xref: /illumos-gate/usr/src/cmd/format/auto_sense.c (revision 5b0d53307d70a828ad7aef4dc6d8a3ad7d5c231b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011 Gary Mills
23  *
24  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
28  */
29 
30 /*
31  * This file contains functions to implement automatic configuration
32  * of scsi disks.
33  */
34 #include "global.h"
35 
36 #include <fcntl.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <strings.h>
40 #include <stdlib.h>
41 #include <ctype.h>
42 
43 #include "misc.h"
44 #include "param.h"
45 #include "ctlr_scsi.h"
46 #include "auto_sense.h"
47 #include "partition.h"
48 #include "label.h"
49 #include "startup.h"
50 #include "analyze.h"
51 #include "io.h"
52 #include "hardware_structs.h"
53 #include "menu_fdisk.h"
54 
55 
56 #define	DISK_NAME_MAX		256
57 
58 extern	int			nctypes;
59 extern	struct	ctlr_type	ctlr_types[];
60 
61 
62 /*
63  * Marker for free hog partition
64  */
65 #define	HOG		(-1)
66 
67 
68 
69 /*
70  * Default partition tables
71  *
72  *	Disk capacity		root	swap	usr
73  *	-------------		----	----	---
74  *	0mb to 64mb		0	0	remainder
75  *	64mb to 180mb		16mb	16mb	remainder
76  *	180mb to 280mb		16mb	32mb	remainder
77  *	280mb to 380mb		24mb	32mb	remainder
78  *	380mb to 600mb		32mb	32mb	remainder
79  *	600mb to 1gb		32mb	64mb	remainder
80  *	1gb to 2gb		64mb	128mb	remainder
81  *	2gb on up		128mb	128mb	remainder
82  */
83 struct part_table {
84 	int	partitions[NDKMAP];
85 };
86 
87 static struct part_table part_table_64mb = {
88 	{ 0,	0,	0,	0,	0,	0,	HOG,	0}
89 };
90 
91 static struct part_table part_table_180mb = {
92 	{ 16,	16,	0,	0,	0,	0,	HOG,	0}
93 };
94 
95 static struct part_table part_table_280mb = {
96 	{ 16,	32,	0,	0,	0,	0,	HOG,	0}
97 };
98 
99 static struct part_table part_table_380mb = {
100 	{ 24,	32,	0,	0,	0,	0,	HOG,	0}
101 };
102 
103 static struct part_table part_table_600mb = {
104 	{ 32,	32,	0,	0,	0,	0,	HOG,	0}
105 };
106 
107 static struct part_table part_table_1gb = {
108 	{ 32,	64,	0,	0,	0,	0,	HOG,	0}
109 };
110 
111 static struct part_table part_table_2gb = {
112 	{ 64,	128,	0,	0,	0,	0,	HOG,	0}
113 };
114 
115 static struct part_table part_table_infinity = {
116 	{ 128,	128,	0,	0,	0,	0,	HOG,	0}
117 };
118 
119 
120 static struct default_partitions {
121 	diskaddr_t		min_capacity;
122 	diskaddr_t		max_capacity;
123 	struct part_table	*part_table;
124 } default_partitions[] = {
125 	{ 0,	64,		&part_table_64mb },	/* 0 to 64 mb */
126 	{ 64,	180,		&part_table_180mb },	/* 64 to 180 mb */
127 	{ 180,	280,		&part_table_280mb },	/* 180 to 280 mb */
128 	{ 280,	380,		&part_table_380mb },	/* 280 to 380 mb */
129 	{ 380,	600,		&part_table_600mb },	/* 380 to 600 mb */
130 	{ 600,	1024,		&part_table_1gb },	/* 600 to 1 gb */
131 	{ 1024,	2048,		&part_table_2gb },	/* 1 to 2 gb */
132 	{ 2048,	INFINITY,	&part_table_infinity },	/* 2 gb on up */
133 };
134 
135 #define	DEFAULT_PARTITION_TABLE_SIZE	\
136 	(sizeof (default_partitions) / sizeof (struct default_partitions))
137 
138 /*
139  * msgs for check()
140  */
141 #define	FORMAT_MSG	"Auto configuration via format.dat"
142 #define	GENERIC_MSG	"Auto configuration via generic SCSI-2"
143 
144 /*
145  * Disks on symbios(Hardwire raid controller) return a fixed number
146  * of heads(64)/cylinders(64) and adjust the cylinders depending
147  * capacity of the configured lun.
148  * In such a case we get number of physical cylinders < 3 which
149  * is the minimum required by solaris(2 reserved + 1 data cylinders).
150  * Hence try to adjust the cylinders by reducing the "nsect/nhead".
151  *
152  */
153 /*
154  * assuming a minimum of 32 block cylinders.
155  */
156 #define	MINIMUM_NO_HEADS	2
157 #define	MINIMUM_NO_SECTORS	16
158 
159 #define	MINIMUM_NO_CYLINDERS	128
160 
161 #if defined(_SUNOS_VTOC_8)
162 
163 /* These are 16-bit fields */
164 #define	MAXIMUM_NO_HEADS	65535
165 #define	MAXIMUM_NO_SECTORS	65535
166 #define	MAXIMUM_NO_CYLINDERS	65535
167 
168 #endif	/* defined(_SUNOS_VTOC_8) */
169 
170 /*
171  * minimum number of cylinders required by Solaris.
172  */
173 #define	SUN_MIN_CYL		3
174 
175 static struct disk_type	*generic_disk_sense(
176 				int		fd,
177 				int		can_prompt,
178 				struct dk_label	*label,
179 				struct scsi_inquiry *inquiry,
180 				struct scsi_capacity_16 *capacity,
181 				char		*disk_name);
182 static int		use_existing_disk_type(
183 				int		fd,
184 				int		can_prompt,
185 				struct dk_label	*label,
186 				struct scsi_inquiry *inquiry,
187 				struct disk_type *disk_type,
188 				struct scsi_capacity_16 *capacity);
189 int			build_default_partition(struct dk_label *label,
190 				int ctrl_type);
191 static struct disk_type	*find_scsi_disk_type(
192 				char		*disk_name,
193 				struct dk_label	*label);
194 static struct disk_type	*find_scsi_disk_by_name(
195 				char		*disk_name);
196 static struct ctlr_type	*find_scsi_ctlr_type(void);
197 static struct ctlr_info	*find_scsi_ctlr_info(
198 				struct dk_cinfo	*dkinfo);
199 static struct disk_type	*new_scsi_disk_type(
200 				int		fd,
201 				char		*disk_name,
202 				struct dk_label	*label);
203 static struct disk_info	*find_scsi_disk_info(
204 				struct dk_cinfo	*dkinfo);
205 
206 static struct disk_type *new_direct_disk_type(int fd, char *disk_name,
207     struct dk_label *label);
208 
209 static int efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc);
210 static int auto_label_init(struct dk_label *label);
211 static struct ctlr_type *find_ctlr_type(ushort_t);
212 static struct ctlr_info *find_ctlr_info(struct dk_cinfo	*, ushort_t);
213 static struct disk_info *find_disk_info(struct dk_cinfo *, ushort_t);
214 
215 static char		*get_sun_disk_name(
216 				char		*disk_name,
217 				struct scsi_inquiry *inquiry);
218 static char		*strcopy(
219 				char	*dst,
220 				char	*src,
221 				int	n);
222 static	int		adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl,
223 				uint_t *nsect, uint_t *nhead);
224 static void		compute_chs_values(diskaddr_t total_capacity,
225 				diskaddr_t usable_capacity, uint_t *pcylp,
226 				uint_t *nheadp, uint_t *nsectp);
227 #if defined(_SUNOS_VTOC_8)
228 static diskaddr_t square_box(
229 			diskaddr_t capacity,
230 			uint_t *dim1, uint_t lim1,
231 			uint_t *dim2, uint_t lim2,
232 			uint_t *dim3, uint_t lim3);
233 #endif	/* defined(_SUNOS_VTOC_8) */
234 
235 
236 /*
237  * We need to get information necessary to construct a *new* efi
238  * label type
239  */
240 struct disk_type *
241 auto_efi_sense(int fd, struct efi_info *label)
242 {
243 
244 	struct dk_gpt	*vtoc;
245 	int		i;
246 
247 	struct disk_type *disk, *dp;
248 	struct disk_info *disk_info;
249 	struct ctlr_info *ctlr;
250 	struct dk_cinfo dkinfo;
251 	struct partition_info *part;
252 	uint64_t reserved;
253 	uint16_t type;
254 
255 	if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
256 		if (option_msg && diag_msg) {
257 			err_print("DKIOCINFO failed\n");
258 		}
259 		return (NULL);
260 	}
261 	if (cur_ctype != NULL)
262 		type = cur_ctype->ctype_ctype;
263 	else
264 		type = dkinfo.dki_ctype;
265 
266 	if (type == DKC_DIRECT || type == DKC_VBD || type == DKC_BLKDEV) {
267 		ctlr = find_ctlr_info(&dkinfo, type);
268 		disk_info = find_disk_info(&dkinfo, type);
269 	} else {
270 		ctlr = find_scsi_ctlr_info(&dkinfo);
271 		disk_info = find_scsi_disk_info(&dkinfo);
272 	}
273 
274 	/*
275 	 * get vendor, product, revision and capacity info.
276 	 */
277 	if (get_disk_info(fd, label, disk_info) == -1) {
278 		return (NULL);
279 	}
280 	/*
281 	 * Now build the default partition table
282 	 */
283 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &vtoc) != 0) {
284 		err_print("efi_alloc_and_init failed. \n");
285 		return (NULL);
286 	}
287 
288 	label->e_parts = vtoc;
289 	reserved = efi_reserved_sectors(vtoc);
290 
291 	/*
292 	 * Create a whole hog EFI partition table:
293 	 * S0 takes the whole disk except the primary EFI label,
294 	 * backup EFI label, and the reserved partition.
295 	 */
296 	vtoc->efi_parts[0].p_tag = V_USR;
297 	vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba;
298 	vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba - vtoc->efi_first_u_lba
299 	    - reserved + 1;
300 
301 	/*
302 	 * S1-S6 are unassigned slices.
