3124 } 3125 3126 /* 3127 * get_aiop() -- find and return an aio_trans structure on which a new 3128 * aio can be done. Blocks on aiowait() if needed. Reaps 3129 * all outstanding completed aio's. 3130 * 3131 * Assumes that SIGINT is blocked. 3132 */ 3133 aio_trans * 3134 get_aiop() 3135 { 3136 int i; 3137 aio_trans *transp; 3138 aio_trans *prev; 3139 3140 /* 3141 * initialize aio stuff 3142 */ 3143 if (!aio_inited) { 3144 aio_inited = 1; 3145 3146 results.maxpend = 0; 3147 results.outstanding = 0; 3148 results.max = MAXAIO; 3149 3150 results.trans = (aio_trans *)calloc(results.max, 3151 sizeof (aio_trans)); 3152 if (results.trans == NULL) { 3153 perror("calloc"); 3154 lockexit(32); 3155 } 3156 3157 /* 3158 * Initialize the linked list of aio transaction 3159 * structures. Note that the final "next" pointer 3160 * will be NULL since we got the buffer from calloc(). 3161 */ 3162 prev = results.trans; 3163 for (i = 1; i < results.max; i++) { 3164 prev->next = &(results.trans[i]); 3165 prev = prev->next; 3166 } 3167 } 3168 3169 wait_for_write(NOBLOCK); 3170 while (results.trans == NULL) 3171 wait_for_write(BLOCK); 3172 transp = results.trans; 3173 results.trans = results.trans->next; 3174 3175 transp->next = 0; 3176 transp->resultbuf.aio_return = AIO_INPROGRESS; 3177 return (transp); 3178 } 3179 3180 /* 3181 * read a block from the file system 3182 */ 3183 static void 3184 rdfs(diskaddr_t bno, int size, char *bf) 3185 { 3186 int n, saverr; 3187 3188 /* 3189 * In case we need any data that's pending in an aiowrite(), 3190 * we wait for them all to complete before doing a read. 3191 */ 3192 flush_writes(); 3193 3194 /* 3195 * Note: the llseek() can succeed, even if the offset is out of range. 3196 * It's not until the file i/o operation (the read()) that one knows 3197 * for sure if the raw device can handle the offset. 3198 */ 3199 if (llseek(fsi, (offset_t)bno * sectorsize, 0) < 0) { 3200 saverr = errno; 3201 (void) fprintf(stderr, 3202 gettext("seek error on sector %lld: %s\n"), 3203 bno, strerror(saverr)); 3204 lockexit(32); 3205 } 3206 n = read(fsi, bf, size); 3207 if (n != size) { 3208 saverr = errno; 3209 if (n == -1) 3210 (void) fprintf(stderr, 3211 gettext("read error on sector %lld: %s\n"), 3212 bno, strerror(saverr)); 3213 else 3214 (void) fprintf(stderr, gettext( 3215 "short read (%d of %d bytes) on sector %lld\n"), 3216 n, size, bno); 3217 lockexit(32); 3218 } 3219 } 3220 3221 /* 3222 * write a block to the file system 3223 */ 3224 static void 3225 wtfs(diskaddr_t bno, int size, char *bf) 3226 { 3227 int n, saverr; 3228 3229 if (fso == -1) 3230 return; 3231 3232 /* 3233 * Note: the llseek() can succeed, even if the offset is out of range. 3234 * It's not until the file i/o operation (the write()) that one knows 3235 * for sure if the raw device can handle the offset. 3236 */ 3237 if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) { 3238 saverr = errno; 3239 (void) fprintf(stderr, 3240 gettext("seek error on sector %lld: %s\n"), 3241 bno, strerror(saverr)); 3242 lockexit(32); 3243 } 3244 if (Nflag) 3245 return; 3246 n = write(fso, bf, size); 3247 if (n != size) { 3248 saverr = errno; 3249 if (n == -1) 3250 (void) fprintf(stderr, 3251 gettext("write error on sector %lld: %s\n"), 3252 bno, strerror(saverr)); 3253 else 3254 (void) fprintf(stderr, gettext( 3255 "short write (%d of %d bytes) on sector %lld\n"), 3256 n, size, bno); 3257 lockexit(32); 3258 } 3259 } 3260 3261 /* 3262 * write a block to the file system -- buffered with aio 3263 */ 3264 static void 3265 awtfs(diskaddr_t bno, int size, char *bf, int release) 3266 { 3267 int n; 3268 aio_trans *transp; 3269 sigset_t old_mask; 3270 3271 if (fso == -1) 3272 return; 3273 3274 /* 3275 * We need to keep things consistent if we get interrupted, 3276 * so defer any expected interrupts for the time being. 3277 */ 3278 block_sigint(&old_mask); 3279 3280 if (Nflag) { 3281 if (release == RELEASE) 3282 freebuf(bf); 3283 } else { 3284 transp = get_aiop(); 3285 transp->bno = bno; 3286 transp->buffer = bf; 3287 transp->size = size; 3288 transp->release = release; 3289 3290 n = aiowrite(fso, bf, size, (off_t)bno * sectorsize, 3291 SEEK_SET, &transp->resultbuf); 3292 3293 if (n < 0) { 3294 /* 3295 * The aiowrite() may have failed because the 3296 * kernel didn't have enough memory to do the job. 3297 * Flush all pending writes and try a normal 3298 * write(). wtfs_breakup() will call exit if it 3299 * fails, so we don't worry about errors here. 3300 */ 3301 flush_writes(); 3302 wtfs_breakup(transp->bno, transp->size, transp->buffer); 3303 freetrans(transp); 3304 } else { 3305 /* 3306 * Keep track of our pending writes. 3307 */ 3308 results.outstanding++; 3309 if (results.outstanding > results.maxpend) 3310 results.maxpend = results.outstanding; 3311 } 3312 } 3313 3314 unblock_sigint(&old_mask); 3315 } 3316 3317 3318 /* 3319 * write a block to the file system, but break it up into sbsize 3320 * chunks to avoid forcing a large amount of memory to be locked down. 3321 * Only used as a fallback when an aio write has failed. 3322 */ 3323 static void 3324 wtfs_breakup(diskaddr_t bno, int size, char *bf) 3325 { 3326 int n, saverr; 3327 int wsize; 3328 int block_incr = sbsize / sectorsize; 3329 3330 if (size < sbsize) 3331 wsize = size; 3332 else 3333 wsize = sbsize; 3334 3335 n = 0; 3336 while (size) { 3337 /* 3338 * Note: the llseek() can succeed, even if the offset is 3339 * out of range. It's not until the file i/o operation 3340 * (the write()) that one knows for sure if the raw device 3341 * can handle the offset. 3342 */ 3343 if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) { 3344 saverr = errno; 3345 (void) fprintf(stderr, 3346 gettext("seek error on sector %lld: %s\n"), 3347 bno, strerror(saverr)); 3348 lockexit(32); 3349 } 3350 3351 n = write(fso, bf, wsize); 3352 if (n == -1) { 3353 saverr = errno; 3354 (void) fprintf(stderr, 3355 gettext("write error on sector %lld: %s\n"), 3356 bno, strerror(saverr)); 3357 lockexit(32); 3358 } 3359 if (n != wsize) { 3360 saverr = errno; 3361 (void) fprintf(stderr, gettext( 3362 "short write (%d of %d bytes) on sector %lld\n"), 3363 n, size, bno); 3364 lockexit(32); 3365 } 3366 3367 bno += block_incr; 3368 bf += wsize; 3369 size -= wsize; 3370 if (size < wsize) 3371 wsize = size; 3372 } 3373 } 3374 3375 3376 /* 3377 * check if a block is available 3378 */ 3379 static int 3380 isblock(struct fs *fs, unsigned char *cp, int h) 3381 { 3382 unsigned char mask; 3383 3384 switch (fs->fs_frag) { 3385 case 8: 3386 return (cp[h] == 0xff); 3387 case 4: 3388 mask = 0x0f << ((h & 0x1) << 2); 3389 return ((cp[h >> 1] & mask) == mask); 3390 case 2: 3391 mask = 0x03 << ((h & 0x3) << 1); 3392 return ((cp[h >> 2] & mask) == mask); 3393 case 1: 3394 mask = 0x01 << (h & 0x7); 3395 return ((cp[h >> 3] & mask) == mask); 3396 default: 3397 (void) fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 3398 return (0); 3399 } 3400 } 3401 3402 /* 3403 * take a block out of the map 3404 */ 3405 static void 3406 clrblock(struct fs *fs, unsigned char *cp, int h) 3407 { 3408 switch ((fs)->fs_frag) { 3409 case 8: 3410 cp[h] = 0; 3411 return; 3412 case 4: 3413 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 3414 return; 3415 case 2: 3416 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 3417 return; 3418 case 1: 3419 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 3420 return; 3421 default: 3422 (void) fprintf(stderr, 3423 gettext("clrblock: bad fs_frag value %d\n"), fs->fs_frag); 3424 return; 3425 } 3426 } 3427 3428 /* 3429 * put a block into the map 3430 */ 3431 static void 3432 setblock(struct fs *fs, unsigned char *cp, int h) 3433 { 3434 switch (fs->fs_frag) { 3435 case 8: 3436 cp[h] = 0xff; 3437 return; 3438 case 4: 3439 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 3440 return; 3441 case 2: 3442 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 3443 return; 3444 case 1: 3445 cp[h >> 3] |= (0x01 << (h & 0x7)); 3446 return; 3447 default: 3448 (void) fprintf(stderr, 3449 gettext("setblock: bad fs_frag value %d\n"), fs->fs_frag); 3450 return; 3451 } 3452 } 3453 3454 static void 3455 usage() 3456 { 3457 (void) fprintf(stderr, 3458 gettext("ufs usage: mkfs [-F FSType] [-V] [-m] [-o options] " 3459 "special " /* param 0 */ 3460 "size(sectors) \\ \n")); /* param 1 */ 3461 (void) fprintf(stderr, 3462 "[nsect " /* param 2 */ 3463 "ntrack " /* param 3 */ 3464 "bsize " /* param 4 */ 3465 "fragsize " /* param 5 */ 3466 "cpg " /* param 6 */ 3467 "free " /* param 7 */ 3468 "rps " /* param 8 */ 3469 "nbpi " /* param 9 */ 3470 "opt " /* param 10 */ 3471 "apc " /* param 11 */ 3472 "gap " /* param 12 */ 3473 "nrpos " /* param 13 */ 3474 "maxcontig " /* param 14 */ 3475 "mtb]\n"); /* param 15 */ 3476 (void) fprintf(stderr, 3477 gettext(" -m : dump fs cmd line used to make this partition\n" 3478 " -V :print this command line and return\n" 3479 " -o :ufs options: :nsect=%d,ntrack=%d,bsize=%d,fragsize=%d\n" 3480 " -o :ufs options: :cgsize=%d,free=%d,rps=%d,nbpi=%d,opt=%c\n" 3481 " -o :ufs options: :apc=%d,gap=%d,nrpos=%d,maxcontig=%d\n" 3482 " -o :ufs options: :mtb=%c,calcsb,calcbinsb\n" 3483 "NOTE that all -o suboptions: must be separated only by commas so as to\n" 3484 "be parsed as a single argument\n"), 3485 nsect, ntrack, bsize, fragsize, cpg, sblock.fs_minfree, rps, 3486 nbpi, opt, apc, (rotdelay == -1) ? 0 : rotdelay, 3487 sblock.fs_nrpos, maxcontig, mtb); 3488 lockexit(32); 3489 } 3490 3491 /*ARGSUSED*/ 3492 static void 3493 dump_fscmd(char *fsys, int fsi) 3494 { 3495 int64_t used, bpcg, inospercg; 3496 int64_t nbpi; 3497 uint64_t nbytes64; 3498 3499 bzero((char *)&sblock, sizeof (sblock)); 3500 rdfs((diskaddr_t)SBLOCK, SBSIZE, (char *)&sblock); 3501 3502 /* 3503 * ensure a valid file system and if not, exit with error or else 3504 * we will end up computing block numbers etc and dividing by zero 3505 * which will cause floating point errors in this routine. 