1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <assert.h> 29 #include <stddef.h> 30 #include <strings.h> 31 #include <libuutil.h> 32 #include <libzfs.h> 33 #include <fm/fmd_api.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/fm/protocol.h> 36 #include <sys/fm/fs/zfs.h> 37 38 /* 39 * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'. This 40 * #define reserves enough space for two 64-bit hex values plus the length of 41 * the longest string. 42 */ 43 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum")) 44 45 typedef struct zfs_case_data { 46 uint64_t zc_version; 47 uint64_t zc_ena; 48 uint64_t zc_pool_guid; 49 uint64_t zc_vdev_guid; 50 int zc_has_timer; 51 int zc_pool_state; 52 char zc_serd_checksum[MAX_SERDLEN]; 53 char zc_serd_io[MAX_SERDLEN]; 54 int zc_has_serd_timer; 55 } zfs_case_data_t; 56 57 typedef struct zfs_case { 58 boolean_t zc_present; 59 uint32_t zc_version; 60 zfs_case_data_t zc_data; 61 fmd_case_t *zc_case; 62 uu_list_node_t zc_node; 63 id_t zc_timer; 64 id_t zc_serd_timer; 65 } zfs_case_t; 66 67 #define CASE_DATA "data" 68 #define CASE_DATA_VERSION_INITIAL 1 69 #define CASE_DATA_VERSION_SERD 2 70 71 static hrtime_t zfs_case_timeout; 72 static hrtime_t zfs_serd_timeout; 73 74 uu_list_pool_t *zfs_case_pool; 75 uu_list_t *zfs_cases; 76 77 /* 78 * Write out the persistent representation of an active case. 79 */ 80 static void 81 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp) 82 { 83 /* 84 * Always update cases to the latest version, even if they were the 85 * previous version when unserialized. 86 */ 87 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD; 88 fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data, 89 sizeof (zcp->zc_data)); 90 } 91 92 /* 93 * Read back the persistent representation of an active case. 94 */ 95 static zfs_case_t * 96 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp) 97 { 98 zfs_case_t *zcp; 99 100 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP); 101 zcp->zc_case = cp; 102 103 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data, 104 sizeof (zcp->zc_data)); 105 106 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) { 107 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 108 return (NULL); 109 } 110 111 /* 112 * fmd_buf_read() will have already zeroed out the remainder of the 113 * buffer, so we don't have to do anything special if the version 114 * doesn't include the SERD engine name. 115 */ 116 117 if (zcp->zc_data.zc_has_timer) 118 zcp->zc_timer = fmd_timer_install(hdl, zcp, 119 NULL, zfs_case_timeout); 120 if (zcp->zc_data.zc_has_serd_timer) 121 zcp->zc_serd_timer = fmd_timer_install(hdl, zcp, 122 NULL, zfs_serd_timeout); 123 124 (void) uu_list_insert_before(zfs_cases, NULL, zcp); 125 126 fmd_case_setspecific(hdl, cp, zcp); 127 128 return (zcp); 129 } 130 131 /* 132 * Iterate over any active cases. If any cases are associated with a pool or 133 * vdev which is no longer present on the system, close the associated case. 134 */ 135 static void 136 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd) 137 { 138 uint64_t vdev_guid; 139 uint_t c, children; 140 nvlist_t **child; 141 zfs_case_t *zcp; 142 int ret; 143 144 ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid); 145 assert(ret == 0); 146 147 /* 148 * Mark any cases associated with this (pool, vdev) pair. 149 */ 150 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 151 zcp = uu_list_next(zfs_cases, zcp)) { 152 if (zcp->zc_data.zc_pool_guid == pool_guid && 153 zcp->zc_data.zc_vdev_guid == vdev_guid) 154 zcp->zc_present = B_TRUE; 155 } 156 157 /* 158 * Iterate over all children. 