xref: /illumos-gate/usr/src/cmd/fm/modules/common/zfs-retire/zfs_retire.c (revision 46b592853d0f4f11781b6b0a7533f267c6aee132)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * The ZFS retire agent is responsible for managing hot spares across all pools.
28  * When we see a device fault or a device removal, we try to open the associated
29  * pool and look for any hot spares.  We iterate over any available hot spares
30  * and attempt a 'zpool replace' for each one.
31  *
32  * For vdevs diagnosed as faulty, the agent is also responsible for proactively
33  * marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors).
34  */
35 
36 #include <fm/fmd_api.h>
37 #include <sys/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/fs/zfs.h>
40 #include <libzfs.h>
41 #include <fm/libtopo.h>
42 #include <string.h>
43 
44 typedef struct zfs_retire_repaired {
45 	struct zfs_retire_repaired	*zrr_next;
46 	uint64_t			zrr_pool;
47 	uint64_t			zrr_vdev;
48 } zfs_retire_repaired_t;
49 
50 typedef struct zfs_retire_data {
51 	libzfs_handle_t			*zrd_hdl;
52 	zfs_retire_repaired_t		*zrd_repaired;
53 } zfs_retire_data_t;
54 
55 static void
56 zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp)
57 {
58 	zfs_retire_repaired_t *zrp;
59 
60 	while ((zrp = zdp->zrd_repaired) != NULL) {
61 		zdp->zrd_repaired = zrp->zrr_next;
62 		fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t));
63 	}
64 }
65 
66 /*
67  * Find a pool with a matching GUID.
68  */
69 typedef struct find_cbdata {
70 	uint64_t	cb_guid;
71 	const char	*cb_fru;
72 	zpool_handle_t	*cb_zhp;
73 	nvlist_t	*cb_vdev;
74 } find_cbdata_t;
75 
76 static int
77 find_pool(zpool_handle_t *zhp, void *data)
78 {
79 	find_cbdata_t *cbp = data;
80 
81 	if (cbp->cb_guid ==
82 	    zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) {
83 		cbp->cb_zhp = zhp;
84 		return (1);
85 	}
86 
87 	zpool_close(zhp);
88 	return (0);
89 }
90 
91 /*
92  * Find a vdev within a tree with a matching GUID.
93  */
94 static nvlist_t *
95 find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, const char *search_fru,
96     uint64_t search_guid)
97 {
98 	uint64_t guid;
99 	nvlist_t **child;
100 	uint_t c, children;
101 	nvlist_t *ret;
102 	char *fru;
103 
104 	if (search_fru != NULL) {
105 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &fru) == 0 &&
106 		    libzfs_fru_compare(zhdl, fru, search_fru))
107 			return (nv);
108 	} else {
109 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 &&
110 		    guid == search_guid)
111 			return (nv);
112 	}
113 
114 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
115 	    &child, &children) != 0)
116 		return (NULL);
117 
118 	for (c = 0; c < children; c++) {
119 		if ((ret = find_vdev(zhdl, child[c], search_fru,
120 		    search_guid)) != NULL)
121 			return (ret);
122 	}
123 
124 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
125 	    &child, &children) != 0)
126 		return (NULL);
127 
128 	for (c = 0; c < children; c++) {
129 		if ((ret = find_vdev(zhdl, child[c], search_fru,
130 		    search_guid)) != NULL)
131 			return (ret);
132 	}
133 
134 	return (NULL);
135 }
136 
137 /*
138  * Given a (pool, vdev) GUID pair, find the matching pool and vdev.
139  */
140 static zpool_handle_t *
141 find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid,
142     nvlist_t **vdevp)
143 {
144 	find_cbdata_t cb;
145 	zpool_handle_t *zhp;
146 	nvlist_t *config, *nvroot;
147 
148 	/*
149 	 * Find the corresponding pool and make sure the vdev still exists.
150 	 */
151 	cb.cb_guid = pool_guid;
152 	if (zpool_iter(zhdl, find_pool, &cb) != 1)
153 		return (NULL);
154 
155 	zhp = cb.cb_zhp;
156 	config = zpool_get_config(zhp, NULL);
157 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
158 	    &nvroot) != 0) {
159 		zpool_close(zhp);
160 		return (NULL);
161 	}
162 
163 	if (vdev_guid != 0) {
164 		if ((*vdevp = find_vdev(zhdl, nvroot, NULL,
165 		    vdev_guid)) == NULL) {
166 			zpool_close(zhp);
167 			return (NULL);
168 		}
169 	}
170 
171 	return (zhp);
172 }
173 
174 static int
175 search_pool(zpool_handle_t *zhp, void *data)
176 {
177 	find_cbdata_t *cbp = data;
178 	nvlist_t *config;
179 	nvlist_t *nvroot;
180 
181 	config = zpool_get_config(zhp, NULL);
182 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
183 	    &nvroot) != 0) {
184 		zpool_close(zhp);
185 		return (0);
186 	}
187 
188 	if ((cbp->cb_vdev = find_vdev(zpool_get_handle(zhp), nvroot,
189 	    cbp->cb_fru, 0)) != NULL) {
190 		cbp->cb_zhp = zhp;
191 		return (1);
192 	}
193 
194 	zpool_close(zhp);
195 	return (0);
196 }
197 
198 /*
199  * Given a FRU FMRI, find the matching pool and vdev.