3506 */ 3507 3508 if ((sblock.fs_magic != FS_MAGIC) && 3509 (sblock.fs_magic != MTB_UFS_MAGIC)) { 3510 (void) fprintf(stderr, gettext( 3511 "[not currently a valid file system - bad superblock]\n")); 3512 lockexit(32); 3513 } 3514 3515 if (sblock.fs_magic == FS_MAGIC && 3516 (sblock.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 && 3517 sblock.fs_version != UFS_VERSION_MIN)) { 3518 (void) fprintf(stderr, gettext( 3519 "Unknown version of UFS format: %d\n"), sblock.fs_version); 3520 lockexit(32); 3521 } 3522 3523 if (sblock.fs_magic == MTB_UFS_MAGIC && 3524 (sblock.fs_version > MTB_UFS_VERSION_1 || 3525 sblock.fs_version < MTB_UFS_VERSION_MIN)) { 3526 (void) fprintf(stderr, gettext( 3527 "Unknown version of UFS format: %d\n"), sblock.fs_version); 3528 lockexit(32); 3529 } 3530 3531 /* 3532 * Compute a reasonable nbpi value. 3533 * The algorithm for "used" is copied from code 3534 * in main() verbatim. 3535 * The nbpi equation is taken from main where the 3536 * fs_ipg value is set for the last time. The INOPB(...) - 1 3537 * is used to account for the roundup. 3538 * The problem is that a range of nbpi values map to 3539 * the same file system layout. So it is not possible 3540 * to calculate the exact value specified when the file 3541 * system was created. So instead we determine the top 3542 * end of the range of values. 3543 */ 3544 bpcg = sblock.fs_spc * sectorsize; 3545 inospercg = (int64_t)roundup(bpcg / sizeof (struct dinode), 3546 INOPB(&sblock)); 3547 if (inospercg > MAXIpG(&sblock)) 3548 inospercg = MAXIpG(&sblock); 3549 used = (int64_t) 3550 (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 3551 used *= sectorsize; 3552 nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used; 3553 3554 /* 3555 * The top end of the range of values for nbpi may not be 3556 * a valid command line value for mkfs. Report the bottom 3557 * end instead. 3558 */ 3559 nbpi = (int64_t)(nbytes64 / (sblock.fs_ipg)); 3560 3561 (void) fprintf(stdout, gettext("mkfs -F ufs -o "), fsys); 3562 (void) fprintf(stdout, "nsect=%d,ntrack=%d,", 3563 sblock.fs_nsect, sblock.fs_ntrak); 3564 (void) fprintf(stdout, "bsize=%d,fragsize=%d,cgsize=%d,free=%d,", 3565 sblock.fs_bsize, sblock.fs_fsize, sblock.fs_cpg, sblock.fs_minfree); 3566 (void) fprintf(stdout, "rps=%d,nbpi=%lld,opt=%c,apc=%d,gap=%d,", 3567 sblock.fs_rps, nbpi, (sblock.fs_optim == FS_OPTSPACE) ? 's' : 't', 3568 (sblock.fs_ntrak * sblock.fs_nsect) - sblock.fs_spc, 3569 sblock.fs_rotdelay); 3570 (void) fprintf(stdout, "nrpos=%d,maxcontig=%d,mtb=%c ", 3571 sblock.fs_nrpos, sblock.fs_maxcontig, 3572 ((sblock.fs_magic == MTB_UFS_MAGIC) ? 'y' : 'n')); 3573 (void) fprintf(stdout, "%s %lld\n", fsys, 3574 fsbtodb(&sblock, sblock.fs_size)); 3575 3576 bzero((char *)&sblock, sizeof (sblock)); 3577 } 3578 3579 /* number ************************************************************* */ 3580 /* */ 3581 /* Convert a numeric string arg to binary */ 3582 /* */ 3583 /* Args: d_value - default value, if have parse error */ 3584 /* param - the name of the argument, for error messages */ 3585 /* flags - parser state and what's allowed in the arg */ 3586 /* Global arg: string - pointer to command arg */ 3587 /* */ 3588 /* Valid forms: 123 | 123k | 123*123 | 123x123 */ 3589 /* */ 3590 /* Return: converted number */ 3591 /* */ 3592 /* ******************************************************************** */ 3593 3594 static uint64_t 3595 number(uint64_t d_value, char *param, int flags) 3596 { 3597 char *cs; 3598 uint64_t n, t; 3599 uint64_t cut = BIG / 10; /* limit to avoid overflow */ 3600 int minus = 0; 3601 3602 cs = string; 3603 if (*cs == '-') { 3604 minus = 1; 3605 cs += 1; 3606 } 3607 if ((*cs < '0') || (*cs > '9')) { 3608 goto bail_out; 3609 } 3610 n = 0; 3611 while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) { 3612 n = n*10 + *cs++ - '0'; 3613 } 3614 if (minus) 3615 n = -n; 3616 for (;;) { 3617 switch (*cs++) { 3618 case 'k': 3619 if (flags & ALLOW_END_ONLY) 3620 goto bail_out; 3621 if (n > (BIG / 1024)) 3622 goto overflow; 3623 n *= 1024; 3624 continue; 3625 3626 case '*': 3627 case 'x': 3628 if (flags & ALLOW_END_ONLY) 3629 goto bail_out; 3630 string = cs; 3631 t = number(d_value, param, flags); 3632 if (n > (BIG / t)) 3633 goto overflow; 3634 n *= t; 3635 cs = string + 1; /* adjust for -- below */ 3636 3637 /* recursion has read rest of expression */ 3638 /* FALLTHROUGH */ 3639 3640 case ',': 3641 case '\0': 3642 cs--; 3643 string = cs; 3644 return (n); 3645 3646 case '%': 3647 if (flags & ALLOW_END_ONLY) 3648 goto bail_out; 3649 if (flags & ALLOW_PERCENT) { 3650 flags &= ~ALLOW_PERCENT; 3651 flags |= ALLOW_END_ONLY; 3652 continue; 3653 } 3654 goto bail_out; 3655 3656 case 'm': 3657 if (flags & ALLOW_END_ONLY) 3658 goto bail_out; 3659 if (flags & ALLOW_MS1) { 3660 flags &= ~ALLOW_MS1; 3661 flags |= ALLOW_MS2; 3662 continue; 3663 } 3664 goto bail_out; 3665 3666 case 's': 3667 if (flags & ALLOW_END_ONLY) 3668 goto bail_out; 3669 if (flags & ALLOW_MS2) { 3670 flags &= ~ALLOW_MS2; 3671 flags |= ALLOW_END_ONLY; 3672 continue; 3673 } 3674 goto bail_out; 3675 3676 case '0': case '1': case '2': case '3': case '4': 3677 case '5': case '6': case '7': case '8': case '9': 3678 overflow: 3679 (void) fprintf(stderr, 3680 gettext("mkfs: value for %s overflowed\n"), 3681 param); 3682 while ((*cs != '\0') && (*cs != ',')) 3683 cs++; 3684 string = cs; 3685 return (BIG); 3686 3687 default: 3688 bail_out: 3689 (void) fprintf(stderr, gettext( 3690 "mkfs: bad numeric arg for %s: \"%s\"\n"), 3691 param, string); 3692 while ((*cs != '\0') && (*cs != ',')) 3693 cs++; 3694 string = cs; 3695 if (d_value != NO_DEFAULT) { 3696 (void) fprintf(stderr, 3697 gettext("mkfs: %s reset to default %lld\n"), 3698 param, d_value); 3699 return (d_value); 3700 } 3701 lockexit(2); 3702 3703 } 3704 } /* never gets here */ 3705 } 3706 3707 /* match ************************************************************** */ 3708 /* */ 3709 /* Compare two text strings for equality */ 3710 /* */ 3711 /* Arg: s - pointer to string to match with a command arg */ 3712 /* Global arg: string - pointer to command arg */ 3713 /* */ 3714 /* Return: 1 if match, 0 if no match */ 3715 /* If match, also reset `string' to point to the text */ 3716 /* that follows the matching text. */ 3717 /* */ 3718 /* ******************************************************************** */ 3719 3720 static int 3721 match(char *s) 3722 { 3723 char *cs; 3724 3725 cs = string; 3726 while (*cs++ == *s) { 3727 if (*s++ == '\0') { 3728 goto true; 3729 } 3730 } 3731 if (*s != '\0') { 3732 return (0); 3733 } 3734 3735 true: 3736 cs--; 3737 string = cs; 3738 return (1); 3739 } 3740 3741 /* 3742 * GROWFS ROUTINES 3743 */ 3744 3745 /* ARGSUSED */ 3746 void 3747 lockexit(int exitstatus) 3748 { 3749 if (Pflag) { 3750 /* the probe mode neither changes nor locks the filesystem */ 3751 exit(exitstatus); 3752 } 3753 3754 /* 3755 * flush the dirty cylinder group 3756 */ 3757 if (inlockexit == 0) { 3758 inlockexit = 1; 3759 flcg(); 3760 } 3761 3762 if (aio_inited) { 3763 flush_writes(); 3764 } 3765 3766 /* 3767 * make sure the file system is unlocked before exiting 3768 */ 3769 if ((inlockexit == 1) && (!isbad)) { 3770 inlockexit = 2; 3771 ulockfs(); 3772 /* 3773 * if logging was enabled, then re-enable it 3774 */ 3775 if (waslog) { 3776 if (rl_log_control(fsys, _FIOLOGENABLE) != RL_SUCCESS) { 3777 (void) fprintf(stderr, gettext( 3778 "failed to re-enable logging\n")); 3779 } 3780 } 3781 } else if (grow) { 3782 if (isbad) { 3783 (void) fprintf(stderr, gettext( 3784 "Filesystem is currently inconsistent. It " 3785 "must be repaired with fsck(1M)\nbefore being " 3786 "used. Use the following command to " 3787 "do this:\n\n\tfsck %s\n\n"), fsys); 3788 3789 if (ismounted) { 3790 (void) fprintf(stderr, gettext( 3791 "You will be told that the filesystem " 3792 "is already mounted, and asked if you\n" 3793 "wish to continue. Answer `yes' to " 3794 "this question.\n\n")); 3795 } 3796 3797 (void) fprintf(stderr, gettext( 3798 "One problem should be reported, that the summary " 3799 "information is bad.\nYou will then be asked if it " 3800 "should be salvaged. Answer `yes' to\nthis " 3801 "question.\n\n")); 3802 } 3803 3804 if (ismounted) { 3805 /* 3806 * In theory, there's no way to get here without 3807 * isbad also being set, but be robust in the 3808 * face of future code changes. 3809 */ 3810 (void) fprintf(stderr, gettext( 3811 "The filesystem is currently mounted " 3812 "read-only and write-locked. ")); 3813 if (isbad) { 3814 (void) fprintf(stderr, gettext( 3815 "After\nrunning fsck, unlock the " 3816 "filesystem and ")); 3817 } else { 3818 (void) fprintf(stderr, gettext( 3819 "Unlock the filesystem\nand ")); 3820 } 3821 3822 (void) fprintf(stderr, gettext( 3823 "re-enable writing with\nthe following " 3824 "command:\n\n\tlockfs -u %s\n\n"), directory); 3825 } 3826 } 3827 3828 exit(exitstatus); 3829 } 3830 3831 void 3832 randomgeneration() 3833 { 3834 int i; 3835 struct dinode *dp; 3836 3837 /* 3838 * always perform fsirand(1) function... newfs will notice that 3839 * the inodes have been randomized and will not call fsirand itself 3840 */ 3841 for (i = 0, dp = zino; i < sblock.fs_inopb; ++i, ++dp) 3842 IRANDOMIZE(&dp->di_ic); 3843 } 3844 3845 /* 3846 * Check the size of the summary information. 3847 * Fields in sblock are not changed in this function. 3848 * 3849 * For an 8K filesystem block, the maximum number of cylinder groups is 16384. 