1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <assert.h> 29 #include <stddef.h> 30 #include <strings.h> 31 #include <libuutil.h> 32 #include <libzfs.h> 33 #include <fm/fmd_api.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/fm/protocol.h> 36 #include <sys/fm/fs/zfs.h> 37 38 /* 39 * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'. This 40 * #define reserves enough space for two 64-bit hex values plus the length of 41 * the longest string. 42 */ 43 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum")) 44 45 typedef struct zfs_case_data { 46 uint64_t zc_version; 47 uint64_t zc_ena; 48 uint64_t zc_pool_guid; 49 uint64_t zc_vdev_guid; 50 int zc_has_timer; 51 int zc_pool_state; 52 char zc_serd_checksum[MAX_SERDLEN]; 53 char zc_serd_io[MAX_SERDLEN]; 54 int zc_has_serd_timer; 55 } zfs_case_data_t; 56 57 typedef struct zfs_case { 58 boolean_t zc_present; 59 uint32_t zc_version; 60 zfs_case_data_t zc_data; 61 fmd_case_t *zc_case; 62 uu_list_node_t zc_node; 63 id_t zc_timer; 64 id_t zc_serd_timer; 65 } zfs_case_t; 66 67 #define CASE_DATA "data" 68 #define CASE_DATA_VERSION_INITIAL 1 69 #define CASE_DATA_VERSION_SERD 2 70 71 static hrtime_t zfs_case_timeout; 72 static hrtime_t zfs_serd_timeout; 73 74 uu_list_pool_t *zfs_case_pool; 75 uu_list_t *zfs_cases; 76 77 /* 78 * Write out the persistent representation of an active case. 79 */ 80 static void 81 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp) 82 { 83 /* 84 * Always update cases to the latest version, even if they were the 85 * previous version when unserialized. 86 */ 87 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD; 88 fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data, 89 sizeof (zcp->zc_data)); 90 } 91 92 /* 93 * Read back the persistent representation of an active case. 94 */ 95 static zfs_case_t * 96 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp) 97 { 98 zfs_case_t *zcp; 99 100 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP); 101 zcp->zc_case = cp; 102 103 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data, 104 sizeof (zcp->zc_data)); 105 106 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) { 107 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 108 return (NULL); 109 } 110 111 /* 112 * fmd_buf_read() will have already zeroed out the remainder of the 113 * buffer, so we don't have to do anything special if the version 114 * doesn't include the SERD engine name. 115 */ 116 117 if (zcp->zc_data.zc_has_timer) 118 zcp->zc_timer = fmd_timer_install(hdl, zcp, 119 NULL, zfs_case_timeout); 120 if (zcp->zc_data.zc_has_serd_timer) 121 zcp->zc_serd_timer = fmd_timer_install(hdl, zcp, 122 NULL, zfs_serd_timeout); 123 124 (void) uu_list_insert_before(zfs_cases, NULL, zcp); 125 126 fmd_case_setspecific(hdl, cp, zcp); 127 128 return (zcp); 129 } 130 131 /* 132 * Iterate over any active cases. If any cases are associated with a pool or 133 * vdev which is no longer present on the system, close the associated case. 134 */ 135 static void 136 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd) 137 { 138 uint64_t vdev_guid; 139 uint_t c, children; 140 nvlist_t **child; 141 zfs_case_t *zcp; 142 int ret; 143 144 ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid); 145 assert(ret == 0); 146 147 /* 148 * Mark any cases associated with this (pool, vdev) pair. 149 */ 150 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 151 zcp = uu_list_next(zfs_cases, zcp)) { 152 if (zcp->zc_data.zc_pool_guid == pool_guid && 153 zcp->zc_data.zc_vdev_guid == vdev_guid) 154 zcp->zc_present = B_TRUE; 155 } 156 157 /* 158 * Iterate over all children. 