1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 22 * Copyright 2024 Oxide Computer Company 23 */ 24 25 #include "defs.h" 26 #include "tables.h" 27 #include <fcntl.h> 28 #include <sys/un.h> 29 30 static void initlog(void); 31 static void run_timeouts(void); 32 33 static void advertise(struct sockaddr_in6 *sin6, struct phyint *pi, 34 boolean_t no_prefixes); 35 static void solicit(struct sockaddr_in6 *sin6, struct phyint *pi); 36 static void initifs(boolean_t first); 37 static void check_if_removed(struct phyint *pi); 38 static void loopback_ra_enqueue(struct phyint *pi, 39 struct nd_router_advert *ra, int len); 40 static void loopback_ra_dequeue(void); 41 static void check_daemonize(void); 42 43 struct in6_addr all_nodes_mcast = { { 0xff, 0x2, 0x0, 0x0, 44 0x0, 0x0, 0x0, 0x0, 45 0x0, 0x0, 0x0, 0x0, 46 0x0, 0x0, 0x0, 0x1 } }; 47 48 struct in6_addr all_routers_mcast = { { 0xff, 0x2, 0x0, 0x0, 49 0x0, 0x0, 0x0, 0x0, 50 0x0, 0x0, 0x0, 0x0, 51 0x0, 0x0, 0x0, 0x2 } }; 52 53 static struct sockaddr_in6 v6allnodes = { AF_INET6, 0, 0, 54 { 0xff, 0x2, 0x0, 0x0, 55 0x0, 0x0, 0x0, 0x0, 56 0x0, 0x0, 0x0, 0x0, 57 0x0, 0x0, 0x0, 0x1 } }; 58 59 static struct sockaddr_in6 v6allrouters = { AF_INET6, 0, 0, 60 { 0xff, 0x2, 0x0, 0x0, 61 0x0, 0x0, 0x0, 0x0, 62 0x0, 0x0, 0x0, 0x0, 63 0x0, 0x0, 0x0, 0x2 } }; 64 65 static char **argv0; /* Saved for re-exec on SIGHUP */ 66 67 static uint64_t packet[(IP_MAXPACKET + 1)/8]; 68 69 static int show_ifs = 0; 70 static boolean_t already_daemonized = _B_FALSE; 71 int debug = 0; 72 int no_loopback = 0; /* Do not send RA packets to ourselves */ 73 74 /* 75 * Size of routing socket message used by in.ndpd which includes the header, 76 * space for the RTA_DST, RTA_GATEWAY and RTA_NETMASK (each a sockaddr_in6) 77 * plus space for the RTA_IFP (a sockaddr_dl). 78 */ 79 #define NDP_RTM_MSGLEN sizeof (struct rt_msghdr) + \ 80 sizeof (struct sockaddr_in6) + \ 81 sizeof (struct sockaddr_in6) + \ 82 sizeof (struct sockaddr_in6) + \ 83 sizeof (struct sockaddr_dl) 84 85 /* 86 * These are referenced externally in tables.c in order to fill in the 87 * dynamic portions of the routing socket message and then to send the message 88 * itself. 89 */ 90 int rtsock = -1; /* Routing socket */ 91 struct rt_msghdr *rt_msg; /* Routing socket message */ 92 struct sockaddr_in6 *rta_gateway; /* RTA_GATEWAY sockaddr */ 93 struct sockaddr_dl *rta_ifp; /* RTA_IFP sockaddr */ 94 95 /* 96 * These sockets are used internally in this file. 97 */ 98 static int mibsock = -1; /* mib request socket */ 99 static int cmdsock = -1; /* command socket */ 100 101 static int ndpd_setup_cmd_listener(void); 102 static void ndpd_cmd_handler(int); 103 static int ndpd_process_cmd(int, ipadm_ndpd_msg_t *); 104 static int ndpd_send_error(int, int); 105 static int ndpd_set_autoconf(const char *, boolean_t); 106 static int ndpd_create_addrs(const char *, struct sockaddr_in6, int, 107 boolean_t, boolean_t, char *); 108 static int ndpd_delete_addrs(const char *); 109 static int phyint_check_ipadm_intfid(struct phyint *); 110 111 /* 112 * Return the current time in milliseconds truncated to 113 * fit in an integer. 