159 */ 160 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child, 161 &children) != 0) { 162 for (c = 0; c < children; c++) 163 zfs_mark_vdev(pool_guid, child[c]); 164 } 165 } 166 167 /*ARGSUSED*/ 168 static int 169 zfs_mark_pool(zpool_handle_t *zhp, void *unused) 170 { 171 zfs_case_t *zcp; 172 uint64_t pool_guid; 173 nvlist_t *config, *vd; 174 int ret; 175 176 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 177 /* 178 * Mark any cases associated with just this pool. 179 */ 180 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 181 zcp = uu_list_next(zfs_cases, zcp)) { 182 if (zcp->zc_data.zc_pool_guid == pool_guid && 183 zcp->zc_data.zc_vdev_guid == 0) 184 zcp->zc_present = B_TRUE; 185 } 186 187 if ((config = zpool_get_config(zhp, NULL)) == NULL) { 188 zpool_close(zhp); 189 return (-1); 190 } 191 192 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd); 193 assert(ret == 0); 194 195 zfs_mark_vdev(pool_guid, vd); 196 197 zpool_close(zhp); 198 199 return (0); 200 } 201 202 static void 203 zfs_purge_cases(fmd_hdl_t *hdl) 204 { 205 zfs_case_t *zcp; 206 uu_list_walk_t *walk; 207 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 208 209 /* 210 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No 211 * matter what we do, we're going to have to stomach a O(vdevs * cases) 212 * algorithm. In reality, both quantities are likely so small that 213 * neither will matter. Given that iterating over pools is more 214 * expensive than iterating over the in-memory case list, we opt for a 215 * 'present' flag in each case that starts off cleared. We then iterate 216 * over all pools, marking those that are still present, and removing 217 * those that aren't found. 218 * 219 * Note that we could also construct an FMRI and rely on 220 * fmd_nvl_fmri_present(), but this would end up doing the same search. 221 */ 222 223 /* 224 * Mark the cases an not present. 225 */ 226 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 227 zcp = uu_list_next(zfs_cases, zcp)) 228 zcp->zc_present = B_FALSE; 229 230 /* 231 * Iterate over all pools and mark the pools and vdevs found. If this 232 * fails (most probably because we're out of memory), then don't close 233 * any of the cases and we cannot be sure they are accurate. 234 */ 235 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) 236 return; 237 238 /* 239 * Remove those cases which were not found. 240 */ 241 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 242 while ((zcp = uu_list_walk_next(walk)) != NULL) { 243 if (!zcp->zc_present) 244 fmd_case_close(hdl, zcp->zc_case); 245 } 246 uu_list_walk_end(walk); 247 } 248 249 /* 250 * Construct the name of a serd engine given the pool/vdev GUID and type (io or 251 * checksum). 252 */ 253 static void 254 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid, 255 const char *type) 256 { 257 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid, 258 vdev_guid, type); 259 } 260 261 /* 262 * Solve a given ZFS case. This first checks to make sure the diagnosis is 263 * still valid, as well as cleaning up any pending timer associated with the 264 * case. 265 */ 266 static void 267 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname, 268 boolean_t checkunusable) 269 { 270 nvlist_t *detector, *fault; 271 boolean_t serialize; 272 273 /* 274 * Construct the detector from the case data. The detector is in the 275 * ZFS scheme, and is either the pool or the vdev, depending on whether 276 * this is a vdev or pool fault. 