159 */ 160 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child, 161 &children) != 0) { 162 for (c = 0; c < children; c++) 163 zfs_mark_vdev(pool_guid, child[c]); 164 } 165 } 166 167 /*ARGSUSED*/ 168 static int 169 zfs_mark_pool(zpool_handle_t *zhp, void *unused) 170 { 171 zfs_case_t *zcp; 172 uint64_t pool_guid; 173 nvlist_t *config, *vd; 174 int ret; 175 176 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 177 /* 178 * Mark any cases associated with just this pool. 179 */ 180 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 181 zcp = uu_list_next(zfs_cases, zcp)) { 182 if (zcp->zc_data.zc_pool_guid == pool_guid && 183 zcp->zc_data.zc_vdev_guid == 0) 184 zcp->zc_present = B_TRUE; 185 } 186 187 if ((config = zpool_get_config(zhp, NULL)) == NULL) 188 return (-1); 189 190 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd); 191 assert(ret == 0); 192 193 zfs_mark_vdev(pool_guid, vd); 194 195 return (0); 196 } 197 198 static void 199 zfs_purge_cases(fmd_hdl_t *hdl) 200 { 201 zfs_case_t *zcp; 202 uu_list_walk_t *walk; 203 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 204 205 /* 206 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No 207 * matter what we do, we're going to have to stomach a O(vdevs * cases) 208 * algorithm. In reality, both quantities are likely so small that 209 * neither will matter. Given that iterating over pools is more 210 * expensive than iterating over the in-memory case list, we opt for a 211 * 'present' flag in each case that starts off cleared. We then iterate 212 * over all pools, marking those that are still present, and removing 213 * those that aren't found. 214 * 215 * Note that we could also construct an FMRI and rely on 216 * fmd_nvl_fmri_present(), but this would end up doing the same search. 217 */ 218 219 /* 220 * Mark the cases an not present. 221 */ 222 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 223 zcp = uu_list_next(zfs_cases, zcp)) 224 zcp->zc_present = B_FALSE; 225 226 /* 227 * Iterate over all pools and mark the pools and vdevs found. If this 228 * fails (most probably because we're out of memory), then don't close 229 * any of the cases and we cannot be sure they are accurate. 230 */ 231 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) 232 return; 233 234 /* 235 * Remove those cases which were not found. 236 */ 237 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 238 while ((zcp = uu_list_walk_next(walk)) != NULL) { 239 if (!zcp->zc_present) 240 fmd_case_close(hdl, zcp->zc_case); 241 } 242 uu_list_walk_end(walk); 243 } 244 245 /* 246 * Construct the name of a serd engine given the pool/vdev GUID and type (io or 247 * checksum). 248 */ 249 static void 250 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid, 251 const char *type) 252 { 253 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid, 254 vdev_guid, type); 255 } 256 257 /* 258 * Solve a given ZFS case. This first checks to make sure the diagnosis is 259 * still valid, as well as cleaning up any pending timer associated with the 260 * case. 261 */ 262 static void 263 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname, 264 boolean_t checkunusable) 265 { 266 nvlist_t *detector, *fault; 267 boolean_t serialize; 268 269 /* 270 * Construct the detector from the case data. The detector is in the 271 * ZFS scheme, and is either the pool or the vdev, depending on whether 272 * this is a vdev or pool fault. 