xref: /illumos-gate/usr/src/cmd/fm/modules/common/zfs-retire/zfs_retire.c (revision 1a2d662a91cee3bf82f41cd47c7ae6f3825d9db2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright 2019 Joyent, Inc.
26  * Copyright 2024 OmniOS Community Edition (OmniOSce) Association.
27  */
28 
29 /*
30  * The ZFS retire agent is responsible for managing hot spares across all pools.
31  * When we see a device fault or a device removal, we try to open the associated
32  * pool and look for any hot spares.  We iterate over any available hot spares
33  * and attempt a 'zpool replace' for each one.
34  *
35  * For vdevs diagnosed as faulty, the agent is also responsible for proactively
36  * marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors).
37  */
38 
39 #include <fm/fmd_api.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/fm/protocol.h>
42 #include <sys/fm/fs/zfs.h>
43 #include <libzfs.h>
44 #include <fm/libtopo.h>
45 #include <string.h>
46 
47 typedef struct zfs_retire_repaired {
48 	struct zfs_retire_repaired	*zrr_next;
49 	uint64_t			zrr_pool;
50 	uint64_t			zrr_vdev;
51 } zfs_retire_repaired_t;
52 
53 typedef struct zfs_retire_data {
54 	libzfs_handle_t			*zrd_hdl;
55 	zfs_retire_repaired_t		*zrd_repaired;
56 } zfs_retire_data_t;
57 
58 static void
59 zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp)
60 {
61 	zfs_retire_repaired_t *zrp;
62 
63 	while ((zrp = zdp->zrd_repaired) != NULL) {
64 		zdp->zrd_repaired = zrp->zrr_next;
65 		fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t));
66 	}
67 }
68 
69 /*
70  * Find a pool with a matching GUID.
71  */
72 typedef struct find_cbdata {
73 	uint64_t	cb_guid;
74 	const char	*cb_fru;
75 	zpool_handle_t	*cb_zhp;
76 	nvlist_t	*cb_vdev;
77 } find_cbdata_t;
78 
79 static int
80 find_pool(zpool_handle_t *zhp, void *data)
81 {
82 	find_cbdata_t *cbp = data;
83 
84 	if (cbp->cb_guid ==
85 	    zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) {
86 		cbp->cb_zhp = zhp;
87 		return (1);
88 	}
89 
90 	zpool_close(zhp);
91 	return (0);
92 }
93 
94 /*
95  * Find a vdev within a tree with a matching GUID.
96  */
97 static nvlist_t *
98 find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, const char *search_fru,
99     uint64_t search_guid)
100 {
101 	uint64_t guid;
102 	nvlist_t **child;
103 	uint_t c, children;
104 	nvlist_t *ret;
105 	char *fru;
106 
107 	if (search_fru != NULL) {
108 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &fru) == 0 &&
109 		    libzfs_fru_compare(zhdl, fru, search_fru))
110 			return (nv);
111 	} else {
112 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 &&
113 		    guid == search_guid)
114 			return (nv);
115 	}
116 
117 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
118 	    &child, &children) != 0)
119 		return (NULL);
120 
121 	for (c = 0; c < children; c++) {
122 		if ((ret = find_vdev(zhdl, child[c], search_fru,
123 		    search_guid)) != NULL)
124 			return (ret);
125 	}
126 
127 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
128 	    &child, &children) == 0) {
129 		for (c = 0; c < children; c++) {
130 			if ((ret = find_vdev(zhdl, child[c], search_fru,
131 			    search_guid)) != NULL)
132 				return (ret);
133 		}
134 	}
135 
136 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
137 	    &child, &children) == 0) {
138 		for (c = 0; c < children; c++) {
139 			if ((ret = find_vdev(zhdl, child[c], search_fru,
140 			    search_guid)) != NULL)
141 				return (ret);
142 		}
143 	}
144 
145 	return (NULL);
146 }
147 
148 /*
149  * Given a (pool, vdev) GUID pair, find the matching pool and vdev.
150  */
151 static zpool_handle_t *
152 find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid,
153     nvlist_t **vdevp)
154 {
155 	find_cbdata_t cb;
156 	zpool_handle_t *zhp;
157 	nvlist_t *config, *nvroot;
158 
159 	/*
160 	 * Find the corresponding pool and make sure the vdev still exists.
