1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * This file contains functions to implement automatic configuration 30 * of scsi disks. 31 */ 32 #include "global.h" 33 34 #include <fcntl.h> 35 #include <stdlib.h> 36 #include <string.h> 37 #include <strings.h> 38 #include <stdlib.h> 39 #include <ctype.h> 40 41 #include "misc.h" 42 #include "param.h" 43 #include "ctlr_scsi.h" 44 #include "auto_sense.h" 45 #include "partition.h" 46 #include "label.h" 47 #include "startup.h" 48 #include "analyze.h" 49 #include "io.h" 50 #include "hardware_structs.h" 51 #include "menu_fdisk.h" 52 53 54 #define DISK_NAME_MAX 256 55 56 extern int nctypes; 57 extern struct ctlr_type ctlr_types[]; 58 59 60 /* 61 * Marker for free hog partition 62 */ 63 #define HOG (-1) 64 65 66 67 /* 68 * Default partition tables 69 * 70 * Disk capacity root swap usr 71 * ------------- ---- ---- --- 72 * 0mb to 64mb 0 0 remainder 73 * 64mb to 180mb 16mb 16mb remainder 74 * 180mb to 280mb 16mb 32mb remainder 75 * 280mb to 380mb 24mb 32mb remainder 76 * 380mb to 600mb 32mb 32mb remainder 77 * 600mb to 1gb 32mb 64mb remainder 78 * 1gb to 2gb 64mb 128mb remainder 79 * 2gb on up 128mb 128mb remainder 80 */ 81 struct part_table { 82 int partitions[NDKMAP]; 83 }; 84 85 static struct part_table part_table_64mb = { 86 { 0, 0, 0, 0, 0, 0, HOG, 0} 87 }; 88 89 static struct part_table part_table_180mb = { 90 { 16, 16, 0, 0, 0, 0, HOG, 0} 91 }; 92 93 static struct part_table part_table_280mb = { 94 { 16, 32, 0, 0, 0, 0, HOG, 0} 95 }; 96 97 static struct part_table part_table_380mb = { 98 { 24, 32, 0, 0, 0, 0, HOG, 0} 99 }; 100 101 static struct part_table part_table_600mb = { 102 { 32, 32, 0, 0, 0, 0, HOG, 0} 103 }; 104 105 static struct part_table part_table_1gb = { 106 { 32, 64, 0, 0, 0, 0, HOG, 0} 107 }; 108 109 static struct part_table part_table_2gb = { 110 { 64, 128, 0, 0, 0, 0, HOG, 0} 111 }; 112 113 static struct part_table part_table_infinity = { 114 { 128, 128, 0, 0, 0, 0, HOG, 0} 115 }; 116 117 118 static struct default_partitions { 119 long min_capacity; 120 long max_capacity; 121 struct part_table *part_table; 122 } default_partitions[] = { 123 { 0, 64, &part_table_64mb }, /* 0 to 64 mb */ 124 { 64, 180, &part_table_180mb }, /* 64 to 180 mb */ 125 { 180, 280, &part_table_280mb }, /* 180 to 280 mb */ 126 { 280, 380, &part_table_380mb }, /* 280 to 380 mb */ 127 { 380, 600, &part_table_600mb }, /* 380 to 600 mb */ 128 { 600, 1024, &part_table_1gb }, /* 600 to 1 gb */ 129 { 1024, 2048, &part_table_2gb }, /* 1 to 2 gb */ 130 { 2048, INFINITY, &part_table_infinity }, /* 2 gb on up */ 131 }; 132 133 #define DEFAULT_PARTITION_TABLE_SIZE \ 134 (sizeof (default_partitions) / sizeof (struct default_partitions)) 135 136 /* 137 * msgs for check() 138 */ 139 #define FORMAT_MSG "Auto configuration via format.dat" 140 #define GENERIC_MSG "Auto configuration via generic SCSI-2" 141 142 /* 143 * Disks on symbios(Hardwire raid controller) return a fixed number 144 * of heads(64)/cylinders(64) and adjust the cylinders depending 145 * capacity of the configured lun. 146 * In such a case we get number of physical cylinders < 3 which 147 * is the minimum required by solaris(2 reserved + 1 data cylinders). 148 * Hence try to adjust the cylinders by reducing the "nsect/nhead". 149 * 150 */ 151 /* 152 * assuming a minimum of 32 block cylinders. 153 */ 154 #define MINIMUM_NO_HEADS 2 155 #define MINIMUM_NO_SECTORS 16 156 157 #define MINIMUM_NO_CYLINDERS 128 158 159 #if defined(_SUNOS_VTOC_8) 160 161 /* These are 16-bit fields */ 162 #define MAXIMUM_NO_HEADS 65535 163 #define MAXIMUM_NO_SECTORS 65535 164 #define MAXIMUM_NO_CYLINDERS 65535 165 166 #endif /* defined(_SUNOS_VTOC_8) */ 167 168 /* 169 * minimum number of cylinders required by Solaris. 170 */ 171 #define SUN_MIN_CYL 3 172 173 174 175 /* 176 * ANSI prototypes for local static functions 177 */ 178 static struct disk_type *generic_disk_sense( 179 int fd, 180 int can_prompt, 181 struct dk_label *label, 182 struct scsi_inquiry *inquiry, 183 struct scsi_capacity_16 *capacity, 184 char *disk_name); 185 static int use_existing_disk_type( 186 int fd, 187 int can_prompt, 188 struct dk_label *label, 189 struct scsi_inquiry *inquiry, 190 struct disk_type *disk_type, 191 struct scsi_capacity_16 *capacity); 192 int build_default_partition(struct dk_label *label, 193 int ctrl_type); 194 static struct disk_type *find_scsi_disk_type( 195 char *disk_name, 196 struct dk_label *label); 197 static struct disk_type *find_scsi_disk_by_name( 198 char *disk_name); 199 static struct ctlr_type *find_scsi_ctlr_type(void); 200 static struct ctlr_info *find_scsi_ctlr_info( 201 struct dk_cinfo *dkinfo); 202 static struct disk_type *new_scsi_disk_type( 203 int fd, 204 char *disk_name, 205 struct dk_label *label); 206 static struct disk_info *find_scsi_disk_info( 207 struct dk_cinfo *dkinfo); 208 209 static struct disk_type *new_direct_disk_type(int fd, char *disk_name, 210 struct dk_label *label); 211 212 static struct disk_info *find_direct_disk_info(struct dk_cinfo *dkinfo); 213 static int efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc); 214 static int auto_label_init(struct dk_label *label); 215 static struct ctlr_type *find_direct_ctlr_type(void); 216 static struct ctlr_info *find_direct_ctlr_info(struct dk_cinfo *dkinfo); 217 static struct disk_info *find_direct_disk_info(struct dk_cinfo *dkinfo); 218 219 static char *get_sun_disk_name( 220 char *disk_name, 221 struct scsi_inquiry *inquiry); 222 static char *get_generic_disk_name( 223 char *disk_name, 224 struct scsi_inquiry *inquiry); 225 static int force_blocksize(int fd); 226 static int raw_format(int fd); 227 static char *strcopy( 228 char *dst, 229 char *src, 230 int n); 231 static int adjust_disk_geometry(int capacity, int *cyl, 232 int *nsect, int *nhead); 233 #if defined(_SUNOS_VTOC_8) 234 static int square_box( 235 int capacity, 236 int *dim1, int lim1, 237 int *dim2, int lim2, 238 int *dim3, int lim3); 239 #endif /* defined(_SUNOS_VTOC_8) */ 240 241 242 /* 243 * We need to get information necessary to construct a *new* efi 244 * label type 245 */ 246 struct disk_type * 247 auto_efi_sense(int fd, struct efi_info *label) 248 { 249 250 struct dk_gpt *vtoc; 251 int i; 252 253 struct disk_type *disk, *dp; 254 struct disk_info *disk_info; 255 struct ctlr_info *ctlr; 256 struct dk_cinfo dkinfo; 257 struct partition_info *part; 258 259 /* 260 * get vendor, product, revision and capacity info. 261 */ 262 if (get_disk_info(fd, label) == -1) { 263 return ((struct disk_type *)NULL); 264 } 265 /* 266 * Now build the default partition table 267 */ 268 if (efi_alloc_and_init(fd, EFI_NUMPAR, &vtoc) != 0) { 269 err_print("efi_alloc_and_init failed. \n"); 270 return ((struct disk_type *)NULL); 271 } 272 273 label->e_parts = vtoc; 274 275 /* 276 * Create a whole hog EFI partition table: 277 * S0 takes the whole disk except the primary EFI label, 278 * backup EFI label, and the reserved partition. 279 */ 280 vtoc->efi_parts[0].p_tag = V_USR; 281 vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba; 282 vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba - vtoc->efi_first_u_lba 283 - EFI_MIN_RESV_SIZE + 1; 284 285 /* 286 * S1-S6 are unassigned slices. 