1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <assert.h> 29 #include <stddef.h> 30 #include <strings.h> 31 #include <libuutil.h> 32 #include <libzfs.h> 33 #include <fm/fmd_api.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/fm/protocol.h> 36 #include <sys/fm/fs/zfs.h> 37 38 /* 39 * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'. This 40 * #define reserves enough space for two 64-bit hex values plus the length of 41 * the longest string. 42 */ 43 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum")) 44 45 /* 46 * On-disk case structure. This must maintain backwards compatibility with 47 * previous versions of the DE. By default, any members appended to the end 48 * will be filled with zeros if they don't exist in a previous version. 49 */ 50 typedef struct zfs_case_data { 51 uint64_t zc_version; 52 uint64_t zc_ena; 53 uint64_t zc_pool_guid; 54 uint64_t zc_vdev_guid; 55 int zc_has_timer; /* defunct */ 56 int zc_pool_state; 57 char zc_serd_checksum[MAX_SERDLEN]; 58 char zc_serd_io[MAX_SERDLEN]; 59 int zc_has_remove_timer; 60 } zfs_case_data_t; 61 62 /* 63 * In-core case structure. 64 */ 65 typedef struct zfs_case { 66 boolean_t zc_present; 67 uint32_t zc_version; 68 zfs_case_data_t zc_data; 69 fmd_case_t *zc_case; 70 uu_list_node_t zc_node; 71 id_t zc_remove_timer; 72 } zfs_case_t; 73 74 #define CASE_DATA "data" 75 #define CASE_DATA_VERSION_INITIAL 1 76 #define CASE_DATA_VERSION_SERD 2 77 78 static hrtime_t zfs_remove_timeout; 79 80 uu_list_pool_t *zfs_case_pool; 81 uu_list_t *zfs_cases; 82 83 #define ZFS_MAKE_RSRC(type) \ 84 FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type 85 #define ZFS_MAKE_EREPORT(type) \ 86 FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type 87 88 /* 89 * Write out the persistent representation of an active case. 90 */ 91 static void 92 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp) 93 { 94 /* 95 * Always update cases to the latest version, even if they were the 96 * previous version when unserialized. 97 */ 98 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD; 99 fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data, 100 sizeof (zcp->zc_data)); 101 } 102 103 /* 104 * Read back the persistent representation of an active case. 105 */ 106 static zfs_case_t * 107 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp) 108 { 109 zfs_case_t *zcp; 110 111 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP); 112 zcp->zc_case = cp; 113 114 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data, 115 sizeof (zcp->zc_data)); 116 117 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) { 118 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 119 return (NULL); 120 } 121 122 /* 123 * fmd_buf_read() will have already zeroed out the remainder of the 124 * buffer, so we don't have to do anything special if the version 125 * doesn't include the SERD engine name. 126 */ 127 128 if (zcp->zc_data.zc_has_remove_timer) 129 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, 130 NULL, zfs_remove_timeout); 131 132 (void) uu_list_insert_before(zfs_cases, NULL, zcp); 133 134 fmd_case_setspecific(hdl, cp, zcp); 135 136 return (zcp); 137 } 138 139 /* 140 * Iterate over any active cases. If any cases are associated with a pool or 141 * vdev which is no longer present on the system, close the associated case. 142 */ 143 static void 144 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd) 145 { 146 uint64_t vdev_guid; 147 uint_t c, children; 148 nvlist_t **child; 149 zfs_case_t *zcp; 150 int ret; 151 152 ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid); 153 assert(ret == 0); 154 155 /* 156 * Mark any cases associated with this (pool, vdev) pair. 157 */ 158 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 159 zcp = uu_list_next(zfs_cases, zcp)) { 160 if (zcp->zc_data.zc_pool_guid == pool_guid && 161 zcp->zc_data.zc_vdev_guid == vdev_guid) 162 zcp->zc_present = B_TRUE; 163 } 164 165 /* 166 * Iterate over all children. 