1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <assert.h> 29 #include <stddef.h> 30 #include <strings.h> 31 #include <libuutil.h> 32 #include <libzfs.h> 33 #include <fm/fmd_api.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/fm/protocol.h> 36 #include <sys/fm/fs/zfs.h> 37 38 /* 39 * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'. This 40 * #define reserves enough space for two 64-bit hex values plus the length of 41 * the longest string. 42 */ 43 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum")) 44 45 /* 46 * On-disk case structure. This must maintain backwards compatibility with 47 * previous versions of the DE. By default, any members appended to the end 48 * will be filled with zeros if they don't exist in a previous version. 49 */ 50 typedef struct zfs_case_data { 51 uint64_t zc_version; 52 uint64_t zc_ena; 53 uint64_t zc_pool_guid; 54 uint64_t zc_vdev_guid; 55 int zc_has_timer; /* defunct */ 56 int zc_pool_state; 57 char zc_serd_checksum[MAX_SERDLEN]; 58 char zc_serd_io[MAX_SERDLEN]; 59 int zc_has_remove_timer; 60 } zfs_case_data_t; 61 62 /* 63 * In-core case structure. 64 */ 65 typedef struct zfs_case { 66 boolean_t zc_present; 67 uint32_t zc_version; 68 zfs_case_data_t zc_data; 69 fmd_case_t *zc_case; 70 uu_list_node_t zc_node; 71 id_t zc_remove_timer; 72 } zfs_case_t; 73 74 #define CASE_DATA "data" 75 #define CASE_DATA_VERSION_INITIAL 1 76 #define CASE_DATA_VERSION_SERD 2 77 78 static hrtime_t zfs_remove_timeout; 79 80 uu_list_pool_t *zfs_case_pool; 81 uu_list_t *zfs_cases; 82 83 #define ZFS_MAKE_RSRC(type) \ 84 FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type 85 #define ZFS_MAKE_EREPORT(type) \ 86 FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type 87 88 /* 89 * Write out the persistent representation of an active case. 90 */ 91 static void 92 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp) 93 { 94 /* 95 * Always update cases to the latest version, even if they were the 96 * previous version when unserialized. 97 */ 98 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD; 99 fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data, 100 sizeof (zcp->zc_data)); 101 } 102 103 /* 104 * Read back the persistent representation of an active case. 105 */ 106 static zfs_case_t * 107 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp) 108 { 109 zfs_case_t *zcp; 110 111 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP); 112 zcp->zc_case = cp; 113 114 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data, 115 sizeof (zcp->zc_data)); 116 117 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) { 118 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 119 return (NULL); 120 } 121 122 /* 123 * fmd_buf_read() will have already zeroed out the remainder of the 124 * buffer, so we don't have to do anything special if the version 125 * doesn't include the SERD engine name. 126 */ 127 128 if (zcp->zc_data.zc_has_remove_timer) 129 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, 130 NULL, zfs_remove_timeout); 131 132 (void) uu_list_insert_before(zfs_cases, NULL, zcp); 133 134 fmd_case_setspecific(hdl, cp, zcp); 135 136 return (zcp); 137 } 138 139 /* 140 * Iterate over any active cases. If any cases are associated with a pool or 141 * vdev which is no longer present on the system, close the associated case. 142 */ 143 static void 144 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd) 145 { 146 uint64_t vdev_guid; 147 uint_t c, children; 148 nvlist_t **child; 149 zfs_case_t *zcp; 150 int ret; 151 152 ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid); 153 assert(ret == 0); 154 155 /* 156 * Mark any cases associated with this (pool, vdev) pair. 157 */ 158 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 159 zcp = uu_list_next(zfs_cases, zcp)) { 160 if (zcp->zc_data.zc_pool_guid == pool_guid && 161 zcp->zc_data.zc_vdev_guid == vdev_guid) 162 zcp->zc_present = B_TRUE; 163 } 164 165 /* 166 * Iterate over all children. 