1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 22 * Copyright 2024 Oxide Computer Company 23 */ 24 25 #include "defs.h" 26 #include "tables.h" 27 #include <fcntl.h> 28 #include <sys/un.h> 29 30 static void initlog(void); 31 static void run_timeouts(void); 32 33 static void advertise(struct sockaddr_in6 *sin6, struct phyint *pi, 34 boolean_t no_prefixes); 35 static void solicit(struct sockaddr_in6 *sin6, struct phyint *pi); 36 static void initifs(boolean_t first); 37 static void check_if_removed(struct phyint *pi); 38 static void loopback_ra_enqueue(struct phyint *pi, 39 struct nd_router_advert *ra, int len); 40 static void loopback_ra_dequeue(void); 41 static void check_daemonize(void); 42 43 struct in6_addr all_nodes_mcast = { { 0xff, 0x2, 0x0, 0x0, 44 0x0, 0x0, 0x0, 0x0, 45 0x0, 0x0, 0x0, 0x0, 46 0x0, 0x0, 0x0, 0x1 } }; 47 48 struct in6_addr all_routers_mcast = { { 0xff, 0x2, 0x0, 0x0, 49 0x0, 0x0, 0x0, 0x0, 50 0x0, 0x0, 0x0, 0x0, 51 0x0, 0x0, 0x0, 0x2 } }; 52 53 static struct sockaddr_in6 v6allnodes = { AF_INET6, 0, 0, 54 { 0xff, 0x2, 0x0, 0x0, 55 0x0, 0x0, 0x0, 0x0, 56 0x0, 0x0, 0x0, 0x0, 57 0x0, 0x0, 0x0, 0x1 } }; 58 59 static struct sockaddr_in6 v6allrouters = { AF_INET6, 0, 0, 60 { 0xff, 0x2, 0x0, 0x0, 61 0x0, 0x0, 0x0, 0x0, 62 0x0, 0x0, 0x0, 0x0, 63 0x0, 0x0, 0x0, 0x2 } }; 64 65 static char **argv0; /* Saved for re-exec on SIGHUP */ 66 67 static uint64_t packet[(IP_MAXPACKET + 1)/8]; 68 69 static int show_ifs = 0; 70 static boolean_t already_daemonized = _B_FALSE; 71 int debug = 0; 72 int no_loopback = 0; /* Do not send RA packets to ourselves */ 73 74 /* 75 * Size of routing socket message used by in.ndpd which includes the header, 76 * space for the RTA_DST, RTA_GATEWAY and RTA_NETMASK (each a sockaddr_in6) 77 * plus space for the RTA_IFP (a sockaddr_dl). 78 */ 79 #define NDP_RTM_MSGLEN sizeof (struct rt_msghdr) + \ 80 sizeof (struct sockaddr_in6) + \ 81 sizeof (struct sockaddr_in6) + \ 82 sizeof (struct sockaddr_in6) + \ 83 sizeof (struct sockaddr_dl) 84 85 /* 86 * These are referenced externally in tables.c in order to fill in the 87 * dynamic portions of the routing socket message and then to send the message 88 * itself. 89 */ 90 int rtsock = -1; /* Routing socket */ 91 struct rt_msghdr *rt_msg; /* Routing socket message */ 92 struct sockaddr_in6 *rta_gateway; /* RTA_GATEWAY sockaddr */ 93 struct sockaddr_dl *rta_ifp; /* RTA_IFP sockaddr */ 94 95 /* 96 * These sockets are used internally in this file. 97 */ 98 static int mibsock = -1; /* mib request socket */ 99 static int cmdsock = -1; /* command socket */ 100 101 static int ndpd_setup_cmd_listener(void); 102 static void ndpd_cmd_handler(int); 103 static int ndpd_process_cmd(int, ipadm_ndpd_msg_t *); 104 static int ndpd_send_error(int, int); 105 static int ndpd_set_autoconf(const char *, boolean_t); 106 static int ndpd_create_addrs(const char *, struct sockaddr_in6, int, 107 boolean_t, boolean_t, char *); 108 static int ndpd_delete_addrs(const char *); 109 static int phyint_check_ipadm_intfid(struct phyint *); 110 111 /* 112 * Return the current time in milliseconds truncated to 113 * fit in an integer. 114 */ 115 uint_t 116 getcurrenttime(void) 117 { 118 struct timeval tp; 119 120 if (gettimeofday(&tp, NULL) < 0) { 121 logperror("getcurrenttime: gettimeofday failed"); 122 exit(1); 123 } 124 return (tp.tv_sec * 1000 + tp.tv_usec / 1000); 125 } 126 127 /* 128 * Output a preformated packet from the packet[] buffer. 129 */ 130 static void 131 sendpacket(struct sockaddr_in6 *sin6, int sock, int size, int flags) 132 { 133 int cc; 134 char abuf[INET6_ADDRSTRLEN]; 135 136 cc = sendto(sock, (char *)packet, size, flags, 137 (struct sockaddr *)sin6, sizeof (*sin6)); 138 if (cc < 0 || cc != size) { 139 if (cc < 0) { 140 logperror("sendpacket: sendto"); 141 } 142 logmsg(LOG_ERR, "sendpacket: wrote %s %d chars, ret=%d\n", 143 inet_ntop(sin6->sin6_family, 144 (void *)&sin6->sin6_addr, 145 abuf, sizeof (abuf)), 146 size, cc); 147 } 148 } 149 150 /* 151 * If possible, place an ND_OPT_SOURCE_LINKADDR option at `optp'. 152 * Return the number of bytes placed in the option. 153 */ 154 static uint_t 155 add_opt_lla(struct phyint *pi, struct nd_opt_lla *optp) 156 { 157 uint_t optlen; 158 uint_t hwaddrlen; 159 struct lifreq lifr; 160 161 /* If this phyint doesn't have a link-layer address, bail */ 162 if (phyint_get_lla(pi, &lifr) == -1) 163 return (0); 164 165 hwaddrlen = lifr.lifr_nd.lnr_hdw_len; 166 /* roundup to multiple of 8 and make padding zero */ 167 optlen = ((sizeof (struct nd_opt_hdr) + hwaddrlen + 7) / 8) * 8; 168 bzero(optp, optlen); 169 optp->nd_opt_lla_type = ND_OPT_SOURCE_LINKADDR; 170 optp->nd_opt_lla_len = optlen / 8; 171 bcopy(lifr.lifr_nd.lnr_hdw_addr, optp->nd_opt_lla_hdw_addr, hwaddrlen); 172 173 return (optlen); 174 } 175 176 /* Send a Router Solicitation */ 177 static void 178 solicit(struct sockaddr_in6 *sin6, struct phyint *pi) 179 { 180 int packetlen = 0; 181 struct nd_router_solicit *rs = (struct nd_router_solicit *)packet; 182 char *pptr = (char *)packet; 183 184 rs->nd_rs_type = ND_ROUTER_SOLICIT; 185 rs->nd_rs_code = 0; 186 rs->nd_rs_cksum = htons(0); 187 rs->nd_rs_reserved = htonl(0); 188 189 packetlen += sizeof (*rs); 190 pptr += sizeof (*rs); 191 192 /* add options */ 193 packetlen += add_opt_lla(pi, (struct nd_opt_lla *)pptr); 194 195 if (debug & D_PKTOUT) { 196 print_route_sol("Sending solicitation to ", pi, rs, packetlen, 197 sin6); 198 } 199 sendpacket(sin6, pi->pi_sock, packetlen, 0); 200 } 201 202 /* 203 * Send a (set of) Router Advertisements and feed them back to ourselves 204 * for processing. Unless no_prefixes is set all prefixes are included. 205 * If there are too many prefix options to fit in one packet multiple 206 * packets will be sent - each containing a subset of the prefix options. 207 */ 208 static void 209 advertise(struct sockaddr_in6 *sin6, struct phyint *pi, boolean_t no_prefixes) 210 { 211 struct nd_opt_prefix_info *po; 212 char *pptr = (char *)packet; 213 struct nd_router_advert *ra; 214 struct adv_prefix *adv_pr; 215 int packetlen = 0; 216 217 ra = (struct nd_router_advert *)pptr; 218 ra->nd_ra_type = ND_ROUTER_ADVERT; 219 ra->nd_ra_code = 0; 220 ra->nd_ra_cksum = htons(0); 221 ra->nd_ra_curhoplimit = pi->pi_AdvCurHopLimit; 222 ra->nd_ra_flags_reserved = 0; 223 if (pi->pi_AdvManagedFlag) 224 ra->nd_ra_flags_reserved |= ND_RA_FLAG_MANAGED; 225 if (pi->pi_AdvOtherConfigFlag) 226 ra->nd_ra_flags_reserved |= ND_RA_FLAG_OTHER; 227 228 if (pi->pi_adv_state == FINAL_ADV) 229 ra->nd_ra_router_lifetime = htons(0); 230 else 231 ra->nd_ra_router_lifetime = htons(pi->pi_AdvDefaultLifetime); 232 ra->nd_ra_reachable = htonl(pi->pi_AdvReachableTime); 233 ra->nd_ra_retransmit = htonl(pi->pi_AdvRetransTimer); 234 235 packetlen = sizeof (*ra); 236 pptr += sizeof (*ra); 237 238 if (pi->pi_adv_state == FINAL_ADV) { 239 if (debug & D_PKTOUT) { 240 print_route_adv("Sending advert (FINAL) to ", pi, 241 ra, packetlen, sin6); 242 } 243 sendpacket(sin6, pi->pi_sock, packetlen, 0); 244 /* Feed packet back in for router operation */ 245 loopback_ra_enqueue(pi, ra, packetlen); 246 return; 247 } 248 249 /* add options */ 250 packetlen += add_opt_lla(pi, (struct nd_opt_lla *)pptr); 251 pptr = (char *)packet + packetlen; 252 253 if (pi->pi_AdvLinkMTU != 0) { 254 struct nd_opt_mtu *mo = (struct nd_opt_mtu *)pptr; 255 256 mo->nd_opt_mtu_type = ND_OPT_MTU; 257 mo->nd_opt_mtu_len = sizeof (struct nd_opt_mtu) / 8; 258 mo->nd_opt_mtu_reserved = 0; 259 mo->nd_opt_mtu_mtu = htonl(pi->pi_AdvLinkMTU); 260 261 packetlen += sizeof (struct nd_opt_mtu); 262 pptr += sizeof (struct nd_opt_mtu); 263 } 264 265 if (no_prefixes) { 266 if (debug & D_PKTOUT) { 267 print_route_adv("Sending advert to ", pi, 268 ra, packetlen, sin6); 269 } 270 sendpacket(sin6, pi->pi_sock, packetlen, 0); 271 /* Feed packet back in for router operation */ 272 loopback_ra_enqueue(pi, ra, packetlen); 273 return; 274 } 275 276 po = (struct nd_opt_prefix_info *)pptr; 277 for (adv_pr = pi->pi_adv_prefix_list; adv_pr != NULL; 278 adv_pr = adv_pr->adv_pr_next) { 279 if (!adv_pr->adv_pr_AdvOnLinkFlag && 280 !adv_pr->adv_pr_AdvAutonomousFlag) { 281 continue; 282 } 283 284 /* 285 * If the prefix doesn't fit in packet send 286 * what we have so far and start with new packet. 