287 */ 288 for (i = 1; i < vtoc->efi_nparts - 2; i ++) { 289 vtoc->efi_parts[i].p_tag = V_UNASSIGNED; 290 vtoc->efi_parts[i].p_start = 0; 291 vtoc->efi_parts[i].p_size = 0; 292 } 293 294 /* 295 * The reserved slice 296 */ 297 vtoc->efi_parts[vtoc->efi_nparts - 1].p_tag = V_RESERVED; 298 vtoc->efi_parts[vtoc->efi_nparts - 1].p_start = 299 vtoc->efi_last_u_lba - EFI_MIN_RESV_SIZE + 1; 300 vtoc->efi_parts[vtoc->efi_nparts - 1].p_size = EFI_MIN_RESV_SIZE; 301 302 /* 303 * Now stick all of it into the disk_type struct 304 */ 305 306 if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) { 307 if (option_msg && diag_msg) { 308 err_print("DKIOCINFO failed\n"); 309 } 310 return (NULL); 311 } 312 if ((cur_ctype != NULL) && (cur_ctype->ctype_ctype == DKC_DIRECT)) { 313 ctlr = find_direct_ctlr_info(&dkinfo); 314 disk_info = find_direct_disk_info(&dkinfo); 315 } else { 316 ctlr = find_scsi_ctlr_info(&dkinfo); 317 disk_info = find_scsi_disk_info(&dkinfo); 318 } 319 disk = (struct disk_type *)zalloc(sizeof (struct disk_type)); 320 assert(disk_info->disk_ctlr == ctlr); 321 dp = ctlr->ctlr_ctype->ctype_dlist; 322 if (dp == NULL) { 323 ctlr->ctlr_ctype->ctype_dlist = dp; 324 } else { 325 while (dp->dtype_next != NULL) { 326 dp = dp->dtype_next; 327 } 328 dp->dtype_next = disk; 329 } 330 disk->dtype_next = NULL; 331 332 (void) strlcpy(disk->vendor, label->vendor, 333 sizeof (disk->vendor)); 334 (void) strlcpy(disk->product, label->product, 335 sizeof (disk->product)); 336 (void) strlcpy(disk->revision, label->revision, 337 sizeof (disk->revision)); 338 disk->capacity = label->capacity; 339 340 part = (struct partition_info *) 341 zalloc(sizeof (struct partition_info)); 342 disk->dtype_plist = part; 343 344 part->pinfo_name = alloc_string("default"); 345 part->pinfo_next = NULL; 346 part->etoc = vtoc; 347 348 bzero(disk_info->v_volume, LEN_DKL_VVOL); 349 disk_info->disk_parts = part; 350 return (disk); 351 } 352 353 static int 354 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 355 { 356 void *data = dk_ioc->dki_data; 357 int error; 358 359 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 360 error = ioctl(fd, cmd, (void *)dk_ioc); 361 dk_ioc->dki_data = data; 362 363 return (error); 364 } 365 366 static struct ctlr_type * 367 find_direct_ctlr_type() 368 { 369 struct mctlr_list *mlp; 370 371 mlp = controlp; 372 373 while (mlp != NULL) { 374 if (mlp->ctlr_type->ctype_ctype == DKC_DIRECT) { 375 return (mlp->ctlr_type); 376 } 377 mlp = mlp->next; 378 } 379 380 impossible("no DIRECT controller type"); 381 382 return ((struct ctlr_type *)NULL); 383 } 384 385 static struct ctlr_info * 386 find_direct_ctlr_info( 387 struct dk_cinfo *dkinfo) 388 { 389 struct ctlr_info *ctlr; 390 391 if (dkinfo->dki_ctype != DKC_DIRECT) 392 return (NULL); 393 394 for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) { 395 if (ctlr->ctlr_addr == dkinfo->dki_addr && 396 ctlr->ctlr_space == dkinfo->dki_space && 397 ctlr->ctlr_ctype->ctype_ctype == DKC_DIRECT) { 398 return (ctlr); 399 } 400 } 401 402 impossible("no DIRECT controller info"); 403 /*NOTREACHED*/ 404 } 405 406 static struct disk_info * 407 find_direct_disk_info( 408 struct dk_cinfo *dkinfo) 409 { 410 struct disk_info *disk; 411 struct dk_cinfo *dp; 412 413 for (disk = disk_list; disk != NULL; disk = disk->disk_next) { 414 assert(dkinfo->dki_ctype == DKC_DIRECT); 415 dp = &disk->disk_dkinfo; 416 if (dp->dki_ctype == dkinfo->dki_ctype && 417 dp->dki_cnum == dkinfo->dki_cnum && 418 dp->dki_unit == dkinfo->dki_unit && 419 strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) { 420 return (disk); 421 } 422 } 423 424 impossible("No DIRECT disk info instance\n"); 425 /*NOTREACHED*/ 426 } 427 428 /* 429 * To convert EFI to SMI labels, we need to get label geometry. 430 * Unfortunately at this time there is no good way to do so. 431 * DKIOCGGEOM will fail if disk is EFI labeled. So we hack around 432 * it and clear EFI label, do a DKIOCGGEOM and put the EFI label 433 * back on disk. 434 * This routine gets the label geometry and initializes the label 435 * It uses cur_file as opened device. 436 * returns 0 if succeeds or -1 if failed. 437 */ 438 static int 439 auto_label_init(struct dk_label *label) 440 { 441 dk_efi_t dk_ioc; 442 dk_efi_t dk_ioc_back; 443 efi_gpt_t *data = NULL; 444 efi_gpt_t *databack = NULL; 445 struct dk_geom disk_geom; 446 struct dk_minfo disk_info; 447 efi_gpt_t *backsigp; 448 int fd = cur_file; 449 int rval = -1; 450 int efisize = EFI_LABEL_SIZE * 2; 451 int success = 0; 452 uint64_t sig; 453 uint64_t backsig; 454 455 if ((data = calloc(efisize, 1)) == NULL) { 456 err_print("auto_label_init: calloc failed\n"); 457 goto auto_label_init_out; 458 } 459 460 dk_ioc.dki_data = data; 461 dk_ioc.dki_lba = 1; 462 dk_ioc.dki_length = efisize; 463 464 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) != 0) { 465 err_print("auto_label_init: GETEFI failed\n"); 466 goto auto_label_init_out; 467 } 468 469 if ((databack = calloc(efisize, 1)) == NULL) { 470 err_print("auto_label_init calloc2 failed"); 471 goto auto_label_init_out; 472 } 473 474 /* get the LBA size and capacity */ 475 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 476 err_print("auto_label_init: dkiocgmediainfo failed\n"); 477 goto auto_label_init_out; 478 } 479 480 if (disk_info.dki_lbsize == 0) { 481 if (option_msg && diag_msg) { 482 err_print("auto_lbal_init: assuming 512 byte" 483 "block size"); 484 } 485 disk_info.dki_lbsize = DEV_BSIZE; 486 } 487 488 if (disk_info.dki_lbsize != DEV_BSIZE) { 489 err_print("auto_label_init: lbasize is not 512\n"); 490 goto auto_label_init_out; 491 } 492 493 dk_ioc_back.dki_data = databack; 494 495 /* 496 * back up efi label goes to capacity - 1, we are reading an extra block 497 * before the back up label. 498 */ 499 dk_ioc_back.dki_lba = disk_info.dki_capacity - 1 - 1; 500 dk_ioc_back.dki_length = efisize; 501 502 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc_back) != 0) { 503 err_print("auto_label_init: GETEFI backup failed\n"); 504 goto auto_label_init_out; 505 } 506 507 sig = dk_ioc.dki_data->efi_gpt_Signature; 508 dk_ioc.dki_data->efi_gpt_Signature = 0x0; 509 510 enter_critical(); 511 512 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 513 err_print("auto_label_init: SETEFI failed\n"); 514 exit_critical(); 515 goto auto_label_init_out; 516 } 517 518 backsigp = (efi_gpt_t *)((uintptr_t)dk_ioc_back.dki_data + DEV_BSIZE); 519 520 backsig = backsigp->efi_gpt_Signature; 521 522 backsigp->efi_gpt_Signature = 0; 523 524 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc_back) == -1) { 525 err_print("auto_label_init: SETEFI backup failed\n"); 526 } 527 528 if (ioctl(cur_file, DKIOCGGEOM, &disk_geom) != 0) 529 err_print("auto_label_init: GGEOM failed\n"); 530 else 531 success = 1; 532 533 dk_ioc.dki_data->efi_gpt_Signature = sig; 534 backsigp->efi_gpt_Signature = backsig; 535 536 if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc_back) == -1) { 537 err_print("auto_label_init: SETEFI revert backup failed\n"); 538 success = 0; 539 } 540 541 if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc) == -1) { 542 err_print("auto_label_init: SETEFI revert failed\n"); 543 success = 0; 544 } 545 546 exit_critical(); 547 548 if (success == 0) 549 goto auto_label_init_out; 550 551 ncyl = disk_geom.dkg_ncyl; 552 acyl = disk_geom.dkg_acyl; 553 nhead = disk_geom.dkg_nhead; 554 nsect = disk_geom.dkg_nsect; 555 pcyl = ncyl + acyl; 556 557 label->dkl_pcyl = pcyl; 558 label->dkl_ncyl = ncyl; 559 label->dkl_acyl = acyl; 560 label->dkl_nhead = nhead; 561 label->dkl_nsect = nsect; 562 label->dkl_apc = 0; 563 label->dkl_intrlv = 1; 564 label->dkl_rpm = disk_geom.dkg_rpm; 565 566 label->dkl_magic = DKL_MAGIC; 567 568 (void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel), 569 "%s cyl %d alt %d hd %d sec %d", 570 "DEFAULT", ncyl, acyl, nhead, nsect); 571 572 rval = 0; 573 #if defined(_FIRMWARE_NEEDS_FDISK) 574 (void) auto_solaris_part(label); 575 ncyl = label->dkl_ncyl; 576 577 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 578 579 if (!build_default_partition(label, DKC_DIRECT)) { 580 rval = -1; 581 } 582 583 (void) checksum(label, CK_MAKESUM); 584 585 586 auto_label_init_out: 587 if (data) 588 free(data); 589 if (databack) 590 free(databack); 591 592 return (rval); 593 } 594 595 static struct disk_type * 596 new_direct_disk_type( 597 int fd, 598 char *disk_name, 599 struct dk_label *label) 600 { 601 struct disk_type *dp; 602 struct disk_type *disk; 603 struct ctlr_info *ctlr; 604 struct dk_cinfo dkinfo; 605 struct partition_info *part = NULL; 606 struct partition_info *pt; 607 struct disk_info *disk_info; 608 int i; 609 610 /* 611 * Get the disk controller info for this disk 612 */ 613 if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) { 614 if (option_msg && diag_msg) { 615 err_print("DKIOCINFO failed\n"); 616 } 617 return (NULL); 618 } 619 620 /* 621 * Find the ctlr_info for this disk. 622 */ 623 ctlr = find_direct_ctlr_info(&dkinfo); 624 625 /* 626 * Allocate a new disk type for the direct controller. 