303 	 */
304 	for (i = 1; i < vtoc->efi_nparts - 2; i ++) {
305 		vtoc->efi_parts[i].p_tag = V_UNASSIGNED;
306 		vtoc->efi_parts[i].p_start = 0;
307 		vtoc->efi_parts[i].p_size = 0;
308 	}
309 
310 	/*
311 	 * The reserved slice
312 	 */
313 	vtoc->efi_parts[vtoc->efi_nparts - 1].p_tag = V_RESERVED;
314 	vtoc->efi_parts[vtoc->efi_nparts - 1].p_start =
315 	    vtoc->efi_last_u_lba - reserved + 1;
316 	vtoc->efi_parts[vtoc->efi_nparts - 1].p_size = reserved;
317 
318 	/*
319 	 * Now stick all of it into the disk_type struct
320 	 */
321 
322 	disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
323 	assert(disk_info->disk_ctlr == ctlr);
324 	dp = ctlr->ctlr_ctype->ctype_dlist;
325 	if (dp == NULL) {
326 		ctlr->ctlr_ctype->ctype_dlist = dp;
327 	} else {
328 		while (dp->dtype_next != NULL) {
329 			dp = dp->dtype_next;
330 		}
331 		dp->dtype_next = disk;
332 	}
333 	disk->dtype_next = NULL;
334 
335 	disk->vendor = strdup(label->vendor);
336 	disk->product = strdup(label->product);
337 	disk->revision = strdup(label->revision);
338 
339 	if (disk->vendor == NULL ||
340 	    disk->product == NULL ||
341 	    disk->revision == NULL) {
342 		free(disk->vendor);
343 		free(disk->product);
344 		free(disk->revision);
345 		free(disk);
346 		return (NULL);
347 	}
348 
349 	disk->capacity = label->capacity;
350 
351 	part = (struct partition_info *)
352 	    zalloc(sizeof (struct partition_info));
353 	disk->dtype_plist = part;
354 
355 	part->pinfo_name = alloc_string("default");
356 	part->pinfo_next = NULL;
357 	part->etoc = vtoc;
358 
359 	bzero(disk_info->v_volume, LEN_DKL_VVOL);
360 	disk_info->disk_parts = part;
361 	return (disk);
362 }
363 
364 static int
365 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
366 {
367 	void *data = dk_ioc->dki_data;
368 	int error;
369 
370 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
371 	error = ioctl(fd, cmd, (void *)dk_ioc);
372 	dk_ioc->dki_data = data;
373 
374 	return (error);
375 }
376 
377 static struct ctlr_type *
378 find_ctlr_type(ushort_t type)
379 {
380 	struct	mctlr_list	*mlp;
381 
382 	assert(type == DKC_DIRECT ||
383 	    type == DKC_VBD ||
384 	    type == DKC_BLKDEV);
385 
386 	mlp = controlp;
387 
388 	while (mlp != NULL) {
389 		if (mlp->ctlr_type->ctype_ctype == type) {
390 			return (mlp->ctlr_type);
391 		}
392 		mlp = mlp->next;
393 	}
394 
395 	impossible("no DIRECT/VBD/BLKDEV controller type");
396 
397 	return (NULL);
398 }
399 
400 static struct ctlr_info *
401 find_ctlr_info(struct dk_cinfo *dkinfo, ushort_t type)
402 {
403 	struct ctlr_info	*ctlr;
404 
405 	assert(type == DKC_DIRECT ||
406 	    type == DKC_VBD ||
407 	    type == DKC_BLKDEV);
408 
409 	for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) {
410 		if (ctlr->ctlr_addr == dkinfo->dki_addr &&
411 		    ctlr->ctlr_space == dkinfo->dki_space &&
412 		    ctlr->ctlr_ctype->ctype_ctype == dkinfo->dki_ctype) {
413 			return (ctlr);
414 		}
415 	}
416 
417 	impossible("no DIRECT/VBD/BLKDEV controller info");
418 	/*NOTREACHED*/
419 	return (NULL);
420 }
421 
422 static  struct disk_info *
423 find_disk_info(struct dk_cinfo *dkinfo, ushort_t type)
424 {
425 	struct disk_info	*disk;
426 	struct dk_cinfo		*dp;
427 
428 	assert(type == DKC_DIRECT ||
429 	    type == DKC_VBD ||
430 	    type == DKC_BLKDEV);
431 
432 	for (disk = disk_list; disk != NULL; disk = disk->disk_next) {
433 		dp = &disk->disk_dkinfo;
434 		if (dp->dki_ctype == dkinfo->dki_ctype &&
435 		    dp->dki_cnum == dkinfo->dki_cnum &&
436 		    dp->dki_unit == dkinfo->dki_unit &&
437 		    strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) {
438 			return (disk);
439 		}
440 	}
441 
442 	impossible("No DIRECT/VBD/BLKDEV disk info instance\n");
443 	/*NOTREACHED*/
444 	return (NULL);
445 }
446 
447 /*
448  * To convert EFI to SMI labels, we need to get label geometry.
449  * Unfortunately at this time there is no good way to do so.
450  * DKIOCGGEOM will fail if disk is EFI labeled. So we hack around
451  * it and clear EFI label, do a DKIOCGGEOM and put the EFI label
452  * back on disk.
453  * This routine gets the label geometry and initializes the label
454  * It uses cur_file as opened device.
455  * returns 0 if succeeds or -1 if failed.
456  */
457 static int
458 auto_label_init(struct dk_label *label)
459 {
460 	dk_efi_t	dk_ioc;
461 	dk_efi_t	dk_ioc_back;
462 	efi_gpt_t	*data = NULL;
463 	efi_gpt_t	*databack = NULL;
464 	struct dk_geom	disk_geom;
465 	struct dk_minfo	disk_info;
466 	efi_gpt_t	*backsigp;
467 	int		fd = cur_file;
468 	int		rval = -1;
469 	int		efisize = EFI_LABEL_SIZE * 2;
470 	int		success = 0;
471 	uint64_t	sig;
472 	uint64_t	backsig;
473 
474 	if ((data = calloc(efisize, 1)) == NULL) {
475 		err_print("auto_label_init: calloc failed\n");
476 		goto auto_label_init_out;
477 	}
478 
479 	dk_ioc.dki_data = data;
480 	dk_ioc.dki_lba = 1;
481 	dk_ioc.dki_length = efisize;
482 
483 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) != 0) {
484 		err_print("auto_label_init: GETEFI failed\n");
485 		goto auto_label_init_out;
486 	}
487 
488 	if ((databack = calloc(efisize, 1)) == NULL) {
489 		err_print("auto_label_init calloc2 failed");
490 		goto auto_label_init_out;
491 	}
492 
493 	/* get the LBA size and capacity */
494 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
495 		err_print("auto_label_init: dkiocgmediainfo failed\n");
496 		goto auto_label_init_out;
497 	}
498 
499 	if (disk_info.dki_lbsize == 0) {
500 		if (option_msg && diag_msg) {
501 			err_print("auto_lbal_init: assuming 512 byte"
502 			    "block size");
503 		}
504 		disk_info.dki_lbsize = DEV_BSIZE;
505 	}
506 
507 	dk_ioc_back.dki_data = databack;
508 
509 	/*
510 	 * back up efi label goes to capacity - 1, we are reading an extra block
511 	 * before the back up label.
512 	 */
513 	dk_ioc_back.dki_lba = disk_info.dki_capacity - 1 - 1;
514 	dk_ioc_back.dki_length = efisize;
515 
516 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc_back) != 0) {
517 		err_print("auto_label_init: GETEFI backup failed\n");
518 		goto auto_label_init_out;
519 	}
520 
521 	sig = dk_ioc.dki_data->efi_gpt_Signature;
522 	dk_ioc.dki_data->efi_gpt_Signature = 0x0;
523 
524 	enter_critical();
525 
526 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
527 		err_print("auto_label_init: SETEFI failed\n");
528 		exit_critical();
529 		goto auto_label_init_out;
530 	}
531 
532 	backsigp = (efi_gpt_t *)((uintptr_t)dk_ioc_back.dki_data + cur_blksz);
533 
534 	backsig = backsigp->efi_gpt_Signature;
535 
536 	backsigp->efi_gpt_Signature = 0;
537 
538 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc_back) == -1) {
539 		err_print("auto_label_init: SETEFI backup failed\n");
540 	}
541 
542 	if (ioctl(cur_file, DKIOCGGEOM, &disk_geom) != 0)
543 		err_print("auto_label_init: GGEOM failed\n");
544 	else
545 		success = 1;
546 
547 	dk_ioc.dki_data->efi_gpt_Signature = sig;
548 	backsigp->efi_gpt_Signature = backsig;
549 
550 	if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc_back) == -1) {
551 		err_print("auto_label_init: SETEFI revert backup failed\n");
552 		success = 0;
553 	}
554 
555 	if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc) == -1) {
556 		err_print("auto_label_init: SETEFI revert failed\n");
557 		success = 0;
558 	}
559 
560 	exit_critical();
561 
562 	if (success == 0)
563 		goto auto_label_init_out;
564 
565 	ncyl = disk_geom.dkg_ncyl;
566 	acyl = disk_geom.dkg_acyl;
567 	nhead =  disk_geom.dkg_nhead;
568 	nsect = disk_geom.dkg_nsect;
569 	pcyl = ncyl + acyl;
570 
571 	label->dkl_pcyl = pcyl;
572 	label->dkl_ncyl = ncyl;
573 	label->dkl_acyl = acyl;
574 	label->dkl_nhead = nhead;
575 	label->dkl_nsect = nsect;
576 	label->dkl_apc = 0;
577 	label->dkl_intrlv = 1;
578 	label->dkl_rpm = disk_geom.dkg_rpm;
579 
580 	label->dkl_magic = DKL_MAGIC;
581 
582 	(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
583 	    "%s cyl %u alt %u hd %u sec %u",
584 	    "DEFAULT", ncyl, acyl, nhead, nsect);
585 
586 	rval = 0;
587 #if defined(_FIRMWARE_NEEDS_FDISK)
588 	(void) auto_solaris_part(label);
589 	ncyl = label->dkl_ncyl;
590 
591 #endif	/* defined(_FIRMWARE_NEEDS_FDISK) */
592 
593 	if (!build_default_partition(label, DKC_DIRECT)) {
594 		rval = -1;
595 	}
596 
597 	(void) checksum(label, CK_MAKESUM);
598 
599 
600 auto_label_init_out:
601 	if (data)
602 		free(data);
603 	if (databack)
604 		free(databack);
605 
606 	return (rval);
607 }
608 
609 static struct disk_type *
610 new_direct_disk_type(
611 	int		fd,
612 	char		*disk_name,
613 	struct dk_label	*label)
614 {
615 	struct disk_type	*dp;
616 	struct disk_type	*disk;
617 	struct ctlr_info	*ctlr;
618 	struct dk_cinfo		dkinfo;
619 	struct partition_info	*part = NULL;
620 	struct partition_info	*pt;
621 	struct disk_info	*disk_info;
622 	int			i;
623 
624 	/*
625 	 * Get the disk controller info for this disk
626 	 */
627 	if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
628 		if (option_msg && diag_msg) {
629 			err_print("DKIOCINFO failed\n");
630 		}
631 		return (NULL);
632 	}
633 
634 	/*
635 	 * Find the ctlr_info for this disk.