287 */ 288 if (packetlen + sizeof (*po) > 289 pi->pi_LinkMTU - sizeof (struct ip6_hdr)) { 290 if (debug & D_PKTOUT) { 291 print_route_adv("Sending advert " 292 "(FRAG) to ", 293 pi, ra, packetlen, sin6); 294 } 295 sendpacket(sin6, pi->pi_sock, packetlen, 0); 296 /* Feed packet back in for router operation */ 297 loopback_ra_enqueue(pi, ra, packetlen); 298 packetlen = sizeof (*ra); 299 pptr = (char *)packet + sizeof (*ra); 300 po = (struct nd_opt_prefix_info *)pptr; 301 } 302 po->nd_opt_pi_type = ND_OPT_PREFIX_INFORMATION; 303 po->nd_opt_pi_len = sizeof (*po)/8; 304 po->nd_opt_pi_flags_reserved = 0; 305 if (adv_pr->adv_pr_AdvOnLinkFlag) { 306 po->nd_opt_pi_flags_reserved |= 307 ND_OPT_PI_FLAG_ONLINK; 308 } 309 if (adv_pr->adv_pr_AdvAutonomousFlag) { 310 po->nd_opt_pi_flags_reserved |= 311 ND_OPT_PI_FLAG_AUTO; 312 } 313 po->nd_opt_pi_prefix_len = adv_pr->adv_pr_prefix_len; 314 /* 315 * If both Adv*Expiration and Adv*Lifetime are 316 * set we prefer the former and make the lifetime 317 * decrement in real time. 318 */ 319 if (adv_pr->adv_pr_AdvValidRealTime) { 320 po->nd_opt_pi_valid_time = 321 htonl(adv_pr->adv_pr_AdvValidExpiration); 322 } else { 323 po->nd_opt_pi_valid_time = 324 htonl(adv_pr->adv_pr_AdvValidLifetime); 325 } 326 if (adv_pr->adv_pr_AdvPreferredRealTime) { 327 po->nd_opt_pi_preferred_time = 328 htonl(adv_pr->adv_pr_AdvPreferredExpiration); 329 } else { 330 po->nd_opt_pi_preferred_time = 331 htonl(adv_pr->adv_pr_AdvPreferredLifetime); 332 } 333 po->nd_opt_pi_reserved2 = htonl(0); 334 po->nd_opt_pi_prefix = adv_pr->adv_pr_prefix; 335 336 po++; 337 packetlen += sizeof (*po); 338 } 339 if (debug & D_PKTOUT) { 340 print_route_adv("Sending advert to ", pi, 341 ra, packetlen, sin6); 342 } 343 sendpacket(sin6, pi->pi_sock, packetlen, 0); 344 /* Feed packet back in for router operation */ 345 loopback_ra_enqueue(pi, ra, packetlen); 346 } 347 348 /* Poll support */ 349 static int pollfd_num = 0; /* Allocated and initialized */ 350 static struct pollfd *pollfds = NULL; 351 352 /* 353 * Add fd to the set being polled. Returns 0 if ok; -1 if failed. 354 */ 355 int 356 poll_add(int fd) 357 { 358 int i; 359 int new_num; 360 struct pollfd *newfds; 361 362 /* Check if already present */ 363 for (i = 0; i < pollfd_num; i++) { 364 if (pollfds[i].fd == fd) 365 return (0); 366 } 367 /* Check for empty spot already present */ 368 for (i = 0; i < pollfd_num; i++) { 369 if (pollfds[i].fd == -1) { 370 pollfds[i].fd = fd; 371 return (0); 372 } 373 } 374 375 /* Allocate space for 32 more fds and initialize to -1 */ 376 new_num = pollfd_num + 32; 377 newfds = realloc(pollfds, new_num * sizeof (struct pollfd)); 378 if (newfds == NULL) { 379 logperror("realloc"); 380 return (-1); 381 } 382 383 newfds[pollfd_num].fd = fd; 384 newfds[pollfd_num++].events = POLLIN; 385 386 for (i = pollfd_num; i < new_num; i++) { 387 newfds[i].fd = -1; 388 newfds[i].events = POLLIN; 389 } 390 pollfd_num = new_num; 391 pollfds = newfds; 392 return (0); 393 } 394 395 /* 396 * Remove fd from the set being polled. Returns 0 if ok; -1 if failed. 397 */ 398 int 399 poll_remove(int fd) 400 { 401 int i; 402 403 /* Check if already present */ 404 for (i = 0; i < pollfd_num; i++) { 405 if (pollfds[i].fd == fd) { 406 pollfds[i].fd = -1; 407 return (0); 408 } 409 } 410 return (-1); 411 } 412 413 /* 414 * Extract information about the ifname (either a physical interface and 415 * the ":0" logical interface or just a logical interface). 416 * If the interface (still) exists in kernel set pr_in_use 417 * for caller to be able to detect interfaces that are removed. 418 * Starts sending advertisements/solicitations when new physical interfaces 419 * are detected. 420 */ 421 static void 422 if_process(int s, char *ifname, boolean_t first) 423 { 424 struct lifreq lifr; 425 struct phyint *pi; 426 struct prefix *pr; 427 char *cp; 428 char phyintname[LIFNAMSIZ + 1]; 429 430 if (debug & D_IFSCAN) 431 logmsg(LOG_DEBUG, "if_process(%s)\n", ifname); 432 433 (void) strncpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); 434 lifr.lifr_name[sizeof (lifr.lifr_name) - 1] = '\0'; 435 if (ioctl(s, SIOCGLIFFLAGS, (char *)&lifr) < 0) { 436 if (errno == ENXIO) { 437 /* 438 * Interface has disappeared 439 */ 440 return; 441 } 442 logperror("if_process: ioctl (get interface flags)"); 443 return; 444 } 445 446 /* 447 * Ignore loopback, point-to-multipoint and VRRP interfaces. 448 * The IP addresses over VRRP interfaces cannot be auto-configured. 449 * Point-to-point interfaces always have IFF_MULTICAST set. 450 */ 451 if (!(lifr.lifr_flags & IFF_MULTICAST) || 452 (lifr.lifr_flags & (IFF_LOOPBACK|IFF_VRRP))) { 453 return; 454 } 455 456 if (!(lifr.lifr_flags & IFF_IPV6)) 457 return; 458 459 (void) strncpy(phyintname, ifname, sizeof (phyintname)); 460 phyintname[sizeof (phyintname) - 1] = '\0'; 461 if ((cp = strchr(phyintname, IF_SEPARATOR)) != NULL) { 462 *cp = '\0'; 463 } 464 465 pi = phyint_lookup(phyintname); 466 if (pi == NULL) { 467 pi = phyint_create(phyintname); 468 if (pi == NULL) { 469 logmsg(LOG_ERR, "if_process: out of memory\n"); 470 return; 471 } 472 } else { 473 /* 474 * if the phyint already exists, synchronize it with 475 * the kernel state. For a newly created phyint, phyint_create 476 * calls phyint_init_from_k(). 477 */ 478 (void) phyint_init_from_k(pi); 479 } 480 /* 481 * Immediately after restart, check with ipmgmtd if there is 482 * any interface id to be configured for this interface. If 483 * interface configuration is still in progress as we're 484 * starting, this will clear pi->pi_autoconf so we don't get 485 * ahead of ourselves; ipadm will poke us later to turn it 486 * back on to restart configuration. 487 */ 488 if (first) { 489 if (phyint_check_ipadm_intfid(pi) == -1) 490 logmsg(LOG_ERR, "Could not get ipadm info\n"); 491 } 492 if (pi->pi_sock == -1 && !(pi->pi_kernel_state & PI_PRESENT)) { 493 /* Interface is not yet present */ 494 if (debug & D_PHYINT) { 495 logmsg(LOG_DEBUG, "if_process: interface not yet " 496 "present %s\n", pi->pi_name); 497 } 498 return; 499 } 500 501 if (pi->pi_sock != -1) { 502 if (poll_add(pi->pi_sock) == -1) { 503 /* 504 * reset state. 505 */ 506 phyint_cleanup(pi); 507 } 508 } 509 510 /* 511 * Check if IFF_ROUTER has been turned off in kernel in which 512 * case we have to turn off AdvSendAdvertisements. 513 * The kernel will automatically turn off IFF_ROUTER if 514 * ip6_forwarding is turned off. 515 * Note that we do not switch back should IFF_ROUTER be turned on. 516 */ 517 if (!first && 518 pi->pi_AdvSendAdvertisements && !(pi->pi_flags & IFF_ROUTER)) { 519 logmsg(LOG_INFO, "No longer a router on %s\n", pi->pi_name); 520 check_to_advertise(pi, START_FINAL_ADV); 521 522 pi->pi_AdvSendAdvertisements = 0; 523 pi->pi_sol_state = NO_SOLICIT; 524 } 525 526 /* 527 * Send advertisments and solicitation only if the interface is 528 * present in the kernel. 529 */ 530 if (pi->pi_kernel_state & PI_PRESENT) { 531 532 if (pi->pi_AdvSendAdvertisements) { 533 if (pi->pi_adv_state == NO_ADV) 534 check_to_advertise(pi, START_INIT_ADV); 535 } else { 536 if (pi->pi_sol_state == NO_SOLICIT) 537 check_to_solicit(pi, START_INIT_SOLICIT); 538 } 539 } 540 541 /* 542 * Track static kernel prefixes to prevent in.ndpd from clobbering 543 * them by creating a struct prefix for each prefix detected in the 544 * kernel. 545 */ 546 pr = prefix_lookup_name(pi, ifname); 547 if (pr == NULL) { 548 pr = prefix_create_name(pi, ifname); 549 if (pr == NULL) { 550 logmsg(LOG_ERR, "if_process: out of memory\n"); 551 return; 552 } 553 if (prefix_init_from_k(pr) == -1) { 554 prefix_delete(pr); 555 return; 556 } 557 } 558 /* Detect prefixes which are removed */ 559 if (pr->pr_kernel_state != 0) 560 pr->pr_in_use = _B_TRUE; 561 562 if ((lifr.lifr_flags & IFF_DUPLICATE) && 563 !(lifr.lifr_flags & IFF_DHCPRUNNING) && 564 (pr->pr_flags & IFF_TEMPORARY)) { 565 in6_addr_t *token; 566 int i; 567 char abuf[INET6_ADDRSTRLEN]; 568 569 if (++pr->pr_attempts >= MAX_DAD_FAILURES) { 570 logmsg(LOG_ERR, "%s: token %s is duplicate after %d " 571 "attempts; disabling temporary addresses on %s", 572 pr->pr_name, inet_ntop(AF_INET6, 573 (void *)&pi->pi_tmp_token, abuf, sizeof (abuf)), 574 pr->pr_attempts, pi->pi_name); 575 pi->pi_TmpAddrsEnabled = 0; 576 tmptoken_delete(pi); 577 prefix_delete(pr); 578 return; 579 } 580 logmsg(LOG_WARNING, "%s: token %s is duplicate; trying again", 581 pr->pr_name, inet_ntop(AF_INET6, (void *)&pi->pi_tmp_token, 582 abuf, sizeof (abuf))); 583 if (!tmptoken_create(pi)) { 584 prefix_delete(pr); 585 return; 586 } 587 token = &pi->pi_tmp_token; 588 for (i = 0; i < 16; i++) { 589 /* 590 * prefix_create ensures that pr_prefix has all-zero 591 * bits after prefixlen. 592 */ 593 pr->pr_address.s6_addr[i] = pr->pr_prefix.s6_addr[i] | 594 token->s6_addr[i]; 595 } 596 if (prefix_lookup_addr_match(pr) != NULL) { 597 prefix_delete(pr); 598 return; 599 } 600 pr->pr_CreateTime = getcurrenttime() / MILLISEC; 601 /* 602 * We've got a new token. Clearing PR_AUTO causes 603 * prefix_update_k to bring the interface up and set the 604 * address. 605 */ 606 pr->pr_kernel_state &= ~PR_AUTO; 607 prefix_update_k(pr); 608 } 609 } 610 611 static int ifsock = -1; 612 613 /* 614 * Scan all interfaces to detect changes as well as new and deleted intefaces 615 * 'first' is set for the initial call only. Do not effect anything. 616 */ 617 static void 618 initifs(boolean_t first) 619 { 620 char *buf; 621 int bufsize; 622 int numifs; 623 int n; 624 struct lifnum lifn; 625 struct lifconf lifc; 626 struct lifreq *lifr; 627 struct phyint *pi; 628 struct phyint *next_pi; 629 struct prefix *pr; 630 631 if (debug & D_IFSCAN) 632 logmsg(LOG_DEBUG, "Reading interface configuration\n"); 633 if (ifsock < 0) { 634 ifsock = socket(AF_INET6, SOCK_DGRAM, 0); 635 if (ifsock < 0) { 636 logperror("initifs: socket"); 637 return; 638 } 639 } 640 lifn.lifn_family = AF_INET6; 641 lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY; 642 if (ioctl(ifsock, SIOCGLIFNUM, (char *)&lifn) < 0) { 643 logperror("initifs: ioctl (get interface numbers)"); 644 return; 645 } 646 numifs = lifn.lifn_count; 647 bufsize = numifs * sizeof (struct lifreq); 648 649 buf = (char *)malloc(bufsize); 650 if (buf == NULL) { 651 logmsg(LOG_ERR, "initifs: out of memory\n"); 652 return; 653 } 654 655 /* 656 * Mark the interfaces so that we can find phyints and prefixes 657 * which have disappeared from the kernel. 