xref: /illumos-gate/usr/src/cmd/format/auto_sense.c (revision 45ede40b2394db7967e59f19288fae9b62efd4aa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011 Gary Mills
23  *
24  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
28  */
29 
30 /*
31  * This file contains functions to implement automatic configuration
32  * of scsi disks.
33  */
34 #include "global.h"
35 
36 #include <fcntl.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <strings.h>
40 #include <stdlib.h>
41 #include <ctype.h>
42 
43 #include "misc.h"
44 #include "param.h"
45 #include "ctlr_scsi.h"
46 #include "auto_sense.h"
47 #include "partition.h"
48 #include "label.h"
49 #include "startup.h"
50 #include "analyze.h"
51 #include "io.h"
52 #include "hardware_structs.h"
53 #include "menu_fdisk.h"
54 
55 
56 #define	DISK_NAME_MAX		256
57 
58 extern	int			nctypes;
59 extern	struct	ctlr_type	ctlr_types[];
60 
61 
62 /*
63  * Marker for free hog partition
64  */
65 #define	HOG		(-1)
66 
67 
68 
69 /*
70  * Default partition tables
71  *
72  *	Disk capacity		root	swap	usr
73  *	-------------		----	----	---
74  *	0mb to 64mb		0	0	remainder
75  *	64mb to 180mb		16mb	16mb	remainder
76  *	180mb to 280mb		16mb	32mb	remainder
77  *	280mb to 380mb		24mb	32mb	remainder
78  *	380mb to 600mb		32mb	32mb	remainder
79  *	600mb to 1gb		32mb	64mb	remainder
80  *	1gb to 2gb		64mb	128mb	remainder
81  *	2gb on up		128mb	128mb	remainder
82  */
83 struct part_table {
84 	int	partitions[NDKMAP];
85 };
86 
87 static struct part_table part_table_64mb = {
88 	{ 0,	0,	0,	0,	0,	0,	HOG,	0}
89 };
90 
91 static struct part_table part_table_180mb = {
92 	{ 16,	16,	0,	0,	0,	0,	HOG,	0}
93 };
94 
95 static struct part_table part_table_280mb = {
96 	{ 16,	32,	0,	0,	0,	0,	HOG,	0}
97 };
98 
99 static struct part_table part_table_380mb = {
100 	{ 24,	32,	0,	0,	0,	0,	HOG,	0}
101 };
102 
103 static struct part_table part_table_600mb = {
104 	{ 32,	32,	0,	0,	0,	0,	HOG,	0}
105 };
106 
107 static struct part_table part_table_1gb = {
108 	{ 32,	64,	0,	0,	0,	0,	HOG,	0}
109 };
110 
111 static struct part_table part_table_2gb = {
112 	{ 64,	128,	0,	0,	0,	0,	HOG,	0}
113 };
114 
115 static struct part_table part_table_infinity = {
116 	{ 128,	128,	0,	0,	0,	0,	HOG,	0}
117 };
118 
119 
120 static struct default_partitions {
121 	diskaddr_t		min_capacity;
122 	diskaddr_t		max_capacity;
123 	struct part_table	*part_table;
124 } default_partitions[] = {
125 	{ 0,	64,		&part_table_64mb },	/* 0 to 64 mb */
126 	{ 64,	180,		&part_table_180mb },	/* 64 to 180 mb */
127 	{ 180,	280,		&part_table_280mb },	/* 180 to 280 mb */
128 	{ 280,	380,		&part_table_380mb },	/* 280 to 380 mb */
129 	{ 380,	600,		&part_table_600mb },	/* 380 to 600 mb */
130 	{ 600,	1024,		&part_table_1gb },	/* 600 to 1 gb */
131 	{ 1024,	2048,		&part_table_2gb },	/* 1 to 2 gb */
132 	{ 2048,	INFINITY,	&part_table_infinity },	/* 2 gb on up */
133 };
134 
135 #define	DEFAULT_PARTITION_TABLE_SIZE	\
136 	(sizeof (default_partitions) / sizeof (struct default_partitions))
137 
138 /*
139  * msgs for check()
140  */
141 #define	FORMAT_MSG	"Auto configuration via format.dat"
142 #define	GENERIC_MSG	"Auto configuration via generic SCSI-2"
143 
144 /*
145  * Disks on symbios(Hardwire raid controller) return a fixed number
146  * of heads(64)/cylinders(64) and adjust the cylinders depending
147  * capacity of the configured lun.
148  * In such a case we get number of physical cylinders < 3 which
149  * is the minimum required by solaris(2 reserved + 1 data cylinders).
150  * Hence try to adjust the cylinders by reducing the "nsect/nhead".
151  *
152  */
153 /*
154  * assuming a minimum of 32 block cylinders.
155  */
156 #define	MINIMUM_NO_HEADS	2
157 #define	MINIMUM_NO_SECTORS	16
158 
159 #define	MINIMUM_NO_CYLINDERS	128
160 
161 #if defined(_SUNOS_VTOC_8)
162 
163 /* These are 16-bit fields */
164 #define	MAXIMUM_NO_HEADS	65535
165 #define	MAXIMUM_NO_SECTORS	65535
166 #define	MAXIMUM_NO_CYLINDERS	65535
167 
168 #endif	/* defined(_SUNOS_VTOC_8) */
169 
170 /*
171  * minimum number of cylinders required by Solaris.
172  */
173 #define	SUN_MIN_CYL		3
174 
175 
176 
177 /*
178  * ANSI prototypes for local static functions
179  */
180 static struct disk_type	*generic_disk_sense(
181 				int		fd,
182 				int		can_prompt,
183 				struct dk_label	*label,
184 				struct scsi_inquiry *inquiry,
185 				struct scsi_capacity_16 *capacity,
186 				char		*disk_name);
187 static int		use_existing_disk_type(
188 				int		fd,
189 				int		can_prompt,
190 				struct dk_label	*label,
191 				struct scsi_inquiry *inquiry,
192 				struct disk_type *disk_type,
193 				struct scsi_capacity_16 *capacity);
194 int			build_default_partition(struct dk_label *label,
195 				int ctrl_type);
196 static struct disk_type	*find_scsi_disk_type(
197 				char		*disk_name,
198 				struct dk_label	*label);
199 static struct disk_type	*find_scsi_disk_by_name(
200 				char		*disk_name);
201 static struct ctlr_type	*find_scsi_ctlr_type(void);
202 static struct ctlr_info	*find_scsi_ctlr_info(
203 				struct dk_cinfo	*dkinfo);
204 static struct disk_type	*new_scsi_disk_type(
205 				int		fd,
206 				char		*disk_name,
207 				struct dk_label	*label);
208 static struct disk_info	*find_scsi_disk_info(
209 				struct dk_cinfo	*dkinfo);
210 
211 static struct disk_type *new_direct_disk_type(int fd, char *disk_name,
212     struct dk_label *label);
213 
214 static int efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc);
215 static int auto_label_init(struct dk_label *label);
216 static struct ctlr_type *find_ctlr_type(ushort_t);
217 static struct ctlr_info *find_ctlr_info(struct dk_cinfo	*, ushort_t);
218 static struct disk_info *find_disk_info(struct dk_cinfo *, ushort_t);
219 
220 static char		*get_sun_disk_name(
221 				char		*disk_name,
222 				struct scsi_inquiry *inquiry);
223 static char		*strcopy(
224 				char	*dst,
225 				char	*src,
226 				int	n);
227 static	int		adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl,
228 				uint_t *nsect, uint_t *nhead);
229 static void		compute_chs_values(diskaddr_t total_capacity,
230 				diskaddr_t usable_capacity, uint_t *pcylp,
231 				uint_t *nheadp, uint_t *nsectp);
232 #if defined(_SUNOS_VTOC_8)
233 static diskaddr_t square_box(
234 			diskaddr_t capacity,
235 			uint_t *dim1, uint_t lim1,
236 			uint_t *dim2, uint_t lim2,
237 			uint_t *dim3, uint_t lim3);
238 #endif	/* defined(_SUNOS_VTOC_8) */
239 
240 
241 /*
242  * We need to get information necessary to construct a *new* efi
243  * label type
244  */
245 struct disk_type *
246 auto_efi_sense(int fd, struct efi_info *label)
247 {
248 
249 	struct dk_gpt	*vtoc;
250 	int		i;
251 
252 	struct disk_type *disk, *dp;
253 	struct disk_info *disk_info;
254 	struct ctlr_info *ctlr;
255 	struct dk_cinfo dkinfo;
256 	struct partition_info *part;
257 	uint64_t reserved;
258 
259 	if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
260 		if (option_msg && diag_msg) {
261 			err_print("DKIOCINFO failed\n");
262 		}
263 		return (NULL);
264 	}
265 	if ((cur_ctype != NULL) && (cur_ctype->ctype_ctype == DKC_DIRECT ||
266 	    cur_ctype->ctype_ctype == DKC_VBD ||
267 	    cur_ctype->ctype_ctype == DKC_BLKDEV)) {
268 		ctlr = find_ctlr_info(&dkinfo, cur_ctype->ctype_ctype);
269 		disk_info = find_disk_info(&dkinfo, cur_ctype->ctype_ctype);
270 	} else {
271 		ctlr = find_scsi_ctlr_info(&dkinfo);
272 		disk_info = find_scsi_disk_info(&dkinfo);
273 	}
274 
275 	/*
276 	 * get vendor, product, revision and capacity info.
277 	 */
278 	if (get_disk_info(fd, label, disk_info) == -1) {
279 		return ((struct disk_type *)NULL);
280 	}
281 	/*
282 	 * Now build the default partition table
283 	 */
284 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &vtoc) != 0) {
285 		err_print("efi_alloc_and_init failed. \n");
286 		return ((struct disk_type *)NULL);
287 	}
288 
289 	label->e_parts = vtoc;
290 	reserved = efi_reserved_sectors(vtoc);
291 
292 	/*
293 	 * Create a whole hog EFI partition table:
294 	 * S0 takes the whole disk except the primary EFI label,
295 	 * backup EFI label, and the reserved partition.
296 	 */
297 	vtoc->efi_parts[0].p_tag = V_USR;
298 	vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba;
299 	vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba - vtoc->efi_first_u_lba
300 	    - reserved + 1;
301 
302 	/*
303 	 * S1-S6 are unassigned slices.