627 */ 628 disk = (struct disk_type *)zalloc(sizeof (struct disk_type)); 629 630 /* 631 * Find the disk_info instance for this disk. 632 */ 633 disk_info = find_direct_disk_info(&dkinfo); 634 635 /* 636 * The controller and the disk should match. 637 */ 638 assert(disk_info->disk_ctlr == ctlr); 639 640 /* 641 * Link the disk into the list of disks 642 */ 643 dp = ctlr->ctlr_ctype->ctype_dlist; 644 if (dp == NULL) { 645 ctlr->ctlr_ctype->ctype_dlist = dp; 646 } else { 647 while (dp->dtype_next != NULL) { 648 dp = dp->dtype_next; 649 } 650 dp->dtype_next = disk; 651 } 652 disk->dtype_next = NULL; 653 654 /* 655 * Allocate and initialize the disk name. 656 */ 657 disk->dtype_asciilabel = alloc_string(disk_name); 658 659 /* 660 * Initialize disk geometry info 661 */ 662 disk->dtype_pcyl = label->dkl_pcyl; 663 disk->dtype_ncyl = label->dkl_ncyl; 664 disk->dtype_acyl = label->dkl_acyl; 665 disk->dtype_nhead = label->dkl_nhead; 666 disk->dtype_nsect = label->dkl_nsect; 667 disk->dtype_rpm = label->dkl_rpm; 668 669 part = (struct partition_info *) 670 zalloc(sizeof (struct partition_info)); 671 pt = disk->dtype_plist; 672 if (pt == NULL) { 673 disk->dtype_plist = part; 674 } else { 675 while (pt->pinfo_next != NULL) { 676 pt = pt->pinfo_next; 677 } 678 pt->pinfo_next = part; 679 } 680 681 part->pinfo_next = NULL; 682 683 /* 684 * Set up the partition name 685 */ 686 part->pinfo_name = alloc_string("default"); 687 688 /* 689 * Fill in the partition info from the label 690 */ 691 for (i = 0; i < NDKMAP; i++) { 692 693 #if defined(_SUNOS_VTOC_8) 694 part->pinfo_map[i] = label->dkl_map[i]; 695 696 #elif defined(_SUNOS_VTOC_16) 697 part->pinfo_map[i].dkl_cylno = 698 label->dkl_vtoc.v_part[i].p_start / 699 ((int)(disk->dtype_nhead * 700 disk->dtype_nsect - apc)); 701 part->pinfo_map[i].dkl_nblk = 702 label->dkl_vtoc.v_part[i].p_size; 703 #else 704 #error No VTOC format defined. 705 #endif /* defined(_SUNOS_VTOC_8) */ 706 } 707 708 /* 709 * Use the VTOC if valid, or install a default 710 */ 711 if (label->dkl_vtoc.v_version == V_VERSION) { 712 (void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume, 713 LEN_DKL_VVOL); 714 part->vtoc = label->dkl_vtoc; 715 } else { 716 (void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL); 717 set_vtoc_defaults(part); 718 } 719 720 /* 721 * Link the disk to the partition map 722 */ 723 disk_info->disk_parts = part; 724 725 return (disk); 726 } 727 728 /* 729 * Get a disk type that has label info. This is used to convert 730 * EFI label to SMI label 731 */ 732 struct disk_type * 733 auto_direct_get_geom_label(int fd, struct dk_label *label) 734 { 735 struct disk_type *disk_type; 736 737 if (auto_label_init(label) != 0) { 738 err_print("auto_direct_get_geom_label: failed to get label" 739 "geometry"); 740 return (NULL); 741 } else { 742 disk_type = new_direct_disk_type(fd, "DEFAULT", label); 743 return (disk_type); 744 } 745 } 746 747 /* 748 * Auto-sense a scsi disk configuration, ie get the information 749 * necessary to construct a label. We have two different 750 * ways to auto-sense a scsi disk: 751 * - format.dat override, via inquiry name 752 * - generic scsi, via standard mode sense and inquiry 753 * Depending on how and when we are called, and/or 754 * change geometry and reformat. 755 */ 756 struct disk_type * 757 auto_sense( 758 int fd, 759 int can_prompt, 760 struct dk_label *label) 761 { 762 struct scsi_inquiry inquiry; 763 struct scsi_capacity_16 capacity; 764 struct disk_type *disk_type; 765 char disk_name[DISK_NAME_MAX]; 766 int force_format_dat = 0; 767 int force_generic = 0; 768 u_ioparam_t ioparam; 769 int deflt; 770 771 /* 772 * First, if expert mode, find out if the user 773 * wants to override any of the standard methods. 774 */ 775 if (can_prompt && expert_mode) { 776 deflt = 1; 777 ioparam.io_charlist = confirm_list; 778 if (input(FIO_MSTR, FORMAT_MSG, '?', &ioparam, 779 &deflt, DATA_INPUT) == 0) { 780 force_format_dat = 1; 781 } else if (input(FIO_MSTR, GENERIC_MSG, '?', &ioparam, 782 &deflt, DATA_INPUT) == 0) { 783 force_generic = 1; 784 } 785 } 786 787 /* 788 * Get the Inquiry data. If this fails, there's 789 * no hope for this disk, so give up. 790 */ 791 if (uscsi_inquiry(fd, (char *)&inquiry, sizeof (inquiry))) { 792 return ((struct disk_type *)NULL); 793 } 794 if (option_msg && diag_msg) { 795 err_print("Product id: "); 796 print_buf(inquiry.inq_pid, sizeof (inquiry.inq_pid)); 797 err_print("\n"); 798 } 799 800 /* 801 * Get the Read Capacity 802 */ 803 if (uscsi_read_capacity(fd, &capacity)) { 804 return ((struct disk_type *)NULL); 805 } 806 807 /* 808 * If the reported capacity is set to zero, then the disk 809 * is not usable. If the reported capacity is set to all 810 * 0xf's, then this disk is too large. These could only 811 * happen with a device that supports LBAs larger than 64 812 * bits which are not defined by any current T10 standards 813 * or by error responding from target. 814 */ 815 if ((capacity.sc_capacity == 0) || 816 (capacity.sc_capacity == UINT_MAX64)) { 817 if (option_msg && diag_msg) { 818 err_print("Invalid capacity\n"); 819 } 820 return ((struct disk_type *)NULL); 821 } 822 if (option_msg && diag_msg) { 823 err_print("blocks: %llu (0x%llx)\n", 824 capacity.sc_capacity, capacity.sc_capacity); 825 err_print("blksize: %u\n", capacity.sc_lbasize); 826 } 827 828 /* 829 * Extract the disk name for the format.dat override 830 */ 831 (void) get_sun_disk_name(disk_name, &inquiry); 832 if (option_msg && diag_msg) { 833 err_print("disk name: `%s`\n", disk_name); 834 } 835 836 /* 837 * Figure out which method we use for auto sense. 838 * If a particular method fails, we fall back to 839 * the next possibility. 840 */ 841 842 if (force_generic) { 843 return (generic_disk_sense(fd, can_prompt, label, 844 &inquiry, &capacity, disk_name)); 845 } 846 847 /* 848 * Try for an existing format.dat first 849 */ 850 if ((disk_type = find_scsi_disk_by_name(disk_name)) != NULL) { 851 if (use_existing_disk_type(fd, can_prompt, label, 852 &inquiry, disk_type, &capacity)) { 853 return (disk_type); 854 } 855 if (force_format_dat) { 856 return (NULL); 857 } 858 } 859 860 /* 861 * Otherwise, try using generic SCSI-2 sense and inquiry. 862 */ 863 864 return (generic_disk_sense(fd, can_prompt, label, 865 &inquiry, &capacity, disk_name)); 866 } 867 868 869 870 /*ARGSUSED*/ 871 static struct disk_type * 872 generic_disk_sense( 873 int fd, 874 int can_prompt, 875 struct dk_label *label, 876 struct scsi_inquiry *inquiry, 877 struct scsi_capacity_16 *capacity, 878 char *disk_name) 879 { 880 struct disk_type *disk; 881 int i; 882 int setdefault = 0; 883 int pcyl = 0; 884 int ncyl = 0; 885 int acyl = 0; 886 int nhead = 0; 887 int nsect = 0; 888 int rpm = 0; 889 long nblocks = 0; 890 union { 891 struct mode_format page3; 892 uchar_t buf3[MAX_MODE_SENSE_SIZE]; 893 } u_page3; 894 union { 895 struct mode_geometry page4; 896 uchar_t buf4[MAX_MODE_SENSE_SIZE]; 897 } u_page4; 898 struct scsi_capacity_16 new_capacity; 899 struct mode_format *page3 = &u_page3.page3; 900 struct mode_geometry *page4 = &u_page4.page4; 901 struct scsi_ms_header header; 902 /* refer cmlb_convert_geometry in cmlb.c */ 903 static const struct chs_values { 904 uint_t max_cap; /* Max Capacity for this HS. */ 905 uint_t nhead; /* Heads to use. */ 906 uint_t nsect; /* SPT to use. */ 907 } CHS_values[] = { 908 {0x00200000, 64, 32}, /* 1GB or smaller disk. */ 909 {0x01000000, 128, 32}, /* 8GB or smaller disk. */ 910 {MAXBLKS(255, 63)}, /* 502.02GB or smaller disk. */ 911 {MAXBLKS(255, 126)}, /* .98TB or smaller disk. */ 912 {INFINITY, 255, 189} /* Max size is just under 1TB */ 913 }; 914 915 916 /* 917 * If the name of this disk appears to be "SUN", use it, 918 * otherwise construct a name out of the generic 919 * Inquiry info. If it turns out that we already 920 * have a SUN disk type of this name that differs 921 * in geometry, we will revert to the generic name 922 * anyway. 