167 */ 168 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child, 169 &children) == 0) { 170 for (c = 0; c < children; c++) 171 zfs_mark_vdev(pool_guid, child[c]); 172 } 173 174 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child, 175 &children) == 0) { 176 for (c = 0; c < children; c++) 177 zfs_mark_vdev(pool_guid, child[c]); 178 } 179 180 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child, 181 &children) == 0) { 182 for (c = 0; c < children; c++) 183 zfs_mark_vdev(pool_guid, child[c]); 184 } 185 } 186 187 /*ARGSUSED*/ 188 static int 189 zfs_mark_pool(zpool_handle_t *zhp, void *unused) 190 { 191 zfs_case_t *zcp; 192 uint64_t pool_guid; 193 nvlist_t *config, *vd; 194 int ret; 195 196 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 197 /* 198 * Mark any cases associated with just this pool. 199 */ 200 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 201 zcp = uu_list_next(zfs_cases, zcp)) { 202 if (zcp->zc_data.zc_pool_guid == pool_guid && 203 zcp->zc_data.zc_vdev_guid == 0) 204 zcp->zc_present = B_TRUE; 205 } 206 207 if ((config = zpool_get_config(zhp, NULL)) == NULL) { 208 zpool_close(zhp); 209 return (-1); 210 } 211 212 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd); 213 assert(ret == 0); 214 215 zfs_mark_vdev(pool_guid, vd); 216 217 zpool_close(zhp); 218 219 return (0); 220 } 221 222 static void 223 zfs_purge_cases(fmd_hdl_t *hdl) 224 { 225 zfs_case_t *zcp; 226 uu_list_walk_t *walk; 227 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 228 229 /* 230 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No 231 * matter what we do, we're going to have to stomach a O(vdevs * cases) 232 * algorithm. In reality, both quantities are likely so small that 233 * neither will matter. Given that iterating over pools is more 234 * expensive than iterating over the in-memory case list, we opt for a 235 * 'present' flag in each case that starts off cleared. We then iterate 236 * over all pools, marking those that are still present, and removing 237 * those that aren't found. 238 * 239 * Note that we could also construct an FMRI and rely on 240 * fmd_nvl_fmri_present(), but this would end up doing the same search. 241 */ 242 243 /* 244 * Mark the cases an not present. 245 */ 246 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 247 zcp = uu_list_next(zfs_cases, zcp)) 248 zcp->zc_present = B_FALSE; 249 250 /* 251 * Iterate over all pools and mark the pools and vdevs found. If this 252 * fails (most probably because we're out of memory), then don't close 253 * any of the cases and we cannot be sure they are accurate. 254 */ 255 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) 256 return; 257 258 /* 259 * Remove those cases which were not found. 260 */ 261 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 262 while ((zcp = uu_list_walk_next(walk)) != NULL) { 263 if (!zcp->zc_present) 264 fmd_case_close(hdl, zcp->zc_case); 265 } 266 uu_list_walk_end(walk); 267 } 268 269 /* 270 * Construct the name of a serd engine given the pool/vdev GUID and type (io or 271 * checksum). 272 */ 273 static void 274 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid, 275 const char *type) 276 { 277 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid, 278 vdev_guid, type); 279 } 280 281 /* 282 * Solve a given ZFS case. This first checks to make sure the diagnosis is 283 * still valid, as well as cleaning up any pending timer associated with the 284 * case. 285 */ 286 static void 287 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname, 288 boolean_t checkunusable) 289 { 290 nvlist_t *detector, *fault; 291 boolean_t serialize; 292 293 /* 294 * Construct the detector from the case data. The detector is in the 295 * ZFS scheme, and is either the pool or the vdev, depending on whether 296 * this is a vdev or pool fault. 