167 */ 168 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child, 169 &children) != 0) { 170 for (c = 0; c < children; c++) 171 zfs_mark_vdev(pool_guid, child[c]); 172 } 173 } 174 175 /*ARGSUSED*/ 176 static int 177 zfs_mark_pool(zpool_handle_t *zhp, void *unused) 178 { 179 zfs_case_t *zcp; 180 uint64_t pool_guid; 181 nvlist_t *config, *vd; 182 int ret; 183 184 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 185 /* 186 * Mark any cases associated with just this pool. 187 */ 188 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 189 zcp = uu_list_next(zfs_cases, zcp)) { 190 if (zcp->zc_data.zc_pool_guid == pool_guid && 191 zcp->zc_data.zc_vdev_guid == 0) 192 zcp->zc_present = B_TRUE; 193 } 194 195 if ((config = zpool_get_config(zhp, NULL)) == NULL) { 196 zpool_close(zhp); 197 return (-1); 198 } 199 200 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd); 201 assert(ret == 0); 202 203 zfs_mark_vdev(pool_guid, vd); 204 205 zpool_close(zhp); 206 207 return (0); 208 } 209 210 static void 211 zfs_purge_cases(fmd_hdl_t *hdl) 212 { 213 zfs_case_t *zcp; 214 uu_list_walk_t *walk; 215 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 216 217 /* 218 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No 219 * matter what we do, we're going to have to stomach a O(vdevs * cases) 220 * algorithm. In reality, both quantities are likely so small that 221 * neither will matter. Given that iterating over pools is more 222 * expensive than iterating over the in-memory case list, we opt for a 223 * 'present' flag in each case that starts off cleared. We then iterate 224 * over all pools, marking those that are still present, and removing 225 * those that aren't found. 226 * 227 * Note that we could also construct an FMRI and rely on 228 * fmd_nvl_fmri_present(), but this would end up doing the same search. 229 */ 230 231 /* 232 * Mark the cases an not present. 233 */ 234 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 235 zcp = uu_list_next(zfs_cases, zcp)) 236 zcp->zc_present = B_FALSE; 237 238 /* 239 * Iterate over all pools and mark the pools and vdevs found. If this 240 * fails (most probably because we're out of memory), then don't close 241 * any of the cases and we cannot be sure they are accurate. 242 */ 243 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) 244 return; 245 246 /* 247 * Remove those cases which were not found. 248 */ 249 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 250 while ((zcp = uu_list_walk_next(walk)) != NULL) { 251 if (!zcp->zc_present) 252 fmd_case_close(hdl, zcp->zc_case); 253 } 254 uu_list_walk_end(walk); 255 } 256 257 /* 258 * Construct the name of a serd engine given the pool/vdev GUID and type (io or 259 * checksum). 260 */ 261 static void 262 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid, 263 const char *type) 264 { 265 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid, 266 vdev_guid, type); 267 } 268 269 /* 270 * Solve a given ZFS case. This first checks to make sure the diagnosis is 271 * still valid, as well as cleaning up any pending timer associated with the 272 * case. 273 */ 274 static void 275 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname, 276 boolean_t checkunusable) 277 { 278 nvlist_t *detector, *fault; 279 boolean_t serialize; 280 281 /* 282 * Construct the detector from the case data. The detector is in the 283 * ZFS scheme, and is either the pool or the vdev, depending on whether 284 * this is a vdev or pool fault. 