273 */ 274 if (nvlist_alloc(&detector, NV_UNIQUE_NAME, 0) != 0) 275 return; 276 277 if (nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0) != 0 || 278 nvlist_add_string(detector, FM_FMRI_SCHEME, 279 FM_FMRI_SCHEME_ZFS) != 0 || 280 nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL, 281 zcp->zc_data.zc_pool_guid) != 0 || 282 (zcp->zc_data.zc_vdev_guid != 0 && 283 nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV, 284 zcp->zc_data.zc_vdev_guid) != 0)) { 285 nvlist_free(detector); 286 return; 287 } 288 289 /* 290 * We also want to make sure that the detector (pool or vdev) properly 291 * reflects the diagnosed state, when the fault corresponds to internal 292 * ZFS state (i.e. not checksum or I/O error-induced). Otherwise, a 293 * device which was unavailable early in boot (because the driver/file 294 * wasn't available) and is now healthy will be mis-diagnosed. 295 */ 296 if (!fmd_nvl_fmri_present(hdl, detector) || 297 (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) { 298 fmd_case_close(hdl, zcp->zc_case); 299 nvlist_free(detector); 300 return; 301 } 302 303 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector, NULL, 304 detector); 305 fmd_case_add_suspect(hdl, zcp->zc_case, fault); 306 fmd_case_solve(hdl, zcp->zc_case); 307 308 serialize = B_FALSE; 309 if (zcp->zc_data.zc_has_timer) { 310 fmd_timer_remove(hdl, zcp->zc_timer); 311 zcp->zc_data.zc_has_timer = 0; 312 serialize = B_TRUE; 313 } 314 if (zcp->zc_data.zc_has_serd_timer) { 315 fmd_timer_remove(hdl, zcp->zc_serd_timer); 316 zcp->zc_data.zc_has_serd_timer = 0; 317 serialize = B_TRUE; 318 } 319 if (serialize) 320 zfs_case_serialize(hdl, zcp); 321 322 nvlist_free(detector); 323 } 324 325 /* 326 * Main fmd entry point. 327 */ 328 /*ARGSUSED*/ 329 static void 330 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) 331 { 332 zfs_case_t *zcp; 333 int32_t pool_state; 334 uint64_t ena, pool_guid, vdev_guid; 335 nvlist_t *detector; 336 boolean_t isresource; 337 const char *serd; 338 339 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*"); 340 341 if (isresource) { 342 /* 343 * For resources, we don't have a normal payload. 344 */ 345 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 346 &vdev_guid) != 0) 347 pool_state = SPA_LOAD_OPEN; 348 else 349 pool_state = SPA_LOAD_NONE; 350 detector = NULL; 351 } else { 352 (void) nvlist_lookup_nvlist(nvl, 353 FM_EREPORT_DETECTOR, &detector); 354 (void) nvlist_lookup_int32(nvl, 355 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state); 356 } 357 358 /* 359 * We also ignore all ereports generated during an import of a pool, 360 * since the only possible fault (.pool) would result in import failure, 361 * and hence no persistent fault. Some day we may want to do something 362 * with these ereports, so we continue generating them internally. 363 */ 364 if (pool_state == SPA_LOAD_IMPORT) 365 return; 366 367 /* 368 * Determine if this ereport corresponds to an open case. Cases are 369 * indexed by ENA, since ZFS does all the work of chaining together 370 * related ereports. 371 * 372 * We also detect if an ereport corresponds to an open case by context, 373 * such as: 374 * 375 * - An error occurred during an open of a pool with an existing 376 * case. 377 * 378 * - An error occurred for a device which already has an open 379 * case. 380 */ 381 (void) nvlist_lookup_uint64(nvl, 382 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid); 383 if (nvlist_lookup_uint64(nvl, 384 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 385 vdev_guid = 0; 386 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0) 387 ena = 0; 388 389 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 390 zcp = uu_list_next(zfs_cases, zcp)) { 391 /* 392 * Matches a known ENA. 393 */ 394 if (zcp->zc_data.zc_ena == ena) 395 break; 396 397 /* 398 * Matches a case involving load errors for this same pool. 399 */ 400 if (zcp->zc_data.zc_pool_guid == pool_guid && 401 zcp->zc_data.zc_pool_state == SPA_LOAD_OPEN && 402 pool_state == SPA_LOAD_OPEN) 403 break; 404 405 /* 406 * Device errors for the same device. 