297 */ 298 if (nvlist_alloc(&detector, NV_UNIQUE_NAME, 0) != 0) 299 return; 300 301 if (nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0) != 0 || 302 nvlist_add_string(detector, FM_FMRI_SCHEME, 303 FM_FMRI_SCHEME_ZFS) != 0 || 304 nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL, 305 zcp->zc_data.zc_pool_guid) != 0 || 306 (zcp->zc_data.zc_vdev_guid != 0 && 307 nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV, 308 zcp->zc_data.zc_vdev_guid) != 0)) { 309 nvlist_free(detector); 310 return; 311 } 312 313 /* 314 * We also want to make sure that the detector (pool or vdev) properly 315 * reflects the diagnosed state, when the fault corresponds to internal 316 * ZFS state (i.e. not checksum or I/O error-induced). Otherwise, a 317 * device which was unavailable early in boot (because the driver/file 318 * wasn't available) and is now healthy will be mis-diagnosed. 319 */ 320 if (!fmd_nvl_fmri_present(hdl, detector) || 321 (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) { 322 fmd_case_close(hdl, zcp->zc_case); 323 nvlist_free(detector); 324 return; 325 } 326 327 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector, NULL, 328 detector); 329 fmd_case_add_suspect(hdl, zcp->zc_case, fault); 330 fmd_case_solve(hdl, zcp->zc_case); 331 332 serialize = B_FALSE; 333 if (zcp->zc_data.zc_has_remove_timer) { 334 fmd_timer_remove(hdl, zcp->zc_remove_timer); 335 zcp->zc_data.zc_has_remove_timer = 0; 336 serialize = B_TRUE; 337 } 338 if (serialize) 339 zfs_case_serialize(hdl, zcp); 340 341 nvlist_free(detector); 342 } 343 344 /* 345 * Main fmd entry point. 346 */ 347 /*ARGSUSED*/ 348 static void 349 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) 350 { 351 zfs_case_t *zcp, *dcp; 352 int32_t pool_state; 353 uint64_t ena, pool_guid, vdev_guid; 354 nvlist_t *detector; 355 boolean_t isresource; 356 char *type; 357 358 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*"); 359 360 if (isresource) { 361 /* 362 * For resources, we don't have a normal payload. 363 */ 364 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 365 &vdev_guid) != 0) 366 pool_state = SPA_LOAD_OPEN; 367 else 368 pool_state = SPA_LOAD_NONE; 369 detector = NULL; 370 } else { 371 (void) nvlist_lookup_nvlist(nvl, 372 FM_EREPORT_DETECTOR, &detector); 373 (void) nvlist_lookup_int32(nvl, 374 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state); 375 } 376 377 /* 378 * We also ignore all ereports generated during an import of a pool, 379 * since the only possible fault (.pool) would result in import failure, 380 * and hence no persistent fault. Some day we may want to do something 381 * with these ereports, so we continue generating them internally. 382 */ 383 if (pool_state == SPA_LOAD_IMPORT) 384 return; 385 386 /* 387 * Device I/O errors are ignored during pool open. 388 */ 389 if (pool_state == SPA_LOAD_OPEN && 390 (fmd_nvl_class_match(hdl, nvl, 391 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) || 392 fmd_nvl_class_match(hdl, nvl, 393 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) || 394 fmd_nvl_class_match(hdl, nvl, 395 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) 396 return; 397 398 /* 399 * We ignore ereports for anything except disks and files. 400 */ 401 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 402 &type) == 0) { 403 if (strcmp(type, VDEV_TYPE_DISK) != 0 && 404 strcmp(type, VDEV_TYPE_FILE) != 0) 405 return; 406 } 407 408 /* 409 * Determine if this ereport corresponds to an open case. Cases are 410 * indexed by ENA, since ZFS does all the work of chaining together 411 * related ereports. 