923 */ 924 if (memcmp(disk_name, "SUN", strlen("SUN")) != 0) { 925 (void) get_generic_disk_name(disk_name, inquiry); 926 } 927 928 /* 929 * If the device's block size is not 512, we have to 930 * change block size, reformat, and then sense the 931 * geometry. To do this, we must be able to prompt 932 * the user. 933 */ 934 if (capacity->sc_lbasize != DEV_BSIZE) { 935 if (!can_prompt) { 936 return (NULL); 937 } 938 if (force_blocksize(fd)) { 939 goto err; 940 } 941 942 /* 943 * Get the capacity again, since this has changed 944 */ 945 if (uscsi_read_capacity(fd, &new_capacity)) { 946 goto err; 947 } 948 if (option_msg && diag_msg) { 949 err_print("blocks: %llu (0x%llx)\n", 950 new_capacity.sc_capacity, 951 new_capacity.sc_capacity); 952 err_print("blksize: %u\n", new_capacity.sc_lbasize); 953 } 954 capacity = &new_capacity; 955 if (capacity->sc_lbasize != DEV_BSIZE) { 956 goto err; 957 } 958 } 959 960 /* 961 * Get the number of blocks from Read Capacity data. Note that 962 * the logical block address range from 0 to capacity->sc_capacity. 963 */ 964 nblocks = (long)(capacity->sc_capacity + 1); 965 966 /* 967 * Get current Page 3 - Format Parameters page 968 */ 969 if (uscsi_mode_sense(fd, DAD_MODE_FORMAT, MODE_SENSE_PC_CURRENT, 970 (caddr_t)&u_page3, MAX_MODE_SENSE_SIZE, &header)) { 971 setdefault = 1; 972 } 973 974 /* 975 * Get current Page 4 - Drive Geometry page 976 */ 977 if (uscsi_mode_sense(fd, DAD_MODE_GEOMETRY, MODE_SENSE_PC_CURRENT, 978 (caddr_t)&u_page4, MAX_MODE_SENSE_SIZE, &header)) { 979 setdefault = 1; 980 } 981 982 if (setdefault != 1) { 983 /* The inquiry of mode page 3 & page 4 are successful */ 984 /* 985 * Correct for byte order if necessary 986 */ 987 page4->rpm = BE_16(page4->rpm); 988 page4->step_rate = BE_16(page4->step_rate); 989 page3->tracks_per_zone = BE_16(page3->tracks_per_zone); 990 page3->alt_sect_zone = BE_16(page3->alt_sect_zone); 991 page3->alt_tracks_zone = BE_16(page3->alt_tracks_zone); 992 page3->alt_tracks_vol = BE_16(page3->alt_tracks_vol); 993 page3->sect_track = BE_16(page3->sect_track); 994 page3->data_bytes_sect = BE_16(page3->data_bytes_sect); 995 page3->interleave = BE_16(page3->interleave); 996 page3->track_skew = BE_16(page3->track_skew); 997 page3->cylinder_skew = BE_16(page3->cylinder_skew); 998 999 1000 /* 1001 * Construct a new label out of the sense data, 1002 * Inquiry and Capacity. 1003 */ 1004 pcyl = (page4->cyl_ub << 16) + (page4->cyl_mb << 8) + page4->cyl_lb; 1005 nhead = page4->heads; 1006 nsect = page3->sect_track; 1007 rpm = page4->rpm; 1008 1009 /* 1010 * If the number of physical cylinders reported is less 1011 * the SUN_MIN_CYL(3) then try to adjust the geometry so that 1012 * we have atleast SUN_MIN_CYL cylinders. 1013 */ 1014 if (pcyl < SUN_MIN_CYL) { 1015 if (nhead <= 0 || nsect <= 0) { 1016 setdefault = 1; 1017 } else if (adjust_disk_geometry((int)(capacity->sc_capacity + 1), 1018 &pcyl, &nhead, &nsect)) { 1019 setdefault = 1; 1020 } 1021 } 1022 } 1023 1024 if (setdefault == 1) { 1025 /* 1026 * If the number of cylinders or the number of heads reported 1027 * is zero, we think the inquiry of page 3 and page 4 failed. 1028 * We will set the geometry infomation by ourselves. 1029 */ 1030 err_print("\nThe device does not support mode page 3 or page 4,"); 1031 err_print("\nor the reported geometry info is invalid."); 1032 err_print("\nWARNING: Disk geometry is based on capacity data.\n\n"); 1033 1034 /* convert capacity to nsect * nhead * pcyl */ 1035 /* Unlabeled SCSI floppy device */ 1036 if (nblocks <= 0x1000) { 1037 nhead = 2; 1038 pcyl = 80; 1039 nsect = nblocks / (nhead * pcyl); 1040 } else { 1041 for (i = 0; CHS_values[i].max_cap < nblocks && 1042 CHS_values[i].max_cap != INFINITY; i++) 1043 ; 1044 1045 nhead = CHS_values[i].nhead; 1046 nsect = CHS_values[i].nsect; 1047 pcyl = nblocks / (nhead * nsect); 1048 } 1049 } 1050 1051 /* 1052 * The sd driver reserves 2 cylinders the backup disk label and 1053 * the deviceid. Set the number of data cylinders to pcyl-acyl. 1054 */ 1055 acyl = DK_ACYL; 1056 ncyl = pcyl - acyl; 1057 1058 if (option_msg && diag_msg) { 1059 err_print("Geometry:\n"); 1060 err_print(" pcyl: %d\n", pcyl); 1061 err_print(" ncyl: %d\n", ncyl); 1062 err_print(" heads: %d\n", nhead); 1063 err_print(" nsects: %d\n", nsect); 1064 err_print(" acyl: %d\n", acyl); 1065 1066 #if defined(_SUNOS_VTOC_16) 1067 err_print(" bcyl: %d\n", bcyl); 1068 #endif /* defined(_SUNOS_VTOC_16) */ 1069 1070 err_print(" rpm: %d\n", rpm); 1071 } 1072 1073 /* 1074 * Some drives do not support page4 or report 0 for page4->rpm, 1075 * adjust it to AVG_RPM, 3600. 1076 */ 1077 if (rpm < MIN_RPM || rpm > MAX_RPM) { 1078 err_print("The current rpm value %d is invalid," 1079 " adjusting it to %d\n", rpm, AVG_RPM); 1080 rpm = AVG_RPM; 1081 } 1082 1083 /* 1084 * Some drives report 0 for nsect (page 3, byte 10 and 11) if they 1085 * have variable number of sectors per track. So adjust nsect. 1086 * Also the value is defined as vendor specific, hence check if 1087 * it is in a tolerable range. The values (32 and 4 below) are 1088 * chosen so that this change below does not generate a different 1089 * geometry for currently supported sun disks. 1090 */ 1091 if ((nsect <= 0) || 1092 (pcyl * nhead * nsect) < (nblocks - nblocks/32) || 1093 (pcyl * nhead * nsect) > (nblocks + nblocks/4)) { 1094 err_print("Mode sense page(3) reports nsect value as %d, " 1095 "adjusting it to %ld\n", nsect, nblocks / (pcyl * nhead)); 1096 nsect = nblocks / (pcyl * nhead); 1097 } 1098 1099 /* 1100 * Some drives report their physical geometry such that 1101 * it is greater than the actual capacity. Adjust the 1102 * geometry to allow for this, so we don't run off 1103 * the end of the disk. 1104 */ 1105 if ((pcyl * nhead * nsect) > nblocks) { 1106 int p = pcyl; 1107 if (option_msg && diag_msg) { 1108 err_print("Computed capacity (%ld) exceeds actual " 1109 "disk capacity (%ld)\n", 1110 (long)(pcyl * nhead * nsect), nblocks); 1111 } 1112 do { 1113 pcyl--; 1114 } while ((pcyl * nhead * nsect) > nblocks); 1115 1116 if (can_prompt && expert_mode && !option_f) { 1117 /* 1118 * Try to adjust nsect instead of pcyl to see if we 1119 * can optimize. For compatability reasons do this 1120 * only in expert mode (refer to bug 1144812). 1121 */ 1122 int n = nsect; 1123 do { 1124 n--; 1125 } while ((p * nhead * n) > nblocks); 1126 if ((p * nhead * n) > (pcyl * nhead * nsect)) { 1127 u_ioparam_t ioparam; 1128 int deflt = 1; 1129 /* 1130 * Ask the user for a choice here. 1131 */ 1132 ioparam.io_bounds.lower = 1; 1133 ioparam.io_bounds.upper = 2; 1134 err_print("1. Capacity = %d, with pcyl = %d " 1135 "nhead = %d nsect = %d\n", 1136 (pcyl * nhead * nsect), 1137 pcyl, nhead, nsect); 1138 err_print("2. Capacity = %d, with pcyl = %d " 1139 "nhead = %d nsect = %d\n", 1140 (p * nhead * n), 1141 p, nhead, n); 1142 if (input(FIO_INT, "Select one of the above " 1143 "choices ", ':', &ioparam, 1144 &deflt, DATA_INPUT) == 2) { 1145 pcyl = p; 1146 nsect = n; 1147 } 1148 } 1149 } 1150 } 1151 1152 #if defined(_SUNOS_VTOC_8) 1153 /* 1154 * Finally, we need to make sure we don't overflow any of the 1155 * fields in our disk label. To do this we need to `square 1156 * the box' so to speak. We will lose bits here. 1157 */ 1158 1159 if ((pcyl > MAXIMUM_NO_CYLINDERS && 1160 ((nsect > MAXIMUM_NO_SECTORS) || 1161 (nhead > MAXIMUM_NO_HEADS))) || 1162 ((nsect > MAXIMUM_NO_SECTORS) && 1163 (nhead > MAXIMUM_NO_HEADS))) { 1164 err_print("This disk is too big to label. " 1165 " You will lose some blocks.