161 	 */
162 	cb.cb_guid = pool_guid;
163 	if (zpool_iter(zhdl, find_pool, &cb) != 1)
164 		return (NULL);
165 
166 	zhp = cb.cb_zhp;
167 	config = zpool_get_config(zhp, NULL);
168 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
169 	    &nvroot) != 0) {
170 		zpool_close(zhp);
171 		return (NULL);
172 	}
173 
174 	if (vdev_guid != 0) {
175 		if ((*vdevp = find_vdev(zhdl, nvroot, NULL,
176 		    vdev_guid)) == NULL) {
177 			zpool_close(zhp);
178 			return (NULL);
179 		}
180 	}
181 
182 	return (zhp);
183 }
184 
185 static int
186 search_pool(zpool_handle_t *zhp, void *data)
187 {
188 	find_cbdata_t *cbp = data;
189 	nvlist_t *config;
190 	nvlist_t *nvroot;
191 
192 	config = zpool_get_config(zhp, NULL);
193 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
194 	    &nvroot) != 0) {
195 		zpool_close(zhp);
196 		return (0);
197 	}
198 
199 	if ((cbp->cb_vdev = find_vdev(zpool_get_handle(zhp), nvroot,
200 	    cbp->cb_fru, 0)) != NULL) {
201 		cbp->cb_zhp = zhp;
202 		return (1);
203 	}
204 
205 	zpool_close(zhp);
206 	return (0);
207 }
208 
209 /*
210  * Given a FRU FMRI, find the matching pool and vdev.
211  */
212 static zpool_handle_t *
213 find_by_fru(libzfs_handle_t *zhdl, const char *fru, nvlist_t **vdevp)
214 {
215 	find_cbdata_t cb;
216 
217 	cb.cb_fru = fru;
218 	cb.cb_zhp = NULL;
219 	if (zpool_iter(zhdl, search_pool, &cb) != 1)
220 		return (NULL);
221 
222 	*vdevp = cb.cb_vdev;
223 	return (cb.cb_zhp);
224 }
225 
226 /*
227  * Callback for sorting spares by increasing size.
228  */
229 static int
230 sort_spares_by_size(const void *ap, const void *bp)
231 {
232 	nvlist_t *a = *(nvlist_t **)ap;
233 	nvlist_t *b = *(nvlist_t **)bp;
234 	vdev_stat_t *vsa, *vsb;
235 	vdev_stat_t v0 = { 0 };
236 	uint_t c;
237 
238 	if (nvlist_lookup_uint64_array(a, ZPOOL_CONFIG_VDEV_STATS,
239 	    (uint64_t **)&vsa, &c) != 0) {
240 		vsa = &v0;
241 	}
242 
243 	if (nvlist_lookup_uint64_array(b, ZPOOL_CONFIG_VDEV_STATS,
244 	    (uint64_t **)&vsb, &c) != 0) {
245 		vsb = &v0;
246 	}
247 
248 	if (vsa->vs_rsize > vsb->vs_rsize)
249 		return (1);
250 	if (vsa->vs_rsize < vsb->vs_rsize)
251 		return (-1);
252 	return (0);
253 }
254 
255 /*
256  * Given a vdev, attempt to replace it with every known spare until one
257  * succeeds. The spares are first sorted by increasing size so that the
258  * smallest possible replacement is used.
259  */
260 static void
261 replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
262 {
263 	nvlist_t *config, *nvroot, *replacement;
264 	nvlist_t **spares, **sorted_spares;
265 	uint_t s, nspares;
266 	char *dev_name;
267 	zprop_source_t source;
268 	int ashift;
269 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
270 	libzfs_handle_t *zhdl = zdp->zrd_hdl;
271 
272 	config = zpool_get_config(zhp, NULL);
273 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
274 	    &nvroot) != 0) {
275 		return;
276 	}
277 
278 	/*
279 	 * Find out if there are any hot spares available in the pool.
280 	 */
281 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
282 	    &spares, &nspares) != 0) {
283 		return;
284 	}
285 
286 	/*
287 	 * look up "ashift" pool property, we may need it for the replacement
288 	 */
289 	ashift = zpool_get_prop_int(zhp, ZPOOL_PROP_ASHIFT, &source);
290 
291 	replacement = fmd_nvl_alloc(hdl, FMD_SLEEP);
292 
293 	(void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE,
294 	    VDEV_TYPE_ROOT);
295 
296 	dev_name = zpool_vdev_name(zhdl, zhp, vdev, B_FALSE);
297 
298 	/*
299 	 * Try to replace each spare, starting with the smallest and ending
300 	 * when we successfully replace it.