636 	 */
637 	ctlr = find_ctlr_info(&dkinfo, dkinfo.dki_ctype);
638 
639 	/*
640 	 * Allocate a new disk type for the direct controller.
641 	 */
642 	disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
643 
644 	/*
645 	 * Find the disk_info instance for this disk.
646 	 */
647 	disk_info = find_disk_info(&dkinfo, dkinfo.dki_ctype);
648 
649 	/*
650 	 * The controller and the disk should match.
651 	 */
652 	assert(disk_info->disk_ctlr == ctlr);
653 
654 	/*
655 	 * Link the disk into the list of disks
656 	 */
657 	dp = ctlr->ctlr_ctype->ctype_dlist;
658 	if (dp == NULL) {
659 		ctlr->ctlr_ctype->ctype_dlist = dp;
660 	} else {
661 		while (dp->dtype_next != NULL) {
662 			dp = dp->dtype_next;
663 		}
664 		dp->dtype_next = disk;
665 	}
666 	disk->dtype_next = NULL;
667 
668 	/*
669 	 * Allocate and initialize the disk name.
670 	 */
671 	disk->dtype_asciilabel = alloc_string(disk_name);
672 
673 	/*
674 	 * Initialize disk geometry info
675 	 */
676 	disk->dtype_pcyl = label->dkl_pcyl;
677 	disk->dtype_ncyl = label->dkl_ncyl;
678 	disk->dtype_acyl = label->dkl_acyl;
679 	disk->dtype_nhead = label->dkl_nhead;
680 	disk->dtype_nsect = label->dkl_nsect;
681 	disk->dtype_rpm = label->dkl_rpm;
682 
683 	part = (struct partition_info *)
684 	    zalloc(sizeof (struct partition_info));
685 	pt = disk->dtype_plist;
686 	if (pt == NULL) {
687 		disk->dtype_plist = part;
688 	} else {
689 		while (pt->pinfo_next != NULL) {
690 			pt = pt->pinfo_next;
691 		}
692 		pt->pinfo_next = part;
693 	}
694 
695 	part->pinfo_next = NULL;
696 
697 	/*
698 	 * Set up the partition name
699 	 */
700 	part->pinfo_name = alloc_string("default");
701 
702 	/*
703 	 * Fill in the partition info from the label
704 	 */
705 	for (i = 0; i < NDKMAP; i++) {
706 
707 #if defined(_SUNOS_VTOC_8)
708 		part->pinfo_map[i] = label->dkl_map[i];
709 
710 #elif defined(_SUNOS_VTOC_16)
711 		part->pinfo_map[i].dkl_cylno =
712 		    label->dkl_vtoc.v_part[i].p_start /
713 		    ((blkaddr_t)(disk->dtype_nhead *
714 		    disk->dtype_nsect - apc));
715 		part->pinfo_map[i].dkl_nblk =
716 		    label->dkl_vtoc.v_part[i].p_size;
717 #else
718 #error No VTOC format defined.
719 #endif				/* defined(_SUNOS_VTOC_8) */
720 	}
721 
722 	/*
723 	 * Use the VTOC if valid, or install a default
724 	 */
725 	if (label->dkl_vtoc.v_version == V_VERSION) {
726 		(void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume,
727 		    LEN_DKL_VVOL);
728 		part->vtoc = label->dkl_vtoc;
729 	} else {
730 		(void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL);
731 		set_vtoc_defaults(part);
732 	}
733 
734 	/*
735 	 * Link the disk to the partition map
736 	 */
737 	disk_info->disk_parts = part;
738 
739 	return (disk);
740 }
741 
742 /*
743  * Get a disk type that has label info. This is used to convert
744  * EFI label to SMI label
745  */
746 struct disk_type *
747 auto_direct_get_geom_label(int fd, struct dk_label *label)
748 {
749 	struct disk_type		*disk_type;
750 
751 	if (auto_label_init(label) != 0) {
752 		err_print("auto_direct_get_geom_label: failed to get label"
753 		    "geometry");
754 		return (NULL);
755 	} else {
756 		disk_type = new_direct_disk_type(fd, "DEFAULT", label);
757 		return (disk_type);
758 	}
759 }
760 
761 /*
762  * Auto-sense a scsi disk configuration, ie get the information
763  * necessary to construct a label.  We have two different
764  * ways to auto-sense a scsi disk:
765  *	- format.dat override, via inquiry name
766  *	- generic scsi, via standard mode sense and inquiry
767  * Depending on how and when we are called, and/or
768  * change geometry and reformat.
769  */
770 struct disk_type *
771 auto_sense(
772 	int		fd,
773 	int		can_prompt,
774 	struct dk_label	*label)
775 {
776 	struct scsi_inquiry		inquiry;
777 	struct scsi_capacity_16		capacity;
778 	struct disk_type		*disk_type;
779 	char				disk_name[DISK_NAME_MAX];
780 	int				force_format_dat = 0;
781 	int				force_generic = 0;
782 	u_ioparam_t			ioparam;
783 	int				deflt;
784 	char				*buf;
785 
786 	/*
787 	 * First, if expert mode, find out if the user
788 	 * wants to override any of the standard methods.
789 	 */
790 	if (can_prompt && expert_mode) {
791 		deflt = 1;
792 		ioparam.io_charlist = confirm_list;
793 		if (input(FIO_MSTR, FORMAT_MSG, '?', &ioparam,
794 		    &deflt, DATA_INPUT) == 0) {
795 			force_format_dat = 1;
796 		} else if (input(FIO_MSTR, GENERIC_MSG, '?', &ioparam,
797 		    &deflt, DATA_INPUT) == 0) {
798 			force_generic = 1;
799 		}
800 	}
801 
802 	/*
803 	 * Get the Inquiry data.  If this fails, there's
804 	 * no hope for this disk, so give up.
805 	 */
806 	if (uscsi_inquiry(fd, (char *)&inquiry, sizeof (inquiry))) {
807 		return (NULL);
808 	}
809 	if (option_msg && diag_msg) {
810 		err_print("Product id: ");
811 		print_buf(inquiry.inq_pid, sizeof (inquiry.inq_pid));
812 		err_print("\n");
813 	}
814 
815 	/*
816 	 * Get the Read Capacity
817 	 */
818 	if (uscsi_read_capacity(fd, &capacity)) {
819 		return (NULL);
820 	}
821 
822 	/*
823 	 * If the reported capacity is set to zero, then the disk
824 	 * is not usable. If the reported capacity is set to all
825 	 * 0xf's, then this disk is too large.  These could only
826 	 * happen with a device that supports LBAs larger than 64
827 	 * bits which are not defined by any current T10 standards
828 	 * or by error responding from target.
829 	 */
830 	if ((capacity.sc_capacity == 0) ||
831 	    (capacity.sc_capacity == UINT_MAX64)) {
832 		if (option_msg && diag_msg) {
833 			err_print("Invalid capacity\n");
834 		}
835 		return (NULL);
836 	}
837 	if (option_msg && diag_msg) {
838 		err_print("blocks:  %llu (0x%llx)\n",
839 		    capacity.sc_capacity, capacity.sc_capacity);
840 		err_print("blksize: %u\n", capacity.sc_lbasize);
841 	}
842 
843 	/*
844 	 * Extract the disk name for the format.dat override
845 	 */
846 	(void) get_sun_disk_name(disk_name, &inquiry);
847 	if (option_msg && diag_msg) {
848 		err_print("disk name:  `%s`\n", disk_name);
849 	}
850 
851 	buf = zalloc(cur_blksz);
852 	if (scsi_rdwr(DIR_READ, fd, (diskaddr_t)0, 1, (caddr_t)buf,
853 	    F_SILENT, NULL)) {
854 		free(buf);
855 		return (NULL);
856 	}
857 	free(buf);
858 
859 	/*
860 	 * Figure out which method we use for auto sense.
861 	 * If a particular method fails, we fall back to
862 	 * the next possibility.
863 	 */
864 
865 	if (force_generic) {
866 		return (generic_disk_sense(fd, can_prompt, label,
867 		    &inquiry, &capacity, disk_name));
868 	}
869 
870 	/*
871 	 * Try for an existing format.dat first
872 	 */
873 	if ((disk_type = find_scsi_disk_by_name(disk_name)) != NULL) {
874 		if (use_existing_disk_type(fd, can_prompt, label,
875 		    &inquiry, disk_type, &capacity)) {
876 			return (disk_type);
877 		}
878 		if (force_format_dat) {
879 			return (NULL);
880 		}
881 	}
882 
883 	/*
884 	 * Otherwise, try using generic SCSI-2 sense and inquiry.
885 	 */
886 
887 	return (generic_disk_sense(fd, can_prompt, label,
888 	    &inquiry, &capacity, disk_name));
889 }
890 
891 
892 
893 /*ARGSUSED*/
894 static struct disk_type *
895 generic_disk_sense(
896 	int			fd,
897 	int			can_prompt,
898 	struct dk_label		*label,
899 	struct scsi_inquiry	*inquiry,
900 	struct scsi_capacity_16	*capacity,
901 	char			*disk_name)
902 {
903 	struct disk_type		*disk;
904 	int				setdefault = 0;
905 	uint_t				pcyl = 0;
906 	uint_t				ncyl = 0;
907 	uint_t				acyl = 0;
908 	uint_t				nhead = 0;
909 	uint_t				nsect = 0;
910 	int				rpm = 0;
911 	diskaddr_t			nblocks = 0;
912 	diskaddr_t			tblocks = 0;
913 	union {
914 		struct mode_format	page3;
915 		uchar_t			buf3[MAX_MODE_SENSE_SIZE];
916 	} u_page3;
917 	union {
918 		struct mode_geometry	page4;
919 		uchar_t			buf4[MAX_MODE_SENSE_SIZE];
920 	} u_page4;
921 	struct mode_format		*page3 = &u_page3.page3;
922 	struct mode_geometry		*page4 = &u_page4.page4;
923 	struct scsi_ms_header		header;
924 
925 	/*
926 	 * If the name of this disk appears to be "SUN", use it,
927 	 * otherwise construct a name out of the generic
928 	 * Inquiry info.  If it turns out that we already
929 	 * have a SUN disk type of this name that differs
930 	 * in geometry, we will revert to the generic name
931 	 * anyway.
932 	 */
933 	if (memcmp(disk_name, "SUN", strlen("SUN")) != 0) {
934 		(void) get_generic_disk_name(disk_name, inquiry);
935 	}
936 
937 	/*
938 	 * Get the number of blocks from Read Capacity data. Note that
939 	 * the logical block address range from 0 to capacity->sc_capacity.
940 	 * Limit the size to 2 TB (UINT32_MAX) to use with SMI labels.