412 * 413 * We also detect if an ereport corresponds to an open case by context, 414 * such as: 415 * 416 * - An error occurred during an open of a pool with an existing 417 * case. 418 * 419 * - An error occurred for a device which already has an open 420 * case. 421 */ 422 (void) nvlist_lookup_uint64(nvl, 423 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid); 424 if (nvlist_lookup_uint64(nvl, 425 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 426 vdev_guid = 0; 427 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0) 428 ena = 0; 429 430 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 431 zcp = uu_list_next(zfs_cases, zcp)) { 432 /* 433 * Matches a known ENA. 434 */ 435 if (zcp->zc_data.zc_ena == ena) 436 break; 437 438 /* 439 * Matches a case involving load errors for this same pool. 440 */ 441 if (zcp->zc_data.zc_pool_guid == pool_guid && 442 zcp->zc_data.zc_pool_state == SPA_LOAD_OPEN && 443 pool_state == SPA_LOAD_OPEN) 444 break; 445 446 /* 447 * Device errors for the same device. 448 */ 449 if (vdev_guid != 0 && zcp->zc_data.zc_vdev_guid == vdev_guid) 450 break; 451 } 452 453 if (zcp == NULL) { 454 fmd_case_t *cs; 455 zfs_case_data_t data = { 0 }; 456 457 /* 458 * If this is one of our 'fake' resource ereports, and there is 459 * no case open, simply discard it. 460 */ 461 if (isresource) 462 return; 463 464 /* 465 * Open a new case. 466 */ 467 cs = fmd_case_open(hdl, NULL); 468 469 /* 470 * Initialize the case buffer. To commonize code, we actually 471 * create the buffer with existing data, and then call 472 * zfs_case_unserialize() to instantiate the in-core structure. 473 */ 474 fmd_buf_create(hdl, cs, CASE_DATA, 475 sizeof (zfs_case_data_t)); 476 477 data.zc_version = CASE_DATA_VERSION_SERD; 478 data.zc_ena = ena; 479 data.zc_pool_guid = pool_guid; 480 data.zc_vdev_guid = vdev_guid; 481 data.zc_pool_state = (int)pool_state; 482 483 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data)); 484 485 zcp = zfs_case_unserialize(hdl, cs); 486 assert(zcp != NULL); 487 } 488 489 if (isresource) { 490 if (fmd_nvl_class_match(hdl, nvl, 491 ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) { 492 /* 493 * The 'resource.fs.zfs.autoreplace' event indicates 494 * that the pool was loaded with the 'autoreplace' 495 * property set. In this case, any pending device 496 * failures should be ignored, as the asynchronous 497 * autoreplace handling will take care of them. 498 */ 499 fmd_case_close(hdl, zcp->zc_case); 500 } else if (fmd_nvl_class_match(hdl, nvl, 501 ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) { 502 /* 503 * The 'resource.fs.zfs.removed' event indicates that 504 * device removal was detected, and the device was 505 * closed asynchronously. If this is the case, we 506 * assume that any recent I/O errors were due to the 507 * device removal, not any fault of the device itself. 508 * We reset the SERD engine, and cancel any pending 509 * timers. 510 */ 511 if (zcp->zc_data.zc_has_remove_timer) { 512 fmd_timer_remove(hdl, zcp->zc_remove_timer); 513 zcp->zc_data.zc_has_remove_timer = 0; 514 zfs_case_serialize(hdl, zcp); 515 } 516 if (zcp->zc_data.zc_serd_io[0] != '\0') 517 fmd_serd_reset(hdl, 518 zcp->zc_data.zc_serd_io); 519 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 520 fmd_serd_reset(hdl, 521 zcp->zc_data.zc_serd_checksum); 522 } 523 return; 524 } 525 526 /* 527 * Associate the ereport with this case. 528 */ 529 fmd_case_add_ereport(hdl, zcp->zc_case, ep); 530 531 /* 532 * Don't do anything else if this case is already solved. 533 */ 534 if (fmd_case_solved(hdl, zcp->zc_case)) 535 return; 536 537 /* 538 * Determine if we should solve the case and generate a fault. We solve 539 * a case if: 540 * 541 * a. A pool failed to open (ereport.fs.zfs.pool) 542 * b. A device failed to open (ereport.fs.zfs.pool) while a pool 543 * was up and running. 544 * 545 * We may see a series of ereports associated with a pool open, all 546 * chained together by the same ENA. If the pool open succeeds, then 547 * we'll see no further ereports. To detect when a pool open has 548 * succeeded, we associate a timer with the event. When it expires, we 549 * close the case. 550 */ 551 if (fmd_nvl_class_match(hdl, nvl, 552 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) { 553 /* 554 * Pool level fault. Before solving the case, go through and 555 * close any open device cases that may be pending. 