1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * The ZFS retire agent is responsible for managing hot spares across all pools. 27 * When we see a device fault or a device removal, we try to open the associated 28 * pool and look for any hot spares. We iterate over any available hot spares 29 * and attempt a 'zpool replace' for each one. 30 * 31 * For vdevs diagnosed as faulty, the agent is also responsible for proactively 32 * marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors). 33 */ 34 35 #include <fm/fmd_api.h> 36 #include <sys/fs/zfs.h> 37 #include <sys/fm/protocol.h> 38 #include <sys/fm/fs/zfs.h> 39 #include <libzfs.h> 40 #include <fm/libtopo.h> 41 #include <string.h> 42 43 typedef struct zfs_retire_repaired { 44 struct zfs_retire_repaired *zrr_next; 45 uint64_t zrr_pool; 46 uint64_t zrr_vdev; 47 } zfs_retire_repaired_t; 48 49 typedef struct zfs_retire_data { 50 libzfs_handle_t *zrd_hdl; 51 zfs_retire_repaired_t *zrd_repaired; 52 } zfs_retire_data_t; 53 54 static void 55 zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp) 56 { 57 zfs_retire_repaired_t *zrp; 58 59 while ((zrp = zdp->zrd_repaired) != NULL) { 60 zdp->zrd_repaired = zrp->zrr_next; 61 fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t)); 62 } 63 } 64 65 /* 66 * Find a pool with a matching GUID. 67 */ 68 typedef struct find_cbdata { 69 uint64_t cb_guid; 70 const char *cb_fru; 71 zpool_handle_t *cb_zhp; 72 nvlist_t *cb_vdev; 73 } find_cbdata_t; 74 75 static int 76 find_pool(zpool_handle_t *zhp, void *data) 77 { 78 find_cbdata_t *cbp = data; 79 80 if (cbp->cb_guid == 81 zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) { 82 cbp->cb_zhp = zhp; 83 return (1); 84 } 85 86 zpool_close(zhp); 87 return (0); 88 } 89 90 /* 91 * Find a vdev within a tree with a matching GUID. 92 */ 93 static nvlist_t * 94 find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, const char *search_fru, 95 uint64_t search_guid) 96 { 97 uint64_t guid; 98 nvlist_t **child; 99 uint_t c, children; 100 nvlist_t *ret; 101 char *fru; 102 103 if (search_fru != NULL) { 104 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &fru) == 0 && 105 libzfs_fru_compare(zhdl, fru, search_fru)) 106 return (nv); 107 } else { 108 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 && 109 guid == search_guid) 110 return (nv); 111 } 112 113 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 114 &child, &children) != 0) 115 return (NULL); 116 117 for (c = 0; c < children; c++) { 118 if ((ret = find_vdev(zhdl, child[c], search_fru, 119 search_guid)) != NULL) 120 return (ret); 121 } 122 123 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 124 &child, &children) != 0) 125 return (NULL); 126 127 for (c = 0; c < children; c++) { 128 if ((ret = find_vdev(zhdl, child[c], search_fru, 129 search_guid)) != NULL) 130 return (ret); 131 } 132 133 return (NULL); 134 } 135 136 /* 137 * Given a (pool, vdev) GUID pair, find the matching pool and vdev. 138 */ 139 static zpool_handle_t * 140 find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid, 141 nvlist_t **vdevp) 142 { 143 find_cbdata_t cb; 144 zpool_handle_t *zhp; 145 nvlist_t *config, *nvroot; 146 147 /* 148 * Find the corresponding pool and make sure the vdev still exists. 149 */ 150 cb.cb_guid = pool_guid; 151 if (zpool_iter(zhdl, find_pool, &cb) != 1) 152 return (NULL); 153 154 zhp = cb.cb_zhp; 155 config = zpool_get_config(zhp, NULL); 156 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 157 &nvroot) != 0) { 158 zpool_close(zhp); 159 return (NULL); 160 } 161 162 if (vdev_guid != 0) { 163 if ((*vdevp = find_vdev(zhdl, nvroot, NULL, 164 vdev_guid)) == NULL) { 165 zpool_close(zhp); 166 return (NULL); 167 } 168 } 169 170 return (zhp); 171 } 172 173 static int 174 search_pool(zpool_handle_t *zhp, void *data) 175 { 176 find_cbdata_t *cbp = data; 177 nvlist_t *config; 178 nvlist_t *nvroot; 179 180 config = zpool_get_config(zhp, NULL); 181 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 182 &nvroot) != 0) { 183 zpool_close(zhp); 