277 */ 278 if (nvlist_alloc(&detector, NV_UNIQUE_NAME, 0) != 0) 279 return; 280 281 if (nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0) != 0 || 282 nvlist_add_string(detector, FM_FMRI_SCHEME, 283 FM_FMRI_SCHEME_ZFS) != 0 || 284 nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL, 285 zcp->zc_data.zc_pool_guid) != 0 || 286 (zcp->zc_data.zc_vdev_guid != 0 && 287 nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV, 288 zcp->zc_data.zc_vdev_guid) != 0)) { 289 nvlist_free(detector); 290 return; 291 } 292 293 /* 294 * We also want to make sure that the detector (pool or vdev) properly 295 * reflects the diagnosed state, when the fault corresponds to internal 296 * ZFS state (i.e. not checksum or I/O error-induced). Otherwise, a 297 * device which was unavailable early in boot (because the driver/file 298 * wasn't available) and is now healthy will be mis-diagnosed. 299 */ 300 if (!fmd_nvl_fmri_present(hdl, detector) || 301 (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) { 302 fmd_case_close(hdl, zcp->zc_case); 303 nvlist_free(detector); 304 return; 305 } 306 307 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector, NULL, 308 detector); 309 fmd_case_add_suspect(hdl, zcp->zc_case, fault); 310 fmd_case_solve(hdl, zcp->zc_case); 311 312 serialize = B_FALSE; 313 if (zcp->zc_data.zc_has_timer) { 314 fmd_timer_remove(hdl, zcp->zc_timer); 315 zcp->zc_data.zc_has_timer = 0; 316 serialize = B_TRUE; 317 } 318 if (zcp->zc_data.zc_has_serd_timer) { 319 fmd_timer_remove(hdl, zcp->zc_serd_timer); 320 zcp->zc_data.zc_has_serd_timer = 0; 321 serialize = B_TRUE; 322 } 323 if (serialize) 324 zfs_case_serialize(hdl, zcp); 325 326 nvlist_free(detector); 327 } 328 329 /* 330 * Main fmd entry point. 331 */ 332 /*ARGSUSED*/ 333 static void 334 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) 335 { 336 zfs_case_t *zcp, *dcp; 337 int32_t pool_state; 338 uint64_t ena, pool_guid, vdev_guid; 339 nvlist_t *detector; 340 boolean_t isresource; 341 const char *serd; 342 343 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*"); 344 345 if (isresource) { 346 /* 347 * For resources, we don't have a normal payload. 348 */ 349 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 350 &vdev_guid) != 0) 351 pool_state = SPA_LOAD_OPEN; 352 else 353 pool_state = SPA_LOAD_NONE; 354 detector = NULL; 355 } else { 356 (void) nvlist_lookup_nvlist(nvl, 357 FM_EREPORT_DETECTOR, &detector); 358 (void) nvlist_lookup_int32(nvl, 359 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state); 360 } 361 362 /* 363 * We also ignore all ereports generated during an import of a pool, 364 * since the only possible fault (.pool) would result in import failure, 365 * and hence no persistent fault. Some day we may want to do something 366 * with these ereports, so we continue generating them internally. 367 */ 368 if (pool_state == SPA_LOAD_IMPORT) 369 return; 370 371 /* 372 * Device I/O errors are ignored during pool open. 373 */ 374 if (pool_state == SPA_LOAD_OPEN && 375 (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.checksum") || 376 fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io"))) 377 return; 378 379 /* 380 * Determine if this ereport corresponds to an open case. Cases are 381 * indexed by ENA, since ZFS does all the work of chaining together 382 * related ereports. 383 * 384 * We also detect if an ereport corresponds to an open case by context, 385 * such as: 386 * 387 * - An error occurred during an open of a pool with an existing 388 * case. 389 * 390 * - An error occurred for a device which already has an open 391 * case. 392 */ 393 (void) nvlist_lookup_uint64(nvl, 394 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid); 395 if (nvlist_lookup_uint64(nvl, 396 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 397 vdev_guid = 0; 398 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0) 399 ena = 0; 400 401 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 402 zcp = uu_list_next(zfs_cases, zcp)) { 403 /* 404 * Matches a known ENA. 405 */ 406 if (zcp->zc_data.zc_ena == ena) 407 break; 408 409 /* 410 * Matches a case involving load errors for this same pool. 411 */ 412 if (zcp->zc_data.zc_pool_guid == pool_guid && 413 zcp->zc_data.zc_pool_state == SPA_LOAD_OPEN && 414 pool_state == SPA_LOAD_OPEN) 415 break; 416 417 /* 418 * Device errors for the same device. 