941 	 */
942 	tblocks = (capacity->sc_capacity + 1);
943 	if (tblocks > UINT32_MAX)
944 		nblocks = UINT32_MAX;
945 	else
946 		nblocks = tblocks;
947 
948 	/*
949 	 * Get current Page 3 - Format Parameters page
950 	 */
951 	if (uscsi_mode_sense(fd, DAD_MODE_FORMAT, MODE_SENSE_PC_CURRENT,
952 	    (caddr_t)&u_page3, MAX_MODE_SENSE_SIZE, &header)) {
953 		setdefault = 1;
954 	}
955 
956 	/*
957 	 * Get current Page 4 - Drive Geometry page
958 	 */
959 	if (uscsi_mode_sense(fd, DAD_MODE_GEOMETRY, MODE_SENSE_PC_CURRENT,
960 	    (caddr_t)&u_page4, MAX_MODE_SENSE_SIZE, &header)) {
961 		setdefault = 1;
962 	}
963 
964 	if (setdefault != 1) {
965 		/* The inquiry of mode page 3 & page 4 are successful */
966 		/*
967 		 * Correct for byte order if necessary
968 		 */
969 		page4->rpm = BE_16(page4->rpm);
970 		page4->step_rate = BE_16(page4->step_rate);
971 		page3->tracks_per_zone = BE_16(page3->tracks_per_zone);
972 		page3->alt_sect_zone = BE_16(page3->alt_sect_zone);
973 		page3->alt_tracks_zone = BE_16(page3->alt_tracks_zone);
974 		page3->alt_tracks_vol = BE_16(page3->alt_tracks_vol);
975 		page3->sect_track = BE_16(page3->sect_track);
976 		page3->data_bytes_sect = BE_16(page3->data_bytes_sect);
977 		page3->interleave = BE_16(page3->interleave);
978 		page3->track_skew = BE_16(page3->track_skew);
979 		page3->cylinder_skew = BE_16(page3->cylinder_skew);
980 
981 
982 		/*
983 		 * Construct a new label out of the sense data,
984 		 * Inquiry and Capacity.
985 		 *
986 		 * If the disk capacity is > 1TB then simply compute
987 		 * the CHS values based on the total disk capacity and
988 		 * not use the values from mode-sense data.
989 		 */
990 		if (tblocks > INT32_MAX) {
991 			compute_chs_values(tblocks, nblocks, &pcyl, &nhead,
992 			    &nsect);
993 		} else {
994 			pcyl = (page4->cyl_ub << 16) + (page4->cyl_mb << 8) +
995 			    page4->cyl_lb;
996 			nhead = page4->heads;
997 			nsect = page3->sect_track;
998 		}
999 
1000 		rpm = page4->rpm;
1001 
1002 		/*
1003 		 * If the number of physical cylinders reported is less
1004 		 * the SUN_MIN_CYL(3) then try to adjust the geometry so that
1005 		 * we have atleast SUN_MIN_CYL cylinders.
1006 		 */
1007 		if (pcyl < SUN_MIN_CYL) {
1008 			if (nhead == 0 || nsect == 0) {
1009 				setdefault = 1;
1010 			} else if (adjust_disk_geometry(
1011 			    (diskaddr_t)(capacity->sc_capacity + 1),
1012 			    &pcyl, &nhead, &nsect)) {
1013 				setdefault = 1;
1014 			}
1015 		}
1016 	}
1017 
1018 	/*
1019 	 * Mode sense page 3 and page 4 are obsolete in SCSI-3. For
1020 	 * newly developed large sector size disk, we will not rely on
1021 	 * those two pages but compute geometry directly.
1022 	 */
1023 	if ((setdefault == 1) || (capacity->sc_lbasize != DEV_BSIZE)) {
1024 		/*
1025 		 * If the number of cylinders or the number of heads reported
1026 		 * is zero, we think the inquiry of page 3 and page 4 failed.
1027 		 * We will set the geometry infomation by ourselves.
1028 		 */
1029 		compute_chs_values(tblocks, nblocks, &pcyl, &nhead, &nsect);
1030 	}
1031 
1032 	/*
1033 	 * The sd driver reserves 2 cylinders the backup disk label and
1034 	 * the deviceid.  Set the number of data cylinders to pcyl-acyl.
1035 	 */
1036 	acyl = DK_ACYL;
1037 	ncyl = pcyl - acyl;
1038 
1039 	if (option_msg && diag_msg) {
1040 		err_print("Geometry:\n");
1041 		err_print("    pcyl:    %u\n", pcyl);
1042 		err_print("    ncyl:    %u\n", ncyl);
1043 		err_print("    heads:   %u\n", nhead);
1044 		err_print("    nsects:  %u\n", nsect);
1045 		err_print("    acyl:    %u\n", acyl);
1046 
1047 #if defined(_SUNOS_VTOC_16)
1048 		err_print("    bcyl:    %u\n", bcyl);
1049 #endif			/* defined(_SUNOS_VTOC_16) */
1050 
1051 		err_print("    rpm:     %d\n", rpm);
1052 		err_print("    nblocks:     %llu\n", nblocks);
1053 	}
1054 
1055 	/*
1056 	 * Some drives do not support page4 or report 0 for page4->rpm,
1057 	 * adjust it to AVG_RPM, 3600.
1058 	 */
1059 	if (rpm < MIN_RPM || rpm > MAX_RPM) {
1060 		if (option_msg && diag_msg)
1061 			err_print("The current rpm value %d is invalid,"
1062 			    " adjusting it to %d\n", rpm, AVG_RPM);
1063 		rpm = AVG_RPM;
1064 	}
1065 
1066 	/*
1067 	 * Some drives report 0 for nsect (page 3, byte 10 and 11) if they
1068 	 * have variable number of sectors per track. So adjust nsect.
1069 	 * Also the value is defined as vendor specific, hence check if
1070 	 * it is in a tolerable range. The values (32 and 4 below) are
1071 	 * chosen so that this change below does not generate a different
1072 	 * geometry for currently supported sun disks.
1073 	 */
1074 	if ((nsect == 0) ||
1075 	    ((diskaddr_t)pcyl * nhead * nsect) < (nblocks - nblocks/32) ||
1076 	    ((diskaddr_t)pcyl * nhead * nsect) > (nblocks + nblocks/4)) {
1077 		if (nblocks > (pcyl * nhead)) {
1078 			err_print("Mode sense page(3) reports nsect value"
1079 			    " as %d, adjusting it to %llu\n",
1080 			    nsect, nblocks / (pcyl * nhead));
1081 			nsect = nblocks / (pcyl * nhead);
1082 		} else {
1083 			/* convert capacity to nsect * nhead * pcyl */
1084 			err_print("\nWARNING: Disk geometry is based on "
1085 			    "capacity data.\n\n");
1086 			compute_chs_values(tblocks, nblocks, &pcyl, &nhead,
1087 			    &nsect);
1088 			ncyl = pcyl - acyl;
1089 			if (option_msg && diag_msg) {
1090 				err_print("Geometry:(after adjustment)\n");
1091 				err_print("    pcyl:    %u\n", pcyl);
1092 				err_print("    ncyl:    %u\n", ncyl);
1093 				err_print("    heads:   %u\n", nhead);
1094 				err_print("    nsects:  %u\n", nsect);
1095 				err_print("    acyl:    %u\n", acyl);
1096 
1097 #if defined(_SUNOS_VTOC_16)
1098 				err_print("    bcyl:    %u\n", bcyl);
1099 #endif
1100 
1101 				err_print("    rpm:     %d\n", rpm);
1102 				err_print("    nblocks:     %llu\n", nblocks);
1103 			}
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * Some drives report their physical geometry such that
1109 	 * it is greater than the actual capacity.  Adjust the
1110 	 * geometry to allow for this, so we don't run off
1111 	 * the end of the disk.
1112 	 */
1113 	if (((diskaddr_t)pcyl * nhead * nsect) > nblocks) {
1114 		uint_t	p = pcyl;
1115 		if (option_msg && diag_msg) {
1116 			err_print("Computed capacity (%llu) exceeds actual "
1117 			    "disk capacity (%llu)\n",
1118 			    (diskaddr_t)pcyl * nhead * nsect, nblocks);
1119 		}
1120 		do {
1121 			pcyl--;
1122 		} while (((diskaddr_t)pcyl * nhead * nsect) > nblocks);
1123 
1124 		if (can_prompt && expert_mode && !option_f) {
1125 			/*
1126 			 * Try to adjust nsect instead of pcyl to see if we
1127 			 * can optimize. For compatability reasons do this
1128 			 * only in expert mode (refer to bug 1144812).
1129 			 */
1130 			uint_t	n = nsect;
1131 			do {
1132 				n--;
1133 			} while (((diskaddr_t)p * nhead * n) > nblocks);
1134 			if (((diskaddr_t)p * nhead * n) >
1135 			    ((diskaddr_t)pcyl * nhead * nsect)) {
1136 				u_ioparam_t	ioparam;
1137 				int		deflt = 1;
1138 				/*
1139 				 * Ask the user for a choice here.
1140 				 */
1141 				ioparam.io_bounds.lower = 1;
1142 				ioparam.io_bounds.upper = 2;
1143 				err_print("1. Capacity = %llu, with pcyl = %u "
1144 				    "nhead = %u nsect = %u\n",
1145 				    ((diskaddr_t)pcyl * nhead * nsect),
1146 				    pcyl, nhead, nsect);
1147 				err_print("2. Capacity = %llu, with pcyl = %u "
1148 				    "nhead = %u nsect = %u\n",
1149 				    ((diskaddr_t)p * nhead * n),
1150 				    p, nhead, n);
1151 				if (input(FIO_INT, "Select one of the above "
1152 				    "choices ", ':', &ioparam,
1153 				    &deflt, DATA_INPUT) == 2) {
1154 					pcyl = p;
1155 					nsect = n;
1156 				}
1157 			}
1158 		}
1159 	}
1160 
1161 #if defined(_SUNOS_VTOC_8)
1162 	/*
1163 	 * Finally, we need to make sure we don't overflow any of the
1164 	 * fields in our disk label.  To do this we need to `square
1165 	 * the box' so to speak.  We will lose bits here.