184 return (0); 185 } 186 187 if ((cbp->cb_vdev = find_vdev(zpool_get_handle(zhp), nvroot, 188 cbp->cb_fru, 0)) != NULL) { 189 cbp->cb_zhp = zhp; 190 return (1); 191 } 192 193 zpool_close(zhp); 194 return (0); 195 } 196 197 /* 198 * Given a FRU FMRI, find the matching pool and vdev. 199 */ 200 static zpool_handle_t * 201 find_by_fru(libzfs_handle_t *zhdl, const char *fru, nvlist_t **vdevp) 202 { 203 find_cbdata_t cb; 204 205 cb.cb_fru = fru; 206 cb.cb_zhp = NULL; 207 if (zpool_iter(zhdl, search_pool, &cb) != 1) 208 return (NULL); 209 210 *vdevp = cb.cb_vdev; 211 return (cb.cb_zhp); 212 } 213 214 /* 215 * Given a vdev, attempt to replace it with every known spare until one 216 * succeeds. 217 */ 218 static void 219 replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev) 220 { 221 nvlist_t *config, *nvroot, *replacement; 222 nvlist_t **spares; 223 uint_t s, nspares; 224 char *dev_name; 225 226 config = zpool_get_config(zhp, NULL); 227 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 228 &nvroot) != 0) 229 return; 230 231 /* 232 * Find out if there are any hot spares available in the pool. 233 */ 234 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 235 &spares, &nspares) != 0) 236 return; 237 238 replacement = fmd_nvl_alloc(hdl, FMD_SLEEP); 239 240 (void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE, 241 VDEV_TYPE_ROOT); 242 243 dev_name = zpool_vdev_name(NULL, zhp, vdev, B_FALSE); 244 245 /* 246 * Try to replace each spare, ending when we successfully 247 * replace it. 248 */ 249 for (s = 0; s < nspares; s++) { 250 char *spare_name; 251 252 if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH, 253 &spare_name) != 0) 254 continue; 255 256 (void) nvlist_add_nvlist_array(replacement, 257 ZPOOL_CONFIG_CHILDREN, &spares[s], 1); 258 259 if (zpool_vdev_attach(zhp, dev_name, spare_name, 260 replacement, B_TRUE) == 0) 261 break; 262 } 263 264 free(dev_name); 265 nvlist_free(replacement); 266 } 267 268 /* 269 * Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and 270 * ASRU is now usable. ZFS has found the device to be present and 271 * functioning. 272 */ 273 /*ARGSUSED*/ 274 void 275 zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl) 276 { 277 zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl); 278 zfs_retire_repaired_t *zrp; 279 uint64_t pool_guid, vdev_guid; 280 nvlist_t *asru; 281 282 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 283 &pool_guid) != 0 || nvlist_lookup_uint64(nvl, 284 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 285 return; 286 287 /* 288 * Before checking the state of the ASRU, go through and see if we've 289 * already made an attempt to repair this ASRU. This list is cleared 290 * whenever we receive any kind of list event, and is designed to 291 * prevent us from generating a feedback loop when we attempt repairs 292 * against a faulted pool. The problem is that checking the unusable 293 * state of the ASRU can involve opening the pool, which can post 294 * statechange events but otherwise leave the pool in the faulted 295 * state. This list allows us to detect when a statechange event is 296 * due to our own request. 297 */ 298 for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) { 299 if (zrp->zrr_pool == pool_guid && 300 zrp->zrr_vdev == vdev_guid) 301 return; 302 } 303 304 asru = fmd_nvl_alloc(hdl, FMD_SLEEP); 305 306 (void) nvlist_add_uint8(asru, FM_VERSION, ZFS_SCHEME_VERSION0); 307 (void) nvlist_add_string(asru, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS); 308 (void) nvlist_add_uint64(asru, FM_FMRI_ZFS_POOL, pool_guid); 309 (void) nvlist_add_uint64(asru, FM_FMRI_ZFS_VDEV, vdev_guid); 310 311 /* 312 * We explicitly check for the unusable state here to make sure we 313 * aren't responding to a transient state change. As part of opening a 314 * vdev, it's possible to see the 'statechange' event, only to be 315 * followed by a vdev failure later. If we don't check the current 316 * state of the vdev (or pool) before marking it repaired, then we risk 317 * generating spurious repair events followed immediately by the same 318 * diagnosis. 