419 */ 420 if (vdev_guid != 0 && zcp->zc_data.zc_vdev_guid == vdev_guid) 421 break; 422 } 423 424 if (zcp == NULL) { 425 fmd_case_t *cs; 426 zfs_case_data_t data = { 0 }; 427 428 /* 429 * If this is one of our 'fake' resource ereports, and there is 430 * no case open, simply discard it. 431 */ 432 if (isresource) 433 return; 434 435 /* 436 * Open a new case. 437 */ 438 cs = fmd_case_open(hdl, NULL); 439 440 /* 441 * Initialize the case buffer. To commonize code, we actually 442 * create the buffer with existing data, and then call 443 * zfs_case_unserialize() to instantiate the in-core structure. 444 */ 445 fmd_buf_create(hdl, cs, CASE_DATA, 446 sizeof (zfs_case_data_t)); 447 448 data.zc_version = CASE_DATA_VERSION_SERD; 449 data.zc_ena = ena; 450 data.zc_pool_guid = pool_guid; 451 data.zc_vdev_guid = vdev_guid; 452 data.zc_pool_state = (int)pool_state; 453 454 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data)); 455 456 zcp = zfs_case_unserialize(hdl, cs); 457 assert(zcp != NULL); 458 } 459 460 if (isresource) { 461 if (fmd_nvl_class_match(hdl, nvl, 462 "resource.fs.zfs.autoreplace")) { 463 /* 464 * The 'resource.fs.zfs.autoreplace' event indicates 465 * that the pool was loaded with the 'autoreplace' 466 * property set. In this case, any pending device 467 * failures should be ignored, as the asynchronous 468 * autoreplace handling will take care of them. 469 */ 470 fmd_case_close(hdl, zcp->zc_case); 471 } else if (fmd_nvl_class_match(hdl, nvl, 472 "resource.fs.zfs.removed")) { 473 /* 474 * The 'resource.fs.zfs.removed' event indicates that 475 * device removal was detected, and the device was 476 * closed asynchronously. If this is the case, we 477 * assume that any recent I/O errors were due to the 478 * device removal, not any fault of the device itself. 479 * We reset the SERD engine, and cancel any pending 480 * timers. 481 */ 482 if (zcp->zc_data.zc_has_serd_timer) { 483 fmd_timer_remove(hdl, zcp->zc_serd_timer); 484 zcp->zc_data.zc_has_serd_timer = 0; 485 zfs_case_serialize(hdl, zcp); 486 } 487 if (zcp->zc_data.zc_serd_io[0] != '\0') 488 fmd_serd_reset(hdl, 489 zcp->zc_data.zc_serd_io); 490 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 491 fmd_serd_reset(hdl, 492 zcp->zc_data.zc_serd_checksum); 493 } 494 return; 495 } 496 497 /* 498 * Associate the ereport with this case. 499 */ 500 fmd_case_add_ereport(hdl, zcp->zc_case, ep); 501 502 /* 503 * Don't do anything else if this case is already solved. 504 */ 505 if (fmd_case_solved(hdl, zcp->zc_case)) 506 return; 507 508 /* 509 * Determine if we should solve the case and generate a fault. We solve 510 * a case if: 511 * 512 * a. A pool failed to open (ereport.fs.zfs.pool) 513 * b. A device failed to open (ereport.fs.zfs.pool) while a pool 514 * was up and running. 515 * 516 * We may see a series of ereports associated with a pool open, all 517 * chained together by the same ENA. If the pool open succeeds, then 518 * we'll see no further ereports. To detect when a pool open has 519 * succeeded, we associate a timer with the event. When it expires, we 520 * close the case. 521 */ 522 if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.zpool")) { 523 /* 524 * Pool level fault. Before solving the case, go through and 525 * close any open device cases that may be pending. 