1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <assert.h> 29 #include <stddef.h> 30 #include <strings.h> 31 #include <libuutil.h> 32 #include <libzfs.h> 33 #include <fm/fmd_api.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/fm/protocol.h> 36 #include <sys/fm/fs/zfs.h> 37 38 /* 39 * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'. This 40 * #define reserves enough space for two 64-bit hex values plus the length of 41 * the longest string. 42 */ 43 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum")) 44 45 typedef struct zfs_case_data { 46 uint64_t zc_version; 47 uint64_t zc_ena; 48 uint64_t zc_pool_guid; 49 uint64_t zc_vdev_guid; 50 int zc_has_timer; 51 int zc_pool_state; 52 char zc_serd_checksum[MAX_SERDLEN]; 53 char zc_serd_io[MAX_SERDLEN]; 54 int zc_has_serd_timer; 55 } zfs_case_data_t; 56 57 typedef struct zfs_case { 58 boolean_t zc_present; 59 uint32_t zc_version; 60 zfs_case_data_t zc_data; 61 fmd_case_t *zc_case; 62 uu_list_node_t zc_node; 63 id_t zc_timer; 64 id_t zc_serd_timer; 65 } zfs_case_t; 66 67 #define CASE_DATA "data" 68 #define CASE_DATA_VERSION_INITIAL 1 69 #define CASE_DATA_VERSION_SERD 2 70 71 static hrtime_t zfs_case_timeout; 72 static hrtime_t zfs_serd_timeout; 73 74 uu_list_pool_t *zfs_case_pool; 75 uu_list_t *zfs_cases; 76 77 /* 78 * Write out the persistent representation of an active case. 79 */ 80 static void 81 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp) 82 { 83 /* 84 * Always update cases to the latest version, even if they were the 85 * previous version when unserialized. 86 */ 87 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD; 88 fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data, 89 sizeof (zcp->zc_data)); 90 } 91 92 /* 93 * Read back the persistent representation of an active case. 94 */ 95 static zfs_case_t * 96 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp) 97 { 98 zfs_case_t *zcp; 99 100 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP); 101 zcp->zc_case = cp; 102 103 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data, 104 sizeof (zcp->zc_data)); 105 106 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) { 107 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 108 return (NULL); 109 } 110 111 /* 112 * fmd_buf_read() will have already zeroed out the remainder of the 113 * buffer, so we don't have to do anything special if the version 114 * doesn't include the SERD engine name. 115 */ 116 117 if (zcp->zc_data.zc_has_timer) 118 zcp->zc_timer = fmd_timer_install(hdl, zcp, 119 NULL, zfs_case_timeout); 120 if (zcp->zc_data.zc_has_serd_timer) 121 zcp->zc_serd_timer = fmd_timer_install(hdl, zcp, 122 NULL, zfs_serd_timeout); 123 124 (void) uu_list_insert_before(zfs_cases, NULL, zcp); 125 126 fmd_case_setspecific(hdl, cp, zcp); 127 128 return (zcp); 129 } 130 131 /* 132 * Iterate over any active cases. If any cases are associated with a pool or 133 * vdev which is no longer present on the system, close the associated case. 134 */ 135 static void 136 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd) 137 { 138 uint64_t vdev_guid; 139 uint_t c, children; 140 nvlist_t **child; 141 zfs_case_t *zcp; 142 int ret; 143 144 ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid); 145 assert(ret == 0); 146 147 /* 148 * Mark any cases associated with this (pool, vdev) pair. 149 */ 150 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 151 zcp = uu_list_next(zfs_cases, zcp)) { 152 if (zcp->zc_data.zc_pool_guid == pool_guid && 153 zcp->zc_data.zc_vdev_guid == vdev_guid) 154 zcp->zc_present = B_TRUE; 155 } 156 157 /* 158 * Iterate over all children. 