556 */ 557 for (dcp = uu_list_first(zfs_cases); dcp != NULL; 558 dcp = uu_list_next(zfs_cases, dcp)) { 559 if (dcp->zc_data.zc_pool_guid == 560 zcp->zc_data.zc_pool_guid && 561 dcp->zc_data.zc_vdev_guid != 0) 562 fmd_case_close(hdl, dcp->zc_case); 563 } 564 565 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE); 566 } else if (fmd_nvl_class_match(hdl, nvl, 567 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) { 568 /* 569 * Pool level fault for reading the intent logs. 570 */ 571 zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay", B_TRUE); 572 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) { 573 /* 574 * Device fault. If this occurred during pool open, then defer 575 * reporting the fault. If the pool itself could not be opeend, 576 * we only report the pool fault, not every device fault that 577 * may have caused the problem. If we do not see a pool fault 578 * within the timeout period, then we'll solve the device case. 579 */ 580 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE); 581 } else if (fmd_nvl_class_match(hdl, nvl, 582 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) || 583 fmd_nvl_class_match(hdl, nvl, 584 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) || 585 fmd_nvl_class_match(hdl, nvl, 586 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) || 587 fmd_nvl_class_match(hdl, nvl, 588 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 589 char *failmode = NULL; 590 boolean_t checkremove = B_FALSE; 591 592 /* 593 * If this is a checksum or I/O error, then toss it into the 594 * appropriate SERD engine and check to see if it has fired. 595 * Ideally, we want to do something more sophisticated, 596 * (persistent errors for a single data block, etc). For now, 597 * a single SERD engine is sufficient. 598 */ 599 if (fmd_nvl_class_match(hdl, nvl, 600 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) { 601 if (zcp->zc_data.zc_serd_io[0] == '\0') { 602 zfs_serd_name(zcp->zc_data.zc_serd_io, 603 pool_guid, vdev_guid, "io"); 604 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io, 605 fmd_prop_get_int32(hdl, "io_N"), 606 fmd_prop_get_int64(hdl, "io_T")); 607 zfs_case_serialize(hdl, zcp); 608 } 609 if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep)) 610 checkremove = B_TRUE; 611 } else if (fmd_nvl_class_match(hdl, nvl, 612 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) { 613 if (zcp->zc_data.zc_serd_checksum[0] == '\0') { 614 zfs_serd_name(zcp->zc_data.zc_serd_checksum, 615 pool_guid, vdev_guid, "checksum"); 616 fmd_serd_create(hdl, 617 zcp->zc_data.zc_serd_checksum, 618 fmd_prop_get_int32(hdl, "checksum_N"), 619 fmd_prop_get_int64(hdl, "checksum_T")); 620 zfs_case_serialize(hdl, zcp); 621 } 622 if (fmd_serd_record(hdl, 623 zcp->zc_data.zc_serd_checksum, ep)) { 624 zfs_case_solve(hdl, zcp, 625 "fault.fs.zfs.vdev.checksum", B_FALSE); 626 } 627 } else if (fmd_nvl_class_match(hdl, nvl, 628 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) && 629 (nvlist_lookup_string(nvl, 630 FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) && 631 failmode != NULL) { 632 if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE, 633 strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) { 634 zfs_case_solve(hdl, zcp, 635 "fault.fs.zfs.io_failure_continue", 636 B_FALSE); 637 } else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT, 638 strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) { 639 zfs_case_solve(hdl, zcp, 640 "fault.fs.zfs.io_failure_wait", B_FALSE); 641 } 642 } else if (fmd_nvl_class_match(hdl, nvl, 643 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 644 checkremove = B_TRUE; 645 } 646 647 /* 648 * Because I/O errors may be due to device removal, we postpone 649 * any diagnosis until we're sure that we aren't about to 650 * receive a 'resource.fs.zfs.removed' event. 