200  */
201 static zpool_handle_t *
202 find_by_fru(libzfs_handle_t *zhdl, const char *fru, nvlist_t **vdevp)
203 {
204 	find_cbdata_t cb;
205 
206 	cb.cb_fru = fru;
207 	cb.cb_zhp = NULL;
208 	if (zpool_iter(zhdl, search_pool, &cb) != 1)
209 		return (NULL);
210 
211 	*vdevp = cb.cb_vdev;
212 	return (cb.cb_zhp);
213 }
214 
215 /*
216  * Given a vdev, attempt to replace it with every known spare until one
217  * succeeds.
218  */
219 static void
220 replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
221 {
222 	nvlist_t *config, *nvroot, *replacement;
223 	nvlist_t **spares;
224 	uint_t s, nspares;
225 	char *dev_name;
226 
227 	config = zpool_get_config(zhp, NULL);
228 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
229 	    &nvroot) != 0)
230 		return;
231 
232 	/*
233 	 * Find out if there are any hot spares available in the pool.
234 	 */
235 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
236 	    &spares, &nspares) != 0)
237 		return;
238 
239 	replacement = fmd_nvl_alloc(hdl, FMD_SLEEP);
240 
241 	(void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE,
242 	    VDEV_TYPE_ROOT);
243 
244 	dev_name = zpool_vdev_name(NULL, zhp, vdev, B_FALSE);
245 
246 	/*
247 	 * Try to replace each spare, ending when we successfully
248 	 * replace it.
249 	 */
250 	for (s = 0; s < nspares; s++) {
251 		char *spare_name;
252 
253 		if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH,
254 		    &spare_name) != 0)
255 			continue;
256 
257 		(void) nvlist_add_nvlist_array(replacement,
258 		    ZPOOL_CONFIG_CHILDREN, &spares[s], 1);
259 
260 		if (zpool_vdev_attach(zhp, dev_name, spare_name,
261 		    replacement, B_TRUE) == 0)
262 			break;
263 	}
264 
265 	free(dev_name);
266 	nvlist_free(replacement);
267 }
268 
269 /*
270  * Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and
271  * ASRU is now usable.  ZFS has found the device to be present and
272  * functioning.
273  */
274 /*ARGSUSED*/
275 void
276 zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl)
277 {
278 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
279 	zfs_retire_repaired_t *zrp;
280 	uint64_t pool_guid, vdev_guid;
281 	nvlist_t *asru;
282 
283 	if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
284 	    &pool_guid) != 0 || nvlist_lookup_uint64(nvl,
285 	    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
286 		return;
287 
288 	/*
289 	 * Before checking the state of the ASRU, go through and see if we've
290 	 * already made an attempt to repair this ASRU.  This list is cleared
291 	 * whenever we receive any kind of list event, and is designed to
292 	 * prevent us from generating a feedback loop when we attempt repairs
293 	 * against a faulted pool.  The problem is that checking the unusable
294 	 * state of the ASRU can involve opening the pool, which can post
295 	 * statechange events but otherwise leave the pool in the faulted
296 	 * state.  This list allows us to detect when a statechange event is
297 	 * due to our own request.
298 	 */
299 	for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) {
300 		if (zrp->zrr_pool == pool_guid &&
301 		    zrp->zrr_vdev == vdev_guid)
302 			return;
303 	}
304 
305 	asru = fmd_nvl_alloc(hdl, FMD_SLEEP);
306 
307 	(void) nvlist_add_uint8(asru, FM_VERSION, ZFS_SCHEME_VERSION0);
308 	(void) nvlist_add_string(asru, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
309 	(void) nvlist_add_uint64(asru, FM_FMRI_ZFS_POOL, pool_guid);
310 	(void) nvlist_add_uint64(asru, FM_FMRI_ZFS_VDEV, vdev_guid);
311 
312 	/*
313 	 * We explicitly check for the unusable state here to make sure we
314 	 * aren't responding to a transient state change.  As part of opening a
315 	 * vdev, it's possible to see the 'statechange' event, only to be
316 	 * followed by a vdev failure later.  If we don't check the current
317 	 * state of the vdev (or pool) before marking it repaired, then we risk
318 	 * generating spurious repair events followed immediately by the same
319 	 * diagnosis.