159 */ 160 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child, 161 &children) != 0) { 162 for (c = 0; c < children; c++) 163 zfs_mark_vdev(pool_guid, child[c]); 164 } 165 } 166 167 /*ARGSUSED*/ 168 static int 169 zfs_mark_pool(zpool_handle_t *zhp, void *unused) 170 { 171 zfs_case_t *zcp; 172 uint64_t pool_guid = zpool_get_guid(zhp); 173 nvlist_t *config, *vd; 174 int ret; 175 176 /* 177 * Mark any cases associated with just this pool. 178 */ 179 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 180 zcp = uu_list_next(zfs_cases, zcp)) { 181 if (zcp->zc_data.zc_pool_guid == pool_guid && 182 zcp->zc_data.zc_vdev_guid == 0) 183 zcp->zc_present = B_TRUE; 184 } 185 186 if ((config = zpool_get_config(zhp, NULL)) == NULL) 187 return (-1); 188 189 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd); 190 assert(ret == 0); 191 192 zfs_mark_vdev(pool_guid, vd); 193 194 return (0); 195 } 196 197 static void 198 zfs_purge_cases(fmd_hdl_t *hdl) 199 { 200 zfs_case_t *zcp; 201 uu_list_walk_t *walk; 202 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 203 204 /* 205 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No 206 * matter what we do, we're going to have to stomach a O(vdevs * cases) 207 * algorithm. In reality, both quantities are likely so small that 208 * neither will matter. Given that iterating over pools is more 209 * expensive than iterating over the in-memory case list, we opt for a 210 * 'present' flag in each case that starts off cleared. We then iterate 211 * over all pools, marking those that are still present, and removing 212 * those that aren't found. 213 * 214 * Note that we could also construct an FMRI and rely on 215 * fmd_nvl_fmri_present(), but this would end up doing the same search. 216 */ 217 218 /* 219 * Mark the cases an not present. 220 */ 221 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 222 zcp = uu_list_next(zfs_cases, zcp)) 223 zcp->zc_present = B_FALSE; 224 225 /* 226 * Iterate over all pools and mark the pools and vdevs found. If this 227 * fails (most probably because we're out of memory), then don't close 228 * any of the cases and we cannot be sure they are accurate. 229 */ 230 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) 231 return; 232 233 /* 234 * Remove those cases which were not found. 235 */ 236 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 237 while ((zcp = uu_list_walk_next(walk)) != NULL) { 238 if (!zcp->zc_present) 239 fmd_case_close(hdl, zcp->zc_case); 240 } 241 uu_list_walk_end(walk); 242 } 243 244 /* 245 * Construct the name of a serd engine given the pool/vdev GUID and type (io or 246 * checksum). 247 */ 248 static void 249 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid, 250 const char *type) 251 { 252 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid, 253 vdev_guid, type); 254 } 255 256 /* 257 * Solve a given ZFS case. This first checks to make sure the diagnosis is 258 * still valid, as well as cleaning up any pending timer associated with the 259 * case. 260 */ 261 static void 262 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname, 263 boolean_t checkunusable) 264 { 265 nvlist_t *detector, *fault; 266 boolean_t serialize; 267 268 /* 269 * Construct the detector from the case data. The detector is in the 270 * ZFS scheme, and is either the pool or the vdev, depending on whether 271 * this is a vdev or pool fault. 