\n"); 1166 } 1167 if ((pcyl > MAXIMUM_NO_CYLINDERS) || 1168 (nsect > MAXIMUM_NO_SECTORS) || 1169 (nhead > MAXIMUM_NO_HEADS)) { 1170 u_ioparam_t ioparam; 1171 int order; 1172 char msg[256]; 1173 1174 order = ((ncyl > nhead)<<2) | 1175 ((ncyl > nsect)<<1) | 1176 (nhead > nsect); 1177 switch (order) { 1178 case 0x7: /* ncyl > nhead > nsect */ 1179 nblocks = 1180 square_box(nblocks, 1181 &pcyl, MAXIMUM_NO_CYLINDERS, 1182 &nhead, MAXIMUM_NO_HEADS, 1183 &nsect, MAXIMUM_NO_SECTORS); 1184 break; 1185 case 0x6: /* ncyl > nsect > nhead */ 1186 nblocks = 1187 square_box(nblocks, 1188 &pcyl, MAXIMUM_NO_CYLINDERS, 1189 &nsect, MAXIMUM_NO_SECTORS, 1190 &nhead, MAXIMUM_NO_HEADS); 1191 break; 1192 case 0x4: /* nsect > ncyl > nhead */ 1193 nblocks = 1194 square_box(nblocks, 1195 &nsect, MAXIMUM_NO_SECTORS, 1196 &pcyl, MAXIMUM_NO_CYLINDERS, 1197 &nhead, MAXIMUM_NO_HEADS); 1198 break; 1199 case 0x0: /* nsect > nhead > ncyl */ 1200 nblocks = 1201 square_box(nblocks, 1202 &nsect, MAXIMUM_NO_SECTORS, 1203 &nhead, MAXIMUM_NO_HEADS, 1204 &pcyl, MAXIMUM_NO_CYLINDERS); 1205 break; 1206 case 0x3: /* nhead > ncyl > nsect */ 1207 nblocks = 1208 square_box(nblocks, 1209 &nhead, MAXIMUM_NO_HEADS, 1210 &pcyl, MAXIMUM_NO_CYLINDERS, 1211 &nsect, MAXIMUM_NO_SECTORS); 1212 break; 1213 case 0x1: /* nhead > nsect > ncyl */ 1214 nblocks = 1215 square_box(nblocks, 1216 &nhead, MAXIMUM_NO_HEADS, 1217 &nsect, MAXIMUM_NO_SECTORS, 1218 &pcyl, MAXIMUM_NO_CYLINDERS); 1219 break; 1220 default: 1221 /* How did we get here? */ 1222 impossible("label overflow adjustment"); 1223 1224 /* Do something useful */ 1225 nblocks = 1226 square_box(nblocks, 1227 &nhead, MAXIMUM_NO_HEADS, 1228 &nsect, MAXIMUM_NO_SECTORS, 1229 &pcyl, MAXIMUM_NO_CYLINDERS); 1230 break; 1231 } 1232 if (option_msg && diag_msg && 1233 (capacity->sc_capacity + 1 != nblocks)) { 1234 err_print("After adjusting geometry you lost" 1235 " %llu of %lld blocks.\n", 1236 (capacity->sc_capacity + 1 - nblocks), 1237 capacity->sc_capacity + 1); 1238 } 1239 while (can_prompt && expert_mode && !option_f) { 1240 int deflt = 1; 1241 1242 /* 1243 * Allow user to modify this by hand if desired. 1244 */ 1245 (void) sprintf(msg, 1246 "\nGeometry: %d heads, %d sectors %d " 1247 " cylinders result in %d out of %lld blocks.\n" 1248 "Do you want to modify the device geometry", 1249 nhead, nsect, pcyl, 1250 (int)nblocks, capacity->sc_capacity + 1); 1251 1252 ioparam.io_charlist = confirm_list; 1253 if (input(FIO_MSTR, msg, '?', &ioparam, 1254 &deflt, DATA_INPUT) != 0) 1255 break; 1256 1257 ioparam.io_bounds.lower = MINIMUM_NO_HEADS; 1258 ioparam.io_bounds.upper = MAXIMUM_NO_HEADS; 1259 nhead = input(FIO_INT, "Number of heads", ':', 1260 &ioparam, &nhead, DATA_INPUT); 1261 ioparam.io_bounds.lower = MINIMUM_NO_SECTORS; 1262 ioparam.io_bounds.upper = MAXIMUM_NO_SECTORS; 1263 nsect = input(FIO_INT, 1264 "Number of sectors per track", 1265 ':', &ioparam, &nsect, DATA_INPUT); 1266 ioparam.io_bounds.lower = SUN_MIN_CYL; 1267 ioparam.io_bounds.upper = MAXIMUM_NO_CYLINDERS; 1268 pcyl = input(FIO_INT, "Number of cylinders", 1269 ':', &ioparam, &pcyl, DATA_INPUT); 1270 nblocks = nhead * nsect * pcyl; 1271 if (nblocks > capacity->sc_capacity + 1) { 1272 err_print("Warning: %ld blocks exceeds " 1273 "disk capacity of %lld blocks\n", 1274 nblocks, 1275 capacity->sc_capacity + 1); 1276 } 1277 } 1278 } 1279 #endif /* defined(_SUNOS_VTOC_8) */ 1280 1281 ncyl = pcyl - acyl; 1282 1283 if (option_msg && diag_msg) { 1284 err_print("\nGeometry after adjusting for capacity:\n"); 1285 err_print(" pcyl: %d\n", pcyl); 1286 err_print(" ncyl: %d\n", ncyl); 1287 err_print(" heads: %d\n", nhead); 1288 err_print(" nsects: %d\n", nsect); 1289 err_print(" acyl: %d\n", acyl); 1290 err_print(" rpm: %d\n", rpm); 1291 } 1292 1293 (void) memset((char *)label, 0, sizeof (struct dk_label)); 1294 1295 label->dkl_magic = DKL_MAGIC; 1296 1297 (void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel), 1298 "%s cyl %d alt %d hd %d sec %d", 1299 disk_name, ncyl, acyl, nhead, nsect); 1300 1301 label->dkl_pcyl = pcyl; 1302 label->dkl_ncyl = ncyl; 1303 label->dkl_acyl = acyl; 1304 label->dkl_nhead = nhead; 1305 label->dkl_nsect = nsect; 1306 label->dkl_apc = 0; 1307 label->dkl_intrlv = 1; 1308 label->dkl_rpm = rpm; 1309 1310 #if defined(_FIRMWARE_NEEDS_FDISK) 1311 (void) auto_solaris_part(label); 1312 ncyl = label->dkl_ncyl; 1313 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 1314 1315 1316 if (!build_default_partition(label, DKC_SCSI_CCS)) { 1317 goto err; 1318 } 1319 1320 (void) checksum(label, CK_MAKESUM); 1321 1322 /* 1323 * Find an existing disk type defined for this disk. 1324 * For this to work, both the name and geometry must 1325 * match. If there is no such type, but there already 1326 * is a disk defined with that name, but with a different 1327 * geometry, construct a new generic disk name out of 1328 * the inquiry information. Whatever name we're 1329 * finally using, if there's no such disk type defined, 1330 * build a new disk definition. 1331 */ 1332 if ((disk = find_scsi_disk_type(disk_name, label)) == NULL) { 1333 if (find_scsi_disk_by_name(disk_name) != NULL) { 1334 char old_name[DISK_NAME_MAX]; 1335 (void) strcpy(old_name, disk_name); 1336 (void) get_generic_disk_name(disk_name, 1337 inquiry); 1338 if (option_msg && diag_msg) { 1339 err_print( 1340 "Changing disk type name from '%s' to '%s'\n", old_name, disk_name); 1341 } 1342 (void) snprintf(label->dkl_asciilabel, 1343 sizeof (label->dkl_asciilabel), 1344 "%s cyl %d alt %d hd %d sec %d", 1345 disk_name, ncyl, acyl, nhead, nsect); 1346 (void) checksum(label, CK_MAKESUM); 1347 disk = find_scsi_disk_type(disk_name, label); 1348 } 1349 if (disk == NULL) { 1350 disk = new_scsi_disk_type(fd, disk_name, label); 1351 if (disk == NULL) 1352 goto err; 1353 } 1354 } 1355 1356 return (disk); 1357 1358 err: 1359 if (option_msg && diag_msg) { 1360 err_print( 1361 "Configuration via generic SCSI-2 information failed\n"); 1362 } 1363 return (NULL); 1364 } 1365 1366 1367 /*ARGSUSED*/ 1368 static int 1369 use_existing_disk_type( 1370 int fd, 1371 int can_prompt, 1372 struct dk_label *label, 1373 struct scsi_inquiry *inquiry, 1374 struct disk_type *disk_type, 1375 struct scsi_capacity_16 *capacity) 1376 { 1377 struct scsi_capacity_16 new_capacity; 1378 int pcyl; 1379 int acyl; 1380 int nhead; 1381 int nsect; 1382 int rpm; 1383 1384 /* 1385 * If the device's block size is not 512, we have to 1386 * change block size, reformat, and then sense the 1387 * geometry. To do this, we must be able to prompt 1388 * the user. 1389 */ 1390 if (capacity->sc_lbasize != DEV_BSIZE) { 1391 if (!can_prompt) { 1392 return (0); 1393 } 1394 if (force_blocksize(fd)) { 1395 goto err; 1396 } 1397 1398 /* 1399 * Get the capacity again, since this has changed 1400 */ 1401 if (uscsi_read_capacity(fd, &new_capacity)) { 1402 goto err; 1403 } 1404 1405 if (option_msg && diag_msg) { 1406 err_print("blocks: %llu (0x%llx)\n", 1407 new_capacity.sc_capacity, 1408 new_capacity.sc_capacity); 1409 err_print("blksize: %u\n", new_capacity.sc_lbasize); 1410 } 1411 1412 capacity = &new_capacity; 1413 if (capacity->sc_lbasize != DEV_BSIZE) { 1414 goto err; 1415 } 1416 } 1417 1418 /* 1419 * Construct a new