320 	 *
321 	 * This assumes that the ZFS scheme code associated unusable (i.e.
322 	 * isolated) with its own definition of faulty state.  In the case of a
323 	 * DEGRADED leaf vdev (due to checksum errors), this is not the case.
324 	 * This works, however, because the transient state change is not
325 	 * posted in this case.  This could be made more explicit by not
326 	 * relying on the scheme's unusable callback and instead directly
327 	 * checking the vdev state, where we could correctly account for
328 	 * DEGRADED state.
329 	 */
330 	if (!fmd_nvl_fmri_unusable(hdl, asru) && fmd_nvl_fmri_has_fault(hdl,
331 	    asru, FMD_HAS_FAULT_ASRU, NULL)) {
332 		topo_hdl_t *thp;
333 		char *fmri = NULL;
334 		int err;
335 
336 		thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
337 		if (topo_fmri_nvl2str(thp, asru, &fmri, &err) == 0)
338 			(void) fmd_repair_asru(hdl, fmri);
339 		fmd_hdl_topo_rele(hdl, thp);
340 
341 		topo_hdl_strfree(thp, fmri);
342 	}
343 
344 	zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP);
345 	zrp->zrr_next = zdp->zrd_repaired;
346 	zrp->zrr_pool = pool_guid;
347 	zrp->zrr_vdev = vdev_guid;
348 	zdp->zrd_repaired = zrp;
349 }
350 
351 /*ARGSUSED*/
352 static void
353 zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl,
354     const char *class)
355 {
356 	uint64_t pool_guid, vdev_guid;
357 	zpool_handle_t *zhp;
358 	nvlist_t *resource, *fault, *fru;
359 	nvlist_t **faults;
360 	uint_t f, nfaults;
361 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
362 	libzfs_handle_t *zhdl = zdp->zrd_hdl;
363 	boolean_t fault_device, degrade_device;
364 	boolean_t is_repair;
365 	char *scheme, *fmri;
366 	nvlist_t *vdev;
367 	char *uuid;
368 	int repair_done = 0;
369 	boolean_t retire;
370 	boolean_t is_disk;
371 	vdev_aux_t aux;
372 	topo_hdl_t *thp;
373 	int err;
374 
375 	/*
376 	 * If this is a resource notifying us of device removal, then simply
377 	 * check for an available spare and continue.
378 	 */
379 	if (strcmp(class, "resource.fs.zfs.removed") == 0) {
380 		if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
381 		    &pool_guid) != 0 ||
382 		    nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
383 		    &vdev_guid) != 0)
384 			return;
385 
386 		if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
387 		    &vdev)) == NULL)
388 			return;
389 
390 		if (fmd_prop_get_int32(hdl, "spare_on_remove"))
391 			replace_with_spare(hdl, zhp, vdev);
392 		zpool_close(zhp);
393 		return;
394 	}
395 
396 	if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0)
397 		return;
398 
399 	if (strcmp(class, "resource.fs.zfs.statechange") == 0 ||
400 	    strcmp(class,
401 	    "resource.sysevent.EC_zfs.ESC_ZFS_vdev_remove") == 0) {
402 		zfs_vdev_repair(hdl, nvl);
403 		return;
404 	}
405 
406 	zfs_retire_clear_data(hdl, zdp);
407 
408 	if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0)
409 		is_repair = B_TRUE;
410 	else
411 		is_repair = B_FALSE;
412 
413 	/*
414 	 * We subscribe to zfs faults as well as all repair events.
415 	 */
416 	if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST,
417 	    &faults, &nfaults) != 0)
418 		return;
419 
420 	for (f = 0; f < nfaults; f++) {
421 		fault = faults[f];
422 
423 		fault_device = B_FALSE;
424 		degrade_device = B_FALSE;
425 		is_disk = B_FALSE;
426 
427 		if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE,
428 		    &retire) == 0 && retire == 0)
429 			continue;
430 
431 		/*
432 		 * While we subscribe to fault.fs.zfs.*, we only take action
433 		 * for faults targeting a specific vdev (open failure or SERD
434 		 * failure).  We also subscribe to fault.io.* events, so that
435 		 * faulty disks will be faulted in the ZFS configuration.
436 		 */
437 		if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) {
438 			fault_device = B_TRUE;
439 		} else if (fmd_nvl_class_match(hdl, fault,
440 		    "fault.fs.zfs.vdev.checksum")) {
441 			degrade_device = B_TRUE;
442 		} else if (fmd_nvl_class_match(hdl, fault,
443 		    "fault.fs.zfs.device")) {
444 			fault_device = B_FALSE;
445 		} else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) {
446 			is_disk = B_TRUE;
447 			fault_device = B_TRUE;
448 		} else {
449 			continue;
450 		}
451 
452 		if (is_disk) {
453 			/*
454 			 * This is a disk fault.  Lookup the FRU, convert it to
455 			 * an FMRI string, and attempt to find a matching vdev.