658 * if_process will set pr_in_use when it finds the interface 659 * in the kernel. 660 */ 661 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 662 /* 663 * Before re-examining the state of the interfaces, 664 * PI_PRESENT should be cleared from pi_kernel_state. 665 */ 666 pi->pi_kernel_state &= ~PI_PRESENT; 667 for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) { 668 pr->pr_in_use = _B_FALSE; 669 } 670 } 671 672 lifc.lifc_family = AF_INET6; 673 lifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY; 674 lifc.lifc_len = bufsize; 675 lifc.lifc_buf = buf; 676 677 if (ioctl(ifsock, SIOCGLIFCONF, (char *)&lifc) < 0) { 678 logperror("initifs: ioctl (get interface configuration)"); 679 free(buf); 680 return; 681 } 682 683 lifr = (struct lifreq *)lifc.lifc_req; 684 for (n = lifc.lifc_len / sizeof (struct lifreq); n > 0; n--, lifr++) 685 if_process(ifsock, lifr->lifr_name, first); 686 free(buf); 687 688 /* 689 * Detect phyints that have been removed from the kernel. 690 * Since we can't recreate it here (would require ifconfig plumb 691 * logic) we just terminate use of that phyint. 692 */ 693 for (pi = phyints; pi != NULL; pi = next_pi) { 694 next_pi = pi->pi_next; 695 /* 696 * If interface (still) exists in kernel, set 697 * pi_state to indicate that. 698 */ 699 if (pi->pi_kernel_state & PI_PRESENT) { 700 pi->pi_state |= PI_PRESENT; 701 } 702 703 check_if_removed(pi); 704 } 705 if (show_ifs) 706 phyint_print_all(); 707 } 708 709 710 /* 711 * Router advertisement state machine. Used for everything but timer 712 * events which use advertise_event directly. 713 */ 714 void 715 check_to_advertise(struct phyint *pi, enum adv_events event) 716 { 717 uint_t delay; 718 enum adv_states old_state = pi->pi_adv_state; 719 720 if (debug & D_STATE) { 721 logmsg(LOG_DEBUG, "check_to_advertise(%s, %d) state %d\n", 722 pi->pi_name, (int)event, (int)old_state); 723 } 724 delay = advertise_event(pi, event, 0); 725 if (delay != TIMER_INFINITY) { 726 /* Make sure the global next event is updated */ 727 timer_schedule(delay); 728 } 729 730 if (debug & D_STATE) { 731 logmsg(LOG_DEBUG, "check_to_advertise(%s, %d) state %d -> %d\n", 732 pi->pi_name, (int)event, (int)old_state, 733 (int)pi->pi_adv_state); 734 } 735 } 736 737 /* 738 * Router advertisement state machine. 739 * Return the number of milliseconds until next timeout (TIMER_INFINITY 740 * if never). 741 * For the ADV_TIMER event the caller passes in the number of milliseconds 742 * since the last timer event in the 'elapsed' parameter. 743 */ 744 uint_t 745 advertise_event(struct phyint *pi, enum adv_events event, uint_t elapsed) 746 { 747 uint_t delay; 748 749 if (debug & D_STATE) { 750 logmsg(LOG_DEBUG, "advertise_event(%s, %d, %d) state %d\n", 751 pi->pi_name, (int)event, elapsed, (int)pi->pi_adv_state); 752 } 753 check_daemonize(); 754 if (!pi->pi_AdvSendAdvertisements) 755 return (TIMER_INFINITY); 756 if (pi->pi_flags & IFF_NORTEXCH) { 757 if (debug & D_PKTOUT) { 758 logmsg(LOG_DEBUG, "Suppress sending RA packet on %s " 759 "(no route exchange on interface)\n", 760 pi->pi_name); 761 } 762 return (TIMER_INFINITY); 763 } 764 765 switch (event) { 766 case ADV_OFF: 767 pi->pi_adv_state = NO_ADV; 768 return (TIMER_INFINITY); 769 770 case START_INIT_ADV: 771 if (pi->pi_adv_state == INIT_ADV) 772 return (pi->pi_adv_time_left); 773 pi->pi_adv_count = ND_MAX_INITIAL_RTR_ADVERTISEMENTS; 774 pi->pi_adv_time_left = 0; 775 pi->pi_adv_state = INIT_ADV; 776 break; /* send advertisement */ 777 778 case START_FINAL_ADV: 779 if (pi->pi_adv_state == NO_ADV) 780 return (TIMER_INFINITY); 781 if (pi->pi_adv_state == FINAL_ADV) 782 return (pi->pi_adv_time_left); 783 pi->pi_adv_count = ND_MAX_FINAL_RTR_ADVERTISEMENTS; 784 pi->pi_adv_time_left = 0; 785 pi->pi_adv_state = FINAL_ADV; 786 break; /* send advertisement */ 787 788 case RECEIVED_SOLICIT: 789 if (pi->pi_adv_state == NO_ADV) 790 return (TIMER_INFINITY); 791 if (pi->pi_adv_state == SOLICIT_ADV) { 792 if (pi->pi_adv_time_left != 0) 793 return (pi->pi_adv_time_left); 794 break; 795 } 796 delay = GET_RANDOM(0, ND_MAX_RA_DELAY_TIME); 797 if (delay < pi->pi_adv_time_left) 798 pi->pi_adv_time_left = delay; 799 if (pi->pi_adv_time_since_sent < ND_MIN_DELAY_BETWEEN_RAS) { 800 /* 801 * Send an advertisement (ND_MIN_DELAY_BETWEEN_RAS 802 * plus random delay) after the previous 803 * advertisement was sent. 804 */ 805 pi->pi_adv_time_left = delay + 806 ND_MIN_DELAY_BETWEEN_RAS - 807 pi->pi_adv_time_since_sent; 808 } 809 pi->pi_adv_state = SOLICIT_ADV; 810 break; 811 812 case ADV_TIMER: 813 if (pi->pi_adv_state == NO_ADV) 814 return (TIMER_INFINITY); 815 /* Decrease time left */ 816 if (pi->pi_adv_time_left >= elapsed) 817 pi->pi_adv_time_left -= elapsed; 818 else 819 pi->pi_adv_time_left = 0; 820 821 /* Increase time since last advertisement was sent */ 822 pi->pi_adv_time_since_sent += elapsed; 823 break; 824 default: 825 logmsg(LOG_ERR, "advertise_event: Unknown event %d\n", 826 (int)event); 827 return (TIMER_INFINITY); 828 } 829 830 if (pi->pi_adv_time_left != 0) 831 return (pi->pi_adv_time_left); 832 833 /* Send advertisement and calculate next time to send */ 834 if (pi->pi_adv_state == FINAL_ADV) { 835 /* Omit the prefixes */ 836 advertise(&v6allnodes, pi, _B_TRUE); 837 } else { 838 advertise(&v6allnodes, pi, _B_FALSE); 839 } 840 pi->pi_adv_time_since_sent = 0; 841 842 switch (pi->pi_adv_state) { 843 case SOLICIT_ADV: 844 /* 845 * The solicited advertisement has been sent. 846 * Revert to periodic advertisements. 847 */ 848 pi->pi_adv_state = REG_ADV; 849 /* FALLTHRU */ 850 case REG_ADV: 851 pi->pi_adv_time_left = 852 GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval, 853 1000 * pi->pi_MaxRtrAdvInterval); 854 break; 855 856 case INIT_ADV: 857 if (--pi->pi_adv_count > 0) { 858 delay = GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval, 859 1000 * pi->pi_MaxRtrAdvInterval); 860 if (delay > ND_MAX_INITIAL_RTR_ADVERT_INTERVAL) 861 delay = ND_MAX_INITIAL_RTR_ADVERT_INTERVAL; 862 pi->pi_adv_time_left = delay; 863 } else { 864 pi->pi_adv_time_left = 865 GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval, 866 1000 * pi->pi_MaxRtrAdvInterval); 867 pi->pi_adv_state = REG_ADV; 868 } 869 break; 870 871 case FINAL_ADV: 872 if (--pi->pi_adv_count > 0) { 873 pi->pi_adv_time_left = 874 ND_MAX_INITIAL_RTR_ADVERT_INTERVAL; 875 } else { 876 pi->pi_adv_state = NO_ADV; 877 } 878 break; 879 } 880 if (pi->pi_adv_state != NO_ADV) 881 return (pi->pi_adv_time_left); 882 else 883 return (TIMER_INFINITY); 884 } 885 886 /* 887 * Router solicitation state machine. Used for everything but timer 888 * events which use solicit_event directly. 889 */ 890 void 891 check_to_solicit(struct phyint *pi, enum solicit_events event) 892 { 893 uint_t delay; 894 enum solicit_states old_state = pi->pi_sol_state; 895 896 if (debug & D_STATE) { 897 logmsg(LOG_DEBUG, "check_to_solicit(%s, %d) state %d\n", 898 pi->pi_name, (int)event, (int)old_state); 899 } 900 delay = solicit_event(pi, event, 0); 901 if (delay != TIMER_INFINITY) { 902 /* Make sure the global next event is updated */ 903 timer_schedule(delay); 904 } 905 906 if (debug & D_STATE) { 907 logmsg(LOG_DEBUG, "check_to_solicit(%s, %d) state %d -> %d\n", 908 pi->pi_name, (int)event, (int)old_state, 909 (int)pi->pi_sol_state); 910 } 911 } 912 913 static void 914 daemonize_ndpd(void) 915 { 916 struct itimerval it; 917 boolean_t timerval = _B_TRUE; 918 919 /* 920 * Need to get current timer settings so they can be restored 921 * after the fork(), as the it_value and it_interval values for 922 * the ITIMER_REAL timer are reset to 0 in the child process. 923 */ 924 if (getitimer(ITIMER_REAL, &it) < 0) { 925 if (debug & D_TIMER) 926 logmsg(LOG_DEBUG, 927 "daemonize_ndpd: failed to get itimerval\n"); 928 timerval = _B_FALSE; 929 } 930 931 /* Daemonize. */ 932 if (daemon(0, 0) == -1) { 933 logperror("fork"); 934 exit(1); 935 } 936 937 already_daemonized = _B_TRUE; 938 939 /* 940 * Restore timer values, if we were able to save them; if not, 941 * check and set the right value by calling run_timeouts(). 942 */ 943 if (timerval) { 944 if (setitimer(ITIMER_REAL, &it, NULL) < 0) { 945 logperror("daemonize_ndpd: setitimer"); 946 exit(2); 947 } 948 } else { 949 run_timeouts(); 950 } 951 } 952 953 /* 954 * Check to see if the time is right to daemonize. The right time is when: 955 * 956 * 1. We haven't already daemonized. 957 * 2. We are not in debug mode. 958 * 3. All interfaces are marked IFF_NOXMIT. 959 * 4. All non-router interfaces have their prefixes set up and we're 960 * done sending router solicitations on those interfaces without 961 * prefixes. 962 */ 963 static void 964 check_daemonize(void) 965 { 966 struct phyint *pi; 967 968 if (already_daemonized || debug != 0) 969 return; 970 971 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 972 if (!