label out of the format.dat 1420 */ 1421 pcyl = disk_type->dtype_pcyl; 1422 acyl = disk_type->dtype_acyl; 1423 ncyl = disk_type->dtype_ncyl; 1424 nhead = disk_type->dtype_nhead; 1425 nsect = disk_type->dtype_nsect; 1426 rpm = disk_type->dtype_rpm; 1427 1428 if (option_msg && diag_msg) { 1429 err_print("Format.dat geometry:\n"); 1430 err_print(" pcyl: %d\n", pcyl); 1431 err_print(" heads: %d\n", nhead); 1432 err_print(" nsects: %d\n", nsect); 1433 err_print(" acyl: %d\n", acyl); 1434 err_print(" rpm: %d\n", rpm); 1435 } 1436 1437 (void) memset((char *)label, 0, sizeof (struct dk_label)); 1438 1439 label->dkl_magic = DKL_MAGIC; 1440 1441 (void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel), 1442 "%s cyl %d alt %d hd %d sec %d", 1443 disk_type->dtype_asciilabel, 1444 ncyl, acyl, nhead, nsect); 1445 1446 label->dkl_pcyl = pcyl; 1447 label->dkl_ncyl = ncyl; 1448 label->dkl_acyl = acyl; 1449 label->dkl_nhead = nhead; 1450 label->dkl_nsect = nsect; 1451 label->dkl_apc = 0; 1452 label->dkl_intrlv = 1; 1453 label->dkl_rpm = rpm; 1454 1455 if (!build_default_partition(label, DKC_SCSI_CCS)) { 1456 goto err; 1457 } 1458 1459 (void) checksum(label, CK_MAKESUM); 1460 return (1); 1461 1462 err: 1463 if (option_msg && diag_msg) { 1464 err_print( 1465 "Configuration via format.dat geometry failed\n"); 1466 } 1467 return (0); 1468 } 1469 1470 int 1471 build_default_partition( 1472 struct dk_label *label, 1473 int ctrl_type) 1474 { 1475 int i; 1476 int ncyls[NDKMAP]; 1477 int nblks; 1478 int cyl; 1479 struct dk_vtoc *vtoc; 1480 struct part_table *pt; 1481 struct default_partitions *dpt; 1482 long capacity; 1483 int freecyls; 1484 int blks_per_cyl; 1485 int ncyl; 1486 1487 #ifdef lint 1488 ctrl_type = ctrl_type; 1489 #endif 1490 1491 /* 1492 * Install a default vtoc 1493 */ 1494 vtoc = &label->dkl_vtoc; 1495 vtoc->v_version = V_VERSION; 1496 vtoc->v_nparts = NDKMAP; 1497 vtoc->v_sanity = VTOC_SANE; 1498 1499 for (i = 0; i < NDKMAP; i++) { 1500 vtoc->v_part[i].p_tag = default_vtoc_map[i].p_tag; 1501 vtoc->v_part[i].p_flag = default_vtoc_map[i].p_flag; 1502 } 1503 1504 /* 1505 * Find a partition that matches this disk. Capacity 1506 * is in integral number of megabytes. 1507 */ 1508 capacity = (long)(label->dkl_ncyl * label->dkl_nhead * 1509 label->dkl_nsect) / (long)((1024 * 1024) / DEV_BSIZE); 1510 dpt = default_partitions; 1511 for (i = 0; i < DEFAULT_PARTITION_TABLE_SIZE; i++, dpt++) { 1512 if (capacity >= dpt->min_capacity && 1513 capacity < dpt->max_capacity) { 1514 break; 1515 } 1516 } 1517 if (i == DEFAULT_PARTITION_TABLE_SIZE) { 1518 if (option_msg && diag_msg) { 1519 err_print("No matching default partition (%ld)\n", 1520 capacity); 1521 } 1522 return (0); 1523 } 1524 pt = dpt->part_table; 1525 1526 /* 1527 * Go through default partition table, finding fixed 1528 * sized entries. 1529 */ 1530 freecyls = label->dkl_ncyl; 1531 blks_per_cyl = label->dkl_nhead * label->dkl_nsect; 1532 for (i = 0; i < NDKMAP; i++) { 1533 if (pt->partitions[i] == HOG || pt->partitions[i] == 0) { 1534 ncyls[i] = 0; 1535 } else { 1536 /* 1537 * Calculate number of cylinders necessary 1538 * for specified size, rounding up to 1539 * the next greatest integral number of 1540 * cylinders. Always give what they 1541 * asked or more, never less. 1542 */ 1543 nblks = pt->partitions[i] * ((1024*1024)/DEV_BSIZE); 1544 nblks += (blks_per_cyl - 1); 1545 ncyls[i] = nblks / blks_per_cyl; 1546 freecyls -= ncyls[i]; 1547 } 1548 } 1549 1550 if (freecyls < 0) { 1551 if (option_msg && diag_msg) { 1552 for (i = 0; i < NDKMAP; i++) { 1553 if (ncyls[i] == 0) 1554 continue; 1555 err_print("Partition %d: %d cyls\n", 1556 i, ncyls[i]); 1557 } 1558 err_print("Free cylinders exhausted (%d)\n", 1559 freecyls); 1560 } 1561 return (0); 1562 } 1563 #if defined(i386) 1564 /* 1565 * Set the default boot partition to 1 cylinder 1566 */ 1567 ncyls[8] = 1; 1568 freecyls -= 1; 1569 1570 /* 1571 * If current disk type is not a SCSI disk, 1572 * set the default alternates partition to 2 cylinders 1573 */ 1574 if (ctrl_type != DKC_SCSI_CCS) { 1575 ncyls[9] = 2; 1576 freecyls -= 2; 1577 } 1578 #endif /* defined(i386) */ 1579 1580 /* 1581 * Set the free hog partition to whatever space remains. 1582 * It's an error to have more than one HOG partition, 1583 * but we don't verify that here. 1584 */ 1585 for (i = 0; i < NDKMAP; i++) { 1586 if (pt->partitions[i] == HOG) { 1587 assert(ncyls[i] == 0); 1588 ncyls[i] = freecyls; 1589 break; 1590 } 1591 } 1592 1593 /* 1594 * Error checking 1595 */ 1596 ncyl = 0; 1597 for (i = 0; i < NDKMAP; i++) { 1598 ncyl += ncyls[i]; 1599 } 1600 assert(ncyl == (label->dkl_ncyl)); 1601 1602 /* 1603 * Finally, install the partition in the label. 1604 */ 1605 cyl = 0; 1606 1607 #if defined(_SUNOS_VTOC_16) 1608 for (i = NDKMAP/2; i < NDKMAP; i++) { 1609 if (i == 2 || ncyls[i] == 0) 1610 continue; 1611 label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl; 1612 label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl; 1613 cyl += ncyls[i]; 1614 } 1615 for (i = 0; i < NDKMAP/2; i++) { 1616 1617 #elif defined(_SUNOS_VTOC_8) 1618 for (i = 0; i < NDKMAP; i++) { 1619 1620 #else 1621 #error No VTOC format defined. 1622 #endif /* defined(_SUNOS_VTOC_16) */ 1623 1624 if (i == 2 || ncyls[i] == 0) { 1625 #if defined(_SUNOS_VTOC_8) 1626 if (i != 2) { 1627 label->dkl_map[i].dkl_cylno = 0; 1628 label->dkl_map[i].dkl_nblk = 0; 1629 } 1630 #endif 1631 continue; 1632 } 1633 #if defined(_SUNOS_VTOC_8) 1634 label->dkl_map[i].dkl_cylno = cyl; 1635 label->dkl_map[i].dkl_nblk = ncyls[i] * blks_per_cyl; 1636 #elif defined(_SUNOS_VTOC_16) 1637 label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl; 1638 label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl; 1639 1640 #else 1641 #error No VTOC format defined. 1642 #endif /* defined(_SUNOS_VTOC_8) */ 1643 1644 cyl += ncyls[i]; 1645 } 1646 1647 /* 1648 * Set the whole disk partition 1649 */ 1650 #if defined(_SUNOS_VTOC_8) 1651 label->dkl_map[2].dkl_cylno = 0; 1652 label->dkl_map[2].dkl_nblk = 1653 label->dkl_ncyl * label->dkl_nhead * label->dkl_nsect; 1654 1655 #elif defined(_SUNOS_VTOC_16) 1656 label->dkl_vtoc.v_part[2].p_start = 0; 1657 label->dkl_vtoc.v_part[2].p_size = 1658 (label->dkl_ncyl + label->dkl_acyl) * label->dkl_nhead * 1659 label->dkl_nsect; 1660 #else 1661 #error No VTOC format defined. 1662 #endif /* defined(_SUNOS_VTOC_8) */ 1663 1664 1665 if (option_msg && diag_msg) { 1666 float scaled; 1667 err_print("\n"); 1668 for (i = 0; i < NDKMAP; i++) { 1669 #if defined(_SUNOS_VTOC_8) 1670 if (label->dkl_map[i].dkl_nblk == 0) 1671 1672 #elif defined(_SUNOS_VTOC_16) 1673 if (label->dkl_vtoc.v_part[i].p_size == 0) 1674 1675 #else 1676 #error No VTOC format defined. 1677 #endif /* defined(_SUNOS_VTOC_8) */ 1678 1679 continue; 1680 err_print("Partition %d: ", i); 1681 #if defined(_SUNOS_VTOC_8) 1682 scaled = bn2mb(label->dkl_map[i].dkl_nblk); 1683 1684 #elif defined(_SUNOS_VTOC_16) 1685 1686 scaled = bn2mb(label->dkl_vtoc.v_part[i].p_size); 1687 #else 1688 #error No VTOC format defined. 1689 #endif /* defined(_SUNOS_VTOC_8) */ 1690 1691 if (scaled > 1024.0) { 1692 err_print("%6.2fGB ", scaled/1024.0); 1693 } else { 1694 err_print("%6.2fMB ", scaled); 1695 } 1696 err_print(" %6d cylinders\n", 1697 #if defined(_SUNOS_VTOC_8) 1698 label->dkl_map[i].dkl_nblk/blks_per_cyl); 1699 1700 #elif defined(_SUNOS_VTOC_16) 1701 label->dkl_vtoc.v_part[i].p_size/blks_per_cyl); 1702 1703 #else 1704 #error No VTOC format defined. 1705 #endif /* defined(_SUNOS_VTOC_8) */ 1706 1707 } 1708 err_print("\n"); 1709 } 1710 1711 return (1); 1712 } 1713 1714 1715 1716 /* 1717 * Find an existing scsi disk definition by this name, 1718 * if possible. 