1166 	 */
1167 
1168 	if ((pcyl > MAXIMUM_NO_CYLINDERS &&
1169 	    ((nsect > MAXIMUM_NO_SECTORS) ||
1170 	    (nhead > MAXIMUM_NO_HEADS))) ||
1171 	    ((nsect > MAXIMUM_NO_SECTORS) &&
1172 	    (nhead > MAXIMUM_NO_HEADS))) {
1173 		err_print("This disk is too big to label. "
1174 		    " You will lose some blocks.\n");
1175 	}
1176 	if ((pcyl > MAXIMUM_NO_CYLINDERS) ||
1177 	    (nsect > MAXIMUM_NO_SECTORS) ||
1178 	    (nhead > MAXIMUM_NO_HEADS)) {
1179 		u_ioparam_t	ioparam;
1180 		int		order;
1181 		char		msg[256];
1182 
1183 		order = ((pcyl > nhead)<<2) |
1184 		    ((pcyl > nsect)<<1) |
1185 		    (nhead > nsect);
1186 		switch (order) {
1187 		case 0x7: /* pcyl > nhead > nsect */
1188 			nblocks =
1189 			    square_box(nblocks,
1190 			    &pcyl, MAXIMUM_NO_CYLINDERS,
1191 			    &nhead, MAXIMUM_NO_HEADS,
1192 			    &nsect, MAXIMUM_NO_SECTORS);
1193 			break;
1194 		case 0x6: /* pcyl > nsect > nhead */
1195 			nblocks =
1196 			    square_box(nblocks,
1197 			    &pcyl, MAXIMUM_NO_CYLINDERS,
1198 			    &nsect, MAXIMUM_NO_SECTORS,
1199 			    &nhead, MAXIMUM_NO_HEADS);
1200 			break;
1201 		case 0x4: /* nsect > pcyl > nhead */
1202 			nblocks =
1203 			    square_box(nblocks,
1204 			    &nsect, MAXIMUM_NO_SECTORS,
1205 			    &pcyl, MAXIMUM_NO_CYLINDERS,
1206 			    &nhead, MAXIMUM_NO_HEADS);
1207 			break;
1208 		case 0x0: /* nsect > nhead > pcyl */
1209 			nblocks =
1210 			    square_box(nblocks,
1211 			    &nsect, MAXIMUM_NO_SECTORS,
1212 			    &nhead, MAXIMUM_NO_HEADS,
1213 			    &pcyl, MAXIMUM_NO_CYLINDERS);
1214 			break;
1215 		case 0x3: /* nhead > pcyl > nsect */
1216 			nblocks =
1217 			    square_box(nblocks,
1218 			    &nhead, MAXIMUM_NO_HEADS,
1219 			    &pcyl, MAXIMUM_NO_CYLINDERS,
1220 			    &nsect, MAXIMUM_NO_SECTORS);
1221 			break;
1222 		case 0x1: /* nhead > nsect > pcyl */
1223 			nblocks =
1224 			    square_box(nblocks,
1225 			    &nhead, MAXIMUM_NO_HEADS,
1226 			    &nsect, MAXIMUM_NO_SECTORS,
1227 			    &pcyl, MAXIMUM_NO_CYLINDERS);
1228 			break;
1229 		default:
1230 			/* How did we get here? */
1231 			impossible("label overflow adjustment");
1232 
1233 			/* Do something useful */
1234 			nblocks =
1235 			    square_box(nblocks,
1236 			    &nhead, MAXIMUM_NO_HEADS,
1237 			    &nsect, MAXIMUM_NO_SECTORS,
1238 			    &pcyl, MAXIMUM_NO_CYLINDERS);
1239 			break;
1240 		}
1241 		if (option_msg && diag_msg &&
1242 		    (capacity->sc_capacity + 1 != nblocks)) {
1243 			err_print("After adjusting geometry you lost"
1244 			    " %llu of %llu blocks.\n",
1245 			    (capacity->sc_capacity + 1 - nblocks),
1246 			    capacity->sc_capacity + 1);
1247 		}
1248 		while (can_prompt && expert_mode && !option_f) {
1249 			int				deflt = 1;
1250 
1251 			/*
1252 			 * Allow user to modify this by hand if desired.
1253 			 */
1254 			(void) sprintf(msg,
1255 			    "\nGeometry: %u heads, %u sectors %u cylinders"
1256 			    " result in %llu out of %llu blocks.\n"
1257 			    "Do you want to modify the device geometry",
1258 			    nhead, nsect, pcyl,
1259 			    nblocks, capacity->sc_capacity + 1);
1260 
1261 			ioparam.io_charlist = confirm_list;
1262 			if (input(FIO_MSTR, msg, '?', &ioparam,
1263 			    &deflt, DATA_INPUT) != 0)
1264 				break;
1265 
1266 			ioparam.io_bounds.lower = MINIMUM_NO_HEADS;
1267 			ioparam.io_bounds.upper = MAXIMUM_NO_HEADS;
1268 			nhead = input(FIO_INT, "Number of heads", ':',
1269 			    &ioparam, (int *)&nhead, DATA_INPUT);
1270 			ioparam.io_bounds.lower = MINIMUM_NO_SECTORS;
1271 			ioparam.io_bounds.upper = MAXIMUM_NO_SECTORS;
1272 			nsect = input(FIO_INT,
1273 			    "Number of sectors per track",
1274 			    ':', &ioparam, (int *)&nsect, DATA_INPUT);
1275 			ioparam.io_bounds.lower = SUN_MIN_CYL;
1276 			ioparam.io_bounds.upper = MAXIMUM_NO_CYLINDERS;
1277 			pcyl = input(FIO_INT, "Number of cylinders",
1278 			    ':', &ioparam, (int *)&pcyl, DATA_INPUT);
1279 			nblocks = (diskaddr_t)nhead * nsect * pcyl;
1280 			if (nblocks > capacity->sc_capacity + 1) {
1281 				err_print("Warning: %llu blocks exceeds "
1282 				    "disk capacity of %llu blocks\n",
1283 				    nblocks,
1284 				    capacity->sc_capacity + 1);
1285 			}
1286 		}
1287 	}
1288 #endif		/* defined(_SUNOS_VTOC_8) */
1289 
1290 	ncyl = pcyl - acyl;
1291 
1292 	if (option_msg && diag_msg) {
1293 		err_print("\nGeometry after adjusting for capacity:\n");
1294 		err_print("    pcyl:    %u\n", pcyl);
1295 		err_print("    ncyl:    %u\n", ncyl);
1296 		err_print("    heads:   %u\n", nhead);
1297 		err_print("    nsects:  %u\n", nsect);
1298 		err_print("    acyl:    %u\n", acyl);
1299 		err_print("    rpm:     %d\n", rpm);
1300 	}
1301 
1302 	(void) memset((char *)label, 0, sizeof (struct dk_label));
1303 
1304 	label->dkl_magic = DKL_MAGIC;
1305 
1306 	(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
1307 	    "%s cyl %u alt %u hd %u sec %u",
1308 	    disk_name, ncyl, acyl, nhead, nsect);
1309 
1310 	label->dkl_pcyl = pcyl;
1311 	label->dkl_ncyl = ncyl;
1312 	label->dkl_acyl = acyl;
1313 	label->dkl_nhead = nhead;
1314 	label->dkl_nsect = nsect;
1315 	label->dkl_apc = 0;
1316 	label->dkl_intrlv = 1;
1317 	label->dkl_rpm = rpm;
1318 
1319 #if defined(_FIRMWARE_NEEDS_FDISK)
1320 	if (auto_solaris_part(label) == -1)
1321 		goto err;
1322 	ncyl = label->dkl_ncyl;
1323 #endif		/* defined(_FIRMWARE_NEEDS_FDISK) */
1324 
1325 
1326 	if (!build_default_partition(label, DKC_SCSI_CCS)) {
1327 		goto err;
1328 	}
1329 
1330 	(void) checksum(label, CK_MAKESUM);
1331 
1332 	/*
1333 	 * Find an existing disk type defined for this disk.
1334 	 * For this to work, both the name and geometry must
1335 	 * match.  If there is no such type, but there already
1336 	 * is a disk defined with that name, but with a different
1337 	 * geometry, construct a new generic disk name out of
1338 	 * the inquiry information.  Whatever name we're
1339 	 * finally using, if there's no such disk type defined,
1340 	 * build a new disk definition.
1341 	 */
1342 	if ((disk = find_scsi_disk_type(disk_name, label)) == NULL) {
1343 		if (find_scsi_disk_by_name(disk_name) != NULL) {
1344 			char	old_name[DISK_NAME_MAX];
1345 			(void) strcpy(old_name, disk_name);
1346 			(void) get_generic_disk_name(disk_name,
1347 			    inquiry);
1348 			if (option_msg && diag_msg) {
1349 				err_print(
1350 "Changing disk type name from '%s' to '%s'\n", old_name, disk_name);
1351 			}
1352 			(void) snprintf(label->dkl_asciilabel,
1353 			    sizeof (label->dkl_asciilabel),
1354 			    "%s cyl %u alt %u hd %u sec %u",
1355 			    disk_name, ncyl, acyl, nhead, nsect);
1356 			(void) checksum(label, CK_MAKESUM);
1357 			disk = find_scsi_disk_type(disk_name, label);
1358 		}
1359 		if (disk == NULL) {
1360 			disk = new_scsi_disk_type(fd, disk_name, label);
1361 			if (disk == NULL)
1362 				goto err;
1363 		}
1364 	}
1365 
1366 	return (disk);
1367 
1368 err:
1369 	if (option_msg && diag_msg) {
1370 		err_print(
1371 		"Configuration via generic SCSI-2 information failed\n");
1372 	}
1373 	return (NULL);
1374 }
1375 
1376 
1377 /*ARGSUSED*/
1378 static int
1379 use_existing_disk_type(
1380 	int			fd,
1381 	int			can_prompt,
1382 	struct dk_label		*label,
1383 	struct scsi_inquiry	*inquiry,
1384 	struct disk_type	*disk_type,
1385 	struct scsi_capacity_16	*capacity)
1386 {
1387 	int			pcyl;
1388 	int			acyl;
1389 	int			nhead;
1390 	int			nsect;
1391 	int			rpm;
1392 
1393 	/*
1394 	 * Construct a new label out of the format.dat
1395 	 */
1396 	pcyl = disk_type->dtype_pcyl;
1397 	acyl = disk_type->dtype_acyl;
1398 	ncyl = disk_type->dtype_ncyl;
1399 	nhead = disk_type->dtype_nhead;
1400 	nsect = disk_type->dtype_nsect;
1401 	rpm = disk_type->dtype_rpm;
1402 
1403 	if (option_msg && diag_msg) {
1404 		err_print("Format.dat geometry:\n");
1405 		err_print("    pcyl:    %u\n", pcyl);
1406 		err_print("    heads:   %u\n", nhead);
1407 		err_print("    nsects:  %u\n", nsect);
1408 		err_print("    acyl:    %u\n", acyl);
1409 		err_print("    rpm:     %d\n", rpm);
1410 	}
1411 
1412 	(void) memset((char *)label, 0, sizeof (struct dk_label));
1413 
1414 	label->dkl_magic = DKL_MAGIC;
1415 
1416 	(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
1417 	    "%s cyl %u alt %u hd %u sec %u",
1418 	    disk_type->dtype_asciilabel,
1419 	    ncyl, acyl, nhead, nsect);
1420 
1421 	label->dkl_pcyl = pcyl;
1422 	label->dkl_ncyl = ncyl;
1423 	label->dkl_acyl = acyl;
1424 	label->dkl_nhead = nhead;
1425 	label->dkl_nsect = nsect;
1426 	label->dkl_apc = 0;
1427 	label->dkl_intrlv = 1;
1428 	label->dkl_rpm = rpm;
1429 
1430 	if (!build_default_partition(label, DKC_SCSI_CCS)) {
1431 		goto err;
1432 	}
1433 
1434 	(void) checksum(label, CK_MAKESUM);
1435 	return (1);
1436 
1437 err:
1438 	if (option_msg && diag_msg) {
1439 		err_print(
1440 		    "Configuration via format.dat geometry failed\n");
1441 	}
1442 	return (0);
1443 }
1444 
1445 int
1446 build_default_partition(
1447 	struct dk_label			*label,
1448 	int				ctrl_type)
1449 {
1450 	int				i;
1451 	int				ncyls[NDKMAP];
1452 	diskaddr_t			nblks;
1453 	int				cyl;
1454 	struct dk_vtoc			*vtoc;
1455 	struct part_table		*pt;
1456 	struct default_partitions	*dpt;
1457 	diskaddr_t			capacity;
1458 	int				freecyls;
1459 	int				blks_per_cyl;
1460 	int				ncyl;
1461 
1462 #ifdef lint
1463 	ctrl_type = ctrl_type;
1464 #endif
1465 
1466 	/*
1467 	 * Install a default vtoc
1468 	 */
1469 	vtoc = &label->dkl_vtoc;
1470 	vtoc->v_version = V_VERSION;
1471 	vtoc->v_nparts = NDKMAP;
1472 	vtoc->v_sanity = VTOC_SANE;
1473 
1474 	for (i = 0; i < NDKMAP; i++) {
1475 		vtoc->v_part[i].p_tag = default_vtoc_map[i].p_tag;
1476 		vtoc->v_part[i].p_flag = default_vtoc_map[i].p_flag;
1477 	}
1478 
1479 	/*
1480 	 * Find a partition that matches this disk.  Capacity
1481 	 * is in integral number of megabytes.