407 */ 408 if (vdev_guid != 0 && zcp->zc_data.zc_vdev_guid == vdev_guid) 409 break; 410 } 411 412 if (zcp == NULL) { 413 fmd_case_t *cs; 414 zfs_case_data_t data = { 0 }; 415 416 /* 417 * If this is one of our 'fake' resource ereports, and there is 418 * no case open, simply discard it. 419 */ 420 if (isresource) 421 return; 422 423 /* 424 * Open a new case. 425 */ 426 cs = fmd_case_open(hdl, NULL); 427 428 /* 429 * Initialize the case buffer. To commonize code, we actually 430 * create the buffer with existing data, and then call 431 * zfs_case_unserialize() to instantiate the in-core structure. 432 */ 433 fmd_buf_create(hdl, cs, CASE_DATA, 434 sizeof (zfs_case_data_t)); 435 436 data.zc_version = CASE_DATA_VERSION_SERD; 437 data.zc_ena = ena; 438 data.zc_pool_guid = pool_guid; 439 data.zc_vdev_guid = vdev_guid; 440 data.zc_pool_state = (int)pool_state; 441 442 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data)); 443 444 zcp = zfs_case_unserialize(hdl, cs); 445 assert(zcp != NULL); 446 } 447 448 if (isresource) { 449 if (fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.ok")) { 450 /* 451 * The 'resource.fs.zfs.ok' event is a special 452 * internal-only event that signifies that a pool or 453 * device that was previously faulted has now come 454 * online (as detected by ZFS). This allows us to close 455 * the associated case. 456 */ 457 fmd_case_close(hdl, zcp->zc_case); 458 } else if (fmd_nvl_class_match(hdl, nvl, 459 "resource.fs.zfs.autoreplace")) { 460 /* 461 * The 'resource.fs.zfs.autoreplace' event indicates 462 * that the pool was loaded with the 'autoreplace' 463 * property set. In this case, any pending device 464 * failures should be ignored, as the asynchronous 465 * autoreplace handling will take care of them. 466 */ 467 fmd_case_close(hdl, zcp->zc_case); 468 } else { 469 /* 470 * The 'resource.fs.zfs.removed' event indicates that 471 * device removal was detected, and the device was 472 * closed asynchronously. If this is the case, we 473 * assume that any recent I/O errors were due to the 474 * device removal, not any fault of the device itself. 475 * We reset the SERD engine, and cancel any pending 476 * timers. 477 */ 478 if (zcp->zc_data.zc_has_serd_timer) { 479 fmd_timer_remove(hdl, zcp->zc_serd_timer); 480 zcp->zc_data.zc_has_serd_timer = 0; 481 zfs_case_serialize(hdl, zcp); 482 } 483 if (zcp->zc_data.zc_serd_io[0] != '\0') 484 fmd_serd_reset(hdl, 485 zcp->zc_data.zc_serd_io); 486 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 487 fmd_serd_reset(hdl, 488 zcp->zc_data.zc_serd_checksum); 489 } 490 return; 491 } 492 493 /* 494 * Associate the ereport with this case. 495 */ 496 fmd_case_add_ereport(hdl, zcp->zc_case, ep); 497 498 /* 499 * Don't do anything else if this case is already solved. 500 */ 501 if (fmd_case_solved(hdl, zcp->zc_case)) 502 return; 503 504 /* 505 * Determine if we should solve the case and generate a fault. We solve 506 * a case if: 507 * 508 * a. A pool failed to open (ereport.fs.zfs.pool) 509 * b. A device failed to open (ereport.fs.zfs.pool) while a pool 510 * was up and running. 