1719 */ 1720 static struct disk_type * 1721 find_scsi_disk_type( 1722 char *disk_name, 1723 struct dk_label *label) 1724 { 1725 struct ctlr_type *ctlr; 1726 struct disk_type *dp; 1727 1728 ctlr = find_scsi_ctlr_type(); 1729 for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) { 1730 if (dp->dtype_asciilabel) { 1731 if ((strcmp(dp->dtype_asciilabel, disk_name) == 0) && 1732 dp->dtype_pcyl == label->dkl_pcyl && 1733 dp->dtype_ncyl == label->dkl_ncyl && 1734 dp->dtype_acyl == label->dkl_acyl && 1735 dp->dtype_nhead == label->dkl_nhead && 1736 dp->dtype_nsect == label->dkl_nsect) { 1737 return (dp); 1738 } 1739 } 1740 } 1741 1742 return ((struct disk_type *)NULL); 1743 } 1744 1745 1746 /* 1747 * Find an existing scsi disk definition by this name, 1748 * if possible. 1749 */ 1750 static struct disk_type * 1751 find_scsi_disk_by_name( 1752 char *disk_name) 1753 { 1754 struct ctlr_type *ctlr; 1755 struct disk_type *dp; 1756 1757 ctlr = find_scsi_ctlr_type(); 1758 for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) { 1759 if (dp->dtype_asciilabel) { 1760 if ((strcmp(dp->dtype_asciilabel, disk_name) == 0)) { 1761 return (dp); 1762 } 1763 } 1764 } 1765 1766 return ((struct disk_type *)NULL); 1767 } 1768 1769 1770 /* 1771 * Return a pointer to the ctlr_type structure for SCSI 1772 * disks. This list is built into the program, so there's 1773 * no chance of not being able to find it, unless someone 1774 * totally mangles the code. 1775 */ 1776 static struct ctlr_type * 1777 find_scsi_ctlr_type() 1778 { 1779 struct mctlr_list *mlp; 1780 1781 mlp = controlp; 1782 1783 while (mlp != NULL) { 1784 if (mlp->ctlr_type->ctype_ctype == DKC_SCSI_CCS) { 1785 return (mlp->ctlr_type); 1786 } 1787 mlp = mlp->next; 1788 } 1789 1790 impossible("no SCSI controller type"); 1791 1792 return ((struct ctlr_type *)NULL); 1793 } 1794 1795 1796 1797 /* 1798 * Return a pointer to the scsi ctlr_info structure. This 1799 * structure is allocated the first time format sees a 1800 * disk on this controller, so it must be present. 1801 */ 1802 static struct ctlr_info * 1803 find_scsi_ctlr_info( 1804 struct dk_cinfo *dkinfo) 1805 { 1806 struct ctlr_info *ctlr; 1807 1808 if (dkinfo->dki_ctype != DKC_SCSI_CCS) { 1809 return (NULL); 1810 } 1811 1812 for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) { 1813 if (ctlr->ctlr_addr == dkinfo->dki_addr && 1814 ctlr->ctlr_space == dkinfo->dki_space && 1815 ctlr->ctlr_ctype->ctype_ctype == 1816 DKC_SCSI_CCS) { 1817 return (ctlr); 1818 } 1819 } 1820 1821 impossible("no SCSI controller info"); 1822 1823 return ((struct ctlr_info *)NULL); 1824 } 1825 1826 1827 1828 static struct disk_type * 1829 new_scsi_disk_type( 1830 int fd, 1831 char *disk_name, 1832 struct dk_label *label) 1833 { 1834 struct disk_type *dp; 1835 struct disk_type *disk; 1836 struct ctlr_info *ctlr; 1837 struct dk_cinfo dkinfo; 1838 struct partition_info *part; 1839 struct partition_info *pt; 1840 struct disk_info *disk_info; 1841 int i; 1842 1843 /* 1844 * Get the disk controller info for this disk 1845 */ 1846 if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) { 1847 if (option_msg && diag_msg) { 1848 err_print("DKIOCINFO failed\n"); 1849 } 1850 return (NULL); 1851 } 1852 1853 /* 1854 * Find the ctlr_info for this disk. 1855 */ 1856 ctlr = find_scsi_ctlr_info(&dkinfo); 1857 1858 /* 1859 * Allocate a new disk type for the SCSI controller. 1860 */ 1861 disk = (struct disk_type *)zalloc(sizeof (struct disk_type)); 1862 1863 /* 1864 * Find the disk_info instance for this disk. 1865 */ 1866 disk_info = find_scsi_disk_info(&dkinfo); 1867 1868 /* 1869 * The controller and the disk should match. 1870 */ 1871 assert(disk_info->disk_ctlr == ctlr); 1872 1873 /* 1874 * Link the disk into the list of disks 1875 */ 1876 dp = ctlr->ctlr_ctype->ctype_dlist; 1877 if (dp == NULL) { 1878 ctlr->ctlr_ctype->ctype_dlist = dp; 1879 } else { 1880 while (dp->dtype_next != NULL) { 1881 dp = dp->dtype_next; 1882 } 1883 dp->dtype_next = disk; 1884 } 1885 disk->dtype_next = NULL; 1886 1887 /* 1888 * Allocate and initialize the disk name. 1889 */ 1890 disk->dtype_asciilabel = alloc_string(disk_name); 1891 1892 /* 1893 * Initialize disk geometry info 1894 */ 1895 disk->dtype_pcyl = label->dkl_pcyl; 1896 disk->dtype_ncyl = label->dkl_ncyl; 1897 disk->dtype_acyl = label->dkl_acyl; 1898 disk->dtype_nhead = label->dkl_nhead; 1899 disk->dtype_nsect = label->dkl_nsect; 1900 disk->dtype_rpm = label->dkl_rpm; 1901 1902 /* 1903 * Attempt to match the partition map in the label 1904 * with a know partition for this disk type. 1905 */ 1906 for (part = disk->dtype_plist; part; part = part->pinfo_next) { 1907 if (parts_match(label, part)) { 1908 break; 1909 } 1910 } 1911 1912 /* 1913 * If no match was made, we need to create a partition 1914 * map for this disk. 1915 */ 1916 if (part == NULL) { 1917 part = (struct partition_info *) 1918 zalloc(sizeof (struct partition_info)); 1919 pt = disk->dtype_plist; 1920 if (pt == NULL) { 1921 disk->dtype_plist = part; 1922 } else { 1923 while (pt->pinfo_next != NULL) { 1924 pt = pt->pinfo_next; 1925 } 1926 pt->pinfo_next = part; 1927 } 1928 part->pinfo_next = NULL; 1929 1930 /* 1931 * Set up the partition name 1932 */ 1933 part->pinfo_name = alloc_string("default"); 1934 1935 /* 1936 * Fill in the partition info from the label 1937 */ 1938 for (i = 0; i < NDKMAP; i++) { 1939 1940 #if defined(_SUNOS_VTOC_8) 1941 part->pinfo_map[i] = label->dkl_map[i]; 1942 1943 #elif defined(_SUNOS_VTOC_16) 1944 part->pinfo_map[i].dkl_cylno = 1945 label->dkl_vtoc.v_part[i].p_start / 1946 ((int)(disk->dtype_nhead * 1947 disk->dtype_nsect - apc)); 1948 part->pinfo_map[i].dkl_nblk = 1949 label->dkl_vtoc.v_part[i].p_size; 1950 #else 1951 #error No VTOC format defined. 1952 #endif /* defined(_SUNOS_VTOC_8) */ 1953 1954 } 1955 } 1956 1957 1958 /* 1959 * Use the VTOC if valid, or install a default 1960 */ 1961 if (label->dkl_vtoc.v_version == V_VERSION) { 1962 (void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume, 1963 LEN_DKL_VVOL); 1964 part->vtoc = label->dkl_vtoc; 1965 } else { 1966 (void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL); 1967 set_vtoc_defaults(part); 1968 } 1969 1970 /* 1971 * Link the disk to the partition map 1972 */ 1973 disk_info->disk_parts = part; 1974 1975 return (disk); 1976 } 1977 1978 1979 /* 1980 * Delete a disk type from disk type list. 1981 */ 1982 int 1983 delete_disk_type( 1984 struct disk_type *disk_type) 1985 { 1986 struct ctlr_type *ctlr; 1987 struct disk_type *dp, *disk; 1988 1989 if (cur_ctype->ctype_ctype == DKC_DIRECT) 1990 ctlr = find_direct_ctlr_type(); 1991 else 1992 ctlr = find_scsi_ctlr_type(); 1993 if (ctlr == NULL || ctlr->ctype_dlist == NULL) { 1994 return (-1); 1995 } 1996 1997 disk = ctlr->ctype_dlist; 1998 if (disk == disk_type) { 1999 ctlr->ctype_dlist = disk->dtype_next; 2000 if (cur_label == L_TYPE_EFI) 2001 free(disk->dtype_plist->etoc); 2002 free(disk->dtype_plist); 2003 free(disk); 2004 return (0); 2005 } else { 2006 for (dp = disk->dtype_next; dp != NULL; 2007 disk = disk->dtype_next, dp = dp->dtype_next) { 2008 if (dp == disk_type) { 2009 disk->dtype_next = dp->dtype_next; 2010 if (cur_label == L_TYPE_EFI) 2011 free(dp->dtype_plist->etoc); 2012 free(dp->dtype_plist); 2013 free(dp); 2014 return (0); 2015 } 2016 } 2017 return (-1); 2018 } 2019 } 2020 2021 2022 static struct disk_info * 2023 find_scsi_disk_info( 2024 struct dk_cinfo *dkinfo) 2025 { 2026 struct disk_info *disk; 2027 struct dk_cinfo *dp; 2028 2029 for (disk = disk_list; disk != NULL; disk = disk->disk_next) { 2030 assert(dkinfo->dki_ctype == DKC_SCSI_CCS); 2031 dp = &disk->disk_dkinfo; 2032 if (dp->dki_ctype == dkinfo->dki_ctype && 2033 dp->dki_cnum == dkinfo->dki_cnum && 2034 dp->dki_unit == dkinfo->dki_unit && 2035 strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) { 2036 return (disk); 2037 } 2038 } 2039 2040 impossible("No SCSI disk info