(pi->pi_flags & IFF_NOXMIT)) 973 break; 974 } 975 976 /* 977 * If we can't transmit on any of the interfaces there is no reason 978 * to hold up progress. 979 */ 980 if (pi == NULL) { 981 daemonize_ndpd(); 982 return; 983 } 984 985 /* Check all interfaces. If any are still soliciting, just return. */ 986 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 987 if (pi->pi_AdvSendAdvertisements || 988 !(pi->pi_kernel_state & PI_PRESENT)) 989 continue; 990 991 if (pi->pi_sol_state == INIT_SOLICIT) 992 return; 993 } 994 995 daemonize_ndpd(); 996 } 997 998 /* 999 * Router solicitation state machine. 1000 * Return the number of milliseconds until next timeout (TIMER_INFINITY 1001 * if never). 1002 * For the SOL_TIMER event the caller passes in the number of milliseconds 1003 * since the last timer event in the 'elapsed' parameter. 1004 */ 1005 uint_t 1006 solicit_event(struct phyint *pi, enum solicit_events event, uint_t elapsed) 1007 { 1008 if (debug & D_STATE) { 1009 logmsg(LOG_DEBUG, "solicit_event(%s, %d, %d) state %d\n", 1010 pi->pi_name, (int)event, elapsed, (int)pi->pi_sol_state); 1011 } 1012 1013 if (pi->pi_AdvSendAdvertisements) 1014 return (TIMER_INFINITY); 1015 if (pi->pi_flags & IFF_NORTEXCH) { 1016 if (debug & D_PKTOUT) { 1017 logmsg(LOG_DEBUG, "Suppress sending RS packet on %s " 1018 "(no route exchange on interface)\n", 1019 pi->pi_name); 1020 } 1021 return (TIMER_INFINITY); 1022 } 1023 1024 switch (event) { 1025 case SOLICIT_OFF: 1026 pi->pi_sol_state = NO_SOLICIT; 1027 check_daemonize(); 1028 return (TIMER_INFINITY); 1029 1030 case SOLICIT_DONE: 1031 pi->pi_sol_state = DONE_SOLICIT; 1032 check_daemonize(); 1033 return (TIMER_INFINITY); 1034 1035 case RESTART_INIT_SOLICIT: 1036 /* 1037 * This event allows us to start solicitation over again 1038 * without losing the RA flags. We start solicitation over 1039 * when we are missing an interface prefix for a newly- 1040 * encountered DHCP interface. 1041 */ 1042 if (pi->pi_sol_state == INIT_SOLICIT) 1043 return (pi->pi_sol_time_left); 1044 pi->pi_sol_count = ND_MAX_RTR_SOLICITATIONS; 1045 pi->pi_sol_time_left = 1046 GET_RANDOM(0, ND_MAX_RTR_SOLICITATION_DELAY); 1047 pi->pi_sol_state = INIT_SOLICIT; 1048 break; 1049 1050 case START_INIT_SOLICIT: 1051 if (pi->pi_sol_state == INIT_SOLICIT) 1052 return (pi->pi_sol_time_left); 1053 pi->pi_ra_flags = 0; 1054 pi->pi_sol_count = ND_MAX_RTR_SOLICITATIONS; 1055 pi->pi_sol_time_left = 1056 GET_RANDOM(0, ND_MAX_RTR_SOLICITATION_DELAY); 1057 pi->pi_sol_state = INIT_SOLICIT; 1058 break; 1059 1060 case SOL_TIMER: 1061 if (pi->pi_sol_state == NO_SOLICIT) 1062 return (TIMER_INFINITY); 1063 /* Decrease time left */ 1064 if (pi->pi_sol_time_left >= elapsed) 1065 pi->pi_sol_time_left -= elapsed; 1066 else 1067 pi->pi_sol_time_left = 0; 1068 break; 1069 default: 1070 logmsg(LOG_ERR, "solicit_event: Unknown event %d\n", 1071 (int)event); 1072 return (TIMER_INFINITY); 1073 } 1074 1075 if (pi->pi_sol_time_left != 0) 1076 return (pi->pi_sol_time_left); 1077 1078 /* Send solicitation and calculate next time */ 1079 switch (pi->pi_sol_state) { 1080 case INIT_SOLICIT: 1081 solicit(&v6allrouters, pi); 1082 if (--pi->pi_sol_count == 0) { 1083 if (debug & D_STATE) { 1084 logmsg(LOG_DEBUG, "solicit_event: no routers " 1085 "found on %s; assuming default flags\n", 1086 pi->pi_name); 1087 } 1088 if (pi->pi_autoconf && pi->pi_StatefulAddrConf) { 1089 pi->pi_ra_flags |= ND_RA_FLAG_MANAGED | 1090 ND_RA_FLAG_OTHER; 1091 start_dhcp(pi); 1092 } 1093 pi->pi_sol_state = DONE_SOLICIT; 1094 check_daemonize(); 1095 return (TIMER_INFINITY); 1096 } 1097 pi->pi_sol_time_left = ND_RTR_SOLICITATION_INTERVAL; 1098 return (pi->pi_sol_time_left); 1099 case NO_SOLICIT: 1100 case DONE_SOLICIT: 1101 return (TIMER_INFINITY); 1102 default: 1103 return (pi->pi_sol_time_left); 1104 } 1105 } 1106 1107 /* 1108 * Timer mechanism using relative time (in milliseconds) from the 1109 * previous timer event. Timers exceeding TIMER_INFINITY milliseconds 1110 * will fire after TIMER_INFINITY milliseconds. 1111 */ 1112 static uint_t timer_previous; /* When last SIGALRM occurred */ 1113 static uint_t timer_next; /* Currently scheduled timeout */ 1114 1115 static void 1116 timer_init(void) 1117 { 1118 timer_previous = getcurrenttime(); 1119 timer_next = TIMER_INFINITY; 1120 run_timeouts(); 1121 } 1122 1123 /* 1124 * Make sure the next SIGALRM occurs delay milliseconds from the current 1125 * time if not earlier. 1126 * Handles getcurrenttime (32 bit integer holding milliseconds) wraparound 1127 * by treating differences greater than 0x80000000 as negative. 1128 */ 1129 void 1130 timer_schedule(uint_t delay) 1131 { 1132 uint_t now; 1133 struct itimerval itimerval; 1134 1135 now = getcurrenttime(); 1136 if (debug & D_TIMER) { 1137 logmsg(LOG_DEBUG, "timer_schedule(%u): now %u next %u\n", 1138 delay, now, timer_next); 1139 } 1140 /* Will this timer occur before the currently scheduled SIGALRM? */ 1141 if (delay >= timer_next - now) { 1142 if (debug & D_TIMER) { 1143 logmsg(LOG_DEBUG, "timer_schedule(%u): no action - " 1144 "next in %u ms\n", 1145 delay, timer_next - now); 1146 } 1147 return; 1148 } 1149 if (delay == 0) { 1150 /* Minimum allowed delay */ 1151 delay = 1; 1152 } 1153 timer_next = now + delay; 1154 1155 itimerval.it_value.tv_sec = delay / 1000; 1156 itimerval.it_value.tv_usec = (delay % 1000) * 1000; 1157 itimerval.it_interval.tv_sec = 0; 1158 itimerval.it_interval.tv_usec = 0; 1159 if (debug & D_TIMER) { 1160 logmsg(LOG_DEBUG, "timer_schedule(%u): sec %lu usec %lu\n", 1161 delay, 1162 itimerval.it_value.tv_sec, itimerval.it_value.tv_usec); 1163 } 1164 if (setitimer(ITIMER_REAL, &itimerval, NULL) < 0) { 1165 logperror("timer_schedule: setitimer"); 1166 exit(2); 1167 } 1168 } 1169 1170 /* 1171 * Conditional running of timer. If more than 'minimal_time' millseconds 1172 * since the timer routines were last run we run them. 1173 * Used when packets arrive. 1174 */ 1175 static void 1176 conditional_run_timeouts(uint_t minimal_time) 1177 { 1178 uint_t now; 1179 uint_t elapsed; 1180 1181 now = getcurrenttime(); 1182 elapsed = now - timer_previous; 1183 if (elapsed > minimal_time) { 1184 if (debug & D_TIMER) { 1185 logmsg(LOG_DEBUG, "conditional_run_timeouts: " 1186 "elapsed %d\n", elapsed); 1187 } 1188 run_timeouts(); 1189 } 1190 } 1191 1192 /* 1193 * Timer has fired. 1194 * Determine when the next timer event will occur by asking all 1195 * the timer routines. 1196 * Should not be called from a timer routine but in some cases this is 1197 * done because the code doesn't know that e.g. it was called from 1198 * ifconfig_timer(). In this case the nested run_timeouts will just return but 1199 * the running run_timeouts will ensure to call all the timer functions by 1200 * looping once more. 1201 */ 1202 static void 1203 run_timeouts(void) 1204 { 1205 uint_t now; 1206 uint_t elapsed; 1207 uint_t next; 1208 uint_t nexti; 1209 struct phyint *pi; 1210 struct phyint *next_pi; 1211 struct prefix *pr; 1212 struct prefix *next_pr; 1213 struct adv_prefix *adv_pr; 1214 struct adv_prefix *next_adv_pr; 1215 struct router *dr; 1216 struct router *next_dr; 1217 static boolean_t timeout_running; 1218 static boolean_t do_retry; 1219 1220 if (timeout_running) { 1221 if (debug & D_TIMER) 1222 logmsg(LOG_DEBUG, "run_timeouts: nested call\n"); 1223 do_retry = _B_TRUE; 1224 return; 1225 } 1226 timeout_running = _B_TRUE; 1227 retry: 1228 /* How much time since the last time we were called? */ 1229 now = getcurrenttime(); 1230 elapsed = now - timer_previous; 1231 timer_previous = now; 1232 1233 if (debug & D_TIMER) 1234 logmsg(LOG_DEBUG, "run_timeouts: elapsed %d\n", elapsed); 1235 1236 next = TIMER_INFINITY; 1237 for (pi = phyints; pi != NULL; pi = next_pi) { 1238 next_pi = pi->pi_next; 1239 nexti = phyint_timer(pi, elapsed); 1240 if (nexti != TIMER_INFINITY && nexti < next) 1241 next = nexti; 1242 if (debug & D_TIMER) { 1243 logmsg(LOG_DEBUG, "run_timeouts (pi %s): %d -> %u ms\n", 1244 pi->pi_name, nexti, next); 1245 } 1246 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) { 1247 next_pr = pr->pr_next; 1248 nexti = prefix_timer(pr, elapsed); 1249 if (nexti != TIMER_INFINITY && nexti < next) 1250 next = nexti; 1251 if (debug & D_TIMER) { 1252 logmsg(LOG_DEBUG, "run_timeouts (pr %s): " 1253 "%d -> %u ms\n", pr->pr_name, nexti, next); 1254 } 1255 } 1256 for (adv_pr = pi->pi_adv_prefix_list; adv_pr != NULL; 1257 adv_pr = next_adv_pr) { 1258 next_adv_pr = adv_pr->adv_pr_next; 1259 nexti = adv_prefix_timer(adv_pr, elapsed); 1260 if (nexti != TIMER_INFINITY && nexti < next) 1261 next = nexti; 1262 if (debug & D_TIMER) { 1263 logmsg(LOG_DEBUG, "run_timeouts " 1264 "(adv pr on %s): %d -> %u ms\n", 1265 adv_pr->adv_pr_physical->pi_name, 1266 nexti, next); 1267 } 1268 } 1269 for (dr = pi->pi_router_list; dr != NULL; dr = next_dr) { 1270 next_dr = dr->dr_next; 1271 nexti = router_timer(dr, elapsed); 1272 if (nexti != TIMER_INFINITY && nexti < next) 1273 next = nexti; 1274 if (debug & D_TIMER) { 1275 logmsg(LOG_DEBUG, "run_timeouts (dr): " 1276 "%d -> %u ms\n", nexti, next); 1277 } 1278 } 1279 if (pi->pi_TmpAddrsEnabled) { 1280 nexti = tmptoken_timer(pi, elapsed); 1281 if (nexti != TIMER_INFINITY && nexti < next) 1282 next = nexti; 1283 if (debug & D_TIMER) { 1284 logmsg(LOG_DEBUG, "run_timeouts (tmp on %s): " 1285 "%d -> %u ms\n", pi->pi_name, nexti, next); 1286 } 1287 } 1288 } 1289 /* 1290 * Make sure the timer functions are run at least once 1291 * an hour. 1292 */ 1293 if (next == TIMER_INFINITY) 1294 next = 3600 * 1000; /* 1 hour */ 1295 1296 if (debug & D_TIMER) 1297 logmsg(LOG_DEBUG, "run_timeouts: %u ms\n", next); 1298 timer_schedule(next); 1299 if (do_retry) { 1300 if (debug & D_TIMER) 1301 logmsg(LOG_DEBUG, "run_timeouts: retry\n"); 1302 do_retry = _B_FALSE; 1303 goto retry; 1304 } 1305 timeout_running = _B_FALSE; 1306 } 1307 1308 static int eventpipe_read = -1; /* Used for synchronous signal delivery */ 1309 static int eventpipe_write = -1; 1310 1311 /* 1312 * Ensure that signals are processed synchronously with the rest of 1313 * the code by just writing a one character signal number on the pipe. 1314 * The poll loop will pick this up and process the signal event. 