511 * 512 * We may see a series of ereports associated with a pool open, all 513 * chained together by the same ENA. If the pool open succeeds, then 514 * we'll see no further ereports. To detect when a pool open has 515 * succeeded, we associate a timer with the event. When it expires, we 516 * close the case. 517 */ 518 if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.zpool")) { 519 /* 520 * Pool level fault. 521 */ 522 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE); 523 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*") && 524 pool_state == SPA_LOAD_NONE) { 525 /* 526 * Device fault. Before solving the case, determine if the 527 * device failed during open, and the 'autoreplace' property is 528 * set. If this is the case, then we post a sysevent which is 529 * picked up by the syseventd module, and any processing is done 530 * as needed. 531 */ 532 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE); 533 } else { 534 if (pool_state == SPA_LOAD_OPEN) { 535 /* 536 * Error incurred during a pool open. Reset the timer 537 * associated with this case. 538 */ 539 if (zcp->zc_data.zc_has_timer) 540 fmd_timer_remove(hdl, zcp->zc_timer); 541 zcp->zc_timer = fmd_timer_install(hdl, zcp, NULL, 542 zfs_case_timeout); 543 if (!zcp->zc_data.zc_has_timer) { 544 zcp->zc_data.zc_has_timer = 1; 545 zfs_case_serialize(hdl, zcp); 546 } 547 } 548 549 /* 550 * If this is a checksum or I/O error, then toss it into the 551 * appropriate SERD engine and check to see if it has fired. 552 * Ideally, we want to do something more sophisticated, 553 * (persistent errors for a single data block, etc). For now, 554 * a single SERD engine is sufficient. 555 */ 556 serd = NULL; 557 if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io")) { 558 if (zcp->zc_data.zc_serd_io[0] == '\0') { 559 zfs_serd_name(zcp->zc_data.zc_serd_io, 560 pool_guid, vdev_guid, "io"); 561 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io, 562 fmd_prop_get_int32(hdl, "io_N"), 563 fmd_prop_get_int64(hdl, "io_T")); 564 zfs_case_serialize(hdl, zcp); 565 } 566 serd = zcp->zc_data.zc_serd_io; 567 } else if (fmd_nvl_class_match(hdl, nvl, 568 "ereport.fs.zfs.checksum")) { 569 if (zcp->zc_data.zc_serd_checksum[0] == '\0') { 570 zfs_serd_name(zcp->zc_data.zc_serd_checksum, 571 pool_guid, vdev_guid, "checksum"); 572 fmd_serd_create(hdl, 573 zcp->zc_data.zc_serd_checksum, 574 fmd_prop_get_int32(hdl, "checksum_N"), 575 fmd_prop_get_int64(hdl, "checksum_T")); 576 zfs_case_serialize(hdl, zcp); 577 } 578 serd = zcp->zc_data.zc_serd_checksum; 579 } 580 581 /* 582 * Because I/O errors may be due to device removal, we postpone 583 * any diagnosis until we're sure that we aren't about to 584 * receive a 'resource.fs.zfs.removed' event. 585 */ 586 if (serd && fmd_serd_record(hdl, serd, ep)) { 587 if (zcp->zc_data.zc_has_serd_timer) 588 fmd_timer_remove(hdl, zcp->zc_serd_timer); 589 zcp->zc_serd_timer = fmd_timer_install(hdl, zcp, NULL, 590 zfs_serd_timeout); 591 if (!zcp->zc_data.zc_has_serd_timer) { 592 zcp->zc_data.zc_has_serd_timer = 1; 593 zfs_case_serialize(hdl, zcp); 594 } 595 } 596 } 597 } 598 599 /* 600 * Timeout indicates one of two scenarios: 601 * 602 * - The pool had faults but was eventually opened successfully. 603 * 604 * - We diagnosed an I/O error, and it was not due to device removal (which 605 * would cause the timeout to be cancelled). 