456 			 */
457 			if (nvlist_lookup_nvlist(fault, FM_FAULT_FRU,
458 			    &fru) != 0 ||
459 			    nvlist_lookup_string(fru, FM_FMRI_SCHEME,
460 			    &scheme) != 0)
461 				continue;
462 
463 			if (strcmp(scheme, FM_FMRI_SCHEME_HC) != 0)
464 				continue;
465 
466 			thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
467 			if (topo_fmri_nvl2str(thp, fru, &fmri, &err) != 0) {
468 				fmd_hdl_topo_rele(hdl, thp);
469 				continue;
470 			}
471 
472 			zhp = find_by_fru(zhdl, fmri, &vdev);
473 			topo_hdl_strfree(thp, fmri);
474 			fmd_hdl_topo_rele(hdl, thp);
475 
476 			if (zhp == NULL)
477 				continue;
478 
479 			(void) nvlist_lookup_uint64(vdev,
480 			    ZPOOL_CONFIG_GUID, &vdev_guid);
481 			aux = VDEV_AUX_EXTERNAL;
482 		} else {
483 			/*
484 			 * This is a ZFS fault.  Lookup the resource, and
485 			 * attempt to find the matching vdev.
486 			 */
487 			if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE,
488 			    &resource) != 0 ||
489 			    nvlist_lookup_string(resource, FM_FMRI_SCHEME,
490 			    &scheme) != 0)
491 				continue;
492 
493 			if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0)
494 				continue;
495 
496 			if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL,
497 			    &pool_guid) != 0)
498 				continue;
499 
500 			if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV,
501 			    &vdev_guid) != 0) {
502 				if (is_repair)
503 					vdev_guid = 0;
504 				else
505 					continue;
506 			}
507 
508 			if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
509 			    &vdev)) == NULL)
510 				continue;
511 
512 			aux = VDEV_AUX_ERR_EXCEEDED;
513 		}
514 
515 		if (vdev_guid == 0) {
516 			/*
517 			 * For pool-level repair events, clear the entire pool.
518 			 */
519 			(void) zpool_clear(zhp, NULL, NULL);
520 			zpool_close(zhp);
521 			continue;
522 		}
523 
524 		/*
525 		 * If this is a repair event, then mark the vdev as repaired and
526 		 * continue.
527 		 */
528 		if (is_repair) {
529 			repair_done = 1;
530 			(void) zpool_vdev_clear(zhp, vdev_guid);
531 			zpool_close(zhp);
532 			continue;
533 		}
534 
535 		/*
536 		 * Actively fault the device if needed.
537 		 */
538 		if (fault_device)
539 			(void) zpool_vdev_fault(zhp, vdev_guid, aux);
540 		if (degrade_device)
541 			(void) zpool_vdev_degrade(zhp, vdev_guid, aux);
542 
543 		/*
544 		 * Attempt to substitute a hot spare.
545 		 */
546 		replace_with_spare(hdl, zhp, vdev);
547 		zpool_close(zhp);
548 	}
549 
550 	if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done &&
551 	    nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0)
552 		fmd_case_uuresolved(hdl, uuid);
553 }
554 
555 static const fmd_hdl_ops_t fmd_ops = {
556 	zfs_retire_recv,	/* fmdo_recv */
557 	NULL,			/* fmdo_timeout */
558 	NULL,			/* fmdo_close */
559 	NULL,			/* fmdo_stats */
560 	NULL,			/* fmdo_gc */
561 };
562 
563 static const fmd_prop_t fmd_props[] = {
564 	{ "spare_on_remove", FMD_TYPE_BOOL, "true" },
565 	{ NULL, 0, NULL }
566 };
567 
568 static const fmd_hdl_info_t fmd_info = {
569 	"ZFS Retire Agent", "1.0", &fmd_ops, fmd_props
570 };
571 
572 void
573 _fmd_init(fmd_hdl_t *hdl)
574 {
575 	zfs_retire_data_t *zdp;
576 	libzfs_handle_t *zhdl;
577 
578 	if ((zhdl = libzfs_init()) == NULL)
579 		return;
580 
581 	if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
582 		libzfs_fini(zhdl);
583 		return;
584 	}
585 
586 	zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP);
587 	zdp->zrd_hdl = zhdl;
588 
589 	fmd_hdl_setspecific(hdl, zdp);
590 }
591 
592 void
593 _fmd_fini(fmd_hdl_t *hdl)
594 {
595 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
596 
597 	if (zdp != NULL) {
598 		zfs_retire_clear_data(hdl, zdp);
599 		libzfs_fini(zdp->zrd_hdl);
600 		fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t));
601 	}
602 }
603