272 */ 273 if (nvlist_alloc(&detector, NV_UNIQUE_NAME, 0) != 0) 274 return; 275 276 if (nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0) != 0 || 277 nvlist_add_string(detector, FM_FMRI_SCHEME, 278 FM_FMRI_SCHEME_ZFS) != 0 || 279 nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL, 280 zcp->zc_data.zc_pool_guid) != 0 || 281 (zcp->zc_data.zc_vdev_guid != 0 && 282 nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV, 283 zcp->zc_data.zc_vdev_guid) != 0)) { 284 nvlist_free(detector); 285 return; 286 } 287 288 /* 289 * We also want to make sure that the detector (pool or vdev) properly 290 * reflects the diagnosed state, when the fault corresponds to internal 291 * ZFS state (i.e. not checksum or I/O error-induced). Otherwise, a 292 * device which was unavailable early in boot (because the driver/file 293 * wasn't available) and is now healthy will be mis-diagnosed. 294 */ 295 if (!fmd_nvl_fmri_present(hdl, detector) || 296 (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) { 297 fmd_case_close(hdl, zcp->zc_case); 298 nvlist_free(detector); 299 return; 300 } 301 302 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector, NULL, 303 detector); 304 fmd_case_add_suspect(hdl, zcp->zc_case, fault); 305 fmd_case_solve(hdl, zcp->zc_case); 306 307 serialize = B_FALSE; 308 if (zcp->zc_data.zc_has_timer) { 309 fmd_timer_remove(hdl, zcp->zc_timer); 310 zcp->zc_data.zc_has_timer = 0; 311 serialize = B_TRUE; 312 } 313 if (zcp->zc_data.zc_has_serd_timer) { 314 fmd_timer_remove(hdl, zcp->zc_serd_timer); 315 zcp->zc_data.zc_has_serd_timer = 0; 316 serialize = B_TRUE; 317 } 318 if (serialize) 319 zfs_case_serialize(hdl, zcp); 320 321 nvlist_free(detector); 322 } 323 324 /* 325 * Main fmd entry point. 326 */ 327 /*ARGSUSED*/ 328 static void 329 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) 330 { 331 zfs_case_t *zcp; 332 int32_t pool_state; 333 uint64_t ena, pool_guid, vdev_guid; 334 nvlist_t *detector; 335 boolean_t isresource; 336 const char *serd; 337 338 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*"); 339 340 if (isresource) { 341 /* 342 * For resources, we don't have a normal payload. 343 */ 344 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 345 &vdev_guid) != 0) 346 pool_state = SPA_LOAD_OPEN; 347 else 348 pool_state = SPA_LOAD_NONE; 349 detector = NULL; 350 } else { 351 (void) nvlist_lookup_nvlist(nvl, 352 FM_EREPORT_DETECTOR, &detector); 353 (void) nvlist_lookup_int32(nvl, 354 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state); 355 } 356 357 /* 358 * We also ignore all ereports generated during an import of a pool, 359 * since the only possible fault (.pool) would result in import failure, 360 * and hence no persistent fault. Some day we may want to do something 361 * with these ereports, so we continue generating them internally. 362 */ 363 if (pool_state == SPA_LOAD_IMPORT) 364 return; 365 366 /* 367 * Determine if this ereport corresponds to an open case. Cases are 368 * indexed by ENA, since ZFS does all the work of chaining together 369 * related ereports. 370 * 371 * We also detect if an ereport corresponds to an open case by context, 372 * such as: 373 * 374 * - An error occurred during an open of a pool with an existing 375 * case. 376 * 377 * - An error occurred for a device which already has an open 378 * case. 379 */ 380 (void) nvlist_lookup_uint64(nvl, 381 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid); 382 if (nvlist_lookup_uint64(nvl, 383 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 384 vdev_guid = 0; 385 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0) 386 ena = 0; 387 388 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 389 zcp = uu_list_next(zfs_cases, zcp)) { 390 /* 391 * Matches a known ENA. 392 */ 393 if (zcp->zc_data.zc_ena == ena) 394 break; 395 396 /* 397 * Matches a case involving load errors for this same pool. 398 */ 399 if (zcp->zc_data.zc_pool_guid == pool_guid && 400 zcp->zc_data.zc_pool_state == SPA_LOAD_OPEN && 401 pool_state == SPA_LOAD_OPEN) 402 break; 403 404 /* 405 * Device errors for the same device. 