instance\n"); 2041 2042 return ((struct disk_info *)NULL); 2043 } 2044 2045 2046 static char * 2047 get_sun_disk_name( 2048 char *disk_name, 2049 struct scsi_inquiry *inquiry) 2050 { 2051 /* 2052 * Extract the sun name of the disk 2053 */ 2054 (void) memset(disk_name, 0, DISK_NAME_MAX); 2055 (void) memcpy(disk_name, (char *)&inquiry->inq_pid[9], 7); 2056 2057 return (disk_name); 2058 } 2059 2060 2061 static char * 2062 get_generic_disk_name( 2063 char *disk_name, 2064 struct scsi_inquiry *inquiry) 2065 { 2066 char *p; 2067 2068 (void) memset(disk_name, 0, DISK_NAME_MAX); 2069 p = strcopy(disk_name, inquiry->inq_vid, 2070 sizeof (inquiry->inq_vid)); 2071 *p++ = '-'; 2072 p = strcopy(p, inquiry->inq_pid, sizeof (inquiry->inq_pid)); 2073 *p++ = '-'; 2074 p = strcopy(p, inquiry->inq_revision, 2075 sizeof (inquiry->inq_revision)); 2076 2077 return (disk_name); 2078 } 2079 2080 2081 2082 static int 2083 force_blocksize( 2084 int fd) 2085 { 2086 union { 2087 struct mode_format page3; 2088 uchar_t buf3[MAX_MODE_SENSE_SIZE]; 2089 } u_page3; 2090 struct mode_format *page3 = &u_page3.page3; 2091 struct scsi_ms_header header; 2092 2093 if (check("\ 2094 Must reformat device to 512-byte blocksize. Continue") == 0) { 2095 2096 /* 2097 * Get current Page 3 - Format Parameters page 2098 */ 2099 if (uscsi_mode_sense(fd, DAD_MODE_FORMAT, 2100 MODE_SENSE_PC_CURRENT, (caddr_t)&u_page3, 2101 MAX_MODE_SENSE_SIZE, &header)) { 2102 goto err; 2103 } 2104 2105 /* 2106 * Make our changes to the geometry 2107 */ 2108 header.mode_header.length = 0; 2109 header.mode_header.device_specific = 0; 2110 page3->mode_page.ps = 0; 2111 page3->data_bytes_sect = DEV_BSIZE; 2112 2113 /* 2114 * make sure that logical block size is of 2115 * DEV_BSIZE. 2116 */ 2117 header.block_descriptor.blksize_hi = (DEV_BSIZE >> 16); 2118 header.block_descriptor.blksize_mid = (DEV_BSIZE >> 8); 2119 header.block_descriptor.blksize_lo = (char)(DEV_BSIZE); 2120 /* 2121 * Select current Page 3 - Format Parameters page 2122 */ 2123 if (uscsi_mode_select(fd, DAD_MODE_FORMAT, 2124 MODE_SELECT_PF, (caddr_t)&u_page3, 2125 MODESENSE_PAGE_LEN(&u_page3), &header)) { 2126 goto err; 2127 } 2128 2129 /* 2130 * Now reformat the device 2131 */ 2132 if (raw_format(fd)) { 2133 goto err; 2134 } 2135 return (0); 2136 } 2137 2138 err: 2139 if (option_msg && diag_msg) { 2140 err_print( 2141 "Reformat device to 512-byte blocksize failed\n"); 2142 } 2143 return (1); 2144 } 2145 2146 static int 2147 raw_format( 2148 int fd) 2149 { 2150 union scsi_cdb cdb; 2151 struct uscsi_cmd ucmd; 2152 struct scsi_defect_hdr defect_hdr; 2153 2154 (void) memset((char *)&ucmd, 0, sizeof (ucmd)); 2155 (void) memset((char *)&cdb, 0, sizeof (union scsi_cdb)); 2156 (void) memset((char *)&defect_hdr, 0, sizeof (defect_hdr)); 2157 cdb.scc_cmd = SCMD_FORMAT; 2158 ucmd.uscsi_cdb = (caddr_t)&cdb; 2159 ucmd.uscsi_cdblen = CDB_GROUP0; 2160 ucmd.uscsi_bufaddr = (caddr_t)&defect_hdr; 2161 ucmd.uscsi_buflen = sizeof (defect_hdr); 2162 cdb.cdb_opaque[1] = FPB_DATA; 2163 2164 /* 2165 * Issue the format ioctl 2166 */ 2167 fmt_print("Formatting...\n"); 2168 (void) fflush(stdout); 2169 if (uscsi_cmd(fd, &ucmd, 2170 (option_msg && diag_msg) ? F_NORMAL : F_SILENT)) { 2171 return (1); 2172 } 2173 return (0); 2174 } 2175 2176 /* 2177 * Copy a string of characters from src to dst, for at 2178 * most n bytes. Strip all leading and trailing spaces, 2179 * and stop if there are any non-printable characters. 2180 * Return ptr to the next character to be filled. 2181 */ 2182 static char * 2183 strcopy( 2184 char *dst, 2185 char *src, 2186 int n) 2187 { 2188 int i; 2189 2190 while (*src == ' ' && n > 0) { 2191 src++; 2192 n--; 2193 } 2194 2195 for (i = 0; n-- > 0 && isascii(*src) && isprint(*src); src++) { 2196 if (*src == ' ') { 2197 i++; 2198 } else { 2199 while (i-- > 0) 2200 *dst++ = ' '; 2201 *dst++ = *src; 2202 } 2203 } 2204 2205 *dst = 0; 2206 return (dst); 2207 } 2208 2209 /* 2210 * adjust disk geometry. 2211 * This is used when disk reports a disk geometry page having 2212 * no of physical cylinders is < 3 which is the minimum required 2213 * by Solaris (2 for storing labels and at least one as a data 2214 * cylinder ) 2215 */ 2216 int 2217 adjust_disk_geometry(int capacity, int *cyl, int *nhead, int *nsect) 2218 { 2219 int lcyl = *cyl; 2220 int lnhead = *nhead; 2221 int lnsect = *nsect; 2222 2223 assert(lcyl < SUN_MIN_CYL); 2224 2225 /* 2226 * reduce nsect by 2 for each iteration and re-calculate 2227 * the number of cylinders. 2228 */ 2229 while (lnsect > MINIMUM_NO_SECTORS && 2230 lcyl < MINIMUM_NO_CYLINDERS) { 2231 /* 2232 * make sure that we do not go below MINIMUM_NO_SECTORS. 2233 */ 2234 lnsect = max(MINIMUM_NO_SECTORS, lnsect / 2); 2235 lcyl = (capacity) / (lnhead * lnsect); 2236 } 2237 /* 2238 * If the geometry still does not satisfy 2239 * MINIMUM_NO_CYLINDERS then try to reduce the 2240 * no of heads. 2241 */ 2242 while (lnhead > MINIMUM_NO_HEADS && 2243 lcyl < MINIMUM_NO_CYLINDERS) { 2244 lnhead = max(MINIMUM_NO_HEADS, lnhead / 2); 2245 lcyl = (capacity) / (lnhead * lnsect); 2246 } 2247 /* 2248 * now we should have atleast SUN_MIN_CYL cylinders. 2249 * If we still do not get SUN_MIN_CYL with MINIMUM_NO_HEADS 2250 * and MINIMUM_NO_HEADS then return error. 2251 */ 2252 if (lcyl < SUN_MIN_CYL) 2253 return (1); 2254 else { 2255 *cyl = lcyl; 2256 *nhead = lnhead; 2257 *nsect = lnsect; 2258 return (0); 2259 } 2260 } 2261 2262 #if defined(_SUNOS_VTOC_8) 2263 /* 2264 * Reduce the size of one dimention below a specified 2265 * limit with a minimum loss of volume. Dimenstions are 2266 * assumed to be passed in form the largest value (the one 2267 * that needs to be reduced) to the smallest value. The 2268 * values will be twiddled until they are all less than or 2269 * equal to their limit. Returns the number in the new geometry. 2270 */ 2271 static int 2272 square_box( 2273 int capacity, 2274 int *dim1, int lim1, 2275 int *dim2, int lim2, 2276 int *dim3, int lim3) 2277 { 2278 int i; 2279 2280 /* 2281 * Although the routine should work with any ordering of 2282 * parameters, it's most efficient if they are passed in 2283 * in decreasing magnitude. 2284 */ 2285 assert(*dim1 >= *dim2); 2286 assert(*dim2 >= *dim3); 2287 2288 /* 2289 * This is done in a very arbitrary manner. We could try to 2290 * find better values but I can't come up with a method that 2291 * would run in a reasonable amount of time. That could take 2292 * approximately 65535 * 65535 iterations of a dozen flops each 2293 * or well over 4G flops. 2294 * 2295 * First: 2296 * 2297 * Let's see how far we can go with bitshifts w/o losing 2298 * any blocks. 2299 */ 2300 2301 for (i = 0; (((*dim1)>>i)&1) == 0 && ((*dim1)>>i) > lim1; i++); 2302 if (i) { 2303 *dim1 = ((*dim1)>>i); 2304 *dim3 = ((*dim3)<<i); 2305 } 2306 2307 if (((*dim1) > lim1) || ((*dim2) > lim2) || ((*dim3) > lim3)) { 2308 double d[4]; 2309 2310 /* 2311 * Second: 2312 * 2313 * Set the highest value at its limit then calculate errors, 2314 * adjusting the 2nd highest value (we get better resolution 2315 * that way). 2316 */ 2317 d[1] = lim1; 2318 d[3] = *dim3; 2319 d[2] = (double)capacity/(d[1]*d[3]); 2320 2321 /* 2322 * If we overflowed the middle term, set it to its limit and 2323 * chose a new low term. 2324 */ 2325 if (d[2] > lim2) { 2326 d[2] = lim2; 2327 d[3] = (double)capacity/(d[1]*d[2]); 2328 } 2329 /* 2330 * Convert to integers. 2331 */ 2332 *dim1 = (int)d[1]; 2333 *dim2 = (int)d[2]; 2334 *dim3 = (int)d[3]; 2335 } 2336 /* 2337 * Fixup any other possible problems. 2338 * If this happens, we need a new disklabel format. 2339 */ 2340 if (*dim1 > lim1) *dim1 = lim1; 2341 if (*dim2 > lim2) *dim2 = lim2; 2342 if (*dim3 > lim3) *dim3 = lim3; 2343 return (*dim1 * *dim2 * *dim3); 2344 } 2345 #endif /* defined(_SUNOS_VTOC_8) */ 2346