285 */ 286 if (nvlist_alloc(&detector, NV_UNIQUE_NAME, 0) != 0) 287 return; 288 289 if (nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0) != 0 || 290 nvlist_add_string(detector, FM_FMRI_SCHEME, 291 FM_FMRI_SCHEME_ZFS) != 0 || 292 nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL, 293 zcp->zc_data.zc_pool_guid) != 0 || 294 (zcp->zc_data.zc_vdev_guid != 0 && 295 nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV, 296 zcp->zc_data.zc_vdev_guid) != 0)) { 297 nvlist_free(detector); 298 return; 299 } 300 301 /* 302 * We also want to make sure that the detector (pool or vdev) properly 303 * reflects the diagnosed state, when the fault corresponds to internal 304 * ZFS state (i.e. not checksum or I/O error-induced). Otherwise, a 305 * device which was unavailable early in boot (because the driver/file 306 * wasn't available) and is now healthy will be mis-diagnosed. 307 */ 308 if (!fmd_nvl_fmri_present(hdl, detector) || 309 (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) { 310 fmd_case_close(hdl, zcp->zc_case); 311 nvlist_free(detector); 312 return; 313 } 314 315 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector, NULL, 316 detector); 317 fmd_case_add_suspect(hdl, zcp->zc_case, fault); 318 fmd_case_solve(hdl, zcp->zc_case); 319 320 serialize = B_FALSE; 321 if (zcp->zc_data.zc_has_remove_timer) { 322 fmd_timer_remove(hdl, zcp->zc_remove_timer); 323 zcp->zc_data.zc_has_remove_timer = 0; 324 serialize = B_TRUE; 325 } 326 if (serialize) 327 zfs_case_serialize(hdl, zcp); 328 329 nvlist_free(detector); 330 } 331 332 /* 333 * Main fmd entry point. 334 */ 335 /*ARGSUSED*/ 336 static void 337 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) 338 { 339 zfs_case_t *zcp, *dcp; 340 int32_t pool_state; 341 uint64_t ena, pool_guid, vdev_guid; 342 nvlist_t *detector; 343 boolean_t isresource; 344 boolean_t checkremove; 345 346 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*"); 347 348 if (isresource) { 349 /* 350 * For resources, we don't have a normal payload. 351 */ 352 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 353 &vdev_guid) != 0) 354 pool_state = SPA_LOAD_OPEN; 355 else 356 pool_state = SPA_LOAD_NONE; 357 detector = NULL; 358 } else { 359 (void) nvlist_lookup_nvlist(nvl, 360 FM_EREPORT_DETECTOR, &detector); 361 (void) nvlist_lookup_int32(nvl, 362 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state); 363 } 364 365 /* 366 * We also ignore all ereports generated during an import of a pool, 367 * since the only possible fault (.pool) would result in import failure, 368 * and hence no persistent fault. Some day we may want to do something 369 * with these ereports, so we continue generating them internally. 370 */ 371 if (pool_state == SPA_LOAD_IMPORT) 372 return; 373 374 /* 375 * Device I/O errors are ignored during pool open. 376 */ 377 if (pool_state == SPA_LOAD_OPEN && 378 (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.checksum") || 379 fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io"))) 380 return; 381 382 /* 383 * Determine if this ereport corresponds to an open case. Cases are 384 * indexed by ENA, since ZFS does all the work of chaining together 385 * related ereports. 386 * 387 * We also detect if an ereport corresponds to an open case by context, 388 * such as: 389 * 390 * - An error occurred during an open of a pool with an existing 391 * case. 392 * 393 * - An error occurred for a device which already has an open 394 * case. 395 */ 396 (void) nvlist_lookup_uint64(nvl, 397 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid); 398 if (nvlist_lookup_uint64(nvl, 399 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 400 vdev_guid = 0; 401 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0) 402 ena = 0; 403 404 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 405 zcp = uu_list_next(zfs_cases, zcp)) { 406 /* 407 * Matches a known ENA. 408 */ 409 if (zcp->zc_data.zc_ena == ena) 410 break; 411 412 /* 413 * Matches a case involving load errors for this same pool. 414 */ 415 if (zcp->zc_data.zc_pool_guid == pool_guid && 416 zcp->zc_data.zc_pool_state == SPA_LOAD_OPEN && 417 pool_state == SPA_LOAD_OPEN) 418 break; 419 420 /* 421 * Device errors for the same device. 