1315 */ 1316 static void 1317 sig_handler(int signo) 1318 { 1319 uchar_t buf = (uchar_t)signo; 1320 1321 if (eventpipe_write == -1) { 1322 logmsg(LOG_ERR, "sig_handler: no pipe\n"); 1323 return; 1324 } 1325 if (write(eventpipe_write, &buf, sizeof (buf)) < 0) 1326 logperror("sig_handler: write"); 1327 } 1328 1329 /* 1330 * Pick up a signal "byte" from the pipe and process it. 1331 */ 1332 static void 1333 in_signal(int fd) 1334 { 1335 uchar_t buf; 1336 struct phyint *pi; 1337 struct phyint *next_pi; 1338 1339 switch (read(fd, &buf, sizeof (buf))) { 1340 case -1: 1341 logperror("in_signal: read"); 1342 exit(1); 1343 /* NOTREACHED */ 1344 case 1: 1345 break; 1346 case 0: 1347 logmsg(LOG_ERR, "in_signal: read eof\n"); 1348 exit(1); 1349 /* NOTREACHED */ 1350 default: 1351 logmsg(LOG_ERR, "in_signal: read > 1\n"); 1352 exit(1); 1353 } 1354 1355 if (debug & D_TIMER) 1356 logmsg(LOG_DEBUG, "in_signal() got %d\n", buf); 1357 1358 switch (buf) { 1359 case SIGALRM: 1360 if (debug & D_TIMER) { 1361 uint_t now = getcurrenttime(); 1362 1363 logmsg(LOG_DEBUG, "in_signal(SIGALRM) delta %u\n", 1364 now - timer_next); 1365 } 1366 timer_next = TIMER_INFINITY; 1367 run_timeouts(); 1368 break; 1369 case SIGHUP: 1370 /* Re-read config file by exec'ing ourselves */ 1371 for (pi = phyints; pi != NULL; pi = next_pi) { 1372 next_pi = pi->pi_next; 1373 if (pi->pi_AdvSendAdvertisements) 1374 check_to_advertise(pi, START_FINAL_ADV); 1375 1376 /* 1377 * Remove all the configured addresses. 1378 * Remove the addrobj names created with ipmgmtd. 1379 * Release the dhcpv6 addresses if any. 1380 * Cleanup the phyints. 1381 */ 1382 phyint_delete(pi); 1383 } 1384 1385 /* 1386 * Prevent fd leaks. Everything gets re-opened at start-up 1387 * time. 0, 1, and 2 are closed and re-opened as 1388 * /dev/null, so we'll leave those open. 1389 */ 1390 closefrom(3); 1391 1392 logmsg(LOG_ERR, "SIGHUP: restart and reread config file\n"); 1393 (void) execv(argv0[0], argv0); 1394 _exit(0177); 1395 /* NOTREACHED */ 1396 case SIGUSR1: 1397 logmsg(LOG_DEBUG, "Printing configuration:\n"); 1398 phyint_print_all(); 1399 break; 1400 case SIGINT: 1401 case SIGTERM: 1402 case SIGQUIT: 1403 for (pi = phyints; pi != NULL; pi = next_pi) { 1404 next_pi = pi->pi_next; 1405 if (pi->pi_AdvSendAdvertisements) 1406 check_to_advertise(pi, START_FINAL_ADV); 1407 1408 phyint_delete(pi); 1409 } 1410 (void) unlink(NDPD_SNMP_SOCKET); 1411 exit(0); 1412 /* NOTREACHED */ 1413 case 255: 1414 /* 1415 * Special "signal" from loopback_ra_enqueue. 1416 * Handle any queued loopback router advertisements. 1417 */ 1418 loopback_ra_dequeue(); 1419 break; 1420 default: 1421 logmsg(LOG_ERR, "in_signal: unknown signal: %d\n", buf); 1422 } 1423 } 1424 1425 /* 1426 * Create pipe for signal delivery and set up signal handlers. 1427 */ 1428 static void 1429 setup_eventpipe(void) 1430 { 1431 int fds[2]; 1432 struct sigaction act; 1433 1434 if ((pipe(fds)) < 0) { 1435 logperror("setup_eventpipe: pipe"); 1436 exit(1); 1437 } 1438 eventpipe_read = fds[0]; 1439 eventpipe_write = fds[1]; 1440 if (poll_add(eventpipe_read) == -1) { 1441 exit(1); 1442 } 1443 act.sa_handler = sig_handler; 1444 act.sa_flags = SA_RESTART; 1445 (void) sigaction(SIGALRM, &act, NULL); 1446 1447 (void) sigset(SIGHUP, sig_handler); 1448 (void) sigset(SIGUSR1, sig_handler); 1449 (void) sigset(SIGTERM, sig_handler); 1450 (void) sigset(SIGINT, sig_handler); 1451 (void) sigset(SIGQUIT, sig_handler); 1452 } 1453 1454 /* 1455 * Create a routing socket for receiving RTM_IFINFO messages and initialize 1456 * the routing socket message header and as much of the sockaddrs as possible. 1457 */ 1458 static int 1459 setup_rtsock(void) 1460 { 1461 int s; 1462 int ret; 1463 char *cp; 1464 struct sockaddr_in6 *sin6; 1465 1466 s = socket(PF_ROUTE, SOCK_RAW, AF_INET6); 1467 if (s == -1) { 1468 logperror("socket(PF_ROUTE)"); 1469 exit(1); 1470 } 1471 ret = fcntl(s, F_SETFL, O_NDELAY|O_NONBLOCK); 1472 if (ret < 0) { 1473 logperror("fcntl(O_NDELAY)"); 1474 exit(1); 1475 } 1476 if (poll_add(s) == -1) { 1477 exit(1); 1478 } 1479 1480 /* 1481 * Allocate storage for the routing socket message. 1482 */ 1483 rt_msg = (struct rt_msghdr *)malloc(NDP_RTM_MSGLEN); 1484 if (rt_msg == NULL) { 1485 logperror("malloc"); 1486 exit(1); 1487 } 1488 1489 /* 1490 * Initialize the routing socket message by zero-filling it and then 1491 * setting the fields where are constant through the lifetime of the 1492 * process. 1493 */ 1494 bzero(rt_msg, NDP_RTM_MSGLEN); 1495 rt_msg->rtm_msglen = NDP_RTM_MSGLEN; 1496 rt_msg->rtm_version = RTM_VERSION; 1497 rt_msg->rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFP; 1498 rt_msg->rtm_pid = getpid(); 1499 if (rt_msg->rtm_pid < 0) { 1500 logperror("getpid"); 1501 exit(1); 1502 } 1503 1504 /* 1505 * The RTA_DST sockaddr does not change during the lifetime of the 1506 * process so it can be completely initialized at this time. 1507 */ 1508 cp = (char *)rt_msg + sizeof (struct rt_msghdr); 1509 sin6 = (struct sockaddr_in6 *)cp; 1510 sin6->sin6_family = AF_INET6; 1511 sin6->sin6_addr = in6addr_any; 1512 1513 /* 1514 * Initialize the constant portion of the RTA_GATEWAY sockaddr. 1515 */ 1516 cp += sizeof (struct sockaddr_in6); 1517 rta_gateway = (struct sockaddr_in6 *)cp; 1518 rta_gateway->sin6_family = AF_INET6; 1519 1520 /* 1521 * The RTA_NETMASK sockaddr does not change during the lifetime of the 1522 * process so it can be completely initialized at this time. 1523 */ 1524 cp += sizeof (struct sockaddr_in6); 1525 sin6 = (struct sockaddr_in6 *)cp; 1526 sin6->sin6_family = AF_INET6; 1527 sin6->sin6_addr = in6addr_any; 1528 1529 /* 1530 * Initialize the constant portion of the RTA_IFP sockaddr. 1531 */ 1532 cp += sizeof (struct sockaddr_in6); 1533 rta_ifp = (struct sockaddr_dl *)cp; 1534 rta_ifp->sdl_family = AF_LINK; 1535 1536 return (s); 1537 } 1538 1539 static int 1540 setup_mibsock(void) 1541 { 1542 int sock; 1543 int ret; 1544 int len; 1545 struct sockaddr_un laddr; 1546 1547 sock = socket(AF_UNIX, SOCK_DGRAM, 0); 1548 if (sock == -1) { 1549 logperror("setup_mibsock: socket(AF_UNIX)"); 1550 exit(1); 1551 } 1552 1553 bzero(&laddr, sizeof (laddr)); 1554 laddr.sun_family = AF_UNIX; 1555 1556 (void) strncpy(laddr.sun_path, NDPD_SNMP_SOCKET, 1557 sizeof (laddr.sun_path)); 1558 len = sizeof (struct sockaddr_un); 1559 1560 (void) unlink(NDPD_SNMP_SOCKET); 1561 ret = bind(sock, (struct sockaddr *)&laddr, len); 1562 if (ret < 0) { 1563 logperror("setup_mibsock: bind\n"); 1564 exit(1); 1565 } 1566 1567 ret = fcntl(sock, F_SETFL, O_NONBLOCK); 1568 if (ret < 0) { 1569 logperror("fcntl(O_NONBLOCK)"); 1570 exit(1); 1571 } 1572 if (poll_add(sock) == -1) { 1573 exit(1); 1574 } 1575 return (sock); 1576 } 1577 1578 /* 1579 * Retrieve one routing socket message. If RTM_IFINFO indicates 1580 * new phyint do a full scan of the interfaces. If RTM_IFINFO 1581 * indicates an existing phyint, only scan that phyint and associated 1582 * prefixes. 1583 */ 1584 static void 1585 process_rtsock(int rtsock) 1586 { 1587 int n; 1588 #define MSG_SIZE 2048/8 1589 int64_t msg[MSG_SIZE]; 1590 struct rt_msghdr *rtm; 1591 struct if_msghdr *ifm; 1592 struct phyint *pi; 1593 struct prefix *pr; 1594 boolean_t need_initifs = _B_FALSE; 1595 boolean_t need_ifscan = _B_FALSE; 1596 int64_t ifscan_msg[10][MSG_SIZE]; 1597 int ifscan_index = 0; 1598 int i; 1599 1600 /* Empty the rtsock and coealesce all the work that we have */ 1601 while (ifscan_index < 10) { 1602 n = read(rtsock, msg, sizeof (msg)); 1603 if (n <= 0) { 1604 /* No more messages */ 1605 break; 1606 } 1607 rtm = (struct rt_msghdr *)msg; 1608 if (rtm->rtm_version != RTM_VERSION) { 1609 logmsg(LOG_ERR, 1610 "process_rtsock: version %d not understood\n", 1611 rtm->rtm_version); 1612 return; 1613 } 1614 switch (rtm->rtm_type) { 1615 case RTM_NEWADDR: 1616 case RTM_DELADDR: 1617 /* 1618 * Some logical interface has changed - have to scan 1619 * everything to determine what actually changed. 