304 	 */
305 	for (i = 1; i < vtoc->efi_nparts - 2; i ++) {
306 		vtoc->efi_parts[i].p_tag = V_UNASSIGNED;
307 		vtoc->efi_parts[i].p_start = 0;
308 		vtoc->efi_parts[i].p_size = 0;
309 	}
310 
311 	/*
312 	 * The reserved slice
313 	 */
314 	vtoc->efi_parts[vtoc->efi_nparts - 1].p_tag = V_RESERVED;
315 	vtoc->efi_parts[vtoc->efi_nparts - 1].p_start =
316 	    vtoc->efi_last_u_lba - reserved + 1;
317 	vtoc->efi_parts[vtoc->efi_nparts - 1].p_size = reserved;
318 
319 	/*
320 	 * Now stick all of it into the disk_type struct
321 	 */
322 
323 	disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
324 	assert(disk_info->disk_ctlr == ctlr);
325 	dp = ctlr->ctlr_ctype->ctype_dlist;
326 	if (dp == NULL) {
327 		ctlr->ctlr_ctype->ctype_dlist = dp;
328 	} else {
329 		while (dp->dtype_next != NULL) {
330 			dp = dp->dtype_next;
331 		}
332 		dp->dtype_next = disk;
333 	}
334 	disk->dtype_next = NULL;
335 
336 	disk->vendor = strdup(label->vendor);
337 	disk->product = strdup(label->product);
338 	disk->revision = strdup(label->revision);
339 
340 	if (disk->vendor == NULL ||
341 	    disk->product == NULL ||
342 	    disk->revision == NULL) {
343 		free(disk->vendor);
344 		free(disk->product);
345 		free(disk->revision);
346 		free(disk);
347 		return (NULL);
348 	}
349 
350 	disk->capacity = label->capacity;
351 
352 	part = (struct partition_info *)
353 	    zalloc(sizeof (struct partition_info));
354 	disk->dtype_plist = part;
355 
356 	part->pinfo_name = alloc_string("default");
357 	part->pinfo_next = NULL;
358 	part->etoc = vtoc;
359 
360 	bzero(disk_info->v_volume, LEN_DKL_VVOL);
361 	disk_info->disk_parts = part;
362 	return (disk);
363 }
364 
365 static int
366 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
367 {
368 	void *data = dk_ioc->dki_data;
369 	int error;
370 
371 	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
372 	error = ioctl(fd, cmd, (void *)dk_ioc);
373 	dk_ioc->dki_data = data;
374 
375 	return (error);
376 }
377 
378 static struct ctlr_type *
379 find_ctlr_type(ushort_t type)
380 {
381 	struct	mctlr_list	*mlp;
382 
383 	assert(type == DKC_DIRECT ||
384 	    type == DKC_VBD ||
385 	    type == DKC_BLKDEV);
386 
387 	mlp = controlp;
388 
389 	while (mlp != NULL) {
390 		if (mlp->ctlr_type->ctype_ctype == type) {
391 			return (mlp->ctlr_type);
392 		}
393 		mlp = mlp->next;
394 	}
395 
396 	impossible("no DIRECT/VBD/BLKDEV controller type");
397 
398 	return ((struct ctlr_type *)NULL);
399 }
400 
401 static struct ctlr_info *
402 find_ctlr_info(struct dk_cinfo *dkinfo, ushort_t type)
403 {
404 	struct ctlr_info	*ctlr;
405 
406 	assert(type == DKC_DIRECT ||
407 	    type == DKC_VBD ||
408 	    type == DKC_BLKDEV);
409 
410 	for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) {
411 		if (ctlr->ctlr_addr == dkinfo->dki_addr &&
412 		    ctlr->ctlr_space == dkinfo->dki_space &&
413 		    ctlr->ctlr_ctype->ctype_ctype == dkinfo->dki_ctype) {
414 			return (ctlr);
415 		}
416 	}
417 
418 	impossible("no DIRECT/VBD/BLKDEV controller info");
419 	/*NOTREACHED*/
420 	return ((struct ctlr_info *)NULL);
421 }
422 
423 static  struct disk_info *
424 find_disk_info(struct dk_cinfo *dkinfo, ushort_t type)
425 {
426 	struct disk_info	*disk;
427 	struct dk_cinfo		*dp;
428 
429 	assert(type == DKC_DIRECT ||
430 	    type == DKC_VBD ||
431 	    type == DKC_BLKDEV);
432 
433 	for (disk = disk_list; disk != NULL; disk = disk->disk_next) {
434 		dp = &disk->disk_dkinfo;
435 		if (dp->dki_ctype == dkinfo->dki_ctype &&
436 		    dp->dki_cnum == dkinfo->dki_cnum &&
437 		    dp->dki_unit == dkinfo->dki_unit &&
438 		    strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) {
439 			return (disk);
440 		}
441 	}
442 
443 	impossible("No DIRECT/VBD/BLKDEV disk info instance\n");
444 	/*NOTREACHED*/
445 	return ((struct disk_info *)NULL);
446 }
447 
448 /*
449  * To convert EFI to SMI labels, we need to get label geometry.
450  * Unfortunately at this time there is no good way to do so.
451  * DKIOCGGEOM will fail if disk is EFI labeled. So we hack around
452  * it and clear EFI label, do a DKIOCGGEOM and put the EFI label
453  * back on disk.
454  * This routine gets the label geometry and initializes the label
455  * It uses cur_file as opened device.
456  * returns 0 if succeeds or -1 if failed.
457  */
458 static int
459 auto_label_init(struct dk_label *label)
460 {
461 	dk_efi_t	dk_ioc;
462 	dk_efi_t	dk_ioc_back;
463 	efi_gpt_t	*data = NULL;
464 	efi_gpt_t	*databack = NULL;
465 	struct dk_geom	disk_geom;
466 	struct dk_minfo	disk_info;
467 	efi_gpt_t	*backsigp;
468 	int		fd = cur_file;
469 	int		rval = -1;
470 	int		efisize = EFI_LABEL_SIZE * 2;
471 	int		success = 0;
472 	uint64_t	sig;
473 	uint64_t	backsig;
474 
475 	if ((data = calloc(efisize, 1)) == NULL) {
476 		err_print("auto_label_init: calloc failed\n");
477 		goto auto_label_init_out;
478 	}
479 
480 	dk_ioc.dki_data = data;
481 	dk_ioc.dki_lba = 1;
482 	dk_ioc.dki_length = efisize;
483 
484 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) != 0) {
485 		err_print("auto_label_init: GETEFI failed\n");
486 		goto auto_label_init_out;
487 	}
488 
489 	if ((databack = calloc(efisize, 1)) == NULL) {
490 		err_print("auto_label_init calloc2 failed");
491 		goto auto_label_init_out;
492 	}
493 
494 	/* get the LBA size and capacity */
495 	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
496 		err_print("auto_label_init: dkiocgmediainfo failed\n");
497 		goto auto_label_init_out;
498 	}
499 
500 	if (disk_info.dki_lbsize == 0) {
501 		if (option_msg && diag_msg) {
502 			err_print("auto_lbal_init: assuming 512 byte"
503 			    "block size");
504 		}
505 		disk_info.dki_lbsize = DEV_BSIZE;
506 	}
507 
508 	dk_ioc_back.dki_data = databack;
509 
510 	/*
511 	 * back up efi label goes to capacity - 1, we are reading an extra block
512 	 * before the back up label.
513 	 */
514 	dk_ioc_back.dki_lba = disk_info.dki_capacity - 1 - 1;
515 	dk_ioc_back.dki_length = efisize;
516 
517 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc_back) != 0) {
518 		err_print("auto_label_init: GETEFI backup failed\n");
519 		goto auto_label_init_out;
520 	}
521 
522 	sig = dk_ioc.dki_data->efi_gpt_Signature;
523 	dk_ioc.dki_data->efi_gpt_Signature = 0x0;
524 
525 	enter_critical();
526 
527 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
528 		err_print("auto_label_init: SETEFI failed\n");
529 		exit_critical();
530 		goto auto_label_init_out;
531 	}
532 
533 	backsigp = (efi_gpt_t *)((uintptr_t)dk_ioc_back.dki_data + cur_blksz);
534 
535 	backsig = backsigp->efi_gpt_Signature;
536 
537 	backsigp->efi_gpt_Signature = 0;
538 
539 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc_back) == -1) {
540 		err_print("auto_label_init: SETEFI backup failed\n");
541 	}
542 
543 	if (ioctl(cur_file, DKIOCGGEOM, &disk_geom) != 0)
544 		err_print("auto_label_init: GGEOM failed\n");
545 	else
546 		success = 1;
547 
548 	dk_ioc.dki_data->efi_gpt_Signature = sig;
549 	backsigp->efi_gpt_Signature = backsig;
550 
551 	if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc_back) == -1) {
552 		err_print("auto_label_init: SETEFI revert backup failed\n");
553 		success = 0;
554 	}
555 
556 	if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc) == -1) {
557 		err_print("auto_label_init: SETEFI revert failed\n");
558 		success = 0;
559 	}
560 
561 	exit_critical();
562 
563 	if (success == 0)
564 		goto auto_label_init_out;
565 
566 	ncyl = disk_geom.dkg_ncyl;
567 	acyl = disk_geom.dkg_acyl;
568 	nhead =  disk_geom.dkg_nhead;
569 	nsect = disk_geom.dkg_nsect;
570 	pcyl = ncyl + acyl;
571 
572 	label->dkl_pcyl = pcyl;
573 	label->dkl_ncyl = ncyl;
574 	label->dkl_acyl = acyl;
575 	label->dkl_nhead = nhead;
576 	label->dkl_nsect = nsect;
577 	label->dkl_apc = 0;
578 	label->dkl_intrlv = 1;
579 	label->dkl_rpm = disk_geom.dkg_rpm;
580 
581 	label->dkl_magic = DKL_MAGIC;
582 
583 	(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
584 	    "%s cyl %u alt %u hd %u sec %u",
585 	    "DEFAULT", ncyl, acyl, nhead, nsect);
586 
587 	rval = 0;
588 #if defined(_FIRMWARE_NEEDS_FDISK)
589 	(void) auto_solaris_part(label);
590 	ncyl = label->dkl_ncyl;
591 
592 #endif	/* defined(_FIRMWARE_NEEDS_FDISK) */
593 
594 	if (!build_default_partition(label, DKC_DIRECT)) {
595 		rval = -1;
596 	}
597 
598 	(void) checksum(label, CK_MAKESUM);
599 
600 
601 auto_label_init_out:
602 	if (data)
603 		free(data);
604 	if (databack)
605 		free(databack);
606 
607 	return (rval);
608 }
609 
610 static struct disk_type *
611 new_direct_disk_type(
612 	int		fd,
613 	char		*disk_name,
614 	struct dk_label	*label)
615 {
616 	struct disk_type	*dp;
617 	struct disk_type	*disk;
618 	struct ctlr_info	*ctlr;
619 	struct dk_cinfo		dkinfo;
620 	struct partition_info	*part = NULL;
621 	struct partition_info	*pt;
622 	struct disk_info	*disk_info;
623 	int			i;
624 
625 	/*
626 	 * Get the disk controller info for this disk
627 	 */
628 	if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
629 		if (option_msg && diag_msg) {
630 			err_print("DKIOCINFO failed\n");
631 		}
632 		return (NULL);
633 	}
634 
635 	/*
636 	 * Find the ctlr_info for this disk.
