xref: /illumos-gate/usr/src/cmd/csh/i386/signal.c (revision 4eaa471005973e11a6110b69fe990530b3b95a38)
1 /*
2  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
7 /*	  All Rights Reserved  	*/
8 
9 /*
10  * Copyright (c) 1980 Regents of the University of California.
11  * All rights reserved. The Berkeley Software License Agreement
12  * specifies the terms and conditions for redistribution.
13  */
14 
15 #pragma ident	"%Z%%M%	%I%	%E% SMI"
16 
17 /*
18  * 4.3BSD signal compatibility functions
19  *
20  * the implementation interprets signal masks equal to -1 as "all of the
21  * signals in the signal set", thereby allowing signals with numbers
22  * above 32 to be blocked when referenced in code such as:
23  *
24  *	for (i = 0; i < NSIG; i++)
25  *		mask |= sigmask(i)
26  */
27 
28 #include <sys/types.h>
29 #include <sys/siginfo.h>
30 #include <sys/ucontext.h>
31 #include <signal.h>
32 #include "signal.h"
33 #include <errno.h>
34 #include <stdio.h>
35 
36 #define set2mask(setp) ((setp)->__sigbits[0])
37 #define mask2set(mask, setp) \
38 	((mask) == -1 ? sigfillset(setp) : sigemptyset(setp), (((setp)->__sigbits[0]) = (mask)))
39 
40 void (*_siguhandler[NSIG])() = { 0 };
41 
42 /*
43  * sigstack is emulated with sigaltstack by guessing an appropriate
44  * value for the stack size - on machines that have stacks that grow
45  * upwards, the ss_sp arguments for both functions mean the same thing,
46  * (the initial stack pointer sigstack() is also the stack base
47  * sigaltstack()), so a "very large" value should be chosen for the
48  * stack size - on machines that have stacks that grow downwards, the
49  * ss_sp arguments mean opposite things, so 0 should be used (hopefully
50  * these machines don't have hardware stack bounds registers that pay
51  * attention to sigaltstack()'s size argument.
52  */
53 
54 #ifdef sun
55 #define SIGSTACKSIZE	0
56 #endif
57 
58 
59 /*
60  * sigvechandler is the real signal handler installed for all
61  * signals handled in the 4.3BSD compatibility interface - it translates
62  * SVR4 signal hander arguments into 4.3BSD signal handler arguments
63  * and then calls the real handler
64  */
65 
66 static void
67 sigvechandler(int sig, siginfo_t *sip, ucontext_t *ucp)
68 {
69 	struct sigcontext sc;
70 	int code;
71 	char *addr;
72 	int i, j;
73 	int gwinswitch = 0;
74 
75 	sc.sc_onstack = ((ucp->uc_stack.ss_flags & SS_ONSTACK) != 0);
76 	sc.sc_mask = set2mask(&ucp->uc_sigmask);
77 
78 	/*
79 	 * Machine dependent code begins
80 	 */
81 	sc.sc_sp = (int) ucp->uc_mcontext.gregs[UESP];
82 	sc.sc_pc = (int) ucp->uc_mcontext.gregs[EIP];
83 	sc.sc_ps = (int) ucp->uc_mcontext.gregs[EFL];
84 	sc.sc_eax = (int) ucp->uc_mcontext.gregs[EAX];
85 	sc.sc_edx = (int) ucp->uc_mcontext.gregs[EDX];
86 
87 	/*
88 	 * Machine dependent code ends
89 	 */
90 
91 	if (sip != NULL)
92 		if ((code = sip->si_code) == BUS_OBJERR)
93 			code = SEGV_MAKE_ERR(sip->si_errno);
94 
95 	if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || sig == SIGBUS)
96 		if (sip != NULL)
97 			addr = (char *)sip->si_addr;
98 	else
99 		addr = SIG_NOADDR;
100 
101 	(*_siguhandler[sig])(sig, code, &sc, addr);
102 
103 	if (sc.sc_onstack)
104 		ucp->uc_stack.ss_flags |= SS_ONSTACK;
105 	else
106 		ucp->uc_stack.ss_flags &= ~SS_ONSTACK;
107 	mask2set(sc.sc_mask, &ucp->uc_sigmask);
108 
109 	/*
110 	 * Machine dependent code begins
111 	 */
112 	ucp->uc_mcontext.gregs[UESP] = (int) sc.sc_sp;
113 	ucp->uc_mcontext.gregs[EIP] = (int) sc.sc_pc;
114 	ucp->uc_mcontext.gregs[EFL] = (int) sc.sc_ps;