1620 */ 1621 if (debug & D_IFSCAN) { 1622 logmsg(LOG_DEBUG, "process_rtsock: " 1623 "message %d\n", rtm->rtm_type); 1624 } 1625 need_initifs = _B_TRUE; 1626 break; 1627 case RTM_IFINFO: 1628 need_ifscan = _B_TRUE; 1629 (void) memcpy(ifscan_msg[ifscan_index], rtm, 1630 sizeof (msg)); 1631 ifscan_index++; 1632 /* Handled below */ 1633 break; 1634 default: 1635 /* Not interesting */ 1636 break; 1637 } 1638 } 1639 /* 1640 * If we do full scan i.e initifs, we don't need to 1641 * scan a particular interface as we should have 1642 * done that as part of initifs. 1643 */ 1644 if (need_initifs) { 1645 initifs(_B_FALSE); 1646 return; 1647 } 1648 1649 if (!need_ifscan) 1650 return; 1651 1652 for (i = 0; i < ifscan_index; i++) { 1653 ifm = (struct if_msghdr *)ifscan_msg[i]; 1654 if (debug & D_IFSCAN) 1655 logmsg(LOG_DEBUG, "process_rtsock: index %d\n", 1656 ifm->ifm_index); 1657 1658 pi = phyint_lookup_on_index(ifm->ifm_index); 1659 if (pi == NULL) { 1660 /* 1661 * A new physical interface. Do a full scan of the 1662 * to catch any new logical interfaces. 1663 */ 1664 initifs(_B_FALSE); 1665 return; 1666 } 1667 1668 if (ifm->ifm_flags != (uint_t)pi->pi_flags) { 1669 if (debug & D_IFSCAN) { 1670 logmsg(LOG_DEBUG, "process_rtsock: clr for " 1671 "%s old flags 0x%llx new flags 0x%x\n", 1672 pi->pi_name, pi->pi_flags, ifm->ifm_flags); 1673 } 1674 } 1675 1676 1677 /* 1678 * Mark the interfaces so that we can find phyints and prefixes 1679 * which have disappeared from the kernel. 1680 * if_process will set pr_in_use when it finds the 1681 * interface in the kernel. 1682 * Before re-examining the state of the interfaces, 1683 * PI_PRESENT should be cleared from pi_kernel_state. 1684 */ 1685 pi->pi_kernel_state &= ~PI_PRESENT; 1686 for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) { 1687 pr->pr_in_use = _B_FALSE; 1688 } 1689 1690 if (ifsock < 0) { 1691 ifsock = socket(AF_INET6, SOCK_DGRAM, 0); 1692 if (ifsock < 0) { 1693 logperror("process_rtsock: socket"); 1694 return; 1695 } 1696 } 1697 if_process(ifsock, pi->pi_name, _B_FALSE); 1698 for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) { 1699 if_process(ifsock, pr->pr_name, _B_FALSE); 1700 } 1701 /* 1702 * If interface (still) exists in kernel, set 1703 * pi_state to indicate that. 1704 */ 1705 if (pi->pi_kernel_state & PI_PRESENT) { 1706 pi->pi_state |= PI_PRESENT; 1707 } 1708 check_if_removed(pi); 1709 if (show_ifs) 1710 phyint_print_all(); 1711 } 1712 } 1713 1714 static void 1715 process_mibsock(int mibsock) 1716 { 1717 struct phyint *pi; 1718 socklen_t fromlen; 1719 struct sockaddr_un from; 1720 ndpd_info_t ndpd_info; 1721 ssize_t len; 1722 int command; 1723 1724 fromlen = (socklen_t)sizeof (from); 1725 len = recvfrom(mibsock, &command, sizeof (int), 0, 1726 (struct sockaddr *)&from, &fromlen); 1727 1728 if (len < sizeof (int) || command != NDPD_SNMP_INFO_REQ) { 1729 logperror("process_mibsock: bad command \n"); 1730 return; 1731 } 1732 1733 ndpd_info.info_type = NDPD_SNMP_INFO_RESPONSE; 1734 ndpd_info.info_version = NDPD_SNMP_INFO_VER; 1735 ndpd_info.info_num_of_phyints = num_of_phyints; 1736 1737 (void) sendto(mibsock, &ndpd_info, sizeof (ndpd_info_t), 0, 1738 (struct sockaddr *)&from, fromlen); 1739 1740 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 1741 int prefixes; 1742 int routers; 1743 struct prefix *prefix_list; 1744 struct router *router_list; 1745 ndpd_phyint_info_t phyint; 1746 ndpd_prefix_info_t prefix; 1747 ndpd_router_info_t router; 1748 /* 1749 * get number of prefixes 1750 */ 1751 routers = 0; 1752 prefixes = 0; 1753 prefix_list = pi->pi_prefix_list; 1754 while (prefix_list != NULL) { 1755 prefixes++; 1756 prefix_list = prefix_list->pr_next; 1757 } 1758 1759 /* 1760 * get number of routers 1761 */ 1762 router_list = pi->pi_router_list; 1763 while (router_list != NULL) { 1764 routers++; 1765 router_list = router_list->dr_next; 1766 } 1767 1768 phyint.phyint_info_type = NDPD_PHYINT_INFO; 1769 phyint.phyint_info_version = NDPD_PHYINT_INFO_VER; 1770 phyint.phyint_index = pi->pi_index; 1771 bcopy(pi->pi_config, 1772 phyint.phyint_config, I_IFSIZE); 1773 phyint.phyint_num_of_prefixes = prefixes; 1774 phyint.phyint_num_of_routers = routers; 1775 (void) sendto(mibsock, &phyint, sizeof (phyint), 0, 1776 (struct sockaddr *)&from, fromlen); 1777 1778 /* 1779 * Copy prefix information 1780 */ 1781 1782 prefix_list = pi->pi_prefix_list; 1783 while (prefix_list != NULL) { 1784 prefix.prefix_info_type = NDPD_PREFIX_INFO; 1785 prefix.prefix_info_version = NDPD_PREFIX_INFO_VER; 1786 prefix.prefix_prefix = prefix_list->pr_prefix; 1787 prefix.prefix_len = prefix_list->pr_prefix_len; 1788 prefix.prefix_flags = prefix_list->pr_flags; 1789 prefix.prefix_phyint_index = pi->pi_index; 1790 prefix.prefix_ValidLifetime = 1791 prefix_list->pr_ValidLifetime; 1792 prefix.prefix_PreferredLifetime = 1793 prefix_list->pr_PreferredLifetime; 1794 prefix.prefix_OnLinkLifetime = 1795 prefix_list->pr_OnLinkLifetime; 1796 prefix.prefix_OnLinkFlag = 1797 prefix_list->pr_OnLinkFlag; 1798 prefix.prefix_AutonomousFlag = 1799 prefix_list->pr_AutonomousFlag; 1800 (void) sendto(mibsock, &prefix, sizeof (prefix), 0, 1801 (struct sockaddr *)&from, fromlen); 1802 prefix_list = prefix_list->pr_next; 1803 } 1804 /* 1805 * Copy router information 1806 */ 1807 router_list = pi->pi_router_list; 1808 while (router_list != NULL) { 1809 router.router_info_type = NDPD_ROUTER_INFO; 1810 router.router_info_version = NDPD_ROUTER_INFO_VER; 1811 router.router_address = router_list->dr_address; 1812 router.router_lifetime = router_list->dr_lifetime; 1813 router.router_phyint_index = pi->pi_index; 1814 (void) sendto(mibsock, &router, sizeof (router), 0, 1815 (struct sockaddr *)&from, fromlen); 1816 router_list = router_list->dr_next; 1817 } 1818 } 1819 } 1820 1821 /* 1822 * Look if the phyint or one of its prefixes have been removed from 1823 * the kernel and take appropriate action. 1824 * Uses pr_in_use and pi{,_kernel}_state. 1825 */ 1826 static void 1827 check_if_removed(struct phyint *pi) 1828 { 1829 struct prefix *pr, *next_pr; 1830 1831 /* 1832 * Detect prefixes which are removed. 1833 * Static prefixes are just removed from our tables. 1834 * Non-static prefixes are recreated i.e. in.ndpd takes precedence 1835 * over manually removing prefixes via ifconfig. 1836 */ 1837 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) { 1838 next_pr = pr->pr_next; 1839 if (!pr->pr_in_use) { 1840 /* Clear everything except PR_STATIC */ 1841 pr->pr_kernel_state &= PR_STATIC; 1842 if (pr->pr_state & PR_STATIC) 1843 prefix_update_ipadm_addrobj(pr, _B_FALSE); 1844 pr->pr_name[0] = '\0'; 1845 if (pr->pr_state & PR_STATIC) { 1846 prefix_delete(pr); 1847 } else if (!(pi->pi_kernel_state & PI_PRESENT)) { 1848 /* 1849 * Ensure that there are no future attempts to 1850 * run prefix_update_k since the phyint is gone. 1851 */ 1852 pr->pr_state = pr->pr_kernel_state; 1853 } else if (pr->pr_state != pr->pr_kernel_state) { 1854 logmsg(LOG_INFO, "Prefix manually removed " 1855 "on %s; recreating\n", pi->pi_name); 1856 prefix_update_k(pr); 1857 } 1858 } 1859 } 1860 1861 /* 1862 * Detect phyints that have been removed from the kernel, and tear 1863 * down any prefixes we created that are associated with that phyint. 1864 * (NOTE: IPMP depends on in.ndpd tearing down these prefixes so an 1865 * administrator can easily place an IP interface with ADDRCONF'd 1866 * addresses into an IPMP group.) 1867 */ 1868 if (!(pi->pi_kernel_state & PI_PRESENT) && 1869 (pi->pi_state & PI_PRESENT)) { 1870 logmsg(LOG_ERR, "Interface %s has been removed from kernel. " 1871 "in.ndpd will no longer use it\n", pi->pi_name); 1872 1873 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) { 1874 next_pr = pr->pr_next; 1875 if (pr->pr_state & PR_AUTO) 1876 prefix_update_ipadm_addrobj(pr, _B_FALSE); 1877 prefix_delete(pr); 1878 } 1879 1880 /* 1881 * Clear state so that should the phyint reappear we will 1882 * start with initial advertisements or solicitations. 1883 */ 1884 phyint_cleanup(pi); 1885 } 1886 } 1887 1888 1889 /* 1890 * Queuing mechanism for router advertisements that are sent by in.ndpd 1891 * and that also need to be processed by in.ndpd. 1892 * Uses "signal number" 255 to indicate to the main poll loop 1893 * that there is something to dequeue and send to incomining_ra(). 1894 */ 1895 struct raq { 1896 struct raq *raq_next; 1897 struct phyint *raq_pi; 1898 int raq_packetlen; 1899 uchar_t *raq_packet; 1900 }; 1901 static struct raq *raq_head = NULL; 1902 1903 /* 1904 * Allocate a struct raq and memory for the packet. 1905 * Send signal 255 to have poll dequeue. 1906 */ 1907 static void 1908 loopback_ra_enqueue(struct phyint *pi, struct nd_router_advert *ra, int len) 1909 { 1910 struct raq *raq; 1911 struct raq **raqp; 1912 1913 if (no_loopback) 1914 return; 1915 1916 if (debug & D_PKTOUT) 1917 logmsg(LOG_DEBUG, "loopback_ra_enqueue for %s\n", pi->pi_name); 1918 1919 raq = calloc(sizeof (struct raq), 1); 1920 if (raq == NULL) { 1921 logmsg(LOG_ERR, "loopback_ra_enqueue: out of memory\n"); 1922 return; 1923 } 1924 raq->raq_packet = malloc(len); 1925 if (raq->raq_packet == NULL) { 1926 free(raq); 1927 logmsg(LOG_ERR, "loopback_ra_enqueue: out of memory\n"); 1928 return; 1929 } 1930 bcopy(ra, raq->raq_packet, len); 1931 raq->raq_packetlen = len; 1932 raq->raq_pi = pi; 1933 1934 /* Tail insert */ 1935 raqp = &raq_head; 1936 while (*raqp != NULL) 1937 raqp = &((*raqp)->raq_next); 1938 *raqp = raq; 1939 1940 /* Signal for poll loop */ 1941 sig_handler(255); 1942 } 1943 1944 /* 1945 * Dequeue and process all queued advertisements. 