637 	 */
638 	ctlr = find_ctlr_info(&dkinfo, dkinfo.dki_ctype);
639 
640 	/*
641 	 * Allocate a new disk type for the direct controller.
642 	 */
643 	disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
644 
645 	/*
646 	 * Find the disk_info instance for this disk.
647 	 */
648 	disk_info = find_disk_info(&dkinfo, dkinfo.dki_ctype);
649 
650 	/*
651 	 * The controller and the disk should match.
652 	 */
653 	assert(disk_info->disk_ctlr == ctlr);
654 
655 	/*
656 	 * Link the disk into the list of disks
657 	 */
658 	dp = ctlr->ctlr_ctype->ctype_dlist;
659 	if (dp == NULL) {
660 		ctlr->ctlr_ctype->ctype_dlist = dp;
661 	} else {
662 		while (dp->dtype_next != NULL) {
663 			dp = dp->dtype_next;
664 		}
665 		dp->dtype_next = disk;
666 	}
667 	disk->dtype_next = NULL;
668 
669 	/*
670 	 * Allocate and initialize the disk name.
671 	 */
672 	disk->dtype_asciilabel = alloc_string(disk_name);
673 
674 	/*
675 	 * Initialize disk geometry info
676 	 */
677 	disk->dtype_pcyl = label->dkl_pcyl;
678 	disk->dtype_ncyl = label->dkl_ncyl;
679 	disk->dtype_acyl = label->dkl_acyl;
680 	disk->dtype_nhead = label->dkl_nhead;
681 	disk->dtype_nsect = label->dkl_nsect;
682 	disk->dtype_rpm = label->dkl_rpm;
683 
684 	part = (struct partition_info *)
685 	    zalloc(sizeof (struct partition_info));
686 	pt = disk->dtype_plist;
687 	if (pt == NULL) {
688 		disk->dtype_plist = part;
689 	} else {
690 		while (pt->pinfo_next != NULL) {
691 			pt = pt->pinfo_next;
692 		}
693 		pt->pinfo_next = part;
694 	}
695 
696 	part->pinfo_next = NULL;
697 
698 	/*
699 	 * Set up the partition name
700 	 */
701 	part->pinfo_name = alloc_string("default");
702 
703 	/*
704 	 * Fill in the partition info from the label
705 	 */
706 	for (i = 0; i < NDKMAP; i++) {
707 
708 #if defined(_SUNOS_VTOC_8)
709 		part->pinfo_map[i] = label->dkl_map[i];
710 
711 #elif defined(_SUNOS_VTOC_16)
712 		part->pinfo_map[i].dkl_cylno =
713 		    label->dkl_vtoc.v_part[i].p_start /
714 		    ((blkaddr_t)(disk->dtype_nhead *
715 		    disk->dtype_nsect - apc));
716 		part->pinfo_map[i].dkl_nblk =
717 		    label->dkl_vtoc.v_part[i].p_size;
718 #else
719 #error No VTOC format defined.
720 #endif				/* defined(_SUNOS_VTOC_8) */
721 	}
722 
723 	/*
724 	 * Use the VTOC if valid, or install a default
725 	 */
726 	if (label->dkl_vtoc.v_version == V_VERSION) {
727 		(void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume,
728 		    LEN_DKL_VVOL);
729 		part->vtoc = label->dkl_vtoc;
730 	} else {
731 		(void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL);
732 		set_vtoc_defaults(part);
733 	}
734 
735 	/*
736 	 * Link the disk to the partition map
737 	 */
738 	disk_info->disk_parts = part;
739 
740 	return (disk);
741 }
742 
743 /*
744  * Get a disk type that has label info. This is used to convert
745  * EFI label to SMI label
746  */
747 struct disk_type *
748 auto_direct_get_geom_label(int fd, struct dk_label *label)
749 {
750 	struct disk_type		*disk_type;
751 
752 	if (auto_label_init(label) != 0) {
753 		err_print("auto_direct_get_geom_label: failed to get label"
754 		    "geometry");
755 		return (NULL);
756 	} else {
757 		disk_type = new_direct_disk_type(fd, "DEFAULT", label);
758 		return (disk_type);
759 	}
760 }
761 
762 /*
763  * Auto-sense a scsi disk configuration, ie get the information
764  * necessary to construct a label.  We have two different
765  * ways to auto-sense a scsi disk:
766  *	- format.dat override, via inquiry name
767  *	- generic scsi, via standard mode sense and inquiry
768  * Depending on how and when we are called, and/or
769  * change geometry and reformat.
770  */
771 struct disk_type *
772 auto_sense(
773 	int		fd,
774 	int		can_prompt,
775 	struct dk_label	*label)
776 {
777 	struct scsi_inquiry		inquiry;
778 	struct scsi_capacity_16		capacity;
779 	struct disk_type		*disk_type;
780 	char				disk_name[DISK_NAME_MAX];
781 	int				force_format_dat = 0;
782 	int				force_generic = 0;
783 	u_ioparam_t			ioparam;
784 	int				deflt;
785 	char				*buf;
786 
787 	/*
788 	 * First, if expert mode, find out if the user
789 	 * wants to override any of the standard methods.
790 	 */
791 	if (can_prompt && expert_mode) {
792 		deflt = 1;
793 		ioparam.io_charlist = confirm_list;
794 		if (input(FIO_MSTR, FORMAT_MSG, '?', &ioparam,
795 		    &deflt, DATA_INPUT) == 0) {
796 			force_format_dat = 1;
797 		} else if (input(FIO_MSTR, GENERIC_MSG, '?', &ioparam,
798 		    &deflt, DATA_INPUT) == 0) {
799 			force_generic = 1;
800 		}
801 	}
802 
803 	/*
804 	 * Get the Inquiry data.  If this fails, there's
805 	 * no hope for this disk, so give up.
806 	 */
807 	if (uscsi_inquiry(fd, (char *)&inquiry, sizeof (inquiry))) {
808 		return ((struct disk_type *)NULL);
809 	}
810 	if (option_msg && diag_msg) {
811 		err_print("Product id: ");
812 		print_buf(inquiry.inq_pid, sizeof (inquiry.inq_pid));
813 		err_print("\n");
814 	}
815 
816 	/*
817 	 * Get the Read Capacity
818 	 */
819 	if (uscsi_read_capacity(fd, &capacity)) {
820 		return ((struct disk_type *)NULL);
821 	}
822 
823 	/*
824 	 * If the reported capacity is set to zero, then the disk
825 	 * is not usable. If the reported capacity is set to all
826 	 * 0xf's, then this disk is too large.  These could only
827 	 * happen with a device that supports LBAs larger than 64
828 	 * bits which are not defined by any current T10 standards
829 	 * or by error responding from target.
830 	 */
831 	if ((capacity.sc_capacity == 0) ||
832 	    (capacity.sc_capacity == UINT_MAX64)) {
833 		if (option_msg && diag_msg) {
834 			err_print("Invalid capacity\n");
835 		}
836 		return ((struct disk_type *)NULL);
837 	}
838 	if (option_msg && diag_msg) {
839 		err_print("blocks:  %llu (0x%llx)\n",
840 		    capacity.sc_capacity, capacity.sc_capacity);
841 		err_print("blksize: %u\n", capacity.sc_lbasize);
842 	}
843 
844 	/*
845 	 * Extract the disk name for the format.dat override
846 	 */
847 	(void) get_sun_disk_name(disk_name, &inquiry);
848 	if (option_msg && diag_msg) {
849 		err_print("disk name:  `%s`\n", disk_name);
850 	}
851 
852 	buf = zalloc(cur_blksz);
853 	if (scsi_rdwr(DIR_READ, fd, (diskaddr_t)0, 1, (caddr_t)buf,
854 	    F_SILENT, NULL)) {
855 		free(buf);
856 		return ((struct disk_type *)NULL);
857 	}
858 	free(buf);
859 
860 	/*
861 	 * Figure out which method we use for auto sense.
862 	 * If a particular method fails, we fall back to
863 	 * the next possibility.
864 	 */
865 
866 	if (force_generic) {
867 		return (generic_disk_sense(fd, can_prompt, label,
868 		    &inquiry, &capacity, disk_name));
869 	}
870 
871 	/*
872 	 * Try for an existing format.dat first
873 	 */
874 	if ((disk_type = find_scsi_disk_by_name(disk_name)) != NULL) {
875 		if (use_existing_disk_type(fd, can_prompt, label,
876 		    &inquiry, disk_type, &capacity)) {
877 			return (disk_type);
878 		}
879 		if (force_format_dat) {
880 			return (NULL);
881 		}
882 	}
883 
884 	/*
885 	 * Otherwise, try using generic SCSI-2 sense and inquiry.
886 	 */
887 
888 	return (generic_disk_sense(fd, can_prompt, label,
889 	    &inquiry, &capacity, disk_name));
890 }
891 
892 
893 
894 /*ARGSUSED*/
895 static struct disk_type *
896 generic_disk_sense(
897 	int			fd,
898 	int			can_prompt,
899 	struct dk_label		*label,
900 	struct scsi_inquiry	*inquiry,
901 	struct scsi_capacity_16	*capacity,
902 	char			*disk_name)
903 {
904 	struct disk_type		*disk;
905 	int				setdefault = 0;
906 	uint_t				pcyl = 0;
907 	uint_t				ncyl = 0;
908 	uint_t				acyl = 0;
909 	uint_t				nhead = 0;
910 	uint_t				nsect = 0;
911 	int				rpm = 0;
912 	diskaddr_t			nblocks = 0;
913 	diskaddr_t			tblocks = 0;
914 	union {
915 		struct mode_format	page3;
916 		uchar_t			buf3[MAX_MODE_SENSE_SIZE];
917 	} u_page3;
918 	union {
919 		struct mode_geometry	page4;
920 		uchar_t			buf4[MAX_MODE_SENSE_SIZE];
921 	} u_page4;
922 	struct mode_format		*page3 = &u_page3.page3;
923 	struct mode_geometry		*page4 = &u_page4.page4;
924 	struct scsi_ms_header		header;
925 
926 	/*
927 	 * If the name of this disk appears to be "SUN", use it,
928 	 * otherwise construct a name out of the generic
929 	 * Inquiry info.  If it turns out that we already
930 	 * have a SUN disk type of this name that differs
931 	 * in geometry, we will revert to the generic name
932 	 * anyway.
933 	 */
934 	if (memcmp(disk_name, "SUN", strlen("SUN")) != 0) {
935 		(void) get_generic_disk_name(disk_name, inquiry);
936 	}
937 
938 	/*
939 	 * Get the number of blocks from Read Capacity data. Note that
940 	 * the logical block address range from 0 to capacity->sc_capacity.