301 	 */
302 	sorted_spares = fmd_hdl_alloc(hdl, nspares * sizeof (nvlist_t *),
303 	    FMD_SLEEP);
304 	for (s = 0; s < nspares; s++)
305 		sorted_spares[s] = spares[s];
306 	qsort((void *)sorted_spares, nspares, sizeof (nvlist_t *),
307 	    sort_spares_by_size);
308 
309 	for (s = 0; s < nspares; s++) {
310 		nvlist_t *spare = sorted_spares[s];
311 		char *spare_name;
312 
313 		if (nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH,
314 		    &spare_name) != 0) {
315 			continue;
316 		}
317 
318 		/* if set, add the "ashift" pool property to the spare nvlist */
319 		if (source != ZPROP_SRC_DEFAULT) {
320 			(void) nvlist_add_uint64(spare,
321 			    ZPOOL_CONFIG_ASHIFT, ashift);
322 		}
323 
324 		(void) nvlist_add_nvlist_array(replacement,
325 		    ZPOOL_CONFIG_CHILDREN, &spare, 1);
326 
327 		if (zpool_vdev_attach(zhp, dev_name, spare_name,
328 		    replacement, B_TRUE) == 0) {
329 			break;
330 		}
331 	}
332 
333 	fmd_hdl_free(hdl, sorted_spares, nspares * sizeof (nvlist_t *));
334 	free(dev_name);
335 	nvlist_free(replacement);
336 }
337 
338 /*
339  * Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and
340  * ASRU is now usable.  ZFS has found the device to be present and
341  * functioning.
342  */
343 /*ARGSUSED*/
344 void
345 zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl)
346 {
347 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
348 	zfs_retire_repaired_t *zrp;
349 	uint64_t pool_guid, vdev_guid;
350 	nvlist_t *asru;
351 
352 	if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
353 	    &pool_guid) != 0 || nvlist_lookup_uint64(nvl,
354 	    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
355 		return;
356 
357 	/*
358 	 * Before checking the state of the ASRU, go through and see if we've
359 	 * already made an attempt to repair this ASRU.  This list is cleared
360 	 * whenever we receive any kind of list event, and is designed to
361 	 * prevent us from generating a feedback loop when we attempt repairs
362 	 * against a faulted pool.  The problem is that checking the unusable
363 	 * state of the ASRU can involve opening the pool, which can post
364 	 * statechange events but otherwise leave the pool in the faulted
365 	 * state.  This list allows us to detect when a statechange event is
366 	 * due to our own request.
367 	 */
368 	for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) {
369 		if (zrp->zrr_pool == pool_guid &&
370 		    zrp->zrr_vdev == vdev_guid)
371 			return;
372 	}
373 
374 	asru = fmd_nvl_alloc(hdl, FMD_SLEEP);
375 
376 	(void) nvlist_add_uint8(asru, FM_VERSION, ZFS_SCHEME_VERSION0);
377 	(void) nvlist_add_string(asru, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
378 	(void) nvlist_add_uint64(asru, FM_FMRI_ZFS_POOL, pool_guid);
379 	(void) nvlist_add_uint64(asru, FM_FMRI_ZFS_VDEV, vdev_guid);
380 
381 	/*
382 	 * We explicitly check for the unusable state here to make sure we
383 	 * aren't responding to a transient state change.  As part of opening a
384 	 * vdev, it's possible to see the 'statechange' event, only to be
385 	 * followed by a vdev failure later.  If we don't check the current
386 	 * state of the vdev (or pool) before marking it repaired, then we risk
387 	 * generating spurious repair events followed immediately by the same
388 	 * diagnosis.
389 	 *
390 	 * This assumes that the ZFS scheme code associated unusable (i.e.
391 	 * isolated) with its own definition of faulty state.  In the case of a
392 	 * DEGRADED leaf vdev (due to checksum errors), this is not the case.
393 	 * This works, however, because the transient state change is not
394 	 * posted in this case.  This could be made more explicit by not
395 	 * relying on the scheme's unusable callback and instead directly
396 	 * checking the vdev state, where we could correctly account for
397 	 * DEGRADED state.