606 */ 607 /* ARGSUSED */ 608 static void 609 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data) 610 { 611 zfs_case_t *zcp = data; 612 const char *faultname; 613 614 if (id == zcp->zc_timer) { 615 zcp->zc_data.zc_has_timer = 0; 616 fmd_case_close(hdl, zcp->zc_case); 617 } 618 619 if (id == zcp->zc_serd_timer) { 620 if (zcp->zc_data.zc_serd_io[0] != '\0' && 621 fmd_serd_fired(hdl, zcp->zc_data.zc_serd_io)) { 622 faultname = "fault.fs.zfs.vdev.io"; 623 } else { 624 assert(fmd_serd_fired(hdl, 625 zcp->zc_data.zc_serd_checksum)); 626 faultname = "fault.fs.zfs.vdev.checksum"; 627 } 628 zfs_case_solve(hdl, zcp, faultname, B_FALSE); 629 } 630 } 631 632 static void 633 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs) 634 { 635 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs); 636 637 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 638 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum); 639 if (zcp->zc_data.zc_serd_io[0] != '\0') 640 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io); 641 if (zcp->zc_data.zc_has_timer) 642 fmd_timer_remove(hdl, zcp->zc_timer); 643 if (zcp->zc_data.zc_has_serd_timer) 644 fmd_timer_remove(hdl, zcp->zc_serd_timer); 645 uu_list_remove(zfs_cases, zcp); 646 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 647 } 648 649 /* 650 * We use the fmd gc entry point to look for old cases that no longer apply. 651 * This allows us to keep our set of case data small in a long running system. 652 */ 653 static void 654 zfs_fm_gc(fmd_hdl_t *hdl) 655 { 656 zfs_purge_cases(hdl); 657 } 658 659 static const fmd_hdl_ops_t fmd_ops = { 660 zfs_fm_recv, /* fmdo_recv */ 661 zfs_fm_timeout, /* fmdo_timeout */ 662 zfs_fm_close, /* fmdo_close */ 663 NULL, /* fmdo_stats */ 664 zfs_fm_gc, /* fmdo_gc */ 665 }; 666 667 static const fmd_prop_t fmd_props[] = { 668 { "case_timeout", FMD_TYPE_TIME, "5sec" }, 669 { "checksum_N", FMD_TYPE_UINT32, "10" }, 670 { "checksum_T", FMD_TYPE_TIME, "10min" }, 671 { "io_N", FMD_TYPE_UINT32, "10" }, 672 { "io_T", FMD_TYPE_TIME, "10min" }, 673 { "serd_timeout", FMD_TYPE_TIME, "5sec" }, 674 { NULL, 0, NULL } 675 }; 676 677 static const fmd_hdl_info_t fmd_info = { 678 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props 679 }; 680 681 void 682 _fmd_init(fmd_hdl_t *hdl) 683 { 684 fmd_case_t *cp; 685 libzfs_handle_t *zhdl; 686 687 if ((zhdl = libzfs_init()) == NULL) 688 return; 689 690 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool", 691 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node), 692 NULL, 0)) == NULL) { 693 libzfs_fini(zhdl); 694 return; 695 } 696 697 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) { 698 uu_list_pool_destroy(zfs_case_pool); 699 libzfs_fini(zhdl); 700 return; 701 } 702 703 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 704 uu_list_destroy(zfs_cases); 705 uu_list_pool_destroy(zfs_case_pool); 706 libzfs_fini(zhdl); 707 return; 708 } 709 710 fmd_hdl_setspecific(hdl, zhdl); 711 712 /* 713 * Iterate over all active cases and unserialize the associated buffers, 714 * adding them to our list of open cases. 715 */ 716 for (cp = fmd_case_next(hdl, NULL); 717 cp != NULL; cp = fmd_case_next(hdl, cp)) 718 (void) zfs_case_unserialize(hdl, cp); 719 720 /* 721 * Clear out any old cases that are no longer valid. 722 */ 723 zfs_purge_cases(hdl); 724 725 zfs_case_timeout = fmd_prop_get_int64(hdl, "case_timeout"); 726 zfs_serd_timeout = fmd_prop_get_int64(hdl, "serd_timeout"); 727 } 728 729 void 730 _fmd_fini(fmd_hdl_t *hdl) 731 { 732 zfs_case_t *zcp; 733 uu_list_walk_t *walk; 734 libzfs_handle_t *zhdl; 735 736 /* 737 * Remove all active cases. 738 */ 739 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 740 while ((zcp = uu_list_walk_next(walk)) != NULL) { 741 uu_list_remove(zfs_cases, zcp); 742 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 743 } 744 uu_list_walk_end(walk); 745 746 uu_list_destroy(zfs_cases); 747 uu_list_pool_destroy(zfs_case_pool); 748 749 zhdl = fmd_hdl_getspecific(hdl); 750 libzfs_fini(zhdl); 751 } 752