115 	ucp->uc_mcontext.gregs[EAX] = (int) sc.sc_eax;
116 	ucp->uc_mcontext.gregs[EDX] = (int) sc.sc_edx;
117 	/*
118 	 * Machine dependent code ends
119 	 */
120 
121 	setcontext (ucp);
122 }
123 
124 int
125 sigsetmask(int mask)
126 {
127 	sigset_t oset;
128 	sigset_t nset;
129 
130 	(void) sigprocmask(0, (sigset_t *)0, &nset);
131 	mask2set(mask, &nset);
132 	(void) sigprocmask(SIG_SETMASK, &nset, &oset);
133 	return set2mask(&oset);
134 }
135 
136 int
137 sigblock(int mask)
138 {
139 	sigset_t oset;
140 	sigset_t nset;
141 
142 	(void) sigprocmask(0, (sigset_t *)0, &nset);
143 	mask2set(mask, &nset);
144 	(void) sigprocmask(SIG_BLOCK, &nset, &oset);
145 	return set2mask(&oset);
146 }
147 
148 int
149 sigpause(int mask)
150 {
151 	sigset_t set;
152 
153 	(void) sigprocmask(0, (sigset_t *)0, &set);
154 	mask2set(mask, &set);
155 	return (sigsuspend(&set));
156 }
157 
158 int
159 sigvec(int sig, struct sigvec *nvec, struct sigvec *ovec)
160 {
161         struct sigaction nact;
162         struct sigaction oact;
163         struct sigaction *nactp;
164         void (*ohandler)(), (*nhandler)();
165 
166         if (sig <= 0 || sig >= NSIG) {
167                 errno = EINVAL;
168                 return -1;
169         }
170 
171         ohandler = _siguhandler[sig];
172 
173         if (nvec) {
174 		_sigaction(sig, (struct sigaction *)0, &nact);
175                 nhandler = nvec->sv_handler;
176                 _siguhandler[sig] = nhandler;
177                 if (nhandler != SIG_DFL && nhandler != SIG_IGN)
178                         nact.sa_handler = (void (*)())sigvechandler;
179 		else
180 			nact.sa_handler = nhandler;
181 		mask2set(nvec->sv_mask, &nact.sa_mask);
182 		/*
183 		if ( sig == SIGTSTP || sig == SIGSTOP )
184 			nact.sa_handler = SIG_DFL; 	*/
185 		nact.sa_flags = SA_SIGINFO;
186 		if (!(nvec->sv_flags & SV_INTERRUPT))
187 			nact.sa_flags |= SA_RESTART;
188 		if (nvec->sv_flags & SV_RESETHAND)
189 			nact.sa_flags |= SA_RESETHAND;
190 		if (nvec->sv_flags & SV_ONSTACK)
191 			nact.sa_flags |= SA_ONSTACK;
192 		nactp = &nact;
193         } else
194 		nactp = (struct sigaction *)0;
195 
196         if (_sigaction(sig, nactp, &oact) < 0) {
197                 _siguhandler[sig] = ohandler;
198                 return -1;
199         }
200 
201         if (ovec) {
202 		if (oact.sa_handler == SIG_DFL || oact.sa_handler == SIG_IGN)
203 			ovec->sv_handler = oact.sa_handler;
204 		else
205 			ovec->sv_handler = ohandler;
206 		ovec->sv_mask = set2mask(&oact.sa_mask);
207 		ovec->sv_flags = 0;
208 		if (oact.sa_flags & SA_ONSTACK)
209 			ovec->sv_flags |= SV_ONSTACK;
210 		if (oact.sa_flags & SA_RESETHAND)
211 			ovec->sv_flags |= SV_RESETHAND;
212 		if (!(oact.sa_flags & SA_RESTART))
213 			ovec->sv_flags |= SV_INTERRUPT;
214 	}
215 
216         return 0;
217 }
218 
219 
220 void (*
221 signal(int s, void (*a)()))()
222 {
223         struct sigvec osv;
224 	struct sigvec nsv;
225         static int mask[NSIG];
226         static int flags[NSIG];
227 
228 	nsv.sv_handler = a;
229 	nsv.sv_mask = mask[s];
230 	nsv.sv_flags = flags[s];
231         if (sigvec(s, &nsv, &osv) < 0)
232                 return (SIG_ERR);
233         if (nsv.sv_mask != osv.sv_mask || nsv.sv_flags != osv.sv_flags) {
234                 mask[s] = nsv.sv_mask = osv.sv_mask;
235                 flags[s] = nsv.sv_flags = osv.sv_flags & ~SV_RESETHAND;
236                 if (sigvec(s, &nsv, (struct sigvec *)0) < 0)
237                         return (SIG_ERR);
238         }
239         return (osv.sv_handler);
240 }
241