526 */ 527 for (dcp = uu_list_first(zfs_cases); dcp != NULL; 528 dcp = uu_list_next(zfs_cases, dcp)) { 529 if (dcp->zc_data.zc_pool_guid == 530 zcp->zc_data.zc_pool_guid && 531 dcp->zc_data.zc_vdev_guid != 0) 532 fmd_case_close(hdl, dcp->zc_case); 533 } 534 535 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE); 536 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) { 537 /* 538 * Device fault. If this occurred during pool open, then defer 539 * reporting the fault. If the pool itself could not be opeend, 540 * we only report the pool fault, not every device fault that 541 * may have caused the problem. If we do not see a pool fault 542 * within the timeout period, then we'll solve the device case. 543 */ 544 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE); 545 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io") || 546 fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.checksum") || 547 fmd_nvl_class_match(hdl, nvl, "ererpot.fs.zfs.io_failure")) { 548 char *failmode = NULL; 549 550 /* 551 * If this is a checksum or I/O error, then toss it into the 552 * appropriate SERD engine and check to see if it has fired. 553 * Ideally, we want to do something more sophisticated, 554 * (persistent errors for a single data block, etc). For now, 555 * a single SERD engine is sufficient. 556 */ 557 serd = NULL; 558 if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.io")) { 559 if (zcp->zc_data.zc_serd_io[0] == '\0') { 560 zfs_serd_name(zcp->zc_data.zc_serd_io, 561 pool_guid, vdev_guid, "io"); 562 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io, 563 fmd_prop_get_int32(hdl, "io_N"), 564 fmd_prop_get_int64(hdl, "io_T")); 565 zfs_case_serialize(hdl, zcp); 566 } 567 serd = zcp->zc_data.zc_serd_io; 568 } else if (fmd_nvl_class_match(hdl, nvl, 569 "ereport.fs.zfs.checksum")) { 570 if (zcp->zc_data.zc_serd_checksum[0] == '\0') { 571 zfs_serd_name(zcp->zc_data.zc_serd_checksum, 572 pool_guid, vdev_guid, "checksum"); 573 fmd_serd_create(hdl, 574 zcp->zc_data.zc_serd_checksum, 575 fmd_prop_get_int32(hdl, "checksum_N"), 576 fmd_prop_get_int64(hdl, "checksum_T")); 577 zfs_case_serialize(hdl, zcp); 578 } 579 serd = zcp->zc_data.zc_serd_checksum; 580 } else if (fmd_nvl_class_match(hdl, nvl, 581 "ereport.fs.zfs.io_failure") && (nvlist_lookup_string(nvl, 582 FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) && 583 failmode != NULL) { 584 if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE, 585 strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) { 586 zfs_case_solve(hdl, zcp, 587 "fault.fs.zfs.io_failure_continue", 588 B_FALSE); 589 } else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT, 590 strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) { 591 zfs_case_solve(hdl, zcp, 592 "fault.fs.zfs.io_failure_wait", B_FALSE); 593 } 594 } 595 596 /* 597 * Because I/O errors may be due to device removal, we postpone 598 * any diagnosis until we're sure that we aren't about to 599 * receive a 'resource.fs.zfs.removed' event. 600 */ 601 if (serd && fmd_serd_record(hdl, serd, ep)) { 602 if (zcp->zc_data.zc_has_serd_timer) 603 fmd_timer_remove(hdl, zcp->zc_serd_timer); 604 zcp->zc_serd_timer = fmd_timer_install(hdl, zcp, NULL, 605 zfs_serd_timeout); 606 if (!zcp->zc_data.zc_has_serd_timer) { 607 zcp->zc_data.zc_has_serd_timer = 1; 608 zfs_case_serialize(hdl, zcp); 609 } 610 } 611 } 612 } 613 614 /* 615 * Timeout indicates one of two scenarios: 616 * 617 * - A device could not be opened while opening a pool, but the pool 618 * itself was opened successfully. 619 * 620 * - We diagnosed an I/O error, and it was not due to device removal (which 621 * would cause the timeout to be cancelled). 