422 */ 423 if (vdev_guid != 0 && zcp->zc_data.zc_vdev_guid == vdev_guid) 424 break; 425 } 426 427 if (zcp == NULL) { 428 fmd_case_t *cs; 429 zfs_case_data_t data = { 0 }; 430 431 /* 432 * If this is one of our 'fake' resource ereports, and there is 433 * no case open, simply discard it. 434 */ 435 if (isresource) 436 return; 437 438 /* 439 * Open a new case. 440 */ 441 cs = fmd_case_open(hdl, NULL); 442 443 /* 444 * Initialize the case buffer. To commonize code, we actually 445 * create the buffer with existing data, and then call 446 * zfs_case_unserialize() to instantiate the in-core structure. 447 */ 448 fmd_buf_create(hdl, cs, CASE_DATA, 449 sizeof (zfs_case_data_t)); 450 451 data.zc_version = CASE_DATA_VERSION_SERD; 452 data.zc_ena = ena; 453 data.zc_pool_guid = pool_guid; 454 data.zc_vdev_guid = vdev_guid; 455 data.zc_pool_state = (int)pool_state; 456 457 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data)); 458 459 zcp = zfs_case_unserialize(hdl, cs); 460 assert(zcp != NULL); 461 } 462 463 if (isresource) { 464 if (fmd_nvl_class_match(hdl, nvl, 465 ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) { 466 /* 467 * The 'resource.fs.zfs.autoreplace' event indicates 468 * that the pool was loaded with the 'autoreplace' 469 * property set. In this case, any pending device 470 * failures should be ignored, as the asynchronous 471 * autoreplace handling will take care of them. 472 */ 473 fmd_case_close(hdl, zcp->zc_case); 474 } else if (fmd_nvl_class_match(hdl, nvl, 475 ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) { 476 /* 477 * The 'resource.fs.zfs.removed' event indicates that 478 * device removal was detected, and the device was 479 * closed asynchronously. If this is the case, we 480 * assume that any recent I/O errors were due to the 481 * device removal, not any fault of the device itself. 482 * We reset the SERD engine, and cancel any pending 483 * timers. 484 */ 485 if (zcp->zc_data.zc_has_remove_timer) { 486 fmd_timer_remove(hdl, zcp->zc_remove_timer); 487 zcp->zc_data.zc_has_remove_timer = 0; 488 zfs_case_serialize(hdl, zcp); 489 } 490 if (zcp->zc_data.zc_serd_io[0] != '\0') 491 fmd_serd_reset(hdl, 492 zcp->zc_data.zc_serd_io); 493 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 494 fmd_serd_reset(hdl, 495 zcp->zc_data.zc_serd_checksum); 496 } 497 return; 498 } 499 500 /* 501 * Associate the ereport with this case. 502 */ 503 fmd_case_add_ereport(hdl, zcp->zc_case, ep); 504 505 /* 506 * Don't do anything else if this case is already solved. 507 */ 508 if (fmd_case_solved(hdl, zcp->zc_case)) 509 return; 510 511 /* 512 * Determine if we should solve the case and generate a fault. We solve 513 * a case if: 514 * 515 * a. A pool failed to open (ereport.fs.zfs.pool) 516 * b. A device failed to open (ereport.fs.zfs.pool) while a pool 517 * was up and running. 518 * 519 * We may see a series of ereports associated with a pool open, all 520 * chained together by the same ENA. If the pool open succeeds, then 521 * we'll see no further ereports. To detect when a pool open has 522 * succeeded, we associate a timer with the event. When it expires, we 523 * close the case. 524 */ 525 if (fmd_nvl_class_match(hdl, nvl, 526 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) { 527 /* 528 * Pool level fault. Before solving the case, go through and 529 * close any open device cases that may be pending. 