941 	 * Limit the size to 2 TB (UINT32_MAX) to use with SMI labels.
942 	 */
943 	tblocks = (capacity->sc_capacity + 1);
944 	if (tblocks > UINT32_MAX)
945 		nblocks = UINT32_MAX;
946 	else
947 		nblocks = tblocks;
948 
949 	/*
950 	 * Get current Page 3 - Format Parameters page
951 	 */
952 	if (uscsi_mode_sense(fd, DAD_MODE_FORMAT, MODE_SENSE_PC_CURRENT,
953 	    (caddr_t)&u_page3, MAX_MODE_SENSE_SIZE, &header)) {
954 		setdefault = 1;
955 	}
956 
957 	/*
958 	 * Get current Page 4 - Drive Geometry page
959 	 */
960 	if (uscsi_mode_sense(fd, DAD_MODE_GEOMETRY, MODE_SENSE_PC_CURRENT,
961 	    (caddr_t)&u_page4, MAX_MODE_SENSE_SIZE, &header)) {
962 		setdefault = 1;
963 	}
964 
965 	if (setdefault != 1) {
966 		/* The inquiry of mode page 3 & page 4 are successful */
967 		/*
968 		 * Correct for byte order if necessary
969 		 */
970 		page4->rpm = BE_16(page4->rpm);
971 		page4->step_rate = BE_16(page4->step_rate);
972 		page3->tracks_per_zone = BE_16(page3->tracks_per_zone);
973 		page3->alt_sect_zone = BE_16(page3->alt_sect_zone);
974 		page3->alt_tracks_zone = BE_16(page3->alt_tracks_zone);
975 		page3->alt_tracks_vol = BE_16(page3->alt_tracks_vol);
976 		page3->sect_track = BE_16(page3->sect_track);
977 		page3->data_bytes_sect = BE_16(page3->data_bytes_sect);
978 		page3->interleave = BE_16(page3->interleave);
979 		page3->track_skew = BE_16(page3->track_skew);
980 		page3->cylinder_skew = BE_16(page3->cylinder_skew);
981 
982 
983 		/*
984 		 * Construct a new label out of the sense data,
985 		 * Inquiry and Capacity.
986 		 *
987 		 * If the disk capacity is > 1TB then simply compute
988 		 * the CHS values based on the total disk capacity and
989 		 * not use the values from mode-sense data.
990 		 */
991 		if (tblocks > INT32_MAX) {
992 			compute_chs_values(tblocks, nblocks, &pcyl, &nhead,
993 			    &nsect);
994 		} else {
995 			pcyl = (page4->cyl_ub << 16) + (page4->cyl_mb << 8) +
996 			    page4->cyl_lb;
997 			nhead = page4->heads;
998 			nsect = page3->sect_track;
999 		}
1000 
1001 		rpm = page4->rpm;
1002 
1003 		/*
1004 		 * If the number of physical cylinders reported is less
1005 		 * the SUN_MIN_CYL(3) then try to adjust the geometry so that
1006 		 * we have atleast SUN_MIN_CYL cylinders.
1007 		 */
1008 		if (pcyl < SUN_MIN_CYL) {
1009 			if (nhead == 0 || nsect == 0) {
1010 				setdefault = 1;
1011 			} else if (adjust_disk_geometry(
1012 			    (diskaddr_t)(capacity->sc_capacity + 1),
1013 			    &pcyl, &nhead, &nsect)) {
1014 				setdefault = 1;
1015 			}
1016 		}
1017 	}
1018 
1019 	/*
1020 	 * Mode sense page 3 and page 4 are obsolete in SCSI-3. For
1021 	 * newly developed large sector size disk, we will not rely on
1022 	 * those two pages but compute geometry directly.
1023 	 */
1024 	if ((setdefault == 1) || (capacity->sc_lbasize != DEV_BSIZE)) {
1025 		/*
1026 		 * If the number of cylinders or the number of heads reported
1027 		 * is zero, we think the inquiry of page 3 and page 4 failed.
1028 		 * We will set the geometry infomation by ourselves.
1029 		 */
1030 		compute_chs_values(tblocks, nblocks, &pcyl, &nhead, &nsect);
1031 	}
1032 
1033 	/*
1034 	 * The sd driver reserves 2 cylinders the backup disk label and
1035 	 * the deviceid.  Set the number of data cylinders to pcyl-acyl.
1036 	 */
1037 	acyl = DK_ACYL;
1038 	ncyl = pcyl - acyl;
1039 
1040 	if (option_msg && diag_msg) {
1041 		err_print("Geometry:\n");
1042 		err_print("    pcyl:    %u\n", pcyl);
1043 		err_print("    ncyl:    %u\n", ncyl);
1044 		err_print("    heads:   %u\n", nhead);
1045 		err_print("    nsects:  %u\n", nsect);
1046 		err_print("    acyl:    %u\n", acyl);
1047 
1048 #if defined(_SUNOS_VTOC_16)
1049 		err_print("    bcyl:    %u\n", bcyl);
1050 #endif			/* defined(_SUNOS_VTOC_16) */
1051 
1052 		err_print("    rpm:     %d\n", rpm);
1053 		err_print("    nblocks:     %llu\n", nblocks);
1054 	}
1055 
1056 	/*
1057 	 * Some drives do not support page4 or report 0 for page4->rpm,
1058 	 * adjust it to AVG_RPM, 3600.
1059 	 */
1060 	if (rpm < MIN_RPM || rpm > MAX_RPM) {
1061 		if (option_msg && diag_msg)
1062 			err_print("The current rpm value %d is invalid,"
1063 			    " adjusting it to %d\n", rpm, AVG_RPM);
1064 		rpm = AVG_RPM;
1065 	}
1066 
1067 	/*
1068 	 * Some drives report 0 for nsect (page 3, byte 10 and 11) if they
1069 	 * have variable number of sectors per track. So adjust nsect.
1070 	 * Also the value is defined as vendor specific, hence check if
1071 	 * it is in a tolerable range. The values (32 and 4 below) are
1072 	 * chosen so that this change below does not generate a different
1073 	 * geometry for currently supported sun disks.
1074 	 */
1075 	if ((nsect == 0) ||
1076 	    ((diskaddr_t)pcyl * nhead * nsect) < (nblocks - nblocks/32) ||
1077 	    ((diskaddr_t)pcyl * nhead * nsect) > (nblocks + nblocks/4)) {
1078 		if (nblocks > (pcyl * nhead)) {
1079 			err_print("Mode sense page(3) reports nsect value"
1080 			    " as %d, adjusting it to %llu\n",
1081 			    nsect, nblocks / (pcyl * nhead));
1082 			nsect = nblocks / (pcyl * nhead);
1083 		} else {
1084 			/* convert capacity to nsect * nhead * pcyl */
1085 			err_print("\nWARNING: Disk geometry is based on "
1086 			    "capacity data.\n\n");
1087 			compute_chs_values(tblocks, nblocks, &pcyl, &nhead,
1088 			    &nsect);
1089 			ncyl = pcyl - acyl;
1090 			if (option_msg && diag_msg) {
1091 				err_print("Geometry:(after adjustment)\n");
1092 				err_print("    pcyl:    %u\n", pcyl);
1093 				err_print("    ncyl:    %u\n", ncyl);
1094 				err_print("    heads:   %u\n", nhead);
1095 				err_print("    nsects:  %u\n", nsect);
1096 				err_print("    acyl:    %u\n", acyl);
1097 
1098 #if defined(_SUNOS_VTOC_16)
1099 				err_print("    bcyl:    %u\n", bcyl);
1100 #endif
1101 
1102 				err_print("    rpm:     %d\n", rpm);
1103 				err_print("    nblocks:     %llu\n", nblocks);
1104 			}
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Some drives report their physical geometry such that
1110 	 * it is greater than the actual capacity.  Adjust the
1111 	 * geometry to allow for this, so we don't run off
1112 	 * the end of the disk.
1113 	 */
1114 	if (((diskaddr_t)pcyl * nhead * nsect) > nblocks) {
1115 		uint_t	p = pcyl;
1116 		if (option_msg && diag_msg) {
1117 			err_print("Computed capacity (%llu) exceeds actual "
1118 			    "disk capacity (%llu)\n",
1119 			    (diskaddr_t)pcyl * nhead * nsect, nblocks);
1120 		}
1121 		do {
1122 			pcyl--;
1123 		} while (((diskaddr_t)pcyl * nhead * nsect) > nblocks);
1124 
1125 		if (can_prompt && expert_mode && !option_f) {
1126 			/*
1127 			 * Try to adjust nsect instead of pcyl to see if we
1128 			 * can optimize. For compatability reasons do this
1129 			 * only in expert mode (refer to bug 1144812).
1130 			 */
1131 			uint_t	n = nsect;
1132 			do {
1133 				n--;
1134 			} while (((diskaddr_t)p * nhead * n) > nblocks);
1135 			if (((diskaddr_t)p * nhead * n) >
1136 			    ((diskaddr_t)pcyl * nhead * nsect)) {
1137 				u_ioparam_t	ioparam;
1138 				int		deflt = 1;
1139 				/*
1140 				 * Ask the user for a choice here.
1141 				 */
1142 				ioparam.io_bounds.lower = 1;
1143 				ioparam.io_bounds.upper = 2;
1144 				err_print("1. Capacity = %llu, with pcyl = %u "
1145 				    "nhead = %u nsect = %u\n",
1146 				    ((diskaddr_t)pcyl * nhead * nsect),
1147 				    pcyl, nhead, nsect);
1148 				err_print("2. Capacity = %llu, with pcyl = %u "
1149 				    "nhead = %u nsect = %u\n",
1150 				    ((diskaddr_t)p * nhead * n),
1151 				    p, nhead, n);
1152 				if (input(FIO_INT, "Select one of the above "
1153 				    "choices ", ':', &ioparam,
1154 				    &deflt, DATA_INPUT) == 2) {
1155 					pcyl = p;
1156 					nsect = n;
1157 				}
1158 			}
1159 		}
1160 	}
1161 
1162 #if defined(_SUNOS_VTOC_8)
1163 	/*
1164 	 * Finally, we need to make sure we don't overflow any of the
1165 	 * fields in our disk label.  To do this we need to `square
1166 	 * the box' so to speak.  We will lose bits here.