319 * 320 * This assumes that the ZFS scheme code associated unusable (i.e. 321 * isolated) with its own definition of faulty state. In the case of a 322 * DEGRADED leaf vdev (due to checksum errors), this is not the case. 323 * This works, however, because the transient state change is not 324 * posted in this case. This could be made more explicit by not 325 * relying on the scheme's unusable callback and instead directly 326 * checking the vdev state, where we could correctly account for 327 * DEGRADED state. 328 */ 329 if (!fmd_nvl_fmri_unusable(hdl, asru) && fmd_nvl_fmri_has_fault(hdl, 330 asru, FMD_HAS_FAULT_ASRU, NULL)) { 331 topo_hdl_t *thp; 332 char *fmri = NULL; 333 int err; 334 335 thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION); 336 if (topo_fmri_nvl2str(thp, asru, &fmri, &err) == 0) 337 (void) fmd_repair_asru(hdl, fmri); 338 fmd_hdl_topo_rele(hdl, thp); 339 340 topo_hdl_strfree(thp, fmri); 341 } 342 nvlist_free(asru); 343 zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP); 344 zrp->zrr_next = zdp->zrd_repaired; 345 zrp->zrr_pool = pool_guid; 346 zrp->zrr_vdev = vdev_guid; 347 zdp->zrd_repaired = zrp; 348 } 349 350 /*ARGSUSED*/ 351 static void 352 zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, 353 const char *class) 354 { 355 uint64_t pool_guid, vdev_guid; 356 zpool_handle_t *zhp; 357 nvlist_t *resource, *fault, *fru; 358 nvlist_t **faults; 359 uint_t f, nfaults; 360 zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl); 361 libzfs_handle_t *zhdl = zdp->zrd_hdl; 362 boolean_t fault_device, degrade_device; 363 boolean_t is_repair; 364 char *scheme, *fmri; 365 nvlist_t *vdev; 366 char *uuid; 367 int repair_done = 0; 368 boolean_t retire; 369 boolean_t is_disk; 370 vdev_aux_t aux; 371 topo_hdl_t *thp; 372 int err; 373 374 /* 375 * If this is a resource notifying us of device removal, then simply 376 * check for an available spare and continue. 377 */ 378 if (strcmp(class, "resource.fs.zfs.removed") == 0) { 379 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, 380 &pool_guid) != 0 || 381 nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 382 &vdev_guid) != 0) 383 return; 384 385 if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid, 386 &vdev)) == NULL) 387 return; 388 389 if (fmd_prop_get_int32(hdl, "spare_on_remove")) 390 replace_with_spare(hdl, zhp, vdev); 391 zpool_close(zhp); 392 return; 393 } 394 395 if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0) 396 return; 397 398 if (strcmp(class, "resource.fs.zfs.statechange") == 0 || 399 strcmp(class, 400 "resource.sysevent.EC_zfs.ESC_ZFS_vdev_remove") == 0) { 401 zfs_vdev_repair(hdl, nvl); 402 return; 403 } 404 405 zfs_retire_clear_data(hdl, zdp); 406 407 if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0) 408 is_repair = B_TRUE; 409 else 410 is_repair = B_FALSE; 411 412 /* 413 * We subscribe to zfs faults as well as all repair events. 414 */ 415 if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST, 416 &faults, &nfaults) != 0) 417 return; 418 419 for (f = 0; f < nfaults; f++) { 420 fault = faults[f]; 421 422 fault_device = B_FALSE; 423 degrade_device = B_FALSE; 424 is_disk = B_FALSE; 425 426 if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE, 427 &retire) == 0 && retire == 0) 428 continue; 429 430 if (fmd_nvl_class_match(hdl, fault, 431 "fault.io.disk.ssm-wearout") && 432 fmd_prop_get_int32(hdl, "ssm_wearout_skip_retire") == 433 FMD_B_TRUE) { 434 fmd_hdl_debug(hdl, "zfs-retire: ignoring SSM fault"); 435 continue; 436 } 437 438 /* 439 * While we subscribe to fault.fs.zfs.*, we only take action 440 * for faults targeting a specific vdev (open failure or SERD 441 * failure). We also subscribe to fault.io.* events, so that 442 * faulty disks will be faulted in the ZFS configuration. 