398 	 */
399 	if (!fmd_nvl_fmri_unusable(hdl, asru) && fmd_nvl_fmri_has_fault(hdl,
400 	    asru, FMD_HAS_FAULT_ASRU, NULL)) {
401 		topo_hdl_t *thp;
402 		char *fmri = NULL;
403 		int err;
404 
405 		thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
406 		if (topo_fmri_nvl2str(thp, asru, &fmri, &err) == 0)
407 			(void) fmd_repair_asru(hdl, fmri);
408 		fmd_hdl_topo_rele(hdl, thp);
409 
410 		topo_hdl_strfree(thp, fmri);
411 	}
412 	nvlist_free(asru);
413 	zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP);
414 	zrp->zrr_next = zdp->zrd_repaired;
415 	zrp->zrr_pool = pool_guid;
416 	zrp->zrr_vdev = vdev_guid;
417 	zdp->zrd_repaired = zrp;
418 }
419 
420 /*ARGSUSED*/
421 static void
422 zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl,
423     const char *class)
424 {
425 	uint64_t pool_guid, vdev_guid;
426 	zpool_handle_t *zhp;
427 	nvlist_t *resource, *fault, *fru;
428 	nvlist_t **faults;
429 	uint_t f, nfaults;
430 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
431 	libzfs_handle_t *zhdl = zdp->zrd_hdl;
432 	boolean_t fault_device, degrade_device;
433 	boolean_t is_repair;
434 	char *scheme, *fmri;
435 	nvlist_t *vdev;
436 	char *uuid;
437 	int repair_done = 0;
438 	boolean_t retire;
439 	boolean_t is_disk;
440 	vdev_aux_t aux;
441 	topo_hdl_t *thp;
442 	int err;
443 
444 	/*
445 	 * If this is a resource notifying us of device removal, then simply
446 	 * check for an available spare and continue.
447 	 */
448 	if (strcmp(class, "resource.fs.zfs.removed") == 0) {
449 		if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
450 		    &pool_guid) != 0 ||
451 		    nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
452 		    &vdev_guid) != 0)
453 			return;
454 
455 		if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
456 		    &vdev)) == NULL)
457 			return;
458 
459 		if (fmd_prop_get_int32(hdl, "spare_on_remove"))
460 			replace_with_spare(hdl, zhp, vdev);
461 		zpool_close(zhp);
462 		return;
463 	}
464 
465 	if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0)
466 		return;
467 
468 	if (strcmp(class, "resource.fs.zfs.statechange") == 0 ||
469 	    strcmp(class,
470 	    "resource.sysevent.EC_zfs.ESC_ZFS_vdev_remove") == 0) {
471 		zfs_vdev_repair(hdl, nvl);
472 		return;
473 	}
474 
475 	zfs_retire_clear_data(hdl, zdp);
476 
477 	if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0)
478 		is_repair = B_TRUE;
479 	else
480 		is_repair = B_FALSE;
481 
482 	/*
483 	 * We subscribe to zfs faults as well as all repair events.
484 	 */
485 	if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST,
486 	    &faults, &nfaults) != 0)
487 		return;
488 
489 	for (f = 0; f < nfaults; f++) {
490 		fault = faults[f];
491 
492 		fault_device = B_FALSE;
493 		degrade_device = B_FALSE;
494 		is_disk = B_FALSE;
495 
496 		if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE,
497 		    &retire) == 0 && retire == 0)
498 			continue;
499 
500 		if (fmd_nvl_class_match(hdl, fault,
501 		    "fault.io.disk.ssm-wearout") &&
502 		    fmd_prop_get_int32(hdl, "ssm_wearout_skip_retire") ==
503 		    FMD_B_TRUE) {
504 			fmd_hdl_debug(hdl, "zfs-retire: ignoring SSM fault");
505 			continue;
506 		}
507 
508 		/*
509 		 * While we subscribe to fault.fs.zfs.*, we only take action
510 		 * for faults targeting a specific vdev (open failure or SERD
511 		 * failure).  We also subscribe to fault.io.* events, so that
512 		 * faulty disks will be faulted in the ZFS configuration.
513 		 */
514 		if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) {
515 			fault_device = B_TRUE;
516 		} else if (fmd_nvl_class_match(hdl, fault,
517 		    "fault.fs.zfs.vdev.checksum")) {
518 			degrade_device = B_TRUE;
519 		} else if (fmd_nvl_class_match(hdl, fault,
520 		    "fault.fs.zfs.device")) {
521 			fault_device = B_FALSE;
522 		} else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) {
523 			is_disk = B_TRUE;
524 			fault_device = B_TRUE;
525 		} else {
526 			continue;
527 		}
528 
529 		if (is_disk) {
530 			/*
531 			 * This is a disk fault.  Lookup the FRU, convert it to
532 			 * an FMRI string, and attempt to find a matching vdev.