3850 * MAXCSBUFS {32} * 8K {FS block size} 3851 * divided by (sizeof csum) {16} 3852 * 3853 * Note that MAXCSBUFS is not used in the kernel; as of Solaris 2.6 build 32, 3854 * this is the only place where it's referenced. 3855 */ 3856 void 3857 checksummarysize() 3858 { 3859 diskaddr_t dmax; 3860 diskaddr_t dmin; 3861 int64_t cg0frags; 3862 int64_t cg0blocks; 3863 int64_t maxncg; 3864 int64_t maxfrags; 3865 uint64_t fs_size; 3866 uint64_t maxfs_blocks; /* filesystem blocks for max filesystem size */ 3867 3868 /* 3869 * compute the maximum summary info size 3870 */ 3871 dmin = cgdmin(&sblock, 0); 3872 dmax = cgbase(&sblock, 0) + sblock.fs_fpg; 3873 fs_size = (grow) ? grow_fs_size : sblock.fs_size; 3874 if (dmax > fs_size) 3875 dmax = fs_size; 3876 cg0frags = dmax - dmin; 3877 cg0blocks = cg0frags / sblock.fs_frag; 3878 cg0frags = cg0blocks * sblock.fs_frag; 3879 maxncg = (longlong_t)cg0blocks * 3880 (longlong_t)(sblock.fs_bsize / sizeof (struct csum)); 3881 3882 maxfs_blocks = FS_MAX; 3883 3884 if (maxncg > ((longlong_t)maxfs_blocks / (longlong_t)sblock.fs_fpg) + 1) 3885 maxncg = ((longlong_t)maxfs_blocks / 3886 (longlong_t)sblock.fs_fpg) + 1; 3887 3888 maxfrags = maxncg * (longlong_t)sblock.fs_fpg; 3889 3890 if (maxfrags > maxfs_blocks) 3891 maxfrags = maxfs_blocks; 3892 3893 3894 /* 3895 * remember for later processing in extendsummaryinfo() 3896 */ 3897 if (test) 3898 grow_sifrag = dmin + (cg0blocks * sblock.fs_frag); 3899 if (testfrags == 0) 3900 testfrags = cg0frags; 3901 if (testforce) 3902 if (testfrags > cg0frags) { 3903 (void) fprintf(stderr, 3904 gettext("Too many test frags (%lld); " 3905 "try %lld\n"), testfrags, cg0frags); 3906 lockexit(32); 3907 } 3908 3909 /* 3910 * if summary info is too large (too many cg's) tell the user and exit 3911 */ 3912 if ((longlong_t)sblock.fs_size > maxfrags) { 3913 (void) fprintf(stderr, gettext( 3914 "Too many cylinder groups with %llu sectors;\n try " 3915 "increasing cgsize, or decreasing fssize to %llu\n"), 3916 fsbtodb(&sblock, (uint64_t)sblock.fs_size), 3917 fsbtodb(&sblock, (uint64_t)maxfrags)); 3918 lockexit(32); 3919 } 3920 } 3921 3922 /* 3923 * checksblock() has two uses: 3924 * - One is to sanity test the superblock and is used when newfs(1M) 3925 * is invoked with the "-N" option. If any discrepancy was found, 3926 * just return whatever error was found and do not exit. 3927 * - the other use of it is in places where you expect the superblock 3928 * to be sane, and if it isn't, then we exit. 3929 * Which of the above two actions to take is indicated with the second argument. 3930 */ 3931 3932 int 3933 checksblock(struct fs sb, int proceed) 3934 { 3935 int err = 0; 3936 char *errmsg; 3937 3938 if ((sb.fs_magic != FS_MAGIC) && (sb.fs_magic != MTB_UFS_MAGIC)) { 3939 err = 1; 3940 errmsg = gettext("Bad superblock; magic number wrong\n"); 3941 } else if ((sb.fs_magic == FS_MAGIC && 3942 (sb.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 && 3943 sb.fs_version != UFS_VERSION_MIN)) || 3944 (sb.fs_magic == MTB_UFS_MAGIC && 3945 (sb.fs_version > MTB_UFS_VERSION_1 || 3946 sb.fs_version < MTB_UFS_VERSION_MIN))) { 3947 err = 2; 3948 errmsg = gettext("Unrecognized version of UFS\n"); 3949 } else if (sb.fs_ncg < 1) { 3950 err = 3; 3951 errmsg = gettext("Bad superblock; ncg out of range\n"); 3952 } else if (sb.fs_cpg < 1) { 3953 err = 4; 3954 errmsg = gettext("Bad superblock; cpg out of range\n"); 3955 } else if (sb.fs_ncg * sb.fs_cpg < sb.fs_ncyl || 3956 (sb.fs_ncg - 1) * sb.fs_cpg >= sb.fs_ncyl) { 3957 err = 5; 3958 errmsg = gettext("Bad superblock; ncyl out of range\n"); 3959 } else if (sb.fs_sbsize <= 0 || sb.fs_sbsize > sb.fs_bsize) { 3960 err = 6; 3961 errmsg = gettext("Bad superblock; superblock size out of " 3962 "range\n"); 3963 } 3964 3965 if (proceed) { 3966 if (err) dprintf(("%s", errmsg)); 3967 return (err); 3968 } 3969 3970 if (err) { 3971 fprintf(stderr, "%s", errmsg); 3972 lockexit(32); 3973 } 3974 return (32); 3975 } 3976 3977 /* 3978 * Roll the embedded log, if any, and set up the global variables 3979 * islog, islogok and isufslog. 3980 */ 3981 static void 3982 logsetup(char *devstr) 3983 { 3984 void *buf, *ud_buf; 3985 extent_block_t *ebp; 3986 ml_unit_t *ul; 3987 ml_odunit_t *ud; 3988 3989 /* 3990 * Does the superblock indicate that we are supposed to have a log ? 3991 */ 3992 if (sblock.fs_logbno == 0) { 3993 /* 3994 * No log present, nothing to do. 3995 */ 3996 islogok = 0; 3997 islog = 0; 3998 isufslog = 0; 3999 return; 4000 } else { 4001 /* 4002 * There's a log in a yet unknown state, attempt to roll it. 4003 */ 4004 islog = 1; 4005 islogok = 0; 4006 isufslog = 0; 4007 4008 /* 4009 * We failed to roll the log, bail out. 4010 */ 4011 if (rl_roll_log(devstr) != RL_SUCCESS) 4012 return; 4013 4014 isufslog = 1; 4015 4016 /* log is not okay; check the fs */ 4017 if ((FSOKAY != (sblock.fs_state + sblock.fs_time)) || 4018 (sblock.fs_clean != FSLOG)) 4019 return; 4020 4021 /* get the log allocation block */ 4022 buf = (void *)malloc(DEV_BSIZE); 4023 if (buf == (void *) NULL) 4024 return; 4025 4026 ud_buf = (void *)malloc(DEV_BSIZE); 4027 if (ud_buf == (void *) NULL) { 4028 free(buf); 4029 return; 4030 } 4031 4032 rdfs((diskaddr_t)logbtodb(&sblock, sblock.fs_logbno), 4033 DEV_BSIZE, buf); 4034 ebp = (extent_block_t *)buf; 4035 4036 /* log allocation block is not okay; check the fs */ 4037 if (ebp->type != LUFS_EXTENTS) { 4038 free(buf); 4039 free(ud_buf); 4040 return; 4041 } 4042 4043 /* get the log state block(s) */ 4044 rdfs((diskaddr_t)logbtodb(&sblock, ebp->extents[0].pbno), 4045 DEV_BSIZE, ud_buf); 4046 ud = (ml_odunit_t *)ud_buf; 4047 ul = (ml_unit_t *)malloc(sizeof (*ul)); 4048 ul->un_ondisk = *ud; 4049 4050 /* log state is okay */ 4051 if ((ul->un_chksum == ul->un_head_ident + ul->un_tail_ident) && 4052 (ul->un_version == LUFS_VERSION_LATEST) && 4053 (ul->un_badlog == 0)) 4054 islogok = 1; 4055 free(ud_buf); 4056 free(buf); 4057 free(ul); 4058 } 4059 } 4060 4061 void 4062 growinit(char *devstr) 4063 { 4064 int i; 4065 char buf[DEV_BSIZE]; 4066 4067 /* 4068 * Read and verify the superblock 4069 */ 4070 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock); 4071 (void) checksblock(sblock, 0); 4072 if (sblock.fs_postblformat != FS_DYNAMICPOSTBLFMT) { 4073 (void) fprintf(stderr, 4074 gettext("old file system format; can't growfs\n")); 4075 lockexit(32); 4076 } 4077 4078 /* 4079 * can't shrink a file system 4080 */ 4081 grow_fssize = fsbtodb(&sblock, (uint64_t)sblock.fs_size); 4082 if (fssize_db < grow_fssize) { 4083 (void) fprintf(stderr, 4084 gettext("%lld sectors < current size of %lld sectors\n"), 4085 fssize_db, grow_fssize); 4086 lockexit(32); 4087 } 4088 4089 /* 4090 * can't grow a system to over a terabyte unless it was set up 4091 * as an MTB UFS file system. 4092 */ 4093 if (mtb == 'y' && sblock.fs_magic != MTB_UFS_MAGIC) { 4094 if (fssize_db >= SECTORS_PER_TERABYTE) { 4095 (void) fprintf(stderr, gettext( 4096 "File system was not set up with the multi-terabyte format.\n")); 4097 (void) fprintf(stderr, gettext( 4098 "Its size cannot be increased to a terabyte or more.\n")); 4099 } else { 4100 (void) fprintf(stderr, gettext( 4101 "Cannot convert file system to multi-terabyte format.\n")); 4102 } 4103 lockexit(32); 4104 } 4105 4106 logsetup(devstr); 4107 4108 /* 4109 * can't growfs when logging device has errors 4110 */ 4111 if ((islog && !islogok) || 4112 ((FSOKAY == (sblock.fs_state + sblock.fs_time)) && 4113 (sblock.fs_clean == FSLOG && !islog))) { 4114 (void) fprintf(stderr, 4115 gettext("logging device has errors; can't growfs\n")); 4116 lockexit(32); 4117 } 4118 4119 /* 4120 * disable ufs logging for growing 4121 */ 4122 if (isufslog) { 4123 if (rl_log_control(devstr, _FIOLOGDISABLE) != RL_SUCCESS) { 4124 (void) fprintf(stderr, gettext( 4125 "failed to disable logging\n")); 4126 lockexit(32); 4127 } 4128 islog = 0; 4129 waslog = 1; 4130 } 4131 4132 /* 4133 * if mounted write lock the file system to be grown 4134 */ 4135 if (ismounted) 4136 wlockfs(); 4137 4138 /* 4139 * refresh dynamic superblock state - disabling logging will have 4140 * changed the amount of free space available in the file system 4141 */ 4142 rdfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock); 4143 4144 /* 4145 * make sure device is big enough 4146 */ 4147 rdfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf); 4148 wtfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf); 4149 4150 /* 4151 * read current summary information 4152 */ 4153 grow_fscs = read_summaryinfo(&sblock); 4154 4155 /* 4156 * save some current size related fields from the superblock 4157 * These are used in extendsummaryinfo() 4158 */ 4159 grow_fs_size = sblock.fs_size; 4160 grow_fs_ncg = sblock.fs_ncg; 4161 grow_fs_csaddr = (diskaddr_t)sblock.fs_csaddr; 4162 grow_fs_cssize = sblock.fs_cssize; 4163 4164 /* 4165 * save and reset the clean flag 4166 */ 4167 if (FSOKAY == (sblock.fs_state + sblock.fs_time)) 4168 grow_fs_clean = sblock.fs_clean; 4169 else 4170 grow_fs_clean = FSBAD; 4171 sblock.fs_clean = FSBAD; 4172 sblock.fs_state = FSOKAY - sblock.fs_time; 4173 isbad = 1; 4174 wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock); 4175 } 4176 4177 void 4178 checkdev(char *rdev, char *bdev) 4179 { 4180 struct stat64 statarea; 4181 4182 if (stat64(bdev, &statarea) < 0) { 4183 (void) fprintf(stderr, gettext("can't check mount point; ")); 4184 (void) fprintf(stderr, gettext("can't stat %s\n"), bdev); 4185 lockexit(32); 4186 } 4187 if ((statarea.st_mode & S_IFMT) != S_IFBLK) { 4188 (void) fprintf(stderr, gettext( 4189 "can't check mount point; %s is not a block device\n"), 4190 bdev); 4191 lockexit(32); 4192 } 4193 if (stat64(rdev, &statarea) < 0) { 4194 (void) fprintf(stderr, gettext("can't stat %s\n"), rdev); 4195 lockexit(32); 4196 } 4197 if ((statarea.st_mode & S_IFMT) != S_IFCHR) { 4198 (void) fprintf(stderr, 4199 gettext("%s is not a character device\n"), rdev); 4200 lockexit(32); 4201 } 4202 } 4203 4204 void 4205 checkmount(struct mnttab *mntp, char *bdevname) 4206 { 4207 struct stat64 statdir; 4208 struct stat64 statdev; 4209 4210 if (strcmp(bdevname, mntp->mnt_special) == 0) { 4211 if (stat64(mntp->mnt_mountp, &statdir) == -1) { 4212 (void) fprintf(stderr, gettext("can't stat %s\n"), 4213 mntp->mnt_mountp); 4214 lockexit(32); 4215 } 4216 if (stat64(mntp->mnt_special, &statdev) == -1) { 4217 (void) fprintf(stderr, gettext("can't stat %s\n"), 4218 mntp->mnt_special); 4219 lockexit(32); 4220 } 4221 if (statdir.st_dev != statdev.st_rdev) { 4222 (void) fprintf(stderr, gettext( 4223 "%s is not mounted on %s; mnttab(4) wrong\n"), 4224 mntp->mnt_special, mntp->mnt_mountp); 4225 lockexit(32); 4226 } 4227 ismounted = 1; 4228 if (directory) { 4229 if (strcmp(mntp->mnt_mountp, directory) != 0) { 4230 (void) fprintf(stderr, 4231 gettext("%s is mounted on %s, not %s\n"), 4232 bdevname, mntp->mnt_mountp, directory); 4233 lockexit(32); 4234 } 4235 } else { 4236 if (grow) 4237 (void) fprintf(stderr, gettext( 4238 "%s is mounted on %s; can't growfs\n"), 4239 bdevname, mntp->mnt_mountp); 4240 else 4241 (void) fprintf(stderr, 4242 gettext("%s is mounted, can't mkfs\n"), 4243 bdevname); 4244 lockexit(32); 4245 } 4246 } 4247 } 4248 4249 struct dinode *dibuf = 0; 4250 diskaddr_t difrag = 0; 4251 4252 struct dinode * 4253 gdinode(ino_t ino) 4254 { 4255 /* 4256 * read the block of inodes containing inode number ino 4257 */ 4258 if (dibuf == 0) 4259 dibuf = (struct dinode *)malloc((unsigned)sblock.fs_bsize); 4260 if (itod(&sblock, ino) != difrag) { 4261 difrag = itod(&sblock, ino); 4262 rdfs(fsbtodb(&sblock, (uint64_t)difrag), (int)sblock.fs_bsize, 4263 (char *)dibuf); 4264 } 4265 return (dibuf + (ino % INOPB(&sblock))); 4266 } 4267 4268 /* 4269 * structure that manages the frags we need for extended summary info 4270 * These frags can be: 4271 * free 4272 * data block 4273 * alloc block 4274 */ 4275 struct csfrag { 4276 struct csfrag *next; /* next entry */ 4277 daddr32_t ofrag; /* old frag */ 4278 daddr32_t nfrag; /* new frag */ 4279 long cylno; /* cylno of nfrag */ 4280 long frags; /* number of frags */ 4281 long size; /* size in bytes */ 4282 ino_t ino; /* inode number */ 4283 long fixed; /* Boolean - Already fixed? */ 4284 }; 4285 struct csfrag *csfrag; /* state unknown */ 4286 struct csfrag *csfragino; /* frags belonging to an inode */ 4287 struct csfrag *csfragfree; /* frags that are free */ 4288 4289 daddr32_t maxcsfrag = 0; /* maximum in range */ 4290 daddr32_t mincsfrag = 0x7fffffff; /* minimum in range */ 4291 4292 int 4293 csfraginrange(daddr32_t frag) 4294 { 4295 return ((frag >= mincsfrag) && (frag <= maxcsfrag)); 4296 } 4297 4298 struct csfrag * 4299 findcsfrag(daddr32_t frag, struct csfrag **cfap) 4300 { 4301 struct csfrag *cfp; 4302 4303 if (!csfraginrange(frag)) 4304 return (NULL); 4305 4306 for (cfp = *cfap; cfp; cfp = cfp->next) 4307 if (cfp->ofrag == frag) 4308 return (cfp); 4309 return (NULL); 4310 } 4311 4312 void 4313 checkindirect(ino_t ino, daddr32_t *fragsp, daddr32_t frag, int level) 4314 { 4315 int i; 4316 int ne = sblock.fs_bsize / sizeof (daddr32_t); 4317 daddr32_t fsb[MAXBSIZE / sizeof (daddr32_t)]; 4318 4319 if (frag == 0) 4320 return; 4321 4322 rdfs(fsbtodb(&sblock, frag), (int)sblock.fs_bsize, 4323 (char *)fsb); 4324 4325 checkdirect(ino, fragsp, fsb, sblock.fs_bsize / sizeof (daddr32_t)); 4326 4327 if (level) 4328 for (i = 0; i < ne && *fragsp; ++i) 4329 checkindirect(ino, fragsp, fsb[i], level-1); 4330 } 4331 4332 void 4333 addcsfrag(ino_t ino, daddr32_t frag, struct csfrag **cfap) 4334 { 4335 struct csfrag *cfp, *curr, *prev; 4336 4337 /* 4338 * establish a range for faster checking in csfraginrange() 4339 */ 4340 if (frag > maxcsfrag) 4341 maxcsfrag = frag; 4342 if (frag < mincsfrag) 4343 mincsfrag = frag; 4344 4345 /* 4346 * if this frag belongs to an inode and is not the start of a block 4347 * then see if it is part of a frag range for this inode 4348 */ 4349 if (ino && (frag % sblock.fs_frag)) 4350 for (cfp = *cfap; cfp; cfp = cfp->next) { 4351 if (ino != cfp->ino) 4352 continue; 4353 if (frag != cfp->ofrag + cfp->frags) 4354 continue; 4355 cfp->frags++; 4356 cfp->size += sblock.fs_fsize; 4357 return; 4358 } 4359 /* 4360 * allocate a csfrag entry and insert it in an increasing order into the 4361 * specified list 4362 */ 4363 cfp = (struct csfrag *)calloc(1, sizeof (struct csfrag)); 4364 cfp->ino = ino; 4365 cfp->ofrag = frag; 4366 cfp->frags = 1; 4367 cfp->size = sblock.fs_fsize; 4368 for (prev = NULL, curr = *cfap; curr != NULL; 4369 prev = curr, curr = curr->next) { 4370 if (frag < curr->ofrag) { 4371 cfp->next = curr; 4372 if (prev) 4373 prev->next = cfp; /* middle element */ 4374 else 4375 *cfap = cfp; /* first element */ 4376 break; 4377 } 4378 if (curr->next == NULL) { 4379 curr->next = cfp; /* last element */ 4380 break; 4381 } 4382 } 4383 if (*cfap == NULL) /* will happen only once */ 4384 *cfap = cfp; 4385 } 4386 4387 void 4388 delcsfrag(daddr32_t frag, struct csfrag **cfap) 4389 { 4390 struct csfrag *cfp; 4391 struct csfrag **cfpp; 4392 4393 /* 4394 * free up entry whose beginning frag matches 4395 */ 4396 for (cfpp = cfap; *cfpp; cfpp = &(*cfpp)->next) { 4397 if (frag == (*cfpp)->ofrag) { 4398 cfp = *cfpp; 4399 *cfpp = (*cfpp)->next; 4400 free((char *)cfp); 4401 return; 4402 } 4403 } 4404 } 4405 4406 /* 4407 * See whether any of the direct blocks in the array pointed by "db" and of 4408 * length "ne" are within the range of frags needed to extend the cylinder 4409 * summary. If so, remove those frags from the "as-yet-unclassified" list 4410 * (csfrag) and add them to the "owned-by-inode" list (csfragino). 4411 * For each such frag found, decrement the frag count pointed to by fragsp. 4412 * "ino" is the inode that contains (either directly or indirectly) the frags 4413 * being checked. 4414 */ 4415 void 4416 checkdirect(ino_t ino, daddr32_t *fragsp, daddr32_t *db, int ne) 4417 { 4418 int i; 4419 int j; 4420 int found; 4421 diskaddr_t frag; 4422 4423 /* 4424 * scan for allocation within the new summary info range 4425 */ 4426 for (i = 0; i < ne && *fragsp; ++i) { 4427 if ((frag = *db++) != 0) { 4428 found = 0; 4429 for (j = 0; j < sblock.fs_frag && *fragsp; ++j) { 4430 if (found || (found = csfraginrange(frag))) { 4431 addcsfrag(ino, frag, &csfragino); 4432 delcsfrag(frag, &csfrag); 4433 } 4434 ++frag; 4435 --(*fragsp); 4436 } 4437 } 4438 } 4439 } 4440 4441 void 4442 findcsfragino() 4443 { 4444 int i; 4445 int j; 4446 daddr32_t frags; 4447 struct dinode *dp; 4448 4449 /* 4450 * scan all old inodes looking for allocations in the new 4451 * summary info range. Move the affected frag from the 4452 * generic csfrag list onto the `owned-by-inode' list csfragino. 4453 */ 4454 for (i = UFSROOTINO; i < grow_fs_ncg*sblock.fs_ipg && csfrag; ++i) { 4455 dp = gdinode((ino_t)i); 4456 switch (dp->di_mode & IFMT) { 4457 case IFSHAD : 4458 case IFLNK : 4459 case IFDIR : 4460 case IFREG : break; 4461 default : continue; 4462 } 4463 4464 frags = dbtofsb(&sblock, dp->di_blocks); 4465 4466 checkdirect((ino_t)i, &frags, &dp->di_db[0], NDADDR+NIADDR); 4467 for (j = 0; j < NIADDR && frags; ++j) { 4468 /* Negate the block if its an fallocate'd block */ 4469 if (dp->di_ib[j] < 0 && dp->di_ib[j] != UFS_HOLE) 4470 checkindirect((ino_t)i, &frags, 4471 -(dp->di_ib[j]), j); 4472 else 4473 checkindirect((ino_t)i, &frags, 4474 dp->di_ib[j], j); 4475 } 4476 } 4477 } 4478 4479 void 4480 fixindirect(daddr32_t frag, int level) 4481 { 4482 int i; 4483 int ne = sblock.fs_bsize / sizeof (daddr32_t); 4484 daddr32_t fsb[MAXBSIZE / sizeof (daddr32_t)]; 4485 4486 if (frag == 0) 4487 return; 4488 4489 rdfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize, 4490 (char *)fsb); 4491 4492 fixdirect((caddr_t)fsb, frag, fsb, ne); 4493 4494 if (level) 4495 for (i = 0; i < ne; ++i) 4496 fixindirect(fsb[i], level-1); 4497 } 4498 4499 void 4500 fixdirect(caddr_t bp, daddr32_t frag, daddr32_t *db, int ne) 4501 { 4502 int i; 4503 struct csfrag *cfp; 4504 4505 for (i = 0; i < ne; ++i, ++db) { 4506 if (*db == 0) 4507 continue; 4508 if ((cfp = findcsfrag(*db, &csfragino)) == NULL) 4509 continue; 4510 *db = cfp->nfrag; 4511 cfp->fixed = 1; 4512 wtfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize, 4513 bp); 4514 } 4515 } 4516 4517 void 4518 fixcsfragino() 4519 { 4520 int i; 4521 struct dinode *dp; 4522 struct csfrag *cfp; 4523 4524 for (cfp = csfragino; cfp; cfp = cfp->next) { 4525 if (cfp->fixed) 4526 continue; 4527 dp = gdinode((ino_t)cfp->ino); 4528 fixdirect((caddr_t)dibuf, difrag, dp->di_db, NDADDR+NIADDR); 4529 for (i = 0; i < NIADDR; ++i) 4530 fixindirect(dp->di_ib[i], i); 4531 } 4532 } 4533 4534 /* 4535 * Read the cylinders summary information specified by settings in the 4536 * passed 'fs' structure into a new allocated array of csum structures. 4537 * The caller is responsible for freeing the returned array. 4538 * Return a pointer to an array of csum structures. 4539 */ 4540 static struct csum * 4541 read_summaryinfo(struct fs *fsp) 4542 { 4543 struct csum *csp; 4544 int i; 4545 4546 if ((csp = malloc((size_t)fsp->fs_cssize)) == NULL) { 4547 (void) fprintf(stderr, gettext("cannot create csum list," 4548 " not enough memory\n")); 4549 exit(32); 4550 } 4551 4552 for (i = 0; i < fsp->fs_cssize; i += fsp->fs_bsize) { 4553 rdfs(fsbtodb(fsp, 4554 (uint64_t)(fsp->fs_csaddr + numfrags(fsp, i))), 4555 (int)(fsp->fs_cssize - i < fsp->fs_bsize ? 