1167 	 */
1168 
1169 	if ((pcyl > MAXIMUM_NO_CYLINDERS &&
1170 	    ((nsect > MAXIMUM_NO_SECTORS) ||
1171 	    (nhead > MAXIMUM_NO_HEADS))) ||
1172 	    ((nsect > MAXIMUM_NO_SECTORS) &&
1173 	    (nhead > MAXIMUM_NO_HEADS))) {
1174 		err_print("This disk is too big to label. "
1175 		    " You will lose some blocks.\n");
1176 	}
1177 	if ((pcyl > MAXIMUM_NO_CYLINDERS) ||
1178 	    (nsect > MAXIMUM_NO_SECTORS) ||
1179 	    (nhead > MAXIMUM_NO_HEADS)) {
1180 		u_ioparam_t	ioparam;
1181 		int		order;
1182 		char		msg[256];
1183 
1184 		order = ((pcyl > nhead)<<2) |
1185 		    ((pcyl > nsect)<<1) |
1186 		    (nhead > nsect);
1187 		switch (order) {
1188 		case 0x7: /* pcyl > nhead > nsect */
1189 			nblocks =
1190 			    square_box(nblocks,
1191 			    &pcyl, MAXIMUM_NO_CYLINDERS,
1192 			    &nhead, MAXIMUM_NO_HEADS,
1193 			    &nsect, MAXIMUM_NO_SECTORS);
1194 			break;
1195 		case 0x6: /* pcyl > nsect > nhead */
1196 			nblocks =
1197 			    square_box(nblocks,
1198 			    &pcyl, MAXIMUM_NO_CYLINDERS,
1199 			    &nsect, MAXIMUM_NO_SECTORS,
1200 			    &nhead, MAXIMUM_NO_HEADS);
1201 			break;
1202 		case 0x4: /* nsect > pcyl > nhead */
1203 			nblocks =
1204 			    square_box(nblocks,
1205 			    &nsect, MAXIMUM_NO_SECTORS,
1206 			    &pcyl, MAXIMUM_NO_CYLINDERS,
1207 			    &nhead, MAXIMUM_NO_HEADS);
1208 			break;
1209 		case 0x0: /* nsect > nhead > pcyl */
1210 			nblocks =
1211 			    square_box(nblocks,
1212 			    &nsect, MAXIMUM_NO_SECTORS,
1213 			    &nhead, MAXIMUM_NO_HEADS,
1214 			    &pcyl, MAXIMUM_NO_CYLINDERS);
1215 			break;
1216 		case 0x3: /* nhead > pcyl > nsect */
1217 			nblocks =
1218 			    square_box(nblocks,
1219 			    &nhead, MAXIMUM_NO_HEADS,
1220 			    &pcyl, MAXIMUM_NO_CYLINDERS,
1221 			    &nsect, MAXIMUM_NO_SECTORS);
1222 			break;
1223 		case 0x1: /* nhead > nsect > pcyl */
1224 			nblocks =
1225 			    square_box(nblocks,
1226 			    &nhead, MAXIMUM_NO_HEADS,
1227 			    &nsect, MAXIMUM_NO_SECTORS,
1228 			    &pcyl, MAXIMUM_NO_CYLINDERS);
1229 			break;
1230 		default:
1231 			/* How did we get here? */
1232 			impossible("label overflow adjustment");
1233 
1234 			/* Do something useful */
1235 			nblocks =
1236 			    square_box(nblocks,
1237 			    &nhead, MAXIMUM_NO_HEADS,
1238 			    &nsect, MAXIMUM_NO_SECTORS,
1239 			    &pcyl, MAXIMUM_NO_CYLINDERS);
1240 			break;
1241 		}
1242 		if (option_msg && diag_msg &&
1243 		    (capacity->sc_capacity + 1 != nblocks)) {
1244 			err_print("After adjusting geometry you lost"
1245 			    " %llu of %llu blocks.\n",
1246 			    (capacity->sc_capacity + 1 - nblocks),
1247 			    capacity->sc_capacity + 1);
1248 		}
1249 		while (can_prompt && expert_mode && !option_f) {
1250 			int				deflt = 1;
1251 
1252 			/*
1253 			 * Allow user to modify this by hand if desired.
1254 			 */
1255 			(void) sprintf(msg,
1256 			    "\nGeometry: %u heads, %u sectors %u cylinders"
1257 			    " result in %llu out of %llu blocks.\n"
1258 			    "Do you want to modify the device geometry",
1259 			    nhead, nsect, pcyl,
1260 			    nblocks, capacity->sc_capacity + 1);
1261 
1262 			ioparam.io_charlist = confirm_list;
1263 			if (input(FIO_MSTR, msg, '?', &ioparam,
1264 			    &deflt, DATA_INPUT) != 0)
1265 				break;
1266 
1267 			ioparam.io_bounds.lower = MINIMUM_NO_HEADS;
1268 			ioparam.io_bounds.upper = MAXIMUM_NO_HEADS;
1269 			nhead = input(FIO_INT, "Number of heads", ':',
1270 			    &ioparam, (int *)&nhead, DATA_INPUT);
1271 			ioparam.io_bounds.lower = MINIMUM_NO_SECTORS;
1272 			ioparam.io_bounds.upper = MAXIMUM_NO_SECTORS;
1273 			nsect = input(FIO_INT,
1274 			    "Number of sectors per track",
1275 			    ':', &ioparam, (int *)&nsect, DATA_INPUT);
1276 			ioparam.io_bounds.lower = SUN_MIN_CYL;
1277 			ioparam.io_bounds.upper = MAXIMUM_NO_CYLINDERS;
1278 			pcyl = input(FIO_INT, "Number of cylinders",
1279 			    ':', &ioparam, (int *)&pcyl, DATA_INPUT);
1280 			nblocks = (diskaddr_t)nhead * nsect * pcyl;
1281 			if (nblocks > capacity->sc_capacity + 1) {
1282 				err_print("Warning: %llu blocks exceeds "
1283 				    "disk capacity of %llu blocks\n",
1284 				    nblocks,
1285 				    capacity->sc_capacity + 1);
1286 			}
1287 		}
1288 	}
1289 #endif		/* defined(_SUNOS_VTOC_8) */
1290 
1291 	ncyl = pcyl - acyl;
1292 
1293 	if (option_msg && diag_msg) {
1294 		err_print("\nGeometry after adjusting for capacity:\n");
1295 		err_print("    pcyl:    %u\n", pcyl);
1296 		err_print("    ncyl:    %u\n", ncyl);
1297 		err_print("    heads:   %u\n", nhead);
1298 		err_print("    nsects:  %u\n", nsect);
1299 		err_print("    acyl:    %u\n", acyl);
1300 		err_print("    rpm:     %d\n", rpm);
1301 	}
1302 
1303 	(void) memset((char *)label, 0, sizeof (struct dk_label));
1304 
1305 	label->dkl_magic = DKL_MAGIC;
1306 
1307 	(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
1308 	    "%s cyl %u alt %u hd %u sec %u",
1309 	    disk_name, ncyl, acyl, nhead, nsect);
1310 
1311 	label->dkl_pcyl = pcyl;
1312 	label->dkl_ncyl = ncyl;
1313 	label->dkl_acyl = acyl;
1314 	label->dkl_nhead = nhead;
1315 	label->dkl_nsect = nsect;
1316 	label->dkl_apc = 0;
1317 	label->dkl_intrlv = 1;
1318 	label->dkl_rpm = rpm;
1319 
1320 #if defined(_FIRMWARE_NEEDS_FDISK)
1321 	if (auto_solaris_part(label) == -1)
1322 		goto err;
1323 	ncyl = label->dkl_ncyl;
1324 #endif		/* defined(_FIRMWARE_NEEDS_FDISK) */
1325 
1326 
1327 	if (!build_default_partition(label, DKC_SCSI_CCS)) {
1328 		goto err;
1329 	}
1330 
1331 	(void) checksum(label, CK_MAKESUM);
1332 
1333 	/*
1334 	 * Find an existing disk type defined for this disk.
1335 	 * For this to work, both the name and geometry must
1336 	 * match.  If there is no such type, but there already
1337 	 * is a disk defined with that name, but with a different
1338 	 * geometry, construct a new generic disk name out of
1339 	 * the inquiry information.  Whatever name we're
1340 	 * finally using, if there's no such disk type defined,
1341 	 * build a new disk definition.
1342 	 */
1343 	if ((disk = find_scsi_disk_type(disk_name, label)) == NULL) {
1344 		if (find_scsi_disk_by_name(disk_name) != NULL) {
1345 			char	old_name[DISK_NAME_MAX];
1346 			(void) strcpy(old_name, disk_name);
1347 			(void) get_generic_disk_name(disk_name,
1348 			    inquiry);
1349 			if (option_msg && diag_msg) {
1350 				err_print(
1351 "Changing disk type name from '%s' to '%s'\n", old_name, disk_name);
1352 			}
1353 			(void) snprintf(label->dkl_asciilabel,
1354 			    sizeof (label->dkl_asciilabel),
1355 			    "%s cyl %u alt %u hd %u sec %u",
1356 			    disk_name, ncyl, acyl, nhead, nsect);
1357 			(void) checksum(label, CK_MAKESUM);
1358 			disk = find_scsi_disk_type(disk_name, label);
1359 		}
1360 		if (disk == NULL) {
1361 			disk = new_scsi_disk_type(fd, disk_name, label);
1362 			if (disk == NULL)
1363 				goto err;
1364 		}
1365 	}
1366 
1367 	return (disk);
1368 
1369 err:
1370 	if (option_msg && diag_msg) {
1371 		err_print(
1372 		"Configuration via generic SCSI-2 information failed\n");
1373 	}
1374 	return (NULL);
1375 }
1376 
1377 
1378 /*ARGSUSED*/
1379 static int
1380 use_existing_disk_type(
1381 	int			fd,
1382 	int			can_prompt,
1383 	struct dk_label		*label,
1384 	struct scsi_inquiry	*inquiry,
1385 	struct disk_type	*disk_type,
1386 	struct scsi_capacity_16	*capacity)
1387 {
1388 	int			pcyl;
1389 	int			acyl;
1390 	int			nhead;
1391 	int			nsect;
1392 	int			rpm;
1393 
1394 	/*
1395 	 * Construct a new label out of the format.dat
1396 	 */
1397 	pcyl = disk_type->dtype_pcyl;
1398 	acyl = disk_type->dtype_acyl;
1399 	ncyl = disk_type->dtype_ncyl;
1400 	nhead = disk_type->dtype_nhead;
1401 	nsect = disk_type->dtype_nsect;
1402 	rpm = disk_type->dtype_rpm;
1403 
1404 	if (option_msg && diag_msg) {
1405 		err_print("Format.dat geometry:\n");
1406 		err_print("    pcyl:    %u\n", pcyl);
1407 		err_print("    heads:   %u\n", nhead);
1408 		err_print("    nsects:  %u\n", nsect);
1409 		err_print("    acyl:    %u\n", acyl);
1410 		err_print("    rpm:     %d\n", rpm);
1411 	}
1412 
1413 	(void) memset((char *)label, 0, sizeof (struct dk_label));
1414 
1415 	label->dkl_magic = DKL_MAGIC;
1416 
1417 	(void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel),
1418 	    "%s cyl %u alt %u hd %u sec %u",
1419 	    disk_type->dtype_asciilabel,
1420 	    ncyl, acyl, nhead, nsect);
1421 
1422 	label->dkl_pcyl = pcyl;
1423 	label->dkl_ncyl = ncyl;
1424 	label->dkl_acyl = acyl;
1425 	label->dkl_nhead = nhead;
1426 	label->dkl_nsect = nsect;
1427 	label->dkl_apc = 0;
1428 	label->dkl_intrlv = 1;
1429 	label->dkl_rpm = rpm;
1430 
1431 	if (!build_default_partition(label, DKC_SCSI_CCS)) {
1432 		goto err;
1433 	}
1434 
1435 	(void) checksum(label, CK_MAKESUM);
1436 	return (1);
1437 
1438 err:
1439 	if (option_msg && diag_msg) {
1440 		err_print(
1441 		    "Configuration via format.dat geometry failed\n");
1442 	}
1443 	return (0);
1444 }
1445 
1446 int
1447 build_default_partition(
1448 	struct dk_label			*label,
1449 	int				ctrl_type)
1450 {
1451 	int				i;
1452 	int				ncyls[NDKMAP];
1453 	diskaddr_t			nblks;
1454 	int				cyl;
1455 	struct dk_vtoc			*vtoc;
1456 	struct part_table		*pt;
1457 	struct default_partitions	*dpt;
1458 	diskaddr_t			capacity;
1459 	int				freecyls;
1460 	int				blks_per_cyl;
1461 	int				ncyl;
1462 
1463 #ifdef lint
1464 	ctrl_type = ctrl_type;
1465 #endif
1466 
1467 	/*
1468 	 * Install a default vtoc
1469 	 */
1470 	vtoc = &label->dkl_vtoc;
1471 	vtoc->v_version = V_VERSION;
1472 	vtoc->v_nparts = NDKMAP;
1473 	vtoc->v_sanity = VTOC_SANE;
1474 
1475 	for (i = 0; i < NDKMAP; i++) {
1476 		vtoc->v_part[i].p_tag = default_vtoc_map[i].p_tag;
1477 		vtoc->v_part[i].p_flag = default_vtoc_map[i].p_flag;
1478 	}
1479 
1480 	/*
1481 	 * Find a partition that matches this disk.  Capacity
1482 	 * is in integral number of megabytes.