533 			 */
534 			if (nvlist_lookup_nvlist(fault, FM_FAULT_FRU,
535 			    &fru) != 0 ||
536 			    nvlist_lookup_string(fru, FM_FMRI_SCHEME,
537 			    &scheme) != 0)
538 				continue;
539 
540 			if (strcmp(scheme, FM_FMRI_SCHEME_HC) != 0)
541 				continue;
542 
543 			thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
544 			if (topo_fmri_nvl2str(thp, fru, &fmri, &err) != 0) {
545 				fmd_hdl_topo_rele(hdl, thp);
546 				continue;
547 			}
548 
549 			zhp = find_by_fru(zhdl, fmri, &vdev);
550 			topo_hdl_strfree(thp, fmri);
551 			fmd_hdl_topo_rele(hdl, thp);
552 
553 			if (zhp == NULL)
554 				continue;
555 
556 			(void) nvlist_lookup_uint64(vdev,
557 			    ZPOOL_CONFIG_GUID, &vdev_guid);
558 			aux = VDEV_AUX_EXTERNAL;
559 		} else {
560 			/*
561 			 * This is a ZFS fault.  Lookup the resource, and
562 			 * attempt to find the matching vdev.
563 			 */
564 			if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE,
565 			    &resource) != 0 ||
566 			    nvlist_lookup_string(resource, FM_FMRI_SCHEME,
567 			    &scheme) != 0)
568 				continue;
569 
570 			if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0)
571 				continue;
572 
573 			if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL,
574 			    &pool_guid) != 0)
575 				continue;
576 
577 			if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV,
578 			    &vdev_guid) != 0) {
579 				if (is_repair)
580 					vdev_guid = 0;
581 				else
582 					continue;
583 			}
584 
585 			if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
586 			    &vdev)) == NULL)
587 				continue;
588 
589 			aux = VDEV_AUX_ERR_EXCEEDED;
590 		}
591 
592 		if (vdev_guid == 0) {
593 			/*
594 			 * For pool-level repair events, clear the entire pool.
595 			 */
596 			(void) zpool_clear(zhp, NULL, NULL);
597 			zpool_close(zhp);
598 			continue;
599 		}
600 
601 		/*
602 		 * If this is a repair event, then mark the vdev as repaired and
603 		 * continue.
604 		 */
605 		if (is_repair) {
606 			repair_done = 1;
607 			(void) zpool_vdev_clear(zhp, vdev_guid);
608 			zpool_close(zhp);
609 			continue;
610 		}
611 
612 		/*
613 		 * Actively fault the device if needed.
614 		 */
615 		if (fault_device)
616 			(void) zpool_vdev_fault(zhp, vdev_guid, aux);
617 		if (degrade_device)
618 			(void) zpool_vdev_degrade(zhp, vdev_guid, aux);
619 
620 		/*
621 		 * Attempt to substitute a hot spare.
622 		 */
623 		replace_with_spare(hdl, zhp, vdev);
624 		zpool_close(zhp);
625 	}
626 
627 	if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done &&
628 	    nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0)
629 		fmd_case_uuresolved(hdl, uuid);
630 }
631 
632 static const fmd_hdl_ops_t fmd_ops = {
633 	zfs_retire_recv,	/* fmdo_recv */
634 	NULL,			/* fmdo_timeout */
635 	NULL,			/* fmdo_close */
636 	NULL,			/* fmdo_stats */
637 	NULL,			/* fmdo_gc */
638 };
639 
640 static const fmd_prop_t fmd_props[] = {
641 	{ "spare_on_remove", FMD_TYPE_BOOL, "true" },
642 	{ "ssm_wearout_skip_retire", FMD_TYPE_BOOL, "true"},
643 	{ NULL, 0, NULL }
644 };
645 
646 static const fmd_hdl_info_t fmd_info = {
647 	"ZFS Retire Agent", "1.0", &fmd_ops, fmd_props
648 };
649 
650 void
651 _fmd_init(fmd_hdl_t *hdl)
652 {
653 	zfs_retire_data_t *zdp;
654 	libzfs_handle_t *zhdl;
655 
656 	if ((zhdl = libzfs_init()) == NULL)
657 		return;
658 
659 	if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
660 		libzfs_fini(zhdl);
661 		return;
662 	}
663 
664 	zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP);
665 	zdp->zrd_hdl = zhdl;
666 
667 	fmd_hdl_setspecific(hdl, zdp);
668 }
669 
670 void
671 _fmd_fini(fmd_hdl_t *hdl)
672 {
673 	zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
674 
675 	if (zdp != NULL) {
676 		zfs_retire_clear_data(hdl, zdp);
677 		libzfs_fini(zdp->zrd_hdl);
678 		fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t));
679 	}
680 }
681