4556 fsp->fs_cssize - i : fsp->fs_bsize), ((caddr_t)csp) + i); 4557 } 4558 4559 return (csp); 4560 } 4561 4562 /* 4563 * Check the allocation of fragments that are to be made part of a csum block. 4564 * A fragment is allocated if it is either in the csfragfree list or, it is 4565 * in the csfragino list and has new frags associated with it. 4566 * Return the number of allocated fragments. 4567 */ 4568 int64_t 4569 checkfragallocated(daddr32_t frag) 4570 { 4571 struct csfrag *cfp; 4572 /* 4573 * Since the lists are sorted we can break the search if the asked 4574 * frag is smaller then the one in the list. 4575 */ 4576 for (cfp = csfragfree; cfp != NULL && frag >= cfp->ofrag; 4577 cfp = cfp->next) { 4578 if (frag == cfp->ofrag) 4579 return (1); 4580 } 4581 for (cfp = csfragino; cfp != NULL && frag >= cfp->ofrag; 4582 cfp = cfp->next) { 4583 if (frag == cfp->ofrag && cfp->nfrag != 0) 4584 return (cfp->frags); 4585 } 4586 4587 return (0); 4588 } 4589 4590 /* 4591 * Figure out how much the filesystem can be grown. The limiting factor is 4592 * the available free space needed to extend the cg summary info block. 4593 * The free space is determined in three steps: 4594 * - Try to extend the cg summary block to the required size. 4595 * - Find free blocks in last cg. 4596 * - Find free space in the last already allocated fragment of the summary info 4597 * block, and use it for additional csum structures. 4598 * Return the maximum size of the new filesystem or 0 if it can't be grown. 4599 * Please note that this function leaves the global list pointers csfrag, 4600 * csfragfree, and csfragino initialized, and the caller is responsible for 4601 * freeing the lists. 4602 */ 4603 diskaddr_t 4604 probe_summaryinfo() 4605 { 4606 /* fragments by which the csum block can be extended. */ 4607 int64_t growth_csum_frags = 0; 4608 /* fragments by which the filesystem can be extended. */ 4609 int64_t growth_fs_frags = 0; 4610 int64_t new_fs_cssize; /* size of csum blk in the new FS */ 4611 int64_t new_fs_ncg; /* number of cg in the new FS */ 4612 int64_t spare_csum; 4613 daddr32_t oldfrag_daddr; 4614 daddr32_t newfrag_daddr; 4615 daddr32_t daddr; 4616 int i; 4617 4618 /* 4619 * read and verify the superblock 4620 */ 4621 rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock); 4622 (void) checksblock(sblock, 0); 4623 4624 /* 4625 * check how much we can extend the cg summary info block 4626 */ 4627 4628 /* 4629 * read current summary information 4630 */ 4631 fscs = read_summaryinfo(&sblock); 4632 4633 /* 4634 * build list of frags needed for cg summary info block extension 4635 */ 4636 oldfrag_daddr = howmany(sblock.fs_cssize, sblock.fs_fsize) + 4637 sblock.fs_csaddr; 4638 new_fs_ncg = howmany(dbtofsb(&sblock, fssize_db), sblock.fs_fpg); 4639 new_fs_cssize = fragroundup(&sblock, new_fs_ncg * sizeof (struct csum)); 4640 newfrag_daddr = howmany(new_fs_cssize, sblock.fs_fsize) + 4641 sblock.fs_csaddr; 4642 /* 4643 * add all of the frags that are required to grow the cyl summary to the 4644 * csfrag list, which is the generic/unknown list, since at this point 4645 * we don't yet know the state of those frags. 4646 */ 4647 for (daddr = oldfrag_daddr; daddr < newfrag_daddr; daddr++) 4648 addcsfrag((ino_t)0, daddr, &csfrag); 4649 4650 /* 4651 * filter free fragments and allocate them. Note that the free frags 4652 * must be allocated first otherwise they could be grabbed by 4653 * alloccsfragino() for data frags. 4654 */ 4655 findcsfragfree(); 4656 alloccsfragfree(); 4657 4658 /* 4659 * filter fragments owned by inodes and allocate them 4660 */ 4661 grow_fs_ncg = sblock.fs_ncg; /* findcsfragino() needs this glob. var. */ 4662 findcsfragino(); 4663 alloccsfragino(); 4664 4665 if (notenoughspace()) { 4666 /* 4667 * check how many consecutive fragments could be allocated 4668 * in both lists. 4669 */ 4670 int64_t tmp_frags; 4671 for (daddr = oldfrag_daddr; daddr < newfrag_daddr; 4672 daddr += tmp_frags) { 4673 if ((tmp_frags = checkfragallocated(daddr)) > 0) 4674 growth_csum_frags += tmp_frags; 4675 else 4676 break; 4677 } 4678 } else { 4679 /* 4680 * We have all we need for the new desired size, 4681 * so clean up and report back. 4682 */ 4683 return (fssize_db); 4684 } 4685 4686 /* 4687 * given the number of fragments by which the csum block can be grown 4688 * compute by how many new fragments the FS can be increased. 4689 * It is the number of csum instances per fragment multiplied by 4690 * `growth_csum_frags' and the number of fragments per cylinder group. 4691 */ 4692 growth_fs_frags = howmany(sblock.fs_fsize, sizeof (struct csum)) * 4693 growth_csum_frags * sblock.fs_fpg; 4694 4695 /* 4696 * compute free fragments in the last cylinder group 4697 */ 4698 rdcg(sblock.fs_ncg - 1); 4699 growth_fs_frags += sblock.fs_fpg - acg.cg_ndblk; 4700 4701 /* 4702 * compute how many csum instances are unused in the old csum block. 4703 * For each unused csum instance the FS can be grown by one cylinder 4704 * group without extending the csum block. 4705 */ 4706 spare_csum = howmany(sblock.fs_cssize, sizeof (struct csum)) - 4707 sblock.fs_ncg; 4708 if (spare_csum > 0) 4709 growth_fs_frags += spare_csum * sblock.fs_fpg; 4710 4711 /* 4712 * recalculate the new filesystem size in sectors, shorten it by 4713 * the requested size `fssize_db' if necessary. 4714 */ 4715 if (growth_fs_frags > 0) { 4716 diskaddr_t sect; 4717 sect = (sblock.fs_size + growth_fs_frags) * sblock.fs_nspf; 4718 return ((sect > fssize_db) ? fssize_db : sect); 4719 } 4720 4721 return (0); 4722 } 4723 4724 void 4725 extendsummaryinfo() 4726 { 4727 int64_t i; 4728 int localtest = test; 4729 int64_t frags; 4730 daddr32_t oldfrag; 4731 daddr32_t newfrag; 4732 4733 /* 4734 * if no-write (-N), don't bother 4735 */ 4736 if (Nflag) 4737 return; 4738 4739 again: 4740 flcg(); 4741 /* 4742 * summary info did not change size -- do nothing unless in test mode 4743 */ 4744 if (grow_fs_cssize == sblock.fs_cssize) 4745 if (!localtest) 4746 return; 4747 4748 /* 4749 * build list of frags needed for additional summary information 4750 */ 4751 oldfrag = howmany(grow_fs_cssize, sblock.fs_fsize) + grow_fs_csaddr; 4752 newfrag = howmany(sblock.fs_cssize, sblock.fs_fsize) + grow_fs_csaddr; 4753 /* 4754 * add all of the frags that are required to grow the cyl summary to the 4755 * csfrag list, which is the generic/unknown list, since at this point 4756 * we don't yet know the state of those frags. 4757 */ 4758 for (i = oldfrag, frags = 0; i < newfrag; ++i, ++frags) 4759 addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag); 4760 /* 4761 * reduce the number of data blocks in the file system (fs_dsize) by 4762 * the number of frags that need to be added to the cyl summary 4763 */ 4764 sblock.fs_dsize -= (newfrag - oldfrag); 4765 4766 /* 4767 * In test mode, we move more data than necessary from 4768 * cylinder group 0. The lookup/allocate/move code can be 4769 * better stressed without having to create HUGE file systems. 4770 */ 4771 if (localtest) 4772 for (i = newfrag; i < grow_sifrag; ++i) { 4773 if (frags >= testfrags) 4774 break; 4775 frags++; 4776 addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag); 4777 } 4778 4779 /* 4780 * move frags to free or inode lists, depending on owner 4781 */ 4782 findcsfragfree(); 4783 findcsfragino(); 4784 4785 /* 4786 * if not all frags can be located, file system must be inconsistent 4787 */ 4788 if (csfrag) { 4789 isbad = 1; /* should already be set, but make sure */ 4790 lockexit(32); 4791 } 4792 4793 /* 4794 * allocate the free frags. Note that the free frags must be allocated 4795 * first otherwise they could be grabbed by alloccsfragino() for data 4796 * frags. 4797 */ 4798 alloccsfragfree(); 4799 /* 4800 * allocate extra space for inode frags 4801 */ 4802 alloccsfragino(); 4803 4804 /* 4805 * not enough space 4806 */ 4807 if (notenoughspace()) { 4808 unalloccsfragfree(); 4809 unalloccsfragino(); 4810 if (localtest && !testforce) { 4811 localtest = 0; 4812 goto again; 4813 } 4814 (void) fprintf(stderr, gettext("Not enough free space\n")); 4815 lockexit(NOTENOUGHSPACE); 4816 } 4817 4818 /* 4819 * copy the data from old frags to new frags 4820 */ 4821 copycsfragino(); 4822 4823 /* 4824 * fix the inodes to point to the new frags 4825 */ 4826 fixcsfragino(); 4827 4828 /* 4829 * We may have moved more frags than we needed. Free them. 4830 */ 4831 rdcg((long)0); 4832 for (i = newfrag; i <= maxcsfrag; ++i) 4833 setbit(cg_blksfree(&acg), i-cgbase(&sblock, 0)); 4834 wtcg(); 4835 4836 flcg(); 4837 } 4838 4839 /* 4840 * Check if all fragments in the `csfragino' list were reallocated. 4841 */ 4842 int 4843 notenoughspace() 4844 { 4845 struct csfrag *cfp; 4846 4847 /* 4848 * If any element in the csfragino array has a "new frag location" 4849 * of 0, the allocfrags() function was unsuccessful in allocating 4850 * space for moving the frag represented by this array element. 