1946 */ 1947 static void 1948 loopback_ra_dequeue(void) 1949 { 1950 struct sockaddr_in6 from = IN6ADDR_LOOPBACK_INIT; 1951 struct raq *raq; 1952 1953 if (debug & D_PKTIN) 1954 logmsg(LOG_DEBUG, "loopback_ra_dequeue()\n"); 1955 1956 while ((raq = raq_head) != NULL) { 1957 raq_head = raq->raq_next; 1958 raq->raq_next = NULL; 1959 1960 if (debug & D_PKTIN) { 1961 logmsg(LOG_DEBUG, "loopback_ra_dequeue for %s\n", 1962 raq->raq_pi->pi_name); 1963 } 1964 1965 incoming_ra(raq->raq_pi, 1966 (struct nd_router_advert *)raq->raq_packet, 1967 raq->raq_packetlen, &from, _B_TRUE); 1968 free(raq->raq_packet); 1969 free(raq); 1970 } 1971 } 1972 1973 1974 static void 1975 usage(char *cmd) 1976 { 1977 (void) fprintf(stderr, 1978 "usage: %s [ -adt ] [-f <config file>]\n", cmd); 1979 } 1980 1981 int 1982 main(int argc, char *argv[]) 1983 { 1984 int i; 1985 struct phyint *pi; 1986 int c; 1987 char *config_file = PATH_NDPD_CONF; 1988 boolean_t file_required = _B_FALSE; 1989 1990 argv0 = argv; 1991 srandom(gethostid()); 1992 (void) umask(0022); 1993 1994 while ((c = getopt(argc, argv, "adD:ntIf:")) != EOF) { 1995 switch (c) { 1996 case 'a': 1997 /* 1998 * The StatelessAddrConf variable in ndpd.conf, if 1999 * present, will override this setting. 2000 */ 2001 ifdefaults[I_StatelessAddrConf].cf_value = 0; 2002 break; 2003 case 'd': 2004 debug = D_ALL; 2005 break; 2006 case 'D': 2007 i = strtol((char *)optarg, NULL, 0); 2008 if (i == 0) { 2009 (void) fprintf(stderr, "Bad debug flags: %s\n", 2010 (char *)optarg); 2011 exit(1); 2012 } 2013 debug |= i; 2014 break; 2015 case 'n': 2016 no_loopback = 1; 2017 break; 2018 case 'I': 2019 show_ifs = 1; 2020 break; 2021 case 't': 2022 debug |= D_PKTIN | D_PKTOUT | D_PKTBAD; 2023 break; 2024 case 'f': 2025 config_file = (char *)optarg; 2026 file_required = _B_TRUE; 2027 break; 2028 case '?': 2029 usage(argv[0]); 2030 exit(1); 2031 } 2032 } 2033 2034 if (parse_config(config_file, file_required) == -1) 2035 exit(2); 2036 2037 if (show_ifs) 2038 phyint_print_all(); 2039 2040 if (debug == 0) 2041 initlog(); 2042 2043 cmdsock = ndpd_setup_cmd_listener(); 2044 setup_eventpipe(); 2045 rtsock = setup_rtsock(); 2046 mibsock = setup_mibsock(); 2047 timer_init(); 2048 initifs(_B_TRUE); 2049 2050 check_daemonize(); 2051 2052 for (;;) { 2053 if (poll(pollfds, pollfd_num, -1) < 0) { 2054 if (errno == EINTR) 2055 continue; 2056 logperror("main: poll"); 2057 exit(1); 2058 } 2059 for (i = 0; i < pollfd_num; i++) { 2060 if (!(pollfds[i].revents & POLLIN)) 2061 continue; 2062 if (pollfds[i].fd == eventpipe_read) { 2063 in_signal(eventpipe_read); 2064 break; 2065 } 2066 if (pollfds[i].fd == rtsock) { 2067 process_rtsock(rtsock); 2068 break; 2069 } 2070 if (pollfds[i].fd == mibsock) { 2071 process_mibsock(mibsock); 2072 break; 2073 } 2074 if (pollfds[i].fd == cmdsock) { 2075 ndpd_cmd_handler(cmdsock); 2076 break; 2077 } 2078 /* 2079 * Run timer routine to advance clock if more than 2080 * half a second since the clock was advanced. 2081 * This limits CPU usage under severe packet 2082 * arrival rates but it creates a slight inaccuracy 2083 * in the timer mechanism. 2084 */ 2085 conditional_run_timeouts(500U); 2086 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 2087 if (pollfds[i].fd == pi->pi_sock) { 2088 in_data(pi); 2089 break; 2090 } 2091 } 2092 } 2093 } 2094 /* NOTREACHED */ 2095 return (0); 2096 } 2097 2098 /* 2099 * LOGGER 2100 */ 2101 2102 static boolean_t logging = _B_FALSE; 2103 2104 static void 2105 initlog(void) 2106 { 2107 logging = _B_TRUE; 2108 openlog("in.ndpd", LOG_PID | LOG_CONS, LOG_DAEMON); 2109 } 2110 2111 /* Print the date/time without a trailing carridge return */ 2112 static void 2113 fprintdate(FILE *file) 2114 { 2115 char buf[BUFSIZ]; 2116 struct tm tms; 2117 time_t now; 2118 2119 now = time(NULL); 2120 (void) localtime_r(&now, &tms); 2121 (void) strftime(buf, sizeof (buf), "%h %d %X", &tms); 2122 (void) fprintf(file, "%s ", buf); 2123 } 2124 2125 /* PRINTFLIKE2 */ 2126 void 2127 logmsg(int level, const char *fmt, ...) 2128 { 2129 va_list ap; 2130 va_start(ap, fmt); 2131 2132 if (logging) { 2133 vsyslog(level, fmt, ap); 2134 } else { 2135 fprintdate(stderr); 2136 (void) vfprintf(stderr, fmt, ap); 2137 } 2138 va_end(ap); 2139 } 2140 2141 void 2142 logperror(const char *str) 2143 { 2144 if (logging) { 2145 syslog(LOG_ERR, "%s: %m\n", str); 2146 } else { 2147 fprintdate(stderr); 2148 (void) fprintf(stderr, "%s: %s\n", str, strerror(errno)); 2149 } 2150 } 2151 2152 void 2153 logperror_pi(const struct phyint *pi, const char *str) 2154 { 2155 if (logging) { 2156 syslog(LOG_ERR, "%s (interface %s): %m\n", 2157 str, pi->pi_name); 2158 } else { 2159 fprintdate(stderr); 2160 (void) fprintf(stderr, "%s (interface %s): %s\n", 2161 str, pi->pi_name, strerror(errno)); 2162 } 2163 } 2164 2165 void 2166 logperror_pr(const struct prefix *pr, const char *str) 2167 { 2168 if (logging) { 2169 syslog(LOG_ERR, "%s (prefix %s if %s): %m\n", 2170 str, pr->pr_name, pr->pr_physical->pi_name); 2171 } else { 2172 fprintdate(stderr); 2173 (void) fprintf(stderr, "%s (prefix %s if %s): %s\n", 2174 str, pr->pr_name, pr->pr_physical->pi_name, 2175 strerror(errno)); 2176 } 2177 } 2178 2179 static int 2180 ndpd_setup_cmd_listener(void) 2181 { 2182 int sock; 2183 int ret; 2184 struct sockaddr_un servaddr; 2185 2186 sock = socket(AF_UNIX, SOCK_STREAM, 0); 2187 if (sock < 0) { 2188 logperror("socket"); 2189 exit(1); 2190 } 2191 2192 bzero(&servaddr, sizeof (servaddr)); 2193 servaddr.sun_family = AF_UNIX; 2194 (void) strlcpy(servaddr.sun_path, IPADM_UDS_PATH, 2195 sizeof (servaddr.sun_path)); 2196 (void) unlink(servaddr.sun_path); 2197 ret = bind(sock, (struct sockaddr *)&servaddr, sizeof (servaddr)); 2198 if (ret < 0) { 2199 logperror("bind"); 2200 exit(1); 2201 } 2202 if (listen(sock, 30) < 0) { 2203 logperror("listen"); 2204 exit(1); 2205 } 2206 if (poll_add(sock) == -1) { 2207 logmsg(LOG_ERR, "command socket could not be added to the " 2208 "polling set\n"); 2209 exit(1); 2210 } 2211 2212 return (sock); 2213 } 2214 2215 /* 2216 * Commands received over the command socket come here 2217 */ 2218 static void 2219 ndpd_cmd_handler(int sock) 2220 { 2221 int newfd; 2222 struct sockaddr_storage peer; 2223 socklen_t peerlen; 2224 ipadm_ndpd_msg_t ndpd_msg; 2225 int retval; 2226 2227 peerlen = sizeof (peer); 2228 newfd = accept(sock, (struct sockaddr *)&peer, &peerlen); 2229 if (newfd < 0) { 2230 logperror("accept"); 2231 return; 2232 } 2233 2234 retval = ipadm_ndpd_read(newfd, &ndpd_msg, sizeof (ndpd_msg)); 2235 if (retval != 0) 2236 logperror("Could not read ndpd command"); 2237 2238 retval = ndpd_process_cmd(newfd, &ndpd_msg); 2239 if (retval != 0) { 2240 logmsg(LOG_ERR, "ndpd command on interface %s failed with " 2241 "error %s\n", ndpd_msg.inm_ifname, strerror(retval)); 2242 } 2243 (void) close(newfd); 2244 } 2245 2246 /* 2247 * Process the commands received from the cmd listener socket. 2248 */ 2249 static int 2250 ndpd_process_cmd(int newfd, ipadm_ndpd_msg_t *msg) 2251 { 2252 int err; 2253 2254 if (!ipadm_check_auth()) { 2255 logmsg(LOG_ERR, "User not authorized to send the command\n"); 2256 (void) ndpd_send_error(newfd, EPERM); 2257 return (EPERM); 2258 } 2259 switch (msg->inm_cmd) { 2260 case IPADM_DISABLE_AUTOCONF: 2261 err = ndpd_set_autoconf(msg->inm_ifname, _B_FALSE); 2262 break; 2263 2264 case IPADM_ENABLE_AUTOCONF: 2265 err = ndpd_set_autoconf(msg->inm_ifname, _B_TRUE); 2266 break; 2267 2268 case IPADM_CREATE_ADDRS: 2269 err = ndpd_create_addrs(msg->inm_ifname, msg->inm_intfid, 2270 msg->inm_intfidlen, msg->inm_stateless, 2271 msg->inm_stateful, msg->inm_aobjname); 2272 break; 2273 2274 case IPADM_DELETE_ADDRS: 2275 err = ndpd_delete_addrs(msg->inm_ifname); 2276 break; 2277 2278 default: 2279 err = EINVAL; 2280 break; 2281 } 2282 2283 (void) ndpd_send_error(newfd, err); 2284 2285 return (err); 2286 } 2287 2288 static int 2289 ndpd_send_error(int fd, int error) 2290 { 2291 return (ipadm_ndpd_write(fd, &error, sizeof (error))); 2292 } 2293 2294 /* 2295 * Disables/Enables autoconfiguration of addresses on the 2296 * given physical interface. 2297 * This is provided to support the legacy method of configuring IPv6 2298 * addresses. i.e. `ifconfig bge0 inet6 plumb` will plumb the interface 2299 * and start stateless and stateful autoconfiguration. If this function is 2300 * not called with enable=_B_FALSE, no autoconfiguration will be done until 2301 * ndpd_create_addrs() is called with an Interface ID. 2302 */ 2303 static int 2304 ndpd_set_autoconf(const char *ifname, boolean_t enable) 2305 { 2306 struct phyint *pi; 2307 2308 pi = phyint_lookup((char *)ifname); 2309 if (pi == NULL) { 2310 /* 2311 * If the physical interface was plumbed but no 2312 * addresses were configured yet, phyint will not exist. 