651 */ 652 if (checkremove) { 653 if (zcp->zc_data.zc_has_remove_timer) 654 fmd_timer_remove(hdl, zcp->zc_remove_timer); 655 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL, 656 zfs_remove_timeout); 657 if (!zcp->zc_data.zc_has_remove_timer) { 658 zcp->zc_data.zc_has_remove_timer = 1; 659 zfs_case_serialize(hdl, zcp); 660 } 661 } 662 } 663 } 664 665 /* 666 * The timeout is fired when we diagnosed an I/O error, and it was not due to 667 * device removal (which would cause the timeout to be cancelled). 668 */ 669 /* ARGSUSED */ 670 static void 671 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data) 672 { 673 zfs_case_t *zcp = data; 674 675 if (id == zcp->zc_remove_timer) 676 zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io", B_FALSE); 677 } 678 679 static void 680 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs) 681 { 682 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs); 683 684 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 685 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum); 686 if (zcp->zc_data.zc_serd_io[0] != '\0') 687 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io); 688 if (zcp->zc_data.zc_has_remove_timer) 689 fmd_timer_remove(hdl, zcp->zc_remove_timer); 690 uu_list_remove(zfs_cases, zcp); 691 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 692 } 693 694 /* 695 * We use the fmd gc entry point to look for old cases that no longer apply. 696 * This allows us to keep our set of case data small in a long running system. 697 */ 698 static void 699 zfs_fm_gc(fmd_hdl_t *hdl) 700 { 701 zfs_purge_cases(hdl); 702 } 703 704 static const fmd_hdl_ops_t fmd_ops = { 705 zfs_fm_recv, /* fmdo_recv */ 706 zfs_fm_timeout, /* fmdo_timeout */ 707 zfs_fm_close, /* fmdo_close */ 708 NULL, /* fmdo_stats */ 709 zfs_fm_gc, /* fmdo_gc */ 710 }; 711 712 static const fmd_prop_t fmd_props[] = { 713 { "case_timeout", FMD_TYPE_TIME, "5sec" }, 714 { "checksum_N", FMD_TYPE_UINT32, "10" }, 715 { "checksum_T", FMD_TYPE_TIME, "10min" }, 716 { "io_N", FMD_TYPE_UINT32, "10" }, 717 { "io_T", FMD_TYPE_TIME, "10min" }, 718 { "remove_timeout", FMD_TYPE_TIME, "5sec" }, 719 { NULL, 0, NULL } 720 }; 721 722 static const fmd_hdl_info_t fmd_info = { 723 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props 724 }; 725 726 void 727 _fmd_init(fmd_hdl_t *hdl) 728 { 729 fmd_case_t *cp; 730 libzfs_handle_t *zhdl; 731 732 if ((zhdl = libzfs_init()) == NULL) 733 return; 734 735 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool", 736 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node), 737 NULL, 0)) == NULL) { 738 libzfs_fini(zhdl); 739 return; 740 } 741 742 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) { 743 uu_list_pool_destroy(zfs_case_pool); 744 libzfs_fini(zhdl); 745 return; 746 } 747 748 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 749 uu_list_destroy(zfs_cases); 750 uu_list_pool_destroy(zfs_case_pool); 751 libzfs_fini(zhdl); 752 return; 753 } 754 755 fmd_hdl_setspecific(hdl, zhdl); 756 757 /* 758 * Iterate over all active cases and unserialize the associated buffers, 759 * adding them to our list of open cases. 760 */ 761 for (cp = fmd_case_next(hdl, NULL); 762 cp != NULL; cp = fmd_case_next(hdl, cp)) 763 (void) zfs_case_unserialize(hdl, cp); 764 765 /* 766 * Clear out any old cases that are no longer valid. 767 */ 768 zfs_purge_cases(hdl); 769 770 zfs_remove_timeout = fmd_prop_get_int64(hdl, "remove_timeout"); 771 } 772 773 void 774 _fmd_fini(fmd_hdl_t *hdl) 775 { 776 zfs_case_t *zcp; 777 uu_list_walk_t *walk; 778 libzfs_handle_t *zhdl; 779 780 /* 781 * Remove all active cases. 782 */ 783 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 784 while ((zcp = uu_list_walk_next(walk)) != NULL) { 785 uu_list_remove(zfs_cases, zcp); 786 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 787 } 788 uu_list_walk_end(walk); 789 790 uu_list_destroy(zfs_cases); 791 uu_list_pool_destroy(zfs_case_pool); 792 793 zhdl = fmd_hdl_getspecific(hdl); 794 libzfs_fini(zhdl); 795 } 796