4851 */ 4852 for (cfp = csfragino; cfp; cfp = cfp->next) 4853 if (cfp->nfrag == 0) 4854 return (1); 4855 return (0); 4856 } 4857 4858 void 4859 unalloccsfragino() 4860 { 4861 struct csfrag *cfp; 4862 4863 while ((cfp = csfragino) != NULL) { 4864 if (cfp->nfrag) 4865 freefrags(cfp->nfrag, cfp->frags, cfp->cylno); 4866 delcsfrag(cfp->ofrag, &csfragino); 4867 } 4868 } 4869 4870 void 4871 unalloccsfragfree() 4872 { 4873 struct csfrag *cfp; 4874 4875 while ((cfp = csfragfree) != NULL) { 4876 freefrags(cfp->ofrag, cfp->frags, cfp->cylno); 4877 delcsfrag(cfp->ofrag, &csfragfree); 4878 } 4879 } 4880 4881 /* 4882 * For each frag in the "as-yet-unclassified" list (csfrag), see if 4883 * it's free (i.e., its bit is set in the free frag bit map). If so, 4884 * move it from the "as-yet-unclassified" list to the csfragfree list. 4885 */ 4886 void 4887 findcsfragfree() 4888 { 4889 struct csfrag *cfp; 4890 struct csfrag *cfpnext; 4891 4892 /* 4893 * move free frags onto the free-frag list 4894 */ 4895 rdcg((long)0); 4896 for (cfp = csfrag; cfp; cfp = cfpnext) { 4897 cfpnext = cfp->next; 4898 if (isset(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0))) { 4899 addcsfrag(cfp->ino, cfp->ofrag, &csfragfree); 4900 delcsfrag(cfp->ofrag, &csfrag); 4901 } 4902 } 4903 } 4904 4905 void 4906 copycsfragino() 4907 { 4908 struct csfrag *cfp; 4909 char buf[MAXBSIZE]; 4910 4911 /* 4912 * copy data from old frags to newly allocated frags 4913 */ 4914 for (cfp = csfragino; cfp; cfp = cfp->next) { 4915 rdfs(fsbtodb(&sblock, (uint64_t)cfp->ofrag), (int)cfp->size, 4916 buf); 4917 wtfs(fsbtodb(&sblock, (uint64_t)cfp->nfrag), (int)cfp->size, 4918 buf); 4919 } 4920 } 4921 4922 long curcylno = -1; 4923 int cylnodirty = 0; 4924 4925 void 4926 rdcg(long cylno) 4927 { 4928 if (cylno != curcylno) { 4929 flcg(); 4930 curcylno = cylno; 4931 rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)), 4932 (int)sblock.fs_cgsize, (char *)&acg); 4933 } 4934 } 4935 4936 void 4937 flcg() 4938 { 4939 if (cylnodirty) { 4940 if (debug && Pflag) { 4941 (void) fprintf(stderr, 4942 "Assert: cylnodirty set in probe mode\n"); 4943 return; 4944 } 4945 resetallocinfo(); 4946 wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)), 4947 (int)sblock.fs_cgsize, (char *)&acg); 4948 cylnodirty = 0; 4949 } 4950 curcylno = -1; 4951 } 4952 4953 void 4954 wtcg() 4955 { 4956 if (!Pflag) { 4957 /* probe mode should never write to disk */ 4958 cylnodirty = 1; 4959 } 4960 } 4961 4962 void 4963 allocfrags(long frags, daddr32_t *fragp, long *cylnop) 4964 { 4965 int i; 4966 int j; 4967 long bits; 4968 long bit; 4969 4970 /* 4971 * Allocate a free-frag range in an old cylinder group 4972 */ 4973 for (i = 0, *fragp = 0; i < grow_fs_ncg; ++i) { 4974 if (((fscs+i)->cs_nffree < frags) && ((fscs+i)->cs_nbfree == 0)) 4975 continue; 4976 rdcg((long)i); 4977 bit = bits = 0; 4978 while (findfreerange(&bit, &bits)) { 4979 if (frags <= bits) { 4980 for (j = 0; j < frags; ++j) 4981 clrbit(cg_blksfree(&acg), bit+j); 4982 wtcg(); 4983 *cylnop = i; 4984 *fragp = bit + cgbase(&sblock, i); 4985 return; 4986 } 4987 bit += bits; 4988 } 4989 } 4990 } 4991 4992 /* 4993 * Allocate space for frags that need to be moved in order to free up space for 4994 * expanding the cylinder summary info. 4995 * For each frag that needs to be moved (each frag or range of frags in 4996 * the csfragino list), allocate a new location and store the frag number 4997 * of that new location in the nfrag field of the csfrag struct. 4998 * If a new frag can't be allocated for any element in the csfragino list, 4999 * set the new frag number for that element to 0 and return immediately. 5000 * The notenoughspace() function will detect this condition. 5001 */ 5002 void 5003 alloccsfragino() 5004 { 5005 struct csfrag *cfp; 5006 5007 /* 5008 * allocate space for inode frag ranges 5009 */ 5010 for (cfp = csfragino; cfp; cfp = cfp->next) { 5011 allocfrags(cfp->frags, &cfp->nfrag, &cfp->cylno); 5012 if (cfp->nfrag == 0) 5013 break; 5014 } 5015 } 5016 5017 void 5018 alloccsfragfree() 5019 { 5020 struct csfrag *cfp; 5021 5022 /* 5023 * allocate the free frags needed for extended summary info 5024 */ 5025 rdcg((long)0); 5026 5027 for (cfp = csfragfree; cfp; cfp = cfp->next) 5028 clrbit(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0)); 5029 5030 wtcg(); 5031 } 5032 5033 void 5034 freefrags(daddr32_t frag, long frags, long cylno) 5035 { 5036 int i; 5037 5038 /* 5039 * free frags 5040 */ 5041 rdcg(cylno); 5042 for (i = 0; i < frags; ++i) { 5043 setbit(cg_blksfree(&acg), (frag+i) - cgbase(&sblock, cylno)); 5044 } 5045 wtcg(); 5046 } 5047 5048 int 5049 findfreerange(long *bitp, long *bitsp) 5050 { 5051 long bit; 5052 5053 /* 5054 * find a range of free bits in a cylinder group bit map 5055 */ 5056 for (bit = *bitp, *bitsp = 0; bit < acg.cg_ndblk; ++bit) 5057 if (isset(cg_blksfree(&acg), bit)) 5058 break; 5059 5060 if (bit >= acg.cg_ndblk) 5061 return (0); 5062 5063 *bitp = bit; 5064 *bitsp = 1; 5065 for (++bit; bit < acg.cg_ndblk; ++bit, ++(*bitsp)) { 5066 if ((bit % sblock.fs_frag) == 0) 5067 break; 5068 if (isclr(cg_blksfree(&acg), bit)) 5069 break; 5070 } 5071 return (1); 5072 } 5073 5074 void 5075 resetallocinfo() 5076 { 5077 long cno; 5078 long bit; 5079 long bits; 5080 5081 /* 5082 * Compute the free blocks/frags info and update the appropriate 5083 * inmemory superblock, summary info, and cylinder group fields 5084 */ 5085 sblock.fs_cstotal.cs_nffree -= acg.cg_cs.cs_nffree; 5086 sblock.fs_cstotal.cs_nbfree -= acg.cg_cs.cs_nbfree; 5087 5088 acg.cg_cs.cs_nffree = 0; 5089 acg.cg_cs.cs_nbfree = 0; 5090 5091 bzero((caddr_t)acg.cg_frsum, sizeof (acg.cg_frsum)); 5092 bzero((caddr_t)cg_blktot(&acg), (int)(acg.cg_iusedoff-acg.cg_btotoff)); 5093 5094 bit = bits = 0; 5095 while (findfreerange(&bit, &bits)) { 5096 if (bits == sblock.fs_frag) { 5097 acg.cg_cs.cs_nbfree++; 5098 cno = cbtocylno(&sblock, bit); 5099 cg_blktot(&acg)[cno]++; 5100 cg_blks(&sblock, &acg, cno)[cbtorpos(&sblock, bit)]++; 5101 } else { 5102 acg.cg_cs.cs_nffree += bits; 5103 acg.cg_frsum[bits]++; 5104 } 5105 bit += bits; 5106 } 5107 5108 *(fscs + acg.cg_cgx) = acg.cg_cs; 5109 5110 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 5111 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 5112 } 5113 5114 void 5115 extendcg(long cylno) 5116 { 5117 int i; 5118 diskaddr_t dupper; 5119 diskaddr_t cbase; 5120 diskaddr_t dmax; 5121 5122 /* 5123 * extend the cylinder group at the end of the old file system 5124 * if it was partially allocated becase of lack of space 5125 */ 5126 flcg(); 5127 rdcg(cylno); 5128 5129 dupper = acg.cg_ndblk; 5130 if (cylno == sblock.fs_ncg - 1) 5131 acg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno); 5132 else 5133 acg.cg_ncyl = sblock.fs_cpg; 5134 cbase = cgbase(&sblock, cylno); 5135 dmax = cbase + sblock.fs_fpg; 5136 if (dmax > sblock.fs_size) 5137 dmax = sblock.fs_size; 5138 acg.cg_ndblk = dmax - cbase; 5139 5140 for (i = dupper; i < acg.cg_ndblk; ++i) 5141 setbit(cg_blksfree(&acg), i); 5142 5143 sblock.fs_dsize += (acg.cg_ndblk - dupper); 5144 5145 wtcg(); 5146 flcg(); 5147 } 5148 5149 struct lockfs lockfs; 5150 int lockfd; 5151 int islocked; 5152 int lockfskey; 5153 char lockfscomment[128]; 5154 5155 void 5156 ulockfs() 5157 { 5158 /* 5159 * if the file system was locked, unlock it before exiting 5160 */ 5161 if (islocked == 0) 5162 return; 5163 5164 /* 5165 * first, check if the lock held 5166 */ 5167 lockfs.lf_flags = LOCKFS_MOD; 5168 if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) { 5169 perror(directory); 5170 lockexit(32); 5171 } 5172 5173 if (LOCKFS_IS_MOD(&lockfs)) { 5174 (void) fprintf(stderr, 5175 gettext("FILE SYSTEM CHANGED DURING GROWFS!\n")); 5176 (void) fprintf(stderr, 5177 gettext(" See lockfs(1), umount(1), and fsck(1)\n")); 5178 lockexit(32); 5179 } 5180 /* 5181 * unlock the file system 5182 */ 5183 lockfs.lf_lock = LOCKFS_ULOCK; 5184 lockfs.lf_flags = 0; 5185 lockfs.lf_key = lockfskey; 5186 clockfs(); 5187 if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) { 5188 perror(directory); 5189 lockexit(32); 5190 } 5191 } 5192 5193 void 5194 wlockfs() 5195 { 5196 5197 /* 5198 * if no-write (-N), don't bother 5199 */ 5200 if (Nflag) 5201 return; 5202 /* 5203 * open the mountpoint, and write lock the file system 5204 */ 5205 if ((lockfd = open64(directory, O_RDONLY)) == -1) { 5206 perror(directory); 5207 lockexit(32); 5208 } 5209 5210 /* 5211 * check if it is already locked 5212 */ 5213 if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) { 5214 perror(directory); 5215 lockexit(32); 5216 } 5217 5218 if (lockfs.lf_lock != LOCKFS_WLOCK) { 5219 lockfs.lf_lock = LOCKFS_WLOCK; 5220 lockfs.lf_flags = 0; 5221 lockfs.lf_key = 0; 5222 clockfs(); 5223 if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) { 5224 perror(directory); 5225 lockexit(32); 5226 } 5227 } 5228 islocked = 1; 5229 lockfskey = lockfs.lf_key; 5230 } 5231 5232 void 5233 clockfs() 5234 { 5235 time_t t; 5236 char *ct; 5237 5238 (void) time(&t); 5239 ct = ctime(&t); 5240 ct[strlen(ct)-1] = '\0'; 5241 5242 (void) sprintf(lockfscomment, "%s -- mkfs pid %d", ct, getpid()); 5243 lockfs.lf_comlen = strlen(lockfscomment)+1; 5244 lockfs.lf_comment = lockfscomment; 5245 } 5246 5247 /* 5248 * Write the csum records and the superblock 5249 */ 5250 void 5251 wtsb() 5252 { 5253 long i; 5254 5255 /* 5256 * write summary information 5257 */ 5258 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 5259 wtfs(fsbtodb(&sblock, (uint64_t)(sblock.fs_csaddr + 5260 numfrags(&sblock, i))), 5261 (int)(sblock.fs_cssize - i < sblock.fs_bsize ? 5262 sblock.fs_cssize - i : sblock.fs_bsize), 5263 ((char *)fscs) + i); 5264 5265 /* 5266 * write superblock 5267 */ 5268 sblock.fs_time = mkfstime; 5269 wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock); 5270 } 5271 5272 /* 5273 * Verify that the optimization selection is reasonable, and advance 5274 * the global "string" appropriately. 5275 */ 5276 static char 5277 checkopt(char *optim) 5278 { 5279 char opt; 5280 int limit = strcspn(optim, ","); 5281 5282 switch (limit) { 5283 case 0: /* missing indicator (have comma or nul) */ 5284 (void) fprintf(stderr, gettext( 5285 "mkfs: missing optimization flag reset to `t' (time)\n")); 5286 opt = 't'; 5287 break; 5288 5289 case 1: /* single-character indicator */ 5290 opt = *optim; 5291 if ((opt != 's') && (opt != 't')) { 5292 (void) fprintf(stderr, gettext( 5293 "mkfs: bad optimization value `%c' reset to `t' (time)\n"), 5294 opt); 5295 opt = 't'; 5296 } 5297 break; 5298 5299 default: /* multi-character indicator */ 5300 (void) fprintf(stderr, gettext( 5301 "mkfs: bad optimization value `%*.