1483 	 */
1484 	capacity = ((diskaddr_t)(label->dkl_ncyl) * label->dkl_nhead *
1485 	    label->dkl_nsect) / (diskaddr_t)((1024 * 1024) / cur_blksz);
1486 	dpt = default_partitions;
1487 	for (i = 0; i < DEFAULT_PARTITION_TABLE_SIZE; i++, dpt++) {
1488 		if (capacity >= dpt->min_capacity &&
1489 		    capacity < dpt->max_capacity) {
1490 			break;
1491 		}
1492 	}
1493 	if (i == DEFAULT_PARTITION_TABLE_SIZE) {
1494 		if (option_msg && diag_msg) {
1495 			err_print("No matching default partition (%llu)\n",
1496 			    capacity);
1497 		}
1498 		return (0);
1499 	}
1500 	pt = dpt->part_table;
1501 
1502 	/*
1503 	 * Go through default partition table, finding fixed
1504 	 * sized entries.
1505 	 */
1506 	freecyls = label->dkl_ncyl;
1507 	blks_per_cyl = label->dkl_nhead * label->dkl_nsect;
1508 	for (i = 0; i < NDKMAP; i++) {
1509 		if (pt->partitions[i] == HOG || pt->partitions[i] == 0) {
1510 			ncyls[i] = 0;
1511 		} else {
1512 			/*
1513 			 * Calculate number of cylinders necessary
1514 			 * for specified size, rounding up to
1515 			 * the next greatest integral number of
1516 			 * cylinders.  Always give what they
1517 			 * asked or more, never less.
1518 			 */
1519 			nblks = pt->partitions[i] * ((1024*1024)/cur_blksz);
1520 			nblks += (blks_per_cyl - 1);
1521 			ncyls[i] = nblks / blks_per_cyl;
1522 			freecyls -= ncyls[i];
1523 		}
1524 	}
1525 
1526 	if (freecyls < 0) {
1527 		if (option_msg && diag_msg) {
1528 			for (i = 0; i < NDKMAP; i++) {
1529 				if (ncyls[i] == 0)
1530 					continue;
1531 				err_print("Partition %d: %u cyls\n",
1532 				    i, ncyls[i]);
1533 			}
1534 			err_print("Free cylinders exhausted (%d)\n",
1535 			    freecyls);
1536 		}
1537 		return (0);
1538 	}
1539 #if defined(i386)
1540 	/*
1541 	 * Set the default boot partition to 1 cylinder
1542 	 */
1543 	ncyls[8] = 1;
1544 	freecyls -= 1;
1545 
1546 	/*
1547 	 * If current disk type is not a SCSI disk,
1548 	 * set the default alternates partition to 2 cylinders
1549 	 */
1550 	if (ctrl_type != DKC_SCSI_CCS) {
1551 		ncyls[9] = 2;
1552 		freecyls -= 2;
1553 	}
1554 #endif			/* defined(i386) */
1555 
1556 	/*
1557 	 * Set the free hog partition to whatever space remains.
1558 	 * It's an error to have more than one HOG partition,
1559 	 * but we don't verify that here.
1560 	 */
1561 	for (i = 0; i < NDKMAP; i++) {
1562 		if (pt->partitions[i] == HOG) {
1563 			assert(ncyls[i] == 0);
1564 			ncyls[i] = freecyls;
1565 			break;
1566 		}
1567 	}
1568 
1569 	/*
1570 	 * Error checking
1571 	 */
1572 	ncyl = 0;
1573 	for (i = 0; i < NDKMAP; i++) {
1574 		ncyl += ncyls[i];
1575 	}
1576 	assert(ncyl == (label->dkl_ncyl));
1577 
1578 	/*
1579 	 * Finally, install the partition in the label.
1580 	 */
1581 	cyl = 0;
1582 
1583 #if defined(_SUNOS_VTOC_16)
1584 	for (i = NDKMAP/2; i < NDKMAP; i++) {
1585 		if (i == 2 || ncyls[i] == 0)
1586 			continue;
1587 		label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl;
1588 		label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl;
1589 		cyl += ncyls[i];
1590 	}
1591 	for (i = 0; i < NDKMAP/2; i++) {
1592 
1593 #elif defined(_SUNOS_VTOC_8)
1594 	for (i = 0; i < NDKMAP; i++) {
1595 
1596 #else
1597 #error No VTOC format defined.
1598 #endif				/* defined(_SUNOS_VTOC_16) */
1599 
1600 		if (i == 2 || ncyls[i] == 0) {
1601 #if defined(_SUNOS_VTOC_8)
1602 			if (i != 2) {
1603 				label->dkl_map[i].dkl_cylno = 0;
1604 				label->dkl_map[i].dkl_nblk = 0;
1605 			}
1606 #endif
1607 			continue;
1608 		}
1609 #if defined(_SUNOS_VTOC_8)
1610 		label->dkl_map[i].dkl_cylno = cyl;
1611 		label->dkl_map[i].dkl_nblk = ncyls[i] * blks_per_cyl;
1612 #elif defined(_SUNOS_VTOC_16)
1613 		label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl;
1614 		label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl;
1615 
1616 #else
1617 #error No VTOC format defined.
1618 #endif				/* defined(_SUNOS_VTOC_8) */
1619 
1620 		cyl += ncyls[i];
1621 	}
1622 
1623 	/*
1624 	 * Set the whole disk partition
1625 	 */
1626 #if defined(_SUNOS_VTOC_8)
1627 	label->dkl_map[2].dkl_cylno = 0;
1628 	label->dkl_map[2].dkl_nblk =
1629 	    label->dkl_ncyl * label->dkl_nhead * label->dkl_nsect;
1630 
1631 #elif defined(_SUNOS_VTOC_16)
1632 	label->dkl_vtoc.v_part[2].p_start = 0;
1633 	label->dkl_vtoc.v_part[2].p_size =
1634 	    (label->dkl_ncyl + label->dkl_acyl) * label->dkl_nhead *
1635 	    label->dkl_nsect;
1636 #else
1637 #error No VTOC format defined.
1638 #endif				/* defined(_SUNOS_VTOC_8) */
1639 
1640 
1641 	if (option_msg && diag_msg) {
1642 		float	scaled;
1643 		err_print("\n");
1644 		for (i = 0; i < NDKMAP; i++) {
1645 #if defined(_SUNOS_VTOC_8)
1646 			if (label->dkl_map[i].dkl_nblk == 0)
1647 
1648 #elif defined(_SUNOS_VTOC_16)
1649 			if (label->dkl_vtoc.v_part[i].p_size == 0)
1650 
1651 #else
1652 #error No VTOC format defined.
1653 #endif				/* defined(_SUNOS_VTOC_8) */
1654 
1655 				continue;
1656 			err_print("Partition %d:   ", i);
1657 #if defined(_SUNOS_VTOC_8)
1658 			scaled = bn2mb(label->dkl_map[i].dkl_nblk);
1659 
1660 #elif defined(_SUNOS_VTOC_16)
1661 
1662 			scaled = bn2mb(label->dkl_vtoc.v_part[i].p_size);
1663 #else
1664 #error No VTOC format defined.
1665 #endif				/* defined(_SUNOS_VTOC_8) */
1666 
1667 			if (scaled > 1024.0) {
1668 				err_print("%6.2fGB  ", scaled/1024.0);
1669 			} else {
1670 				err_print("%6.2fMB  ", scaled);
1671 			}
1672 #if defined(_SUNOS_VTOC_8)
1673 			err_print(" %6d cylinders\n",
1674 			    label->dkl_map[i].dkl_nblk/blks_per_cyl);
1675 #elif defined(_SUNOS_VTOC_16)
1676 			err_print(" %6d cylinders\n",
1677 			    label->dkl_vtoc.v_part[i].p_size/blks_per_cyl);
1678 #else
1679 #error No VTOC format defined.
1680 #endif				/* defined(_SUNOS_VTOC_8) */
1681 
1682 		}
1683 		err_print("\n");
1684 	}
1685 
1686 	return (1);
1687 }
1688 
1689 
1690 
1691 /*
1692  * Find an existing scsi disk definition by this name,
1693  * if possible.
1694  */
1695 static struct disk_type *
1696 find_scsi_disk_type(
1697 	char			*disk_name,
1698 	struct dk_label		*label)
1699 {
1700 	struct ctlr_type	*ctlr;
1701 	struct disk_type	*dp;
1702 
1703 	ctlr = find_scsi_ctlr_type();
1704 	for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) {
1705 		if (dp->dtype_asciilabel) {
1706 			if ((strcmp(dp->dtype_asciilabel, disk_name) == 0) &&
1707 			    dp->dtype_pcyl == label->dkl_pcyl &&
1708 			    dp->dtype_ncyl == label->dkl_ncyl &&
1709 			    dp->dtype_acyl == label->dkl_acyl &&
1710 			    dp->dtype_nhead == label->dkl_nhead &&
1711 			    dp->dtype_nsect == label->dkl_nsect) {
1712 				return (dp);
1713 			}
1714 		}
1715 	}
1716 
1717 	return ((struct disk_type *)NULL);
1718 }
1719 
1720 
1721 /*
1722  * Find an existing scsi disk definition by this name,
1723  * if possible.