443 */ 444 if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) { 445 fault_device = B_TRUE; 446 } else if (fmd_nvl_class_match(hdl, fault, 447 "fault.fs.zfs.vdev.checksum")) { 448 degrade_device = B_TRUE; 449 } else if (fmd_nvl_class_match(hdl, fault, 450 "fault.fs.zfs.device")) { 451 fault_device = B_FALSE; 452 } else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) { 453 is_disk = B_TRUE; 454 fault_device = B_TRUE; 455 } else { 456 continue; 457 } 458 459 if (is_disk) { 460 /* 461 * This is a disk fault. Lookup the FRU, convert it to 462 * an FMRI string, and attempt to find a matching vdev. 463 */ 464 if (nvlist_lookup_nvlist(fault, FM_FAULT_FRU, 465 &fru) != 0 || 466 nvlist_lookup_string(fru, FM_FMRI_SCHEME, 467 &scheme) != 0) 468 continue; 469 470 if (strcmp(scheme, FM_FMRI_SCHEME_HC) != 0) 471 continue; 472 473 thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION); 474 if (topo_fmri_nvl2str(thp, fru, &fmri, &err) != 0) { 475 fmd_hdl_topo_rele(hdl, thp); 476 continue; 477 } 478 479 zhp = find_by_fru(zhdl, fmri, &vdev); 480 topo_hdl_strfree(thp, fmri); 481 fmd_hdl_topo_rele(hdl, thp); 482 483 if (zhp == NULL) 484 continue; 485 486 (void) nvlist_lookup_uint64(vdev, 487 ZPOOL_CONFIG_GUID, &vdev_guid); 488 aux = VDEV_AUX_EXTERNAL; 489 } else { 490 /* 491 * This is a ZFS fault. Lookup the resource, and 492 * attempt to find the matching vdev. 493 */ 494 if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE, 495 &resource) != 0 || 496 nvlist_lookup_string(resource, FM_FMRI_SCHEME, 497 &scheme) != 0) 498 continue; 499 500 if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0) 501 continue; 502 503 if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL, 504 &pool_guid) != 0) 505 continue; 506 507 if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV, 508 &vdev_guid) != 0) { 509 if (is_repair) 510 vdev_guid = 0; 511 else 512 continue; 513 } 514 515 if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid, 516 &vdev)) == NULL) 517 continue; 518 519 aux = VDEV_AUX_ERR_EXCEEDED; 520 } 521 522 if (vdev_guid == 0) { 523 /* 524 * For pool-level repair events, clear the entire pool. 525 */ 526 (void) zpool_clear(zhp, NULL, NULL); 527 zpool_close(zhp); 528 continue; 529 } 530 531 /* 532 * If this is a repair event, then mark the vdev as repaired and 533 * continue. 534 */ 535 if (is_repair) { 536 repair_done = 1; 537 (void) zpool_vdev_clear(zhp, vdev_guid); 538 zpool_close(zhp); 539 continue; 540 } 541 542 /* 543 * Actively fault the device if needed. 544 */ 545 if (fault_device) 546 (void) zpool_vdev_fault(zhp, vdev_guid, aux); 547 if (degrade_device) 548 (void) zpool_vdev_degrade(zhp, vdev_guid, aux); 549 550 /* 551 * Attempt to substitute a hot spare. 552 */ 553 replace_with_spare(hdl, zhp, vdev); 554 zpool_close(zhp); 555 } 556 557 if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done && 558 nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0) 559 fmd_case_uuresolved(hdl, uuid); 560 } 561 562 static const fmd_hdl_ops_t fmd_ops = { 563 zfs_retire_recv, /* fmdo_recv */ 564 NULL, /* fmdo_timeout */ 565 NULL, /* fmdo_close */ 566 NULL, /* fmdo_stats */ 567 NULL, /* fmdo_gc */ 568 }; 569 570 static const fmd_prop_t fmd_props[] = { 571 { "spare_on_remove", FMD_TYPE_BOOL, "true" }, 572 { "ssm_wearout_skip_retire", FMD_TYPE_BOOL, "true"}, 573 { NULL, 0, NULL } 574 }; 575 576 static const fmd_hdl_info_t fmd_info = { 577 "ZFS Retire Agent", "1.0", &fmd_ops, fmd_props 578 }; 579 580 void 581 _fmd_init(fmd_hdl_t *hdl) 582 { 583 zfs_retire_data_t *zdp; 584 libzfs_handle_t *zhdl; 585 586 if ((zhdl = libzfs_init()) == NULL) 587 return; 588 589 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 590 libzfs_fini(zhdl); 591 return; 592 } 593 594 zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP); 595 zdp->zrd_hdl = zhdl; 596 597 fmd_hdl_setspecific(hdl, zdp); 598 } 599 600 void 601 _fmd_fini(fmd_hdl_t *hdl) 602 { 603 zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl); 604 605 if (zdp != NULL) { 606 zfs_retire_clear_data(hdl, zdp); 607 libzfs_fini(zdp->zrd_hdl); 608 fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t)); 609 } 610 } 611