1482 	 */
1483 	capacity = ((diskaddr_t)(label->dkl_ncyl) * label->dkl_nhead *
1484 	    label->dkl_nsect) / (diskaddr_t)((1024 * 1024) / cur_blksz);
1485 	dpt = default_partitions;
1486 	for (i = 0; i < DEFAULT_PARTITION_TABLE_SIZE; i++, dpt++) {
1487 		if (capacity >= dpt->min_capacity &&
1488 		    capacity < dpt->max_capacity) {
1489 			break;
1490 		}
1491 	}
1492 	if (i == DEFAULT_PARTITION_TABLE_SIZE) {
1493 		if (option_msg && diag_msg) {
1494 			err_print("No matching default partition (%llu)\n",
1495 			    capacity);
1496 		}
1497 		return (0);
1498 	}
1499 	pt = dpt->part_table;
1500 
1501 	/*
1502 	 * Go through default partition table, finding fixed
1503 	 * sized entries.
1504 	 */
1505 	freecyls = label->dkl_ncyl;
1506 	blks_per_cyl = label->dkl_nhead * label->dkl_nsect;
1507 	for (i = 0; i < NDKMAP; i++) {
1508 		if (pt->partitions[i] == HOG || pt->partitions[i] == 0) {
1509 			ncyls[i] = 0;
1510 		} else {
1511 			/*
1512 			 * Calculate number of cylinders necessary
1513 			 * for specified size, rounding up to
1514 			 * the next greatest integral number of
1515 			 * cylinders.  Always give what they
1516 			 * asked or more, never less.
1517 			 */
1518 			nblks = pt->partitions[i] * ((1024*1024)/cur_blksz);
1519 			nblks += (blks_per_cyl - 1);
1520 			ncyls[i] = nblks / blks_per_cyl;
1521 			freecyls -= ncyls[i];
1522 		}
1523 	}
1524 
1525 	if (freecyls < 0) {
1526 		if (option_msg && diag_msg) {
1527 			for (i = 0; i < NDKMAP; i++) {
1528 				if (ncyls[i] == 0)
1529 					continue;
1530 				err_print("Partition %d: %u cyls\n",
1531 				    i, ncyls[i]);
1532 			}
1533 			err_print("Free cylinders exhausted (%d)\n",
1534 			    freecyls);
1535 		}
1536 		return (0);
1537 	}
1538 #if defined(i386)
1539 	/*
1540 	 * Set the default boot partition to 1 cylinder
1541 	 */
1542 	ncyls[8] = 1;
1543 	freecyls -= 1;
1544 
1545 	/*
1546 	 * If current disk type is not a SCSI disk,
1547 	 * set the default alternates partition to 2 cylinders
1548 	 */
1549 	if (ctrl_type != DKC_SCSI_CCS) {
1550 		ncyls[9] = 2;
1551 		freecyls -= 2;
1552 	}
1553 #endif			/* defined(i386) */
1554 
1555 	/*
1556 	 * Set the free hog partition to whatever space remains.
1557 	 * It's an error to have more than one HOG partition,
1558 	 * but we don't verify that here.
1559 	 */
1560 	for (i = 0; i < NDKMAP; i++) {
1561 		if (pt->partitions[i] == HOG) {
1562 			assert(ncyls[i] == 0);
1563 			ncyls[i] = freecyls;
1564 			break;
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * Error checking
1570 	 */
1571 	ncyl = 0;
1572 	for (i = 0; i < NDKMAP; i++) {
1573 		ncyl += ncyls[i];
1574 	}
1575 	assert(ncyl == (label->dkl_ncyl));
1576 
1577 	/*
1578 	 * Finally, install the partition in the label.
1579 	 */
1580 	cyl = 0;
1581 
1582 #if defined(_SUNOS_VTOC_16)
1583 	for (i = NDKMAP/2; i < NDKMAP; i++) {
1584 		if (i == 2 || ncyls[i] == 0)
1585 			continue;
1586 		label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl;
1587 		label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl;
1588 		cyl += ncyls[i];
1589 	}
1590 	for (i = 0; i < NDKMAP/2; i++) {
1591 
1592 #elif defined(_SUNOS_VTOC_8)
1593 	for (i = 0; i < NDKMAP; i++) {
1594 
1595 #else
1596 #error No VTOC format defined.
1597 #endif				/* defined(_SUNOS_VTOC_16) */
1598 
1599 		if (i == 2 || ncyls[i] == 0) {
1600 #if defined(_SUNOS_VTOC_8)
1601 			if (i != 2) {
1602 				label->dkl_map[i].dkl_cylno = 0;
1603 				label->dkl_map[i].dkl_nblk = 0;
1604 			}
1605 #endif
1606 			continue;
1607 		}
1608 #if defined(_SUNOS_VTOC_8)
1609 		label->dkl_map[i].dkl_cylno = cyl;
1610 		label->dkl_map[i].dkl_nblk = ncyls[i] * blks_per_cyl;
1611 #elif defined(_SUNOS_VTOC_16)
1612 		label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl;
1613 		label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl;
1614 
1615 #else
1616 #error No VTOC format defined.
1617 #endif				/* defined(_SUNOS_VTOC_8) */
1618 
1619 		cyl += ncyls[i];
1620 	}
1621 
1622 	/*
1623 	 * Set the whole disk partition
1624 	 */
1625 #if defined(_SUNOS_VTOC_8)
1626 	label->dkl_map[2].dkl_cylno = 0;
1627 	label->dkl_map[2].dkl_nblk =
1628 	    label->dkl_ncyl * label->dkl_nhead * label->dkl_nsect;
1629 
1630 #elif defined(_SUNOS_VTOC_16)
1631 	label->dkl_vtoc.v_part[2].p_start = 0;
1632 	label->dkl_vtoc.v_part[2].p_size =
1633 	    (label->dkl_ncyl + label->dkl_acyl) * label->dkl_nhead *
1634 	    label->dkl_nsect;
1635 #else
1636 #error No VTOC format defined.
1637 #endif				/* defined(_SUNOS_VTOC_8) */
1638 
1639 
1640 	if (option_msg && diag_msg) {
1641 		float	scaled;
1642 		err_print("\n");
1643 		for (i = 0; i < NDKMAP; i++) {
1644 #if defined(_SUNOS_VTOC_8)
1645 			if (label->dkl_map[i].dkl_nblk == 0)
1646 
1647 #elif defined(_SUNOS_VTOC_16)
1648 			if (label->dkl_vtoc.v_part[i].p_size == 0)
1649 
1650 #else
1651 #error No VTOC format defined.
1652 #endif				/* defined(_SUNOS_VTOC_8) */
1653 
1654 				continue;
1655 			err_print("Partition %d:   ", i);
1656 #if defined(_SUNOS_VTOC_8)
1657 			scaled = bn2mb(label->dkl_map[i].dkl_nblk);
1658 
1659 #elif defined(_SUNOS_VTOC_16)
1660 
1661 			scaled = bn2mb(label->dkl_vtoc.v_part[i].p_size);
1662 #else
1663 #error No VTOC format defined.
1664 #endif				/* defined(_SUNOS_VTOC_8) */
1665 
1666 			if (scaled > 1024.0) {
1667 				err_print("%6.2fGB  ", scaled/1024.0);
1668 			} else {
1669 				err_print("%6.2fMB  ", scaled);
1670 			}
1671 #if defined(_SUNOS_VTOC_8)
1672 			err_print(" %6d cylinders\n",
1673 			    label->dkl_map[i].dkl_nblk/blks_per_cyl);
1674 #elif defined(_SUNOS_VTOC_16)
1675 			err_print(" %6d cylinders\n",
1676 			    label->dkl_vtoc.v_part[i].p_size/blks_per_cyl);
1677 #else
1678 #error No VTOC format defined.
1679 #endif				/* defined(_SUNOS_VTOC_8) */
1680 
1681 		}
1682 		err_print("\n");
1683 	}
1684 
1685 	return (1);
1686 }
1687 
1688 
1689 
1690 /*
1691  * Find an existing scsi disk definition by this name,
1692  * if possible.
1693  */
1694 static struct disk_type *
1695 find_scsi_disk_type(
1696 	char			*disk_name,
1697 	struct dk_label		*label)
1698 {
1699 	struct ctlr_type	*ctlr;
1700 	struct disk_type	*dp;
1701 
1702 	ctlr = find_scsi_ctlr_type();
1703 	for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) {
1704 		if (dp->dtype_asciilabel) {
1705 			if ((strcmp(dp->dtype_asciilabel, disk_name) == 0) &&
1706 			    dp->dtype_pcyl == label->dkl_pcyl &&
1707 			    dp->dtype_ncyl == label->dkl_ncyl &&
1708 			    dp->dtype_acyl == label->dkl_acyl &&
1709 			    dp->dtype_nhead == label->dkl_nhead &&
1710 			    dp->dtype_nsect == label->dkl_nsect) {
1711 				return (dp);
1712 			}
1713 		}
1714 	}
1715 
1716 	return (NULL);
1717 }
1718 
1719 
1720 /*
1721  * Find an existing scsi disk definition by this name,
1722  * if possible.