2313 */ 2314 pi = phyint_create((char *)ifname); 2315 if (pi == NULL) { 2316 logmsg(LOG_ERR, "could not create phyint for " 2317 "interface %s", ifname); 2318 return (ENOMEM); 2319 } 2320 } 2321 pi->pi_autoconf = enable; 2322 2323 if (debug & D_PHYINT) { 2324 logmsg(LOG_DEBUG, "ndpd_set_autoconf: %s autoconf for " 2325 "interface %s\n", (enable ? "enabled" : "disabled"), 2326 pi->pi_name); 2327 } 2328 return (0); 2329 } 2330 2331 /* 2332 * Create auto-configured addresses on the given interface using 2333 * the given token as the interface id during the next Router Advertisement. 2334 * Currently, only one token per interface is supported. 2335 */ 2336 static int 2337 ndpd_create_addrs(const char *ifname, struct sockaddr_in6 intfid, int intfidlen, 2338 boolean_t stateless, boolean_t stateful, char *addrobj) 2339 { 2340 struct phyint *pi; 2341 struct lifreq lifr; 2342 struct sockaddr_in6 *sin6; 2343 int err; 2344 2345 pi = phyint_lookup((char *)ifname); 2346 if (pi == NULL) { 2347 /* 2348 * If the physical interface was plumbed but no 2349 * addresses were configured yet, phyint will not exist. 2350 */ 2351 pi = phyint_create((char *)ifname); 2352 if (pi == NULL) { 2353 if (debug & D_PHYINT) 2354 logmsg(LOG_ERR, "could not create phyint " 2355 "for interface %s", ifname); 2356 return (ENOMEM); 2357 } 2358 } else if (pi->pi_autoconf) { 2359 logmsg(LOG_ERR, "autoconfiguration already in progress\n"); 2360 return (EEXIST); 2361 } 2362 check_autoconf_var_consistency(pi, stateless, stateful); 2363 2364 if (intfidlen == 0) { 2365 pi->pi_default_token = _B_TRUE; 2366 if (ifsock < 0) { 2367 ifsock = socket(AF_INET6, SOCK_DGRAM, 0); 2368 if (ifsock < 0) { 2369 err = errno; 2370 logperror("ndpd_create_addrs: socket"); 2371 return (err); 2372 } 2373 } 2374 (void) strncpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); 2375 sin6 = (struct sockaddr_in6 *)&lifr.lifr_addr; 2376 if (ioctl(ifsock, SIOCGLIFTOKEN, (char *)&lifr) < 0) { 2377 err = errno; 2378 logperror("SIOCGLIFTOKEN"); 2379 return (err); 2380 } 2381 pi->pi_token = sin6->sin6_addr; 2382 pi->pi_token_length = lifr.lifr_addrlen; 2383 } else { 2384 pi->pi_default_token = _B_FALSE; 2385 pi->pi_token = intfid.sin6_addr; 2386 pi->pi_token_length = intfidlen; 2387 } 2388 pi->pi_stateless = stateless; 2389 pi->pi_stateful = stateful; 2390 (void) strlcpy(pi->pi_ipadm_aobjname, addrobj, 2391 sizeof (pi->pi_ipadm_aobjname)); 2392 2393 /* We can allow autoconfiguration now. */ 2394 pi->pi_autoconf = _B_TRUE; 2395 2396 /* Restart the solicitations. */ 2397 if (pi->pi_sol_state == DONE_SOLICIT) 2398 pi->pi_sol_state = NO_SOLICIT; 2399 if (pi->pi_sol_state == NO_SOLICIT) 2400 check_to_solicit(pi, START_INIT_SOLICIT); 2401 if (debug & D_PHYINT) 2402 logmsg(LOG_DEBUG, "ndpd_create_addrs: " 2403 "added token to interface %s\n", pi->pi_name); 2404 return (0); 2405 } 2406 2407 /* 2408 * This function deletes all addresses on the given interface 2409 * with the given Interface ID. 2410 */ 2411 static int 2412 ndpd_delete_addrs(const char *ifname) 2413 { 2414 struct phyint *pi; 2415 struct prefix *pr, *next_pr; 2416 struct lifreq lifr; 2417 int err; 2418 2419 pi = phyint_lookup((char *)ifname); 2420 if (pi == NULL) { 2421 logmsg(LOG_ERR, "no phyint found for %s", ifname); 2422 return (ENXIO); 2423 } 2424 if (IN6_IS_ADDR_UNSPECIFIED(&pi->pi_token)) { 2425 logmsg(LOG_ERR, "token does not exist for %s", ifname); 2426 return (ENOENT); 2427 } 2428 2429 if (ifsock < 0) { 2430 ifsock = socket(AF_INET6, SOCK_DGRAM, 0); 2431 if (ifsock < 0) { 2432 err = errno; 2433 logperror("ndpd_delete_addrs: socket"); 2434 return (err); 2435 } 2436 } 2437 /* Remove the prefixes for this phyint if they exist */ 2438 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) { 2439 next_pr = pr->pr_next; 2440 if (pr->pr_name[0] == '\0') { 2441 prefix_delete(pr); 2442 continue; 2443 } 2444 /* 2445 * Delete all the prefixes for the auto-configured 2446 * addresses as well as the DHCPv6 addresses. 2447 */ 2448 (void) strncpy(lifr.lifr_name, pr->pr_name, 2449 sizeof (lifr.lifr_name)); 2450 if (ioctl(ifsock, SIOCGLIFFLAGS, (char *)&lifr) < 0) { 2451 err = errno; 2452 logperror("SIOCGLIFFLAGS"); 2453 return (err); 2454 } 2455 if ((lifr.lifr_flags & IFF_ADDRCONF) || 2456 (lifr.lifr_flags & IFF_DHCPRUNNING)) { 2457 prefix_update_ipadm_addrobj(pr, _B_FALSE); 2458 } 2459 prefix_delete(pr); 2460 } 2461 2462 /* 2463 * If we had started dhcpagent, we need to release the leases 2464 * if any are required. 2465 */ 2466 if (pi->pi_stateful) { 2467 (void) strncpy(lifr.lifr_name, pi->pi_name, 2468 sizeof (lifr.lifr_name)); 2469 if (ioctl(ifsock, SIOCGLIFFLAGS, (char *)&lifr) < 0) { 2470 err = errno; 2471 logperror("SIOCGLIFFLAGS"); 2472 return (err); 2473 } 2474 if (lifr.lifr_flags & IFF_DHCPRUNNING) 2475 release_dhcp(pi); 2476 } 2477 2478 /* 2479 * Reset the Interface ID on this phyint and stop autoconfigurations 2480 * until a new interface ID is provided. 2481 */ 2482 pi->pi_token = in6addr_any; 2483 pi->pi_ifaddr = in6addr_any; 2484 pi->pi_token_length = 0; 2485 pi->pi_autoconf = _B_FALSE; 2486 pi->pi_ipadm_aobjname[0] = '\0'; 2487 2488 /* Reset the stateless and stateful settings to default. */ 2489 pi->pi_stateless = pi->pi_StatelessAddrConf; 2490 pi->pi_stateful = pi->pi_StatefulAddrConf; 2491 2492 if (debug & D_PHYINT) { 2493 logmsg(LOG_DEBUG, "ndpd_delete_addrs: " 2494 "removed token from interface %s\n", pi->pi_name); 2495 } 2496 return (0); 2497 } 2498 2499 void 2500 check_autoconf_var_consistency(struct phyint *pi, boolean_t stateless, 2501 boolean_t stateful) 2502 { 2503 /* 2504 * If StatelessAddrConf and StatelessAddrConf are set in 2505 * /etc/inet/ndpd.conf, check if the new values override those 2506 * settings. If so, log a warning. 2507 */ 2508 if ((pi->pi_StatelessAddrConf != 2509 ifdefaults[I_StatelessAddrConf].cf_value && 2510 stateless != pi->pi_StatelessAddrConf) || 2511 (pi->pi_StatefulAddrConf != 2512 ifdefaults[I_StatefulAddrConf].cf_value && 2513 stateful != pi->pi_StatefulAddrConf)) { 2514 logmsg(LOG_ERR, "check_autoconf_var_consistency: " 2515 "Overriding the StatelessAddrConf or StatefulAddrConf " 2516 "settings in ndpd.conf with the new values for " 2517 "interface %s\n", pi->pi_name); 2518 } 2519 } 2520 2521 /* 2522 * If ipadm was used to start autoconfiguration and in.ndpd was restarted 2523 * for some reason, in.ndpd has to resume autoconfiguration when it comes up. 2524 * In this function, it scans the ipadm_addr_info() output to find a link-local 2525 * on this interface with address type "addrconf" and extracts the interface id. 2526 * It also stores the addrobj name to be used later when new addresses are 2527 * created for the prefixes advertised by the router. 2528 * If autoconfiguration was never started on this interface before in.ndpd 2529 * was killed, then in.ndpd should refrain from configuring prefixes, even if 2530 * there is a valid link-local on this interface, created by ipadm (identified 2531 * if there is a valid addrobj name). 2532 */ 2533 static int 2534 phyint_check_ipadm_intfid(struct phyint *pi) 2535 { 2536 ipadm_status_t status; 2537 ipadm_addr_info_t *addrinfo; 2538 struct ifaddrs *ifap; 2539 ipadm_addr_info_t *ainfop; 2540 struct sockaddr_in6 *sin6; 2541 ipadm_handle_t iph; 2542 2543 if (ipadm_open(&iph, 0) != IPADM_SUCCESS) { 2544 logmsg(LOG_ERR, "could not open handle to libipadm\n"); 2545 return (-1); 2546 } 2547 2548 status = ipadm_addr_info(iph, pi->pi_name, &addrinfo, 2549 IPADM_OPT_ZEROADDR, LIFC_NOXMIT|LIFC_TEMPORARY); 2550 if (status != IPADM_SUCCESS) { 2551 ipadm_close(iph); 2552 return (-1); 2553 } 2554 pi->pi_autoconf = _B_TRUE; 2555 for (ainfop = addrinfo; ainfop != NULL; ainfop = IA_NEXT(ainfop)) { 2556 ifap = &ainfop->ia_ifa; 2557 if (ifap->ifa_addr->sa_family != AF_INET6 || 2558 ainfop->ia_state == IFA_DISABLED) 2559 continue; 2560 sin6 = (struct sockaddr_in6 *)ifap->ifa_addr; 2561 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 2562 if (ainfop->ia_atype == IPADM_ADDR_IPV6_ADDRCONF) { 2563 /* 2564 * Clearing pi_default_token here 2565 * prevents the configured interface 2566 * token from being overwritten later. 2567 */ 2568 pi->pi_default_token = _B_FALSE; 2569 pi->pi_token = sin6->sin6_addr; 2570 pi->pi_token._S6_un._S6_u32[0] = 0; 2571 pi->pi_token._S6_un._S6_u32[1] = 0; 2572 pi->pi_autoconf = _B_TRUE; 2573 (void) strlcpy(pi->pi_ipadm_aobjname, 2574 ainfop->ia_aobjname, 2575 sizeof (pi->pi_ipadm_aobjname)); 2576 break; 2577 } 2578 /* 2579 * If IFF_NOLINKLOCAL is set, then the link-local 2580 * was created using ipadm. Do not autoconfigure until 2581 * ipadm is explicitly used for autoconfiguration. 2582 */ 2583 if (ifap->ifa_flags & IFF_NOLINKLOCAL) 2584 pi->pi_autoconf = _B_FALSE; 2585 } else if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) && 2586 strrchr(ifap->ifa_name, ':') == NULL) { 2587 /* The interface was created using ipadm. */ 2588 pi->pi_autoconf = _B_FALSE; 2589 } 2590 } 2591 ipadm_free_addr_info(addrinfo); 2592 if (!pi->pi_autoconf) { 2593 pi->pi_token = in6addr_any; 2594 pi->pi_token_length = 0; 2595 } 2596 ipadm_close(iph); 2597 return (0); 2598 } 2599