622 */ 623 /* ARGSUSED */ 624 static void 625 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data) 626 { 627 zfs_case_t *zcp = data; 628 const char *faultname; 629 630 if (id == zcp->zc_timer) { 631 zcp->zc_data.zc_has_timer = 0; 632 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device", B_TRUE); 633 } 634 635 if (id == zcp->zc_serd_timer) { 636 if (zcp->zc_data.zc_serd_io[0] != '\0' && 637 fmd_serd_fired(hdl, zcp->zc_data.zc_serd_io)) { 638 faultname = "fault.fs.zfs.vdev.io"; 639 } else { 640 assert(fmd_serd_fired(hdl, 641 zcp->zc_data.zc_serd_checksum)); 642 faultname = "fault.fs.zfs.vdev.checksum"; 643 } 644 zfs_case_solve(hdl, zcp, faultname, B_FALSE); 645 } 646 } 647 648 static void 649 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs) 650 { 651 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs); 652 653 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 654 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum); 655 if (zcp->zc_data.zc_serd_io[0] != '\0') 656 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io); 657 if (zcp->zc_data.zc_has_timer) 658 fmd_timer_remove(hdl, zcp->zc_timer); 659 if (zcp->zc_data.zc_has_serd_timer) 660 fmd_timer_remove(hdl, zcp->zc_serd_timer); 661 uu_list_remove(zfs_cases, zcp); 662 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 663 } 664 665 /* 666 * We use the fmd gc entry point to look for old cases that no longer apply. 667 * This allows us to keep our set of case data small in a long running system. 668 */ 669 static void 670 zfs_fm_gc(fmd_hdl_t *hdl) 671 { 672 zfs_purge_cases(hdl); 673 } 674 675 static const fmd_hdl_ops_t fmd_ops = { 676 zfs_fm_recv, /* fmdo_recv */ 677 zfs_fm_timeout, /* fmdo_timeout */ 678 zfs_fm_close, /* fmdo_close */ 679 NULL, /* fmdo_stats */ 680 zfs_fm_gc, /* fmdo_gc */ 681 }; 682 683 static const fmd_prop_t fmd_props[] = { 684 { "case_timeout", FMD_TYPE_TIME, "5sec" }, 685 { "checksum_N", FMD_TYPE_UINT32, "10" }, 686 { "checksum_T", FMD_TYPE_TIME, "10min" }, 687 { "io_N", FMD_TYPE_UINT32, "10" }, 688 { "io_T", FMD_TYPE_TIME, "10min" }, 689 { "serd_timeout", FMD_TYPE_TIME, "5sec" }, 690 { NULL, 0, NULL } 691 }; 692 693 static const fmd_hdl_info_t fmd_info = { 694 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props 695 }; 696 697 void 698 _fmd_init(fmd_hdl_t *hdl) 699 { 700 fmd_case_t *cp; 701 libzfs_handle_t *zhdl; 702 703 if ((zhdl = libzfs_init()) == NULL) 704 return; 705 706 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool", 707 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node), 708 NULL, 0)) == NULL) { 709 libzfs_fini(zhdl); 710 return; 711 } 712 713 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) { 714 uu_list_pool_destroy(zfs_case_pool); 715 libzfs_fini(zhdl); 716 return; 717 } 718 719 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 720 uu_list_destroy(zfs_cases); 721 uu_list_pool_destroy(zfs_case_pool); 722 libzfs_fini(zhdl); 723 return; 724 } 725 726 fmd_hdl_setspecific(hdl, zhdl); 727 728 /* 729 * Iterate over all active cases and unserialize the associated buffers, 730 * adding them to our list of open cases. 731 */ 732 for (cp = fmd_case_next(hdl, NULL); 733 cp != NULL; cp = fmd_case_next(hdl, cp)) 734 (void) zfs_case_unserialize(hdl, cp); 735 736 /* 737 * Clear out any old cases that are no longer valid. 738 */ 739 zfs_purge_cases(hdl); 740 741 zfs_case_timeout = fmd_prop_get_int64(hdl, "case_timeout"); 742 zfs_serd_timeout = fmd_prop_get_int64(hdl, "serd_timeout"); 743 } 744 745 void 746 _fmd_fini(fmd_hdl_t *hdl) 747 { 748 zfs_case_t *zcp; 749 uu_list_walk_t *walk; 750 libzfs_handle_t *zhdl; 751 752 /* 753 * Remove all active cases. 754 */ 755 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 756 while ((zcp = uu_list_walk_next(walk)) != NULL) { 757 uu_list_remove(zfs_cases, zcp); 758 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 759 } 760 uu_list_walk_end(walk); 761 762 uu_list_destroy(zfs_cases); 763 uu_list_pool_destroy(zfs_case_pool); 764 765 zhdl = fmd_hdl_getspecific(hdl); 766 libzfs_fini(zhdl); 767 } 768