1723  */
1724 static struct disk_type *
1725 find_scsi_disk_by_name(
1726 	char			*disk_name)
1727 {
1728 	struct ctlr_type	*ctlr;
1729 	struct disk_type	*dp;
1730 
1731 	ctlr = find_scsi_ctlr_type();
1732 	for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) {
1733 		if (dp->dtype_asciilabel) {
1734 			if ((strcmp(dp->dtype_asciilabel, disk_name) == 0)) {
1735 				return (dp);
1736 			}
1737 		}
1738 	}
1739 
1740 	return (NULL);
1741 }
1742 
1743 
1744 /*
1745  * Return a pointer to the ctlr_type structure for SCSI
1746  * disks.  This list is built into the program, so there's
1747  * no chance of not being able to find it, unless someone
1748  * totally mangles the code.
1749  */
1750 static struct ctlr_type *
1751 find_scsi_ctlr_type(void)
1752 {
1753 	struct	mctlr_list	*mlp;
1754 
1755 	mlp = controlp;
1756 
1757 	while (mlp != NULL) {
1758 		if (mlp->ctlr_type->ctype_ctype == DKC_SCSI_CCS) {
1759 			return (mlp->ctlr_type);
1760 		}
1761 		mlp = mlp->next;
1762 	}
1763 
1764 	impossible("no SCSI controller type");
1765 
1766 	return (NULL);
1767 }
1768 
1769 
1770 
1771 /*
1772  * Return a pointer to the scsi ctlr_info structure.  This
1773  * structure is allocated the first time format sees a
1774  * disk on this controller, so it must be present.
1775  */
1776 static struct ctlr_info *
1777 find_scsi_ctlr_info(
1778 	struct dk_cinfo		*dkinfo)
1779 {
1780 	struct ctlr_info	*ctlr;
1781 
1782 	if (dkinfo->dki_ctype != DKC_SCSI_CCS) {
1783 		return (NULL);
1784 	}
1785 
1786 	for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) {
1787 		if (ctlr->ctlr_addr == dkinfo->dki_addr &&
1788 		    ctlr->ctlr_space == dkinfo->dki_space &&
1789 		    ctlr->ctlr_ctype->ctype_ctype == DKC_SCSI_CCS) {
1790 			return (ctlr);
1791 		}
1792 	}
1793 
1794 	impossible("no SCSI controller info");
1795 
1796 	return (NULL);
1797 }
1798 
1799 
1800 
1801 static struct disk_type *
1802 new_scsi_disk_type(
1803 	int		fd,
1804 	char		*disk_name,
1805 	struct dk_label	*label)
1806 {
1807 	struct disk_type	*dp;
1808 	struct disk_type	*disk;
1809 	struct ctlr_info	*ctlr;
1810 	struct dk_cinfo		dkinfo;
1811 	struct partition_info	*part;
1812 	struct partition_info	*pt;
1813 	struct disk_info	*disk_info;
1814 	int			i;
1815 
1816 	/*
1817 	 * Get the disk controller info for this disk
1818 	 */
1819 	if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
1820 		if (option_msg && diag_msg) {
1821 			err_print("DKIOCINFO failed\n");
1822 		}
1823 		return (NULL);
1824 	}
1825 
1826 	/*
1827 	 * Find the ctlr_info for this disk.
1828 	 */
1829 	ctlr = find_scsi_ctlr_info(&dkinfo);
1830 
1831 	/*
1832 	 * Allocate a new disk type for the SCSI controller.
1833 	 */
1834 	disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
1835 
1836 	/*
1837 	 * Find the disk_info instance for this disk.
1838 	 */
1839 	disk_info = find_scsi_disk_info(&dkinfo);
1840 
1841 	/*
1842 	 * The controller and the disk should match.
1843 	 */
1844 	assert(disk_info->disk_ctlr == ctlr);
1845 
1846 	/*
1847 	 * Link the disk into the list of disks
1848 	 */
1849 	dp = ctlr->ctlr_ctype->ctype_dlist;
1850 	if (dp == NULL) {
1851 		ctlr->ctlr_ctype->ctype_dlist = disk;
1852 	} else {
1853 		while (dp->dtype_next != NULL) {
1854 			dp = dp->dtype_next;
1855 		}
1856 		dp->dtype_next = disk;
1857 	}
1858 	disk->dtype_next = NULL;
1859 
1860 	/*
1861 	 * Allocate and initialize the disk name.
1862 	 */
1863 	disk->dtype_asciilabel = alloc_string(disk_name);
1864 
1865 	/*
1866 	 * Initialize disk geometry info
1867 	 */
1868 	disk->dtype_pcyl = label->dkl_pcyl;
1869 	disk->dtype_ncyl = label->dkl_ncyl;
1870 	disk->dtype_acyl = label->dkl_acyl;
1871 	disk->dtype_nhead = label->dkl_nhead;
1872 	disk->dtype_nsect = label->dkl_nsect;
1873 	disk->dtype_rpm = label->dkl_rpm;
1874 
1875 	/*
1876 	 * Attempt to match the partition map in the label
1877 	 * with a know partition for this disk type.
1878 	 */
1879 	for (part = disk->dtype_plist; part; part = part->pinfo_next) {
1880 		if (parts_match(label, part)) {
1881 			break;
1882 		}
1883 	}
1884 
1885 	/*
1886 	 * If no match was made, we need to create a partition
1887 	 * map for this disk.
1888 	 */
1889 	if (part == NULL) {
1890 		part = (struct partition_info *)
1891 		    zalloc(sizeof (struct partition_info));
1892 		pt = disk->dtype_plist;
1893 		if (pt == NULL) {
1894 			disk->dtype_plist = part;
1895 		} else {
1896 			while (pt->pinfo_next != NULL) {
1897 				pt = pt->pinfo_next;
1898 			}
1899 			pt->pinfo_next = part;
1900 		}
1901 		part->pinfo_next = NULL;
1902 
1903 		/*
1904 		 * Set up the partition name
1905 		 */
1906 		part->pinfo_name = alloc_string("default");
1907 
1908 		/*
1909 		 * Fill in the partition info from the label
1910 		 */
1911 		for (i = 0; i < NDKMAP; i++) {
1912 
1913 #if defined(_SUNOS_VTOC_8)
1914 			part->pinfo_map[i] = label->dkl_map[i];
1915 
1916 #elif defined(_SUNOS_VTOC_16)
1917 			part->pinfo_map[i].dkl_cylno =
1918 			    label->dkl_vtoc.v_part[i].p_start /
1919 			    ((blkaddr32_t)(disk->dtype_nhead *
1920 			    disk->dtype_nsect - apc));
1921 			part->pinfo_map[i].dkl_nblk =
1922 			    label->dkl_vtoc.v_part[i].p_size;
1923 #else
1924 #error No VTOC format defined.
1925 #endif				/* defined(_SUNOS_VTOC_8) */
1926 
1927 		}
1928 	}
1929 
1930 
1931 	/*
1932 	 * Use the VTOC if valid, or install a default
1933 	 */
1934 	if (label->dkl_vtoc.v_version == V_VERSION) {
1935 		(void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume,
1936 		    LEN_DKL_VVOL);
1937 		part->vtoc = label->dkl_vtoc;
1938 	} else {
1939 		(void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL);
1940 		set_vtoc_defaults(part);
1941 	}
1942 
1943 	/*
1944 	 * Link the disk to the partition map
1945 	 */
1946 	disk_info->disk_parts = part;
1947 
1948 	return (disk);
1949 }
1950 
1951 
1952 /*
1953  * Delete a disk type from disk type list.
1954  */
1955 int
1956 delete_disk_type(struct disk_type *disk_type)
1957 {
1958 	struct ctlr_type	*ctlr;
1959 	struct disk_type	*dp, *disk;
1960 
1961 	if (cur_ctype->ctype_ctype == DKC_DIRECT ||
1962 	    cur_ctype->ctype_ctype == DKC_VBD ||
1963 	    cur_ctype->ctype_ctype == DKC_BLKDEV)
1964 		ctlr = find_ctlr_type(cur_ctype->ctype_ctype);
1965 	else
1966 		ctlr = find_scsi_ctlr_type();
1967 	if (ctlr == NULL || ctlr->ctype_dlist == NULL) {
1968 		return (-1);
1969 	}
1970 
1971 	disk = ctlr->ctype_dlist;
1972 	if (disk == disk_type) {
1973 		ctlr->ctype_dlist = disk->dtype_next;
1974 		if (cur_label == L_TYPE_EFI)
1975 			free(disk->dtype_plist->etoc);
1976 		free(disk->dtype_plist);
1977 		free(disk->vendor);
1978 		free(disk->product);
1979 		free(disk->revision);
1980 		free(disk);
1981 		return (0);
1982 	} else {
1983 		for (dp = disk->dtype_next; dp != NULL;
1984 		    disk = disk->dtype_next, dp = dp->dtype_next) {
1985 			if (dp == disk_type) {
1986 				disk->dtype_next = dp->dtype_next;
1987 				if (cur_label == L_TYPE_EFI)
1988 					free(dp->dtype_plist->etoc);
1989 				free(dp->dtype_plist);
1990 				free(dp->vendor);
1991 				free(dp->product);
1992 				free(dp->revision);
1993 				free(dp);
1994 				return (0);
1995 			}
1996 		}
1997 		return (-1);
1998 	}
1999 }
2000 
2001 
2002 static struct disk_info *
2003 find_scsi_disk_info(
2004 	struct dk_cinfo		*dkinfo)
2005 {
2006 	struct disk_info	*disk;
2007 	struct dk_cinfo		*dp;
2008 
2009 	for (disk = disk_list; disk != NULL; disk = disk->disk_next) {
2010 		assert(dkinfo->dki_ctype == DKC_SCSI_CCS);
2011 		dp = &disk->disk_dkinfo;
2012 		if (dp->dki_ctype == dkinfo->dki_ctype &&
2013 		    dp->dki_cnum == dkinfo->dki_cnum &&
2014 		    dp->dki_unit == dkinfo->dki_unit &&
2015 		    strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) {
2016 			return (disk);
2017 		}
2018 	}
2019 
2020 	impossible("No SCSI disk info instance\n");
2021 
2022 	return (NULL);
2023 }
2024 
2025 
2026 static char *
2027 get_sun_disk_name(
2028 	char			*disk_name,
2029 	struct scsi_inquiry	*inquiry)
2030 {
2031 	/*
2032 	 * Extract the sun name of the disk
2033 	 */
2034 	(void) memset(disk_name, 0, DISK_NAME_MAX);
2035 	(void) memcpy(disk_name, (char *)&inquiry->inq_pid[9], 7);
2036 
2037 	return (disk_name);
2038 }
2039 
2040 
2041 char *
2042 get_generic_disk_name(
2043 	char			*disk_name,
2044 	struct scsi_inquiry	*inquiry)
2045 {
2046 	char	*p;
2047 
2048 	(void) memset(disk_name, 0, DISK_NAME_MAX);
2049 	p = strcopy(disk_name, inquiry->inq_vid,
2050 	    sizeof (inquiry->inq_vid));
2051 	*p++ = '-';
2052 	p = strcopy(p, inquiry->inq_pid, sizeof (inquiry->inq_pid));
2053 	*p++ = '-';
2054 	p = strcopy(p, inquiry->inq_revision,
2055 	    sizeof (inquiry->inq_revision));
2056 
2057 	return (disk_name);
2058 }
2059 
2060 /*
2061  * Copy a string of characters from src to dst, for at
2062  * most n bytes.  Strip all leading and trailing spaces,
2063  * and stop if there are any non-printable characters.