*s' reset to `t' (time)\n"), 5302 limit, limit, optim); 5303 opt = 't'; 5304 break; 5305 } 5306 5307 string += limit; 5308 5309 return (opt); 5310 } 5311 5312 /* 5313 * Verify that the mtb selection is reasonable, and advance 5314 * the global "string" appropriately. 5315 */ 5316 static char 5317 checkmtb(char *mtbarg) 5318 { 5319 char mtbc; 5320 int limit = strcspn(mtbarg, ","); 5321 5322 switch (limit) { 5323 case 0: /* missing indicator (have comma or nul) */ 5324 (void) fprintf(stderr, gettext( 5325 "mkfs: missing mtb flag reset to `n' (no mtb support)\n")); 5326 mtbc = 'n'; 5327 break; 5328 5329 case 1: /* single-character indicator */ 5330 mtbc = tolower(*mtbarg); 5331 if ((mtbc != 'y') && (mtbc != 'n')) { 5332 (void) fprintf(stderr, gettext( 5333 "mkfs: bad mtb value `%c' reset to `n' (no mtb support)\n"), 5334 mtbc); 5335 mtbc = 'n'; 5336 } 5337 break; 5338 5339 default: /* multi-character indicator */ 5340 (void) fprintf(stderr, gettext( 5341 "mkfs: bad mtb value `%*.*s' reset to `n' (no mtb support)\n"), 5342 limit, limit, mtbarg); 5343 opt = 'n'; 5344 break; 5345 } 5346 5347 string += limit; 5348 5349 return (mtbc); 5350 } 5351 5352 /* 5353 * Verify that a value is in a range. If it is not, resets it to 5354 * its default value if one is supplied, exits otherwise. 5355 * 5356 * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL. 5357 */ 5358 static void 5359 range_check(long *varp, char *name, long minimum, long maximum, 5360 long def_val, int user_supplied) 5361 { 5362 dprintf(("DeBuG %s : %ld (%ld %ld %ld)\n", 5363 name, *varp, minimum, maximum, def_val)); 5364 5365 if ((*varp < minimum) || (*varp > maximum)) { 5366 if (user_supplied != RC_DEFAULT) { 5367 (void) fprintf(stderr, gettext( 5368 "mkfs: bad value for %s: %ld must be between %ld and %ld\n"), 5369 name, *varp, minimum, maximum); 5370 } 5371 if (def_val != NO_DEFAULT) { 5372 if (user_supplied) { 5373 (void) fprintf(stderr, 5374 gettext("mkfs: %s reset to default %ld\n"), 5375 name, def_val); 5376 } 5377 *varp = def_val; 5378 dprintf(("DeBuG %s : %ld\n", name, *varp)); 5379 return; 5380 } 5381 lockexit(2); 5382 /*NOTREACHED*/ 5383 } 5384 } 5385 5386 /* 5387 * Verify that a value is in a range. If it is not, resets it to 5388 * its default value if one is supplied, exits otherwise. 5389 * 5390 * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL. 5391 */ 5392 static void 5393 range_check_64(uint64_t *varp, char *name, uint64_t minimum, uint64_t maximum, 5394 uint64_t def_val, int user_supplied) 5395 { 5396 if ((*varp < minimum) || (*varp > maximum)) { 5397 if (user_supplied != RC_DEFAULT) { 5398 (void) fprintf(stderr, gettext( 5399 "mkfs: bad value for %s: %lld must be between %lld and %lld\n"), 5400 name, *varp, minimum, maximum); 5401 } 5402 if (def_val != NO_DEFAULT) { 5403 if (user_supplied) { 5404 (void) fprintf(stderr, 5405 gettext("mkfs: %s reset to default %lld\n"), 5406 name, def_val); 5407 } 5408 *varp = def_val; 5409 return; 5410 } 5411 lockexit(2); 5412 /*NOTREACHED*/ 5413 } 5414 } 5415 5416 /* 5417 * Blocks SIGINT from delivery. Returns the previous mask in the 5418 * buffer provided, so that mask may be later restored. 5419 */ 5420 static void 5421 block_sigint(sigset_t *old_mask) 5422 { 5423 sigset_t block_mask; 5424 5425 if (sigemptyset(&block_mask) < 0) { 5426 fprintf(stderr, gettext("Could not clear signal mask\n")); 5427 lockexit(3); 5428 } 5429 if (sigaddset(&block_mask, SIGINT) < 0) { 5430 fprintf(stderr, gettext("Could not set signal mask\n")); 5431 lockexit(3); 5432 } 5433 if (sigprocmask(SIG_BLOCK, &block_mask, old_mask) < 0) { 5434 fprintf(stderr, gettext("Could not block SIGINT\n")); 5435 lockexit(3); 5436 } 5437 } 5438 5439 /* 5440 * Restores the signal mask that was in force before a call 5441 * to block_sigint(). This may actually still have SIGINT blocked, 5442 * if we've been recursively invoked. 5443 */ 5444 static void 5445 unblock_sigint(sigset_t *old_mask) 5446 { 5447 if (sigprocmask(SIG_UNBLOCK, old_mask, (sigset_t *)NULL) < 0) { 5448 fprintf(stderr, gettext("Could not restore signal mask\n")); 5449 lockexit(3); 5450 } 5451 } 5452 5453 /* 5454 * Attempt to be somewhat graceful about being interrupted, rather than 5455 * just silently leaving the filesystem in an unusable state. 5456 * 5457 * The kernel has blocked SIGINT upon entry, so we don't have to worry 5458 * about recursion if the user starts pounding on the keyboard. 5459 */ 5460 static void 5461 recover_from_sigint(int signum) 5462 { 5463 if (fso > -1) { 5464 if ((Nflag != 0) || confirm_abort()) { 5465 lockexit(4); 5466 } 5467 } 5468 } 5469 5470 static int 5471 confirm_abort(void) 5472 { 5473 char line[80]; 5474 5475 printf(gettext("\n\nAborting at this point will leave the filesystem " 5476 "in an inconsistent\nstate. If you do choose to stop, " 5477 "you will be given instructions on how to\nrecover " 5478 "the filesystem. Do you wish to cancel the filesystem " 5479 "grow\noperation (y/n)?")); 5480 if (getline(stdin, line, sizeof (line)) == EOF) 5481 line[0] = 'y'; 5482 5483 printf("\n"); 5484 if (line[0] == 'y' || line[0] == 'Y') 5485 return (1); 5486 else { 5487 return (0); 5488 } 5489 } 5490 5491 static int 5492 getline(FILE *fp, char *loc, int maxlen) 5493 { 5494 int n; 5495 char *p, *lastloc; 5496 5497 p = loc; 5498 lastloc = &p[maxlen-1]; 5499 while ((n = getc(fp)) != '\n') { 5500 if (n == EOF) 5501 return (EOF); 5502 if (!isspace(n) && p < lastloc) 5503 *p++ = n; 5504 } 5505 *p = 0; 5506 return (p - loc); 5507 } 5508 5509 /* 5510 * Calculate the maximum value of cylinders-per-group for a file 5511 * system with the characteristics: 5512 * 5513 * bsize - file system block size 5514 * fragsize - frag size 5515 * nbpi - number of bytes of disk space per inode 5516 * nrpos - number of rotational positions 5517 * spc - sectors per cylinder 5518 * 5519 * These five characteristic are not adjustable (by this function). 5520 * The only attribute of the file system which IS adjusted by this 5521 * function in order to maximize cylinders-per-group is the proportion 5522 * of the cylinder group overhead block used for the inode map. The 5523 * inode map cannot occupy more than one-third of the cylinder group 5524 * overhead block, but it's OK for it to occupy less than one-third 5525 * of the overhead block. 5526 * 5527 * The setting of nbpi determines one possible value for the maximum 5528 * size of a cylinder group. It does so because it determines the total 5529 * number of inodes in the file system (file system size is fixed, and 5530 * nbpi is fixed, so the total number of inodes is fixed too). The 5531 * cylinder group has to be small enough so that the number of inodes 5532 * in the cylinder group is less than or equal to the number of bits 5533 * in one-third (or whatever proportion is assumed) of a file system 5534 * block. The details of the calculation are: 5535 * 5536 * The macro MAXIpG_B(bsize, inode_divisor) determines the maximum 5537 * number of inodes that can be in a cylinder group, given the 5538 * proportion of the cylinder group overhead block used for the 5539 * inode bitmaps (an inode_divisor of 3 means that 1/3 of the 5540 * block is used for inode bitmaps; an inode_divisor of 12 means 5541 * that 1/12 of the block is used for inode bitmaps.) 5542 * 5543 * Once the number of inodes per cylinder group is known, the 5544 * maximum value of cylinders-per-group (determined by nbpi) 5545 * is calculated by the formula 5546 * 5547 * maxcpg_given_nbpi = (size of a cylinder group)/(size of a cylinder) 5548 * 5549 * = (inodes-per-cg * nbpi)/(spc * DEV_BSIZE) 5550 * 5551 * (Interestingly, the size of the file system never enters 5552 * into this calculation.) 5553 * 5554 * Another possible value for the maximum cylinder group size is determined 5555 * by frag_size and nrpos. The frags in the cylinder group must be 5556 * representable in the frag bitmaps in the cylinder overhead block and the 5557 * rotational positions for each cylinder must be represented in the 5558 * rotational position tables. The calculation of the maximum cpg 5559 * value, given the frag and nrpos vales, is: 5560 * 5561 * maxcpg_given_fragsize = 5562 * (available space in the overhead block) / (size of per-cylinder data) 5563 * 5564 * The available space in the overhead block = 5565 * bsize - sizeof (struct cg) - space_used_for_inode_bitmaps 5566 * 5567 * The size of the per-cylinder data is: 5568 * sizeof(long) # for the "blocks avail per cylinder" field 5569 * + nrpos * sizeof(short) # for the rotational position table entry 5570 * + frags-per-cylinder/NBBY # number of bytes to represent this 5571 * # cylinder in the frag bitmap 5572 * 5573 * The two calculated maximum values of cylinder-per-group will typically 5574 * turn out to be different, since they are derived from two different 5575 * constraints. Usually, maxcpg_given_nbpi is much bigger than 5576 * maxcpg_given_fragsize. But they can be brought together by 5577 * adjusting the proportion of the overhead block dedicated to 5578 * the inode bitmaps. Decreasing the proportion of the cylinder 5579 * group overhead block used for inode maps will decrease 5580 * maxcpg_given_nbpi and increase maxcpg_given_fragsize. 5581 * 5582 * This function calculates the initial values of maxcpg_given_nbpi 5583 * and maxcpg_given_fragsize assuming that 1/3 of the cg overhead 5584 * block is used for inode bitmaps. Then it decreases the proportion 5585 * of the cg overhead block used for inode bitmaps (by increasing 5586 * the value of inode_divisor) until maxcpg_given_nbpi and 5587 * maxcpg_given_fragsize are the same, or stop changing, or 5588 * maxcpg_given_nbpi is less than maxcpg_given_fragsize. 