406 */ 407 if (vdev_guid != 0 && zcp->zc_data.zc_vdev_guid == vdev_guid) 408 break; 409 } 410 411 if (zcp == NULL) { 412 fmd_case_t *cs; 413 zfs_case_data_t data = { 0 }; 414 415 /* 416 * If this is one of our 'fake' resource ereports, and there is 417 * no case open, simply discard it. 418 */ 419 if (isresource) 420 return; 421 422 /* 423 * Open a new case. 424 */ 425 cs = fmd_case_open(hdl, NULL); 426 427 /* 428 * Initialize the case buffer. To commonize code, we actually 429 * create the buffer with existing data, and then call 430 * zfs_case_unserialize() to instantiate the in-core structure. 431 */ 432 fmd_buf_create(hdl, cs, CASE_DATA, 433 sizeof (zfs_case_data_t)); 434 435 data.zc_version = CASE_DATA_VERSION_SERD; 436 data.zc_ena = ena; 437 data.zc_pool_guid = pool_guid; 438 data.zc_vdev_guid = vdev_guid; 439 data.zc_pool_state = (int)pool_state; 440 441 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data)); 442 443 zcp = zfs_case_unserialize(hdl, cs); 444 assert(zcp != NULL); 445 } 446 447 if (isresource) { 448 if (fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.ok")) { 449 /* 450 * The 'resource.fs.zfs.ok' event is a special 451 * internal-only event that signifies that a pool or 452 * device that was previously faulted has now come 453 * online (as detected by ZFS). This allows us to close 454 * the associated case. 455 */ 456 fmd_case_close(hdl, zcp->zc_case); 457 } else if (fmd_nvl_class_match(hdl, nvl, 458 "resource.fs.zfs.autoreplace")) { 459 /* 460 * The 'resource.fs.zfs.autoreplace' event indicates 461 * that the pool was loaded with the 'autoreplace' 462 * property set. In this case, any pending device 463 * failures should be ignored, as the asynchronous 464 * autoreplace handling will take care of them. 465 */ 466 fmd_case_close(hdl, zcp->zc_case); 467 } else { 468 /* 469 * The 'resource.fs.zfs.removed' event indicates that 470 * device removal was detected, and the device was 471 * closed asynchronously. If this is the case, we 472 * assume that any recent I/O errors were due to the 473 * device removal, not any fault of the device itself. 474 * We reset the SERD engine, and cancel any pending 475 * timers. 476 */ 477 if (zcp->zc_data.zc_has_serd_timer) { 478 fmd_timer_remove(hdl, zcp->zc_serd_timer); 479 zcp->zc_data.zc_has_serd_timer = 0; 480 zfs_case_serialize(hdl, zcp); 481 } 482 if (zcp->zc_data.zc_serd_io[0] != '\0') 483 fmd_serd_reset(hdl, 484 zcp->zc_data.zc_serd_io); 485 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 486 fmd_serd_reset(hdl, 487 zcp->zc_data.zc_serd_checksum); 488 } 489 return; 490 } 491 492 /* 493 * Associate the ereport with this case. 494 */ 495 fmd_case_add_ereport(hdl, zcp->zc_case, ep); 496 497 /* 498 * Don't do anything else if this case is already solved. 499 */ 500 if (fmd_case_solved(hdl, zcp->zc_case)) 501 return; 502 503 /* 504 * Determine if we should solve the case and generate a fault. We solve 505 * a case if: 506 * 507 * a. A pool failed to open (ereport.fs.zfs.pool) 508 * b. A device failed to open (ereport.fs.zfs.pool) while a pool 509 * was up and running. 