114 */ 115 uint_t 116 getcurrenttime(void) 117 { 118 struct timeval tp; 119 120 if (gettimeofday(&tp, NULL) < 0) { 121 logperror("getcurrenttime: gettimeofday failed"); 122 exit(1); 123 } 124 return (tp.tv_sec * 1000 + tp.tv_usec / 1000); 125 } 126 127 /* 128 * Output a preformated packet from the packet[] buffer. 129 */ 130 static void 131 sendpacket(struct sockaddr_in6 *sin6, int sock, int size, int flags) 132 { 133 int cc; 134 char abuf[INET6_ADDRSTRLEN]; 135 136 cc = sendto(sock, (char *)packet, size, flags, 137 (struct sockaddr *)sin6, sizeof (*sin6)); 138 if (cc < 0 || cc != size) { 139 if (cc < 0) { 140 logperror("sendpacket: sendto"); 141 } 142 logmsg(LOG_ERR, "sendpacket: wrote %s %d chars, ret=%d\n", 143 inet_ntop(sin6->sin6_family, 144 (void *)&sin6->sin6_addr, 145 abuf, sizeof (abuf)), 146 size, cc); 147 } 148 } 149 150 /* 151 * If possible, place an ND_OPT_SOURCE_LINKADDR option at `optp'. 152 * Return the number of bytes placed in the option. 153 */ 154 static uint_t 155 add_opt_lla(struct phyint *pi, struct nd_opt_lla *optp) 156 { 157 uint_t optlen; 158 uint_t hwaddrlen; 159 struct lifreq lifr; 160 161 /* If this phyint doesn't have a link-layer address, bail */ 162 if (phyint_get_lla(pi, &lifr) == -1) 163 return (0); 164 165 hwaddrlen = lifr.lifr_nd.lnr_hdw_len; 166 /* roundup to multiple of 8 and make padding zero */ 167 optlen = ((sizeof (struct nd_opt_hdr) + hwaddrlen + 7) / 8) * 8; 168 bzero(optp, optlen); 169 optp->nd_opt_lla_type = ND_OPT_SOURCE_LINKADDR; 170 optp->nd_opt_lla_len = optlen / 8; 171 bcopy(lifr.lifr_nd.lnr_hdw_addr, optp->nd_opt_lla_hdw_addr, hwaddrlen); 172 173 return (optlen); 174 } 175 176 /* Send a Router Solicitation */ 177 static void 178 solicit(struct sockaddr_in6 *sin6, struct phyint *pi) 179 { 180 int packetlen = 0; 181 struct nd_router_solicit *rs = (struct nd_router_solicit *)packet; 182 char *pptr = (char *)packet; 183 184 rs->nd_rs_type = ND_ROUTER_SOLICIT; 185 rs->nd_rs_code = 0; 186 rs->nd_rs_cksum = htons(0); 187 rs->nd_rs_reserved = htonl(0); 188 189 packetlen += sizeof (*rs); 190 pptr += sizeof (*rs); 191 192 /* add options */ 193 packetlen += add_opt_lla(pi, (struct nd_opt_lla *)pptr); 194 195 if (debug & D_PKTOUT) { 196 print_route_sol("Sending solicitation to ", pi, rs, packetlen, 197 sin6); 198 } 199 sendpacket(sin6, pi->pi_sock, packetlen, 0); 200 } 201 202 /* 203 * Send a (set of) Router Advertisements and feed them back to ourselves 204 * for processing. Unless no_prefixes is set all prefixes are included. 205 * If there are too many prefix options to fit in one packet multiple 206 * packets will be sent - each containing a subset of the prefix options. 