1724  */
1725 static struct disk_type *
1726 find_scsi_disk_by_name(
1727 	char			*disk_name)
1728 {
1729 	struct ctlr_type	*ctlr;
1730 	struct disk_type	*dp;
1731 
1732 	ctlr = find_scsi_ctlr_type();
1733 	for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) {
1734 		if (dp->dtype_asciilabel) {
1735 			if ((strcmp(dp->dtype_asciilabel, disk_name) == 0)) {
1736 				return (dp);
1737 			}
1738 		}
1739 	}
1740 
1741 	return ((struct disk_type *)NULL);
1742 }
1743 
1744 
1745 /*
1746  * Return a pointer to the ctlr_type structure for SCSI
1747  * disks.  This list is built into the program, so there's
1748  * no chance of not being able to find it, unless someone
1749  * totally mangles the code.
1750  */
1751 static struct ctlr_type *
1752 find_scsi_ctlr_type()
1753 {
1754 	struct	mctlr_list	*mlp;
1755 
1756 	mlp = controlp;
1757 
1758 	while (mlp != NULL) {
1759 		if (mlp->ctlr_type->ctype_ctype == DKC_SCSI_CCS) {
1760 			return (mlp->ctlr_type);
1761 		}
1762 		mlp = mlp->next;
1763 	}
1764 
1765 	impossible("no SCSI controller type");
1766 
1767 	return ((struct ctlr_type *)NULL);
1768 }
1769 
1770 
1771 
1772 /*
1773  * Return a pointer to the scsi ctlr_info structure.  This
1774  * structure is allocated the first time format sees a
1775  * disk on this controller, so it must be present.
1776  */
1777 static struct ctlr_info *
1778 find_scsi_ctlr_info(
1779 	struct dk_cinfo		*dkinfo)
1780 {
1781 	struct ctlr_info	*ctlr;
1782 
1783 	if (dkinfo->dki_ctype != DKC_SCSI_CCS) {
1784 		return (NULL);
1785 	}
1786 
1787 	for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) {
1788 		if (ctlr->ctlr_addr == dkinfo->dki_addr &&
1789 		    ctlr->ctlr_space == dkinfo->dki_space &&
1790 		    ctlr->ctlr_ctype->ctype_ctype == DKC_SCSI_CCS) {
1791 			return (ctlr);
1792 		}
1793 	}
1794 
1795 	impossible("no SCSI controller info");
1796 
1797 	return ((struct ctlr_info *)NULL);
1798 }
1799 
1800 
1801 
1802 static struct disk_type *
1803 new_scsi_disk_type(
1804 	int		fd,
1805 	char		*disk_name,
1806 	struct dk_label	*label)
1807 {
1808 	struct disk_type	*dp;
1809 	struct disk_type	*disk;
1810 	struct ctlr_info	*ctlr;
1811 	struct dk_cinfo		dkinfo;
1812 	struct partition_info	*part;
1813 	struct partition_info	*pt;
1814 	struct disk_info	*disk_info;
1815 	int			i;
1816 
1817 	/*
1818 	 * Get the disk controller info for this disk
1819 	 */
1820 	if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) {
1821 		if (option_msg && diag_msg) {
1822 			err_print("DKIOCINFO failed\n");
1823 		}
1824 		return (NULL);
1825 	}
1826 
1827 	/*
1828 	 * Find the ctlr_info for this disk.
1829 	 */
1830 	ctlr = find_scsi_ctlr_info(&dkinfo);
1831 
1832 	/*
1833 	 * Allocate a new disk type for the SCSI controller.
1834 	 */
1835 	disk = (struct disk_type *)zalloc(sizeof (struct disk_type));
1836 
1837 	/*
1838 	 * Find the disk_info instance for this disk.
1839 	 */
1840 	disk_info = find_scsi_disk_info(&dkinfo);
1841 
1842 	/*
1843 	 * The controller and the disk should match.
1844 	 */
1845 	assert(disk_info->disk_ctlr == ctlr);
1846 
1847 	/*
1848 	 * Link the disk into the list of disks
1849 	 */
1850 	dp = ctlr->ctlr_ctype->ctype_dlist;
1851 	if (dp == NULL) {
1852 		ctlr->ctlr_ctype->ctype_dlist = disk;
1853 	} else {
1854 		while (dp->dtype_next != NULL) {
1855 			dp = dp->dtype_next;
1856 		}
1857 		dp->dtype_next = disk;
1858 	}
1859 	disk->dtype_next = NULL;
1860 
1861 	/*
1862 	 * Allocate and initialize the disk name.
1863 	 */
1864 	disk->dtype_asciilabel = alloc_string(disk_name);
1865 
1866 	/*
1867 	 * Initialize disk geometry info
1868 	 */
1869 	disk->dtype_pcyl = label->dkl_pcyl;
1870 	disk->dtype_ncyl = label->dkl_ncyl;
1871 	disk->dtype_acyl = label->dkl_acyl;
1872 	disk->dtype_nhead = label->dkl_nhead;
1873 	disk->dtype_nsect = label->dkl_nsect;
1874 	disk->dtype_rpm = label->dkl_rpm;
1875 
1876 	/*
1877 	 * Attempt to match the partition map in the label
1878 	 * with a know partition for this disk type.
1879 	 */
1880 	for (part = disk->dtype_plist; part; part = part->pinfo_next) {
1881 		if (parts_match(label, part)) {
1882 			break;
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * If no match was made, we need to create a partition
1888 	 * map for this disk.
1889 	 */
1890 	if (part == NULL) {
1891 		part = (struct partition_info *)
1892 		    zalloc(sizeof (struct partition_info));
1893 		pt = disk->dtype_plist;
1894 		if (pt == NULL) {
1895 			disk->dtype_plist = part;
1896 		} else {
1897 			while (pt->pinfo_next != NULL) {
1898 				pt = pt->pinfo_next;
1899 			}
1900 			pt->pinfo_next = part;
1901 		}
1902 		part->pinfo_next = NULL;
1903 
1904 		/*
1905 		 * Set up the partition name
1906 		 */
1907 		part->pinfo_name = alloc_string("default");
1908 
1909 		/*
1910 		 * Fill in the partition info from the label
1911 		 */
1912 		for (i = 0; i < NDKMAP; i++) {
1913 
1914 #if defined(_SUNOS_VTOC_8)
1915 			part->pinfo_map[i] = label->dkl_map[i];
1916 
1917 #elif defined(_SUNOS_VTOC_16)
1918 			part->pinfo_map[i].dkl_cylno =
1919 			    label->dkl_vtoc.v_part[i].p_start /
1920 			    ((blkaddr32_t)(disk->dtype_nhead *
1921 			    disk->dtype_nsect - apc));
1922 			part->pinfo_map[i].dkl_nblk =
1923 			    label->dkl_vtoc.v_part[i].p_size;
1924 #else
1925 #error No VTOC format defined.
1926 #endif				/* defined(_SUNOS_VTOC_8) */
1927 
1928 		}
1929 	}
1930 
1931 
1932 	/*
1933 	 * Use the VTOC if valid, or install a default
1934 	 */
1935 	if (label->dkl_vtoc.v_version == V_VERSION) {
1936 		(void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume,
1937 		    LEN_DKL_VVOL);
1938 		part->vtoc = label->dkl_vtoc;
1939 	} else {
1940 		(void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL);
1941 		set_vtoc_defaults(part);
1942 	}
1943 
1944 	/*
1945 	 * Link the disk to the partition map
1946 	 */
1947 	disk_info->disk_parts = part;
1948 
1949 	return (disk);
1950 }
1951 
1952 
1953 /*
1954  * Delete a disk type from disk type list.
1955  */
1956 int
1957 delete_disk_type(struct disk_type *disk_type)
1958 {
1959 	struct ctlr_type	*ctlr;
1960 	struct disk_type	*dp, *disk;
1961 
1962 	if (cur_ctype->ctype_ctype == DKC_DIRECT ||
1963 	    cur_ctype->ctype_ctype == DKC_VBD ||
1964 	    cur_ctype->ctype_ctype == DKC_BLKDEV)
1965 		ctlr = find_ctlr_type(cur_ctype->ctype_ctype);
1966 	else
1967 		ctlr = find_scsi_ctlr_type();
1968 	if (ctlr == NULL || ctlr->ctype_dlist == NULL) {
1969 		return (-1);
1970 	}
1971 
1972 	disk = ctlr->ctype_dlist;
1973 	if (disk == disk_type) {
1974 		ctlr->ctype_dlist = disk->dtype_next;
1975 		if (cur_label == L_TYPE_EFI)
1976 			free(disk->dtype_plist->etoc);
1977 		free(disk->dtype_plist);
1978 		free(disk->vendor);
1979 		free(disk->product);
1980 		free(disk->revision);
1981 		free(disk);
1982 		return (0);
1983 	} else {
1984 		for (dp = disk->dtype_next; dp != NULL;
1985 		    disk = disk->dtype_next, dp = dp->dtype_next) {
1986 			if (dp == disk_type) {
1987 				disk->dtype_next = dp->dtype_next;
1988 				if (cur_label == L_TYPE_EFI)
1989 					free(dp->dtype_plist->etoc);
1990 				free(dp->dtype_plist);
1991 				free(dp->vendor);
1992 				free(dp->product);
1993 				free(dp->revision);
1994 				free(dp);
1995 				return (0);
1996 			}
1997 		}
1998 		return (-1);
1999 	}
2000 }
2001 
2002 
2003 static struct disk_info *
2004 find_scsi_disk_info(
2005 	struct dk_cinfo		*dkinfo)
2006 {
2007 	struct disk_info	*disk;
2008 	struct dk_cinfo		*dp;
2009 
2010 	for (disk = disk_list; disk != NULL; disk = disk->disk_next) {
2011 		assert(dkinfo->dki_ctype == DKC_SCSI_CCS);
2012 		dp = &disk->disk_dkinfo;
2013 		if (dp->dki_ctype == dkinfo->dki_ctype &&
2014 		    dp->dki_cnum == dkinfo->dki_cnum &&
2015 		    dp->dki_unit == dkinfo->dki_unit &&
2016 		    strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) {
2017 			return (disk);
2018 		}
2019 	}
2020 
2021 	impossible("No SCSI disk info instance\n");
2022 
2023 	return ((struct disk_info *)NULL);
2024 }
2025 
2026 
2027 static char *
2028 get_sun_disk_name(
2029 	char			*disk_name,
2030 	struct scsi_inquiry	*inquiry)
2031 {
2032 	/*
2033 	 * Extract the sun name of the disk
2034 	 */
2035 	(void) memset(disk_name, 0, DISK_NAME_MAX);
2036 	(void) memcpy(disk_name, (char *)&inquiry->inq_pid[9], 7);
2037 
2038 	return (disk_name);
2039 }
2040 
2041 
2042 char *
2043 get_generic_disk_name(
2044 	char			*disk_name,
2045 	struct scsi_inquiry	*inquiry)
2046 {
2047 	char	*p;
2048 
2049 	(void) memset(disk_name, 0, DISK_NAME_MAX);
2050 	p = strcopy(disk_name, inquiry->inq_vid,
2051 	    sizeof (inquiry->inq_vid));
2052 	*p++ = '-';
2053 	p = strcopy(p, inquiry->inq_pid, sizeof (inquiry->inq_pid));
2054 	*p++ = '-';
2055 	p = strcopy(p, inquiry->inq_revision,
2056 	    sizeof (inquiry->inq_revision));
2057 
2058 	return (disk_name);
2059 }
2060 
2061 /*
2062  * Copy a string of characters from src to dst, for at
2063  * most n bytes.  Strip all leading and trailing spaces,
2064  * and stop if there are any non-printable characters.