510 * 511 * We may see a series of ereports associated with a pool open, all 512 * chained together by the same ENA. If the pool open succeeds, then 513 * we'll see no further ereports. To detect when a pool open has 514 * succeeded, we associate a timer with the event. When it expires, we 515 * close the case. 516 */ 517 if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.zpool")) { 518 /* 519 * Pool level fault. 520 */ 521 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE); 522 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*") && 523 pool_state == SPA_LOAD_NONE) { 524 /* 525 * Device fault. Before solving the case, determine if the 526 * device failed during open, and the 'autoreplace' property is 527 * set. If this is the case, then we post a sysevent which is 528 * picked up by the syseventd module, and any processing is done 529 * as needed. 530 */ 531 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE); 532 } else { 533 if (pool_state == SPA_LOAD_OPEN) { 534 /* 535 * Error incurred during a pool open. Reset the timer 536 * associated with this case. 537 */ 538 if (zcp->zc_data.zc_has_timer) 539 fmd_timer_remove(hdl, zcp->zc_timer); 540 zcp->zc_timer = fmd_timer_install(hdl, zcp, NULL, 541 zfs_case_timeout); 542 if (!zcp->zc_data.zc_has_timer) { 543 zcp->zc_data.zc_has_timer = 1; 544 zfs_case_serialize(hdl, zcp); 545 } 546 } 547 548 /* 549 * If this is a checksum or I/O error, then toss it into the 550 * appropriate SERD engine and check to see if it has fired. 551 * Ideally, we want to do something more sophisticated, 552 * (persistent errors for a single data block, etc). For now, 553 * a single SERD engine is sufficient. 554 */ 555 serd = NULL; 556 if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io")) { 557 if (zcp->zc_data.zc_serd_io[0] == '\0') { 558 zfs_serd_name(zcp->zc_data.zc_serd_io, 559 pool_guid, vdev_guid, "io"); 560 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io, 561 fmd_prop_get_int32(hdl, "io_N"), 562 fmd_prop_get_int64(hdl, "io_T")); 563 zfs_case_serialize(hdl, zcp); 564 } 565 serd = zcp->zc_data.zc_serd_io; 566 } else if (fmd_nvl_class_match(hdl, nvl, 567 "ereport.fs.zfs.checksum")) { 568 if (zcp->zc_data.zc_serd_checksum[0] == '\0') { 569 zfs_serd_name(zcp->zc_data.zc_serd_checksum, 570 pool_guid, vdev_guid, "checksum"); 571 fmd_serd_create(hdl, 572 zcp->zc_data.zc_serd_checksum, 573 fmd_prop_get_int32(hdl, "checksum_N"), 574 fmd_prop_get_int64(hdl, "checksum_T")); 575 zfs_case_serialize(hdl, zcp); 576 } 577 serd = zcp->zc_data.zc_serd_checksum; 578 } 579 580 /* 581 * Because I/O errors may be due to device removal, we postpone 582 * any diagnosis until we're sure that we aren't about to 583 * receive a 'resource.fs.zfs.removed' event. 584 */ 585 if (serd && fmd_serd_record(hdl, serd, ep)) { 586 if (zcp->zc_data.zc_has_serd_timer) 587 fmd_timer_remove(hdl, zcp->zc_serd_timer); 588 zcp->zc_serd_timer = fmd_timer_install(hdl, zcp, NULL, 589 zfs_serd_timeout); 590 if (!zcp->zc_data.zc_has_serd_timer) { 591 zcp->zc_data.zc_has_serd_timer = 1; 592 zfs_case_serialize(hdl, zcp); 593 } 594 } 595 } 596 } 597 598 /* 599 * Timeout indicates one of two scenarios: 600 * 601 * - The pool had faults but was eventually opened successfully. 602 * 603 * - We diagnosed an I/O error, and it was not due to device removal (which 604 * would cause the timeout to be cancelled). 