530 */ 531 for (dcp = uu_list_first(zfs_cases); dcp != NULL; 532 dcp = uu_list_next(zfs_cases, dcp)) { 533 if (dcp->zc_data.zc_pool_guid == 534 zcp->zc_data.zc_pool_guid && 535 dcp->zc_data.zc_vdev_guid != 0) 536 fmd_case_close(hdl, dcp->zc_case); 537 } 538 539 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE); 540 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) { 541 /* 542 * Device fault. If this occurred during pool open, then defer 543 * reporting the fault. If the pool itself could not be opeend, 544 * we only report the pool fault, not every device fault that 545 * may have caused the problem. If we do not see a pool fault 546 * within the timeout period, then we'll solve the device case. 547 */ 548 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE); 549 } else if (fmd_nvl_class_match(hdl, nvl, 550 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) || 551 fmd_nvl_class_match(hdl, nvl, 552 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) || 553 fmd_nvl_class_match(hdl, nvl, 554 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) || 555 fmd_nvl_class_match(hdl, nvl, 556 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 557 char *failmode = NULL; 558 559 /* 560 * If this is a checksum or I/O error, then toss it into the 561 * appropriate SERD engine and check to see if it has fired. 562 * Ideally, we want to do something more sophisticated, 563 * (persistent errors for a single data block, etc). For now, 564 * a single SERD engine is sufficient. 565 */ 566 if (fmd_nvl_class_match(hdl, nvl, 567 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) { 568 if (zcp->zc_data.zc_serd_io[0] == '\0') { 569 zfs_serd_name(zcp->zc_data.zc_serd_io, 570 pool_guid, vdev_guid, "io"); 571 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io, 572 fmd_prop_get_int32(hdl, "io_N"), 573 fmd_prop_get_int64(hdl, "io_T")); 574 zfs_case_serialize(hdl, zcp); 575 } 576 if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep)) 577 checkremove = B_TRUE; 578 } else if (fmd_nvl_class_match(hdl, nvl, 579 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) { 580 if (zcp->zc_data.zc_serd_checksum[0] == '\0') { 581 zfs_serd_name(zcp->zc_data.zc_serd_checksum, 582 pool_guid, vdev_guid, "checksum"); 583 fmd_serd_create(hdl, 584 zcp->zc_data.zc_serd_checksum, 585 fmd_prop_get_int32(hdl, "checksum_N"), 586 fmd_prop_get_int64(hdl, "checksum_T")); 587 zfs_case_serialize(hdl, zcp); 588 } 589 if (fmd_serd_record(hdl, 590 zcp->zc_data.zc_serd_checksum, ep)) { 591 zfs_case_solve(hdl, zcp, 592 "fault.fs.zfs.vdev.checksum", B_FALSE); 593 } 594 } else if (fmd_nvl_class_match(hdl, nvl, 595 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) && 596 (nvlist_lookup_string(nvl, 597 FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) && 598 failmode != NULL) { 599 if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE, 600 strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) { 601 zfs_case_solve(hdl, zcp, 602 "fault.fs.zfs.io_failure_continue", 603 B_FALSE); 604 } else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT, 605 strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) { 606 zfs_case_solve(hdl, zcp, 607 "fault.fs.zfs.io_failure_wait", B_FALSE); 608 } 609 } else if (fmd_nvl_class_match(hdl, nvl, 610 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 611 checkremove = B_TRUE; 612 } 613 614 /* 615 * Because I/O errors may be due to device removal, we postpone 616 * any diagnosis until we're sure that we aren't about to 617 * receive a 'resource.fs.zfs.removed' event. 