2065  * Return ptr to the next character to be filled.
2066  */
2067 static char *
2068 strcopy(
2069 	char	*dst,
2070 	char	*src,
2071 	int	n)
2072 {
2073 	int	i;
2074 
2075 	while (*src == ' ' && n > 0) {
2076 		src++;
2077 		n--;
2078 	}
2079 
2080 	for (i = 0; n-- > 0 && isascii(*src) && isprint(*src); src++) {
2081 		if (*src == ' ') {
2082 			i++;
2083 		} else {
2084 			while (i-- > 0)
2085 				*dst++ = ' ';
2086 			*dst++ = *src;
2087 		}
2088 	}
2089 
2090 	*dst = 0;
2091 	return (dst);
2092 }
2093 
2094 /*
2095  * adjust disk geometry.
2096  * This is used when disk reports a disk geometry page having
2097  * no of physical cylinders is < 3 which is the minimum required
2098  * by Solaris (2 for storing labels and at least one as a data
2099  * cylinder )
2100  */
2101 int
2102 adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl, uint_t *nhead,
2103     uint_t *nsect)
2104 {
2105 	uint_t	lcyl = *cyl;
2106 	uint_t	lnhead = *nhead;
2107 	uint_t	lnsect = *nsect;
2108 
2109 	assert(lcyl < SUN_MIN_CYL);
2110 
2111 	/*
2112 	 * reduce nsect by 2 for each iteration  and re-calculate
2113 	 * the number of cylinders.
2114 	 */
2115 	while (lnsect > MINIMUM_NO_SECTORS &&
2116 	    lcyl < MINIMUM_NO_CYLINDERS) {
2117 		/*
2118 		 * make sure that we do not go below MINIMUM_NO_SECTORS.
2119 		 */
2120 		lnsect = max(MINIMUM_NO_SECTORS, lnsect / 2);
2121 		lcyl   = (capacity) / (lnhead * lnsect);
2122 	}
2123 	/*
2124 	 * If the geometry still does not satisfy
2125 	 * MINIMUM_NO_CYLINDERS then try to reduce the
2126 	 * no of heads.
2127 	 */
2128 	while (lnhead > MINIMUM_NO_HEADS &&
2129 	    lcyl < MINIMUM_NO_CYLINDERS) {
2130 		lnhead = max(MINIMUM_NO_HEADS, lnhead / 2);
2131 		lcyl =  (capacity) / (lnhead * lnsect);
2132 	}
2133 	/*
2134 	 * now we should have atleast SUN_MIN_CYL cylinders.
2135 	 * If we still do not get SUN_MIN_CYL with MINIMUM_NO_HEADS
2136 	 * and MINIMUM_NO_HEADS then return error.
2137 	 */
2138 	if (lcyl < SUN_MIN_CYL)
2139 		return (1);
2140 	else {
2141 		*cyl = lcyl;
2142 		*nhead = lnhead;
2143 		*nsect = lnsect;
2144 		return (0);
2145 	}
2146 }
2147 
2148 #if defined(_SUNOS_VTOC_8)
2149 /*
2150  * Reduce the size of one dimention below a specified
2151  * limit with a minimum loss of volume.  Dimenstions are
2152  * assumed to be passed in form the largest value (the one
2153  * that needs to be reduced) to the smallest value.  The
2154  * values will be twiddled until they are all less than or
2155  * equal to their limit.  Returns the number in the new geometry.
2156  */
2157 static diskaddr_t
2158 square_box(
2159 		diskaddr_t capacity,
2160 		uint_t *dim1, uint_t lim1,
2161 		uint_t *dim2, uint_t lim2,
2162 		uint_t *dim3, uint_t lim3)
2163 {
2164 	uint_t	i;
2165 
2166 	/*
2167 	 * Although the routine should work with any ordering of
2168 	 * parameters, it's most efficient if they are passed in
2169 	 * in decreasing magnitude.
2170 	 */
2171 	assert(*dim1 >= *dim2);
2172 	assert(*dim2 >= *dim3);
2173 
2174 	/*
2175 	 * This is done in a very arbitrary manner.  We could try to
2176 	 * find better values but I can't come up with a method that
2177 	 * would run in a reasonable amount of time.  That could take
2178 	 * approximately 65535 * 65535 iterations of a dozen flops each
2179 	 * or well over 4G flops.
2180 	 *
2181 	 * First:
2182 	 *
2183 	 * Let's see how far we can go with bitshifts w/o losing
2184 	 * any blocks.
2185 	 */
2186 
2187 	for (i = 0; (((*dim1)>>i)&1) == 0 && ((*dim1)>>i) > lim1; i++)
2188 		;
2189 	if (i) {
2190 		*dim1 = ((*dim1)>>i);
2191 		*dim3 = ((*dim3)<<i);
2192 	}
2193 
2194 	if (((*dim1) > lim1) || ((*dim2) > lim2) || ((*dim3) > lim3)) {
2195 		double	d[4];
2196 
2197 		/*
2198 		 * Second:
2199 		 *
2200 		 * Set the highest value at its limit then calculate errors,
2201 		 * adjusting the 2nd highest value (we get better resolution
2202 		 * that way).
2203 		 */
2204 		d[1] = lim1;
2205 		d[3] = *dim3;
2206 		d[2] = (double)capacity/(d[1]*d[3]);
2207 
2208 		/*
2209 		 * If we overflowed the middle term, set it to its limit and
2210 		 * chose a new low term.
2211 		 */
2212 		if (d[2] > lim2) {
2213 			d[2] = lim2;
2214 			d[3] = (double)capacity/(d[1]*d[2]);
2215 		}
2216 		/*
2217 		 * Convert to integers.
2218 		 */
2219 		*dim1 = (int)d[1];
2220 		*dim2 = (int)d[2];
2221 		*dim3 = (int)d[3];
2222 	}
2223 	/*
2224 	 * Fixup any other possible problems.
2225 	 * If this happens, we need a new disklabel format.
2226 	 */
2227 	if (*dim1 > lim1) *dim1 = lim1;
2228 	if (*dim2 > lim2) *dim2 = lim2;
2229 	if (*dim3 > lim3) *dim3 = lim3;
2230 	return (*dim1 * *dim2 * *dim3);
2231 }
2232 #endif /* defined(_SUNOS_VTOC_8) */
2233 
2234 /*
2235  * Calculate CHS values based on the capacity data.
2236  *
2237  * NOTE: This function is same as cmlb_convert_geomerty() function in
2238  * cmlb kernel module.
2239  */
2240 static void
2241 compute_chs_values(diskaddr_t total_capacity, diskaddr_t usable_capacity,
2242     uint_t *pcylp, uint_t *nheadp, uint_t *nsectp)
2243 {
2244 
2245 	/* Unlabeled SCSI floppy device */
2246 	if (total_capacity < 160) {
2247 		/* Less than 80K */
2248 		*nheadp = 1;
2249 		*pcylp = total_capacity;
2250 		*nsectp = 1;
2251 		return;
2252 	} else if (total_capacity <= 0x1000) {
2253 		*nheadp = 2;
2254 		*pcylp = 80;
2255 		*nsectp = total_capacity / (80 * 2);
2256 		return;
2257 	}
2258 
2259 	/*
2260 	 * For all devices we calculate cylinders using the heads and sectors
2261 	 * we assign based on capacity of the device.  The algorithm is
2262 	 * designed to be compatible with the way other operating systems
2263 	 * lay out fdisk tables for X86 and to insure that the cylinders never
2264 	 * exceed 65535 to prevent problems with X86 ioctls that report
2265 	 * geometry.
2266 	 * For some smaller disk sizes we report geometry that matches those
2267 	 * used by X86 BIOS usage. For larger disks, we use SPT that are
2268 	 * multiples of 63, since other OSes that are not limited to 16-bits
2269 	 * for cylinders stop at 63 SPT we make do by using multiples of 63 SPT.
2270 	 *
2271 	 * The following table (in order) illustrates some end result
2272 	 * calculations:
2273 	 *
2274 	 * Maximum number of blocks		nhead	nsect
2275 	 *
2276 	 * 2097152 (1GB)			64	32
2277 	 * 16777216 (8GB)			128	32
2278 	 * 1052819775 (502.02GB)		255	63
2279 	 * 2105639550 (0.98TB)			255	126
2280 	 * 3158459325 (1.47TB)			255	189
2281 	 * 4211279100 (1.96TB)			255	252
2282 	 * 5264098875 (2.45TB)			255	315
2283 	 * ...
2284 	 */
2285 
2286 	if (total_capacity <= 0x200000) {
2287 		*nheadp = 64;
2288 		*nsectp = 32;
2289 	} else if (total_capacity <= 0x01000000) {
2290 		*nheadp = 128;
2291 		*nsectp = 32;
2292 	} else {
2293 		*nheadp = 255;
2294 
2295 		/* make nsect be smallest multiple of 63 */
2296 		*nsectp = ((total_capacity +
2297 		    (UINT16_MAX * 255 * 63) - 1) /
2298 		    (UINT16_MAX * 255 * 63)) * 63;
2299 
2300 		if (*nsectp == 0)
2301 			*nsectp = (UINT16_MAX / 63) * 63;
2302 	}
2303 
2304 	if (usable_capacity < total_capacity)
2305 		*pcylp = usable_capacity / ((*nheadp) * (*nsectp));
2306 	else
2307 		*pcylp = total_capacity / ((*nheadp) * (*nsectp));
2308 }
2309