605 */ 606 /* ARGSUSED */ 607 static void 608 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data) 609 { 610 zfs_case_t *zcp = data; 611 const char *faultname; 612 613 if (id == zcp->zc_timer) { 614 zcp->zc_data.zc_has_timer = 0; 615 fmd_case_close(hdl, zcp->zc_case); 616 } 617 618 if (id == zcp->zc_serd_timer) { 619 if (zcp->zc_data.zc_serd_io[0] != '\0' && 620 fmd_serd_fired(hdl, zcp->zc_data.zc_serd_io)) { 621 faultname = "fault.fs.zfs.vdev.io"; 622 } else { 623 assert(fmd_serd_fired(hdl, 624 zcp->zc_data.zc_serd_checksum)); 625 faultname = "fault.fs.zfs.vdev.checksum"; 626 } 627 zfs_case_solve(hdl, zcp, faultname, B_FALSE); 628 } 629 } 630 631 static void 632 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs) 633 { 634 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs); 635 636 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 637 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum); 638 if (zcp->zc_data.zc_serd_io[0] != '\0') 639 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io); 640 if (zcp->zc_data.zc_has_timer) 641 fmd_timer_remove(hdl, zcp->zc_timer); 642 if (zcp->zc_data.zc_has_serd_timer) 643 fmd_timer_remove(hdl, zcp->zc_serd_timer); 644 uu_list_remove(zfs_cases, zcp); 645 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 646 } 647 648 /* 649 * We use the fmd gc entry point to look for old cases that no longer apply. 650 * This allows us to keep our set of case data small in a long running system. 651 */ 652 static void 653 zfs_fm_gc(fmd_hdl_t *hdl) 654 { 655 zfs_purge_cases(hdl); 656 } 657 658 static const fmd_hdl_ops_t fmd_ops = { 659 zfs_fm_recv, /* fmdo_recv */ 660 zfs_fm_timeout, /* fmdo_timeout */ 661 zfs_fm_close, /* fmdo_close */ 662 NULL, /* fmdo_stats */ 663 zfs_fm_gc, /* fmdo_gc */ 664 }; 665 666 static const fmd_prop_t fmd_props[] = { 667 { "case_timeout", FMD_TYPE_TIME, "5sec" }, 668 { "checksum_N", FMD_TYPE_UINT32, "10" }, 669 { "checksum_T", FMD_TYPE_TIME, "10min" }, 670 { "io_N", FMD_TYPE_UINT32, "10" }, 671 { "io_T", FMD_TYPE_TIME, "10min" }, 672 { "serd_timeout", FMD_TYPE_TIME, "5sec" }, 673 { NULL, 0, NULL } 674 }; 675 676 static const fmd_hdl_info_t fmd_info = { 677 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props 678 }; 679 680 void 681 _fmd_init(fmd_hdl_t *hdl) 682 { 683 fmd_case_t *cp; 684 libzfs_handle_t *zhdl; 685 686 if ((zhdl = libzfs_init()) == NULL) 687 return; 688 689 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool", 690 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node), 691 NULL, 0)) == NULL) { 692 libzfs_fini(zhdl); 693 return; 694 } 695 696 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) { 697 uu_list_pool_destroy(zfs_case_pool); 698 libzfs_fini(zhdl); 699 return; 700 } 701 702 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 703 uu_list_destroy(zfs_cases); 704 uu_list_pool_destroy(zfs_case_pool); 705 libzfs_fini(zhdl); 706 return; 707 } 708 709 fmd_hdl_setspecific(hdl, zhdl); 710 711 /* 712 * Iterate over all active cases and unserialize the associated buffers, 713 * adding them to our list of open cases. 714 */ 715 for (cp = fmd_case_next(hdl, NULL); 716 cp != NULL; cp = fmd_case_next(hdl, cp)) 717 (void) zfs_case_unserialize(hdl, cp); 718 719 /* 720 * Clear out any old cases that are no longer valid. 721 */ 722 zfs_purge_cases(hdl); 723 724 zfs_case_timeout = fmd_prop_get_int64(hdl, "case_timeout"); 725 zfs_serd_timeout = fmd_prop_get_int64(hdl, "serd_timeout"); 726 } 727 728 void 729 _fmd_fini(fmd_hdl_t *hdl) 730 { 731 zfs_case_t *zcp; 732 uu_list_walk_t *walk; 733 libzfs_handle_t *zhdl; 734 735 /* 736 * Remove all active cases. 737 */ 738 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 739 while ((zcp = uu_list_walk_next(walk)) != NULL) { 740 uu_list_remove(zfs_cases, zcp); 741 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 742 } 743 uu_list_walk_end(walk); 744 745 uu_list_destroy(zfs_cases); 746 uu_list_pool_destroy(zfs_case_pool); 747 748 zhdl = fmd_hdl_getspecific(hdl); 749 libzfs_fini(zhdl); 750 } 751