2064  * Return ptr to the next character to be filled.
2065  */
2066 static char *
2067 strcopy(
2068 	char	*dst,
2069 	char	*src,
2070 	int	n)
2071 {
2072 	int	i;
2073 
2074 	while (*src == ' ' && n > 0) {
2075 		src++;
2076 		n--;
2077 	}
2078 
2079 	for (i = 0; n-- > 0 && isascii(*src) && isprint(*src); src++) {
2080 		if (*src == ' ') {
2081 			i++;
2082 		} else {
2083 			while (i-- > 0)
2084 				*dst++ = ' ';
2085 			*dst++ = *src;
2086 		}
2087 	}
2088 
2089 	*dst = 0;
2090 	return (dst);
2091 }
2092 
2093 /*
2094  * adjust disk geometry.
2095  * This is used when disk reports a disk geometry page having
2096  * no of physical cylinders is < 3 which is the minimum required
2097  * by Solaris (2 for storing labels and at least one as a data
2098  * cylinder )
2099  */
2100 int
2101 adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl, uint_t *nhead,
2102     uint_t *nsect)
2103 {
2104 	uint_t	lcyl = *cyl;
2105 	uint_t	lnhead = *nhead;
2106 	uint_t	lnsect = *nsect;
2107 
2108 	assert(lcyl < SUN_MIN_CYL);
2109 
2110 	/*
2111 	 * reduce nsect by 2 for each iteration  and re-calculate
2112 	 * the number of cylinders.
2113 	 */
2114 	while (lnsect > MINIMUM_NO_SECTORS &&
2115 	    lcyl < MINIMUM_NO_CYLINDERS) {
2116 		/*
2117 		 * make sure that we do not go below MINIMUM_NO_SECTORS.
2118 		 */
2119 		lnsect = max(MINIMUM_NO_SECTORS, lnsect / 2);
2120 		lcyl   = (capacity) / (lnhead * lnsect);
2121 	}
2122 	/*
2123 	 * If the geometry still does not satisfy
2124 	 * MINIMUM_NO_CYLINDERS then try to reduce the
2125 	 * no of heads.
2126 	 */
2127 	while (lnhead > MINIMUM_NO_HEADS &&
2128 	    lcyl < MINIMUM_NO_CYLINDERS) {
2129 		lnhead = max(MINIMUM_NO_HEADS, lnhead / 2);
2130 		lcyl =  (capacity) / (lnhead * lnsect);
2131 	}
2132 	/*
2133 	 * now we should have atleast SUN_MIN_CYL cylinders.
2134 	 * If we still do not get SUN_MIN_CYL with MINIMUM_NO_HEADS
2135 	 * and MINIMUM_NO_HEADS then return error.
2136 	 */
2137 	if (lcyl < SUN_MIN_CYL)
2138 		return (1);
2139 	else {
2140 		*cyl = lcyl;
2141 		*nhead = lnhead;
2142 		*nsect = lnsect;
2143 		return (0);
2144 	}
2145 }
2146 
2147 #if defined(_SUNOS_VTOC_8)
2148 /*
2149  * Reduce the size of one dimention below a specified
2150  * limit with a minimum loss of volume.  Dimenstions are
2151  * assumed to be passed in form the largest value (the one
2152  * that needs to be reduced) to the smallest value.  The
2153  * values will be twiddled until they are all less than or
2154  * equal to their limit.  Returns the number in the new geometry.
2155  */
2156 static diskaddr_t
2157 square_box(
2158 		diskaddr_t capacity,
2159 		uint_t *dim1, uint_t lim1,
2160 		uint_t *dim2, uint_t lim2,
2161 		uint_t *dim3, uint_t lim3)
2162 {
2163 	uint_t	i;
2164 
2165 	/*
2166 	 * Although the routine should work with any ordering of
2167 	 * parameters, it's most efficient if they are passed in
2168 	 * in decreasing magnitude.
2169 	 */
2170 	assert(*dim1 >= *dim2);
2171 	assert(*dim2 >= *dim3);
2172 
2173 	/*
2174 	 * This is done in a very arbitrary manner.  We could try to
2175 	 * find better values but I can't come up with a method that
2176 	 * would run in a reasonable amount of time.  That could take
2177 	 * approximately 65535 * 65535 iterations of a dozen flops each
2178 	 * or well over 4G flops.
2179 	 *
2180 	 * First:
2181 	 *
2182 	 * Let's see how far we can go with bitshifts w/o losing
2183 	 * any blocks.
2184 	 */
2185 
2186 	for (i = 0; (((*dim1)>>i)&1) == 0 && ((*dim1)>>i) > lim1; i++)
2187 		;
2188 	if (i) {
2189 		*dim1 = ((*dim1)>>i);
2190 		*dim3 = ((*dim3)<<i);
2191 	}
2192 
2193 	if (((*dim1) > lim1) || ((*dim2) > lim2) || ((*dim3) > lim3)) {
2194 		double	d[4];
2195 
2196 		/*
2197 		 * Second:
2198 		 *
2199 		 * Set the highest value at its limit then calculate errors,
2200 		 * adjusting the 2nd highest value (we get better resolution
2201 		 * that way).
2202 		 */
2203 		d[1] = lim1;
2204 		d[3] = *dim3;
2205 		d[2] = (double)capacity/(d[1]*d[3]);
2206 
2207 		/*
2208 		 * If we overflowed the middle term, set it to its limit and
2209 		 * chose a new low term.
2210 		 */
2211 		if (d[2] > lim2) {
2212 			d[2] = lim2;
2213 			d[3] = (double)capacity/(d[1]*d[2]);
2214 		}
2215 		/*
2216 		 * Convert to integers.
2217 		 */
2218 		*dim1 = (int)d[1];
2219 		*dim2 = (int)d[2];
2220 		*dim3 = (int)d[3];
2221 	}
2222 	/*
2223 	 * Fixup any other possible problems.
2224 	 * If this happens, we need a new disklabel format.
2225 	 */
2226 	if (*dim1 > lim1) *dim1 = lim1;
2227 	if (*dim2 > lim2) *dim2 = lim2;
2228 	if (*dim3 > lim3) *dim3 = lim3;
2229 	return (*dim1 * *dim2 * *dim3);
2230 }
2231 #endif /* defined(_SUNOS_VTOC_8) */
2232 
2233 /*
2234  * Calculate CHS values based on the capacity data.
2235  *
2236  * NOTE: This function is same as cmlb_convert_geomerty() function in
2237  * cmlb kernel module.
2238  */
2239 static void
2240 compute_chs_values(diskaddr_t total_capacity, diskaddr_t usable_capacity,
2241     uint_t *pcylp, uint_t *nheadp, uint_t *nsectp)
2242 {
2243 
2244 	/* Unlabeled SCSI floppy device */
2245 	if (total_capacity < 160) {
2246 		/* Less than 80K */
2247 		*nheadp = 1;
2248 		*pcylp = total_capacity;
2249 		*nsectp = 1;
2250 		return;
2251 	} else if (total_capacity <= 0x1000) {
2252 		*nheadp = 2;
2253 		*pcylp = 80;
2254 		*nsectp = total_capacity / (80 * 2);
2255 		return;
2256 	}
2257 
2258 	/*
2259 	 * For all devices we calculate cylinders using the heads and sectors
2260 	 * we assign based on capacity of the device.  The algorithm is
2261 	 * designed to be compatible with the way other operating systems
2262 	 * lay out fdisk tables for X86 and to insure that the cylinders never
2263 	 * exceed 65535 to prevent problems with X86 ioctls that report
2264 	 * geometry.
2265 	 * For some smaller disk sizes we report geometry that matches those
2266 	 * used by X86 BIOS usage. For larger disks, we use SPT that are
2267 	 * multiples of 63, since other OSes that are not limited to 16-bits
2268 	 * for cylinders stop at 63 SPT we make do by using multiples of 63 SPT.
2269 	 *
2270 	 * The following table (in order) illustrates some end result
2271 	 * calculations:
2272 	 *
2273 	 * Maximum number of blocks		nhead	nsect
2274 	 *
2275 	 * 2097152 (1GB)			64	32
2276 	 * 16777216 (8GB)			128	32
2277 	 * 1052819775 (502.02GB)		255	63
2278 	 * 2105639550 (0.98TB)			255	126
2279 	 * 3158459325 (1.47TB)			255	189
2280 	 * 4211279100 (1.96TB)			255	252
2281 	 * 5264098875 (2.45TB)			255	315
2282 	 * ...
2283 	 */
2284 
2285 	if (total_capacity <= 0x200000) {
2286 		*nheadp = 64;
2287 		*nsectp = 32;
2288 	} else if (total_capacity <= 0x01000000) {
2289 		*nheadp = 128;
2290 		*nsectp = 32;
2291 	} else {
2292 		*nheadp = 255;
2293 
2294 		/* make nsect be smallest multiple of 63 */
2295 		*nsectp = ((total_capacity +
2296 		    (UINT16_MAX * 255 * 63) - 1) /
2297 		    (UINT16_MAX * 255 * 63)) * 63;
2298 
2299 		if (*nsectp == 0)
2300 			*nsectp = (UINT16_MAX / 63) * 63;
2301 	}
2302 
2303 	if (usable_capacity < total_capacity)
2304 		*pcylp = usable_capacity / ((*nheadp) * (*nsectp));
2305 	else
2306 		*pcylp = total_capacity / ((*nheadp) * (*nsectp));
2307 }
2308