618 */ 619 if (checkremove) { 620 if (zcp->zc_data.zc_has_remove_timer) 621 fmd_timer_remove(hdl, zcp->zc_remove_timer); 622 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL, 623 zfs_remove_timeout); 624 if (!zcp->zc_data.zc_has_remove_timer) { 625 zcp->zc_data.zc_has_remove_timer = 1; 626 zfs_case_serialize(hdl, zcp); 627 } 628 } 629 } 630 } 631 632 /* 633 * The timeout is fired when we diagnosed an I/O error, and it was not due to 634 * device removal (which would cause the timeout to be cancelled). 635 */ 636 /* ARGSUSED */ 637 static void 638 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data) 639 { 640 zfs_case_t *zcp = data; 641 642 if (id == zcp->zc_remove_timer) 643 zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io", B_FALSE); 644 } 645 646 static void 647 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs) 648 { 649 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs); 650 651 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 652 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum); 653 if (zcp->zc_data.zc_serd_io[0] != '\0') 654 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io); 655 if (zcp->zc_data.zc_has_remove_timer) 656 fmd_timer_remove(hdl, zcp->zc_remove_timer); 657 uu_list_remove(zfs_cases, zcp); 658 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 659 } 660 661 /* 662 * We use the fmd gc entry point to look for old cases that no longer apply. 663 * This allows us to keep our set of case data small in a long running system. 664 */ 665 static void 666 zfs_fm_gc(fmd_hdl_t *hdl) 667 { 668 zfs_purge_cases(hdl); 669 } 670 671 static const fmd_hdl_ops_t fmd_ops = { 672 zfs_fm_recv, /* fmdo_recv */ 673 zfs_fm_timeout, /* fmdo_timeout */ 674 zfs_fm_close, /* fmdo_close */ 675 NULL, /* fmdo_stats */ 676 zfs_fm_gc, /* fmdo_gc */ 677 }; 678 679 static const fmd_prop_t fmd_props[] = { 680 { "case_timeout", FMD_TYPE_TIME, "5sec" }, 681 { "checksum_N", FMD_TYPE_UINT32, "10" }, 682 { "checksum_T", FMD_TYPE_TIME, "10min" }, 683 { "io_N", FMD_TYPE_UINT32, "10" }, 684 { "io_T", FMD_TYPE_TIME, "10min" }, 685 { "remove_timeout", FMD_TYPE_TIME, "5sec" }, 686 { NULL, 0, NULL } 687 }; 688 689 static const fmd_hdl_info_t fmd_info = { 690 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props 691 }; 692 693 void 694 _fmd_init(fmd_hdl_t *hdl) 695 { 696 fmd_case_t *cp; 697 libzfs_handle_t *zhdl; 698 699 if ((zhdl = libzfs_init()) == NULL) 700 return; 701 702 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool", 703 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node), 704 NULL, 0)) == NULL) { 705 libzfs_fini(zhdl); 706 return; 707 } 708 709 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) { 710 uu_list_pool_destroy(zfs_case_pool); 711 libzfs_fini(zhdl); 712 return; 713 } 714 715 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 716 uu_list_destroy(zfs_cases); 717 uu_list_pool_destroy(zfs_case_pool); 718 libzfs_fini(zhdl); 719 return; 720 } 721 722 fmd_hdl_setspecific(hdl, zhdl); 723 724 /* 725 * Iterate over all active cases and unserialize the associated buffers, 726 * adding them to our list of open cases. 727 */ 728 for (cp = fmd_case_next(hdl, NULL); 729 cp != NULL; cp = fmd_case_next(hdl, cp)) 730 (void) zfs_case_unserialize(hdl, cp); 731 732 /* 733 * Clear out any old cases that are no longer valid. 734 */ 735 zfs_purge_cases(hdl); 736 737 zfs_remove_timeout = fmd_prop_get_int64(hdl, "remove_timeout"); 738 } 739 740 void 741 _fmd_fini(fmd_hdl_t *hdl) 742 { 743 zfs_case_t *zcp; 744 uu_list_walk_t *walk; 745 libzfs_handle_t *zhdl; 746 747 /* 748 * Remove all active cases. 749 */ 750 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 751 while ((zcp = uu_list_walk_next(walk)) != NULL) { 752 uu_list_remove(zfs_cases, zcp); 753 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 754 } 755 uu_list_walk_end(walk); 756 757 uu_list_destroy(zfs_cases); 758 uu_list_pool_destroy(zfs_case_pool); 759 760 zhdl = fmd_hdl_getspecific(hdl); 761 libzfs_fini(zhdl); 762 } 763