5589 * 5590 * The loop terminates when any of the following occur: 5591 * * maxcpg_given_fragsize is greater than or equal to 5592 * maxcpg_given_nbpi 5593 * * neither maxcpg_given_fragsize nor maxcpg_given_nbpi 5594 * change in the expected direction 5595 * 5596 * The loop is guaranteed to terminate because it only continues 5597 * while maxcpg_given_fragsize and maxcpg_given_nbpi are approaching 5598 * each other. As soon they cross each other, or neither one changes 5599 * in the direction of the other, or one of them moves in the wrong 5600 * direction, the loop completes. 5601 */ 5602 5603 static long 5604 compute_maxcpg(long bsize, long fragsize, long nbpi, long nrpos, long spc) 5605 { 5606 int maxcpg_given_nbpi; /* in cylinders */ 5607 int maxcpg_given_fragsize; /* in cylinders */ 5608 int spf; /* sectors per frag */ 5609 int inode_divisor; 5610 int old_max_given_frag = 0; 5611 int old_max_given_nbpi = INT_MAX; 5612 5613 spf = fragsize / DEV_BSIZE; 5614 inode_divisor = 3; 5615 5616 while (1) { 5617 maxcpg_given_nbpi = 5618 (((int64_t)(MAXIpG_B(bsize, inode_divisor))) * nbpi) / 5619 (DEV_BSIZE * ((int64_t)spc)); 5620 maxcpg_given_fragsize = 5621 (bsize - (sizeof (struct cg)) - (bsize / inode_divisor)) / 5622 (sizeof (long) + nrpos * sizeof (short) + 5623 (spc / spf) / NBBY); 5624 5625 if (maxcpg_given_fragsize >= maxcpg_given_nbpi) 5626 return (maxcpg_given_nbpi); 5627 5628 /* 5629 * If neither value moves toward the other, return the 5630 * least of the old values (we use the old instead of the 5631 * new because: if the old is the same as the new, it 5632 * doesn't matter which ones we use. If one of the 5633 * values changed, but in the wrong direction, the 5634 * new values are suspect. Better use the old. This 5635 * shouldn't happen, but it's best to check. 5636 */ 5637 5638 if (!(maxcpg_given_nbpi < old_max_given_nbpi) && 5639 !(maxcpg_given_fragsize > old_max_given_frag)) 5640 return (MIN(old_max_given_nbpi, old_max_given_frag)); 5641 5642 /* 5643 * This is probably impossible, but if one of the maxcpg 5644 * values moved in the "right" direction and one moved 5645 * in the "wrong" direction (that is, the two values moved 5646 * in the same direction), the previous conditional won't 5647 * recognize that the values aren't converging (since at 5648 * least one value moved in the "right" direction, the 5649 * last conditional says "keep going"). 5650 * 5651 * Just to make absolutely certain that the loop terminates, 5652 * check for one of the values moving in the "wrong" direction 5653 * and terminate the loop if it happens. 5654 */ 5655 5656 if (maxcpg_given_nbpi > old_max_given_nbpi || 5657 maxcpg_given_fragsize < old_max_given_frag) 5658 return (MIN(old_max_given_nbpi, old_max_given_frag)); 5659 5660 old_max_given_nbpi = maxcpg_given_nbpi; 5661 old_max_given_frag = maxcpg_given_fragsize; 5662 5663 inode_divisor++; 5664 } 5665 } 5666 5667 static int 5668 in_64bit_mode(void) 5669 { 5670 /* cmd must be an absolute path, for security */ 5671 char *cmd = "/usr/bin/isainfo -b"; 5672 char buf[BUFSIZ]; 5673 FILE *ptr; 5674 int retval = 0; 5675 5676 putenv("IFS= \t"); 5677 if ((ptr = popen(cmd, "r")) != NULL) { 5678 if (fgets(buf, BUFSIZ, ptr) != NULL && 5679 strncmp(buf, "64", 2) == 0) 5680 retval = 1; 5681 (void) pclose(ptr); 5682 } 5683 return (retval); 5684 } 5685 5686 /* 5687 * validate_size 5688 * 5689 * Return 1 if the device appears to be at least "size" sectors long. 5690 * Return 0 if it's shorter or we can't read it. 5691 */ 5692 5693 static int 5694 validate_size(int fd, diskaddr_t size) 5695 { 5696 char buf[DEV_BSIZE]; 5697 int rc; 5698 5699 if ((llseek(fd, (offset_t)((size - 1) * DEV_BSIZE), SEEK_SET) == -1) || 5700 (read(fd, buf, DEV_BSIZE)) != DEV_BSIZE) 5701 rc = 0; 5702 else 5703 rc = 1; 5704 return (rc); 5705 } 5706 5707 /* 5708 * Print every field of the calculated superblock, along with 5709 * its value. To make parsing easier on the caller, the value 5710 * is printed first, then the name. Additionally, there's only 5711 * one name/value pair per line. All values are reported in 5712 * hexadecimal (with the traditional 0x prefix), as that's slightly 5713 * easier for humans to read. Not that they're expected to, but 5714 * debugging happens. 5715 */ 5716 static void 5717 dump_sblock(void) 5718 { 5719 int row, column, pending, written; 5720 caddr_t source; 5721 5722 if (Rflag) { 5723 pending = sizeof (sblock); 5724 source = (caddr_t)&sblock; 5725 do { 5726 written = write(fileno(stdout), source, pending); 5727 pending -= written; 5728 source += written; 5729 } while ((pending > 0) && (written > 0)); 5730 5731 if (written < 0) { 5732 perror(gettext("Binary dump of superblock failed")); 5733 lockexit(1); 5734 } 5735 return; 5736 } else { 5737 printf("0x%x sblock.fs_link\n", sblock.fs_link); 5738 printf("0x%x sblock.fs_rolled\n", sblock.fs_rolled); 5739 printf("0x%x sblock.fs_sblkno\n", sblock.fs_sblkno); 5740 printf("0x%x sblock.fs_cblkno\n", sblock.fs_cblkno); 5741 printf("0x%x sblock.fs_iblkno\n", sblock.fs_iblkno); 5742 printf("0x%x sblock.fs_dblkno\n", sblock.fs_dblkno); 5743 printf("0x%x sblock.fs_cgoffset\n", sblock.fs_cgoffset); 5744 printf("0x%x sblock.fs_cgmask\n", sblock.fs_cgmask); 5745 printf("0x%x sblock.fs_time\n", sblock.fs_time); 5746 printf("0x%x sblock.fs_size\n", sblock.fs_size); 5747 printf("0x%x sblock.fs_dsize\n", sblock.fs_dsize); 5748 printf("0x%x sblock.fs_ncg\n", sblock.fs_ncg); 5749 printf("0x%x sblock.fs_bsize\n", sblock.fs_bsize); 5750 printf("0x%x sblock.fs_fsize\n", sblock.fs_fsize); 5751 printf("0x%x sblock.fs_frag\n", sblock.fs_frag); 5752 printf("0x%x sblock.fs_minfree\n", sblock.fs_minfree); 5753 printf("0x%x sblock.fs_rotdelay\n", sblock.fs_rotdelay); 5754 printf("0x%x sblock.fs_rps\n", sblock.fs_rps); 5755 printf("0x%x sblock.fs_bmask\n", sblock.fs_bmask); 5756 printf("0x%x sblock.fs_fmask\n", sblock.fs_fmask); 5757 printf("0x%x sblock.fs_bshift\n", sblock.fs_bshift); 5758 printf("0x%x sblock.fs_fshift\n", sblock.fs_fshift); 5759 printf("0x%x sblock.fs_maxcontig\n", sblock.fs_maxcontig); 5760 printf("0x%x sblock.fs_maxbpg\n", sblock.fs_maxbpg); 5761 printf("0x%x sblock.fs_fragshift\n", sblock.fs_fragshift); 5762 printf("0x%x sblock.fs_fsbtodb\n", sblock.fs_fsbtodb); 5763 printf("0x%x sblock.fs_sbsize\n", sblock.fs_sbsize); 5764 printf("0x%x sblock.fs_csmask\n", sblock.fs_csmask); 5765 printf("0x%x sblock.fs_csshift\n", sblock.fs_csshift); 5766 printf("0x%x sblock.fs_nindir\n", sblock.fs_nindir); 5767 printf("0x%x sblock.fs_inopb\n", sblock.fs_inopb); 5768 printf("0x%x sblock.fs_nspf\n", sblock.fs_nspf); 5769 printf("0x%x sblock.fs_optim\n", sblock.fs_optim); 5770 #ifdef _LITTLE_ENDIAN 5771 printf("0x%x sblock.fs_state\n", sblock.fs_state); 5772 #else 5773 printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect); 5774 #endif 5775 printf("0x%x sblock.fs_si\n", sblock.fs_si); 5776 printf("0x%x sblock.fs_trackskew\n", sblock.fs_trackskew); 5777 printf("0x%x sblock.fs_id[0]\n", sblock.fs_id[0]); 5778 printf("0x%x sblock.fs_id[1]\n", sblock.fs_id[1]); 5779 printf("0x%x sblock.fs_csaddr\n", sblock.fs_csaddr); 5780 printf("0x%x sblock.fs_cssize\n", sblock.fs_cssize); 5781 printf("0x%x sblock.fs_cgsize\n", sblock.fs_cgsize); 5782 printf("0x%x sblock.fs_ntrak\n", sblock.fs_ntrak); 5783 printf("0x%x sblock.fs_nsect\n", sblock.fs_nsect); 5784 printf("0x%x sblock.fs_spc\n", sblock.fs_spc); 5785 printf("0x%x sblock.fs_ncyl\n", sblock.fs_ncyl); 5786 printf("0x%x sblock.fs_cpg\n", sblock.fs_cpg); 5787 printf("0x%x sblock.fs_ipg\n", sblock.fs_ipg); 5788 printf("0x%x sblock.fs_fpg\n", sblock.fs_fpg); 5789 printf("0x%x sblock.fs_cstotal\n", sblock.fs_cstotal); 5790 printf("0x%x sblock.fs_fmod\n", sblock.fs_fmod); 5791 printf("0x%x sblock.fs_clean\n", sblock.fs_clean); 5792 printf("0x%x sblock.fs_ronly\n", sblock.fs_ronly); 5793 printf("0x%x sblock.fs_flags\n", sblock.fs_flags); 5794 printf("0x%x sblock.fs_fsmnt\n", sblock.fs_fsmnt); 5795 printf("0x%x sblock.fs_cgrotor\n", sblock.fs_cgrotor); 5796 printf("0x%x sblock.fs_u.fs_csp\n", sblock.fs_u.fs_csp); 5797 printf("0x%x sblock.fs_cpc\n", sblock.fs_cpc); 5798 5799 /* 5800 * No macros are defined for the dimensions of the 5801 * opostbl array. 5802 */ 5803 for (row = 0; row < 16; row++) { 5804 for (column = 0; column < 8; column++) { 5805 printf("0x%x sblock.fs_opostbl[%d][%d]\n", 5806 sblock.fs_opostbl[row][column], 5807 row, column); 5808 } 5809 } 5810 5811 /* 5812 * Ditto the size of sparecon. 5813 */ 5814 for (row = 0; row < 51; row++) { 5815 printf("0x%x sblock.fs_sparecon[%d]\n", 5816 sblock.fs_sparecon[row], row); 5817 } 5818 5819 printf("0x%x sblock.fs_version\n", sblock.fs_version); 5820 printf("0x%x sblock.fs_logbno\n", sblock.fs_logbno); 5821 printf("0x%x sblock.fs_reclaim\n", sblock.fs_reclaim); 5822 printf("0x%x sblock.fs_sparecon2\n", sblock.fs_sparecon2); 5823 #ifdef _LITTLE_ENDIAN 5824 printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect); 5825 #else 5826 printf("0x%x sblock.fs_state\n", sblock.fs_state); 5827 #endif 5828 printf("0x%llx sblock.fs_qbmask\n", sblock.fs_qbmask); 5829 printf("0x%llx sblock.fs_qfmask\n", sblock.fs_qfmask); 5830 printf("0x%x sblock.fs_postblformat\n", sblock.fs_postblformat); 5831 printf("0x%x sblock.fs_nrpos\n", sblock.fs_nrpos); 5832 printf("0x%x sblock.fs_postbloff\n", sblock.fs_postbloff); 5833 printf("0x%x sblock.fs_rotbloff\n", sblock.fs_rotbloff); 5834 printf("0x%x sblock.fs_magic\n", sblock.fs_magic); 5835 5836 /* 5837 * fs_space isn't of much use in this context, so we'll 5838 * just ignore it for now. 5839 */ 5840 } 5841 } 5842