207 */ 208 static void 209 advertise(struct sockaddr_in6 *sin6, struct phyint *pi, boolean_t no_prefixes) 210 { 211 struct nd_opt_prefix_info *po; 212 char *pptr = (char *)packet; 213 struct nd_router_advert *ra; 214 struct adv_prefix *adv_pr; 215 int packetlen = 0; 216 217 ra = (struct nd_router_advert *)pptr; 218 ra->nd_ra_type = ND_ROUTER_ADVERT; 219 ra->nd_ra_code = 0; 220 ra->nd_ra_cksum = htons(0); 221 ra->nd_ra_curhoplimit = pi->pi_AdvCurHopLimit; 222 ra->nd_ra_flags_reserved = 0; 223 if (pi->pi_AdvManagedFlag) 224 ra->nd_ra_flags_reserved |= ND_RA_FLAG_MANAGED; 225 if (pi->pi_AdvOtherConfigFlag) 226 ra->nd_ra_flags_reserved |= ND_RA_FLAG_OTHER; 227 228 if (pi->pi_adv_state == FINAL_ADV) 229 ra->nd_ra_router_lifetime = htons(0); 230 else 231 ra->nd_ra_router_lifetime = htons(pi->pi_AdvDefaultLifetime); 232 ra->nd_ra_reachable = htonl(pi->pi_AdvReachableTime); 233 ra->nd_ra_retransmit = htonl(pi->pi_AdvRetransTimer); 234 235 packetlen = sizeof (*ra); 236 pptr += sizeof (*ra); 237 238 if (pi->pi_adv_state == FINAL_ADV) { 239 if (debug & D_PKTOUT) { 240 print_route_adv("Sending advert (FINAL) to ", pi, 241 ra, packetlen, sin6); 242 } 243 sendpacket(sin6, pi->pi_sock, packetlen, 0); 244 /* Feed packet back in for router operation */ 245 loopback_ra_enqueue(pi, ra, packetlen); 246 return; 247 } 248 249 /* add options */ 250 packetlen += add_opt_lla(pi, (struct nd_opt_lla *)pptr); 251 pptr = (char *)packet + packetlen; 252 253 if (pi->pi_AdvLinkMTU != 0) { 254 struct nd_opt_mtu *mo = (struct nd_opt_mtu *)pptr; 255 256 mo->nd_opt_mtu_type = ND_OPT_MTU; 257 mo->nd_opt_mtu_len = sizeof (struct nd_opt_mtu) / 8; 258 mo->nd_opt_mtu_reserved = 0; 259 mo->nd_opt_mtu_mtu = htonl(pi->pi_AdvLinkMTU); 260 261 packetlen += sizeof (struct nd_opt_mtu); 262 pptr += sizeof (struct nd_opt_mtu); 263 } 264 265 if (no_prefixes) { 266 if (debug & D_PKTOUT) { 267 print_route_adv("Sending advert to ", pi, 268 ra, packetlen, sin6); 269 } 270 sendpacket(sin6, pi->pi_sock, packetlen, 0); 271 /* Feed packet back in for router operation */ 272 loopback_ra_enqueue(pi, ra, packetlen); 273 return; 274 } 275 276 po = (struct nd_opt_prefix_info *)pptr; 277 for (adv_pr = pi->pi_adv_prefix_list; adv_pr != NULL; 278 adv_pr = adv_pr->adv_pr_next) { 279 if (!adv_pr->adv_pr_AdvOnLinkFlag && 280 !adv_pr->adv_pr_AdvAutonomousFlag) { 281 continue; 282 } 283 284 /* 285 * If the prefix doesn't fit in packet send 286 * what we have so far and start with new packet. 287 */ 288 if (packetlen + sizeof (*po) > 289 pi->pi_LinkMTU - sizeof (struct ip6_hdr)) { 290 if (debug & D_PKTOUT) { 291 print_route_adv("Sending advert " 292 "(FRAG) to ", 293 pi, ra, packetlen, sin6); 294 } 295 sendpacket(sin6, pi->pi_sock, packetlen, 0); 296 /* Feed packet back in for router operation */ 297 loopback_ra_enqueue(pi, ra, packetlen); 298 packetlen = sizeof (*ra); 299 pptr = (char *)packet + sizeof (*ra); 300 po = (struct nd_opt_prefix_info *)pptr; 301 } 302 po->nd_opt_pi_type = ND_OPT_PREFIX_INFORMATION; 303 po->nd_opt_pi_len = sizeof (*po)/8; 304 po->nd_opt_pi_flags_reserved = 0; 305 if (adv_pr->adv_pr_AdvOnLinkFlag) { 306 po->nd_opt_pi_flags_reserved |= 307 ND_OPT_PI_FLAG_ONLINK; 308 } 309 if (adv_pr->adv_pr_AdvAutonomousFlag) { 310 po->nd_opt_pi_flags_reserved |= 311 ND_OPT_PI_FLAG_AUTO; 312 } 313 po->nd_opt_pi_prefix_len = adv_pr->adv_pr_prefix_len; 314 /* 315 * If both Adv*Expiration and Adv*Lifetime are 316 * set we prefer the former and make the lifetime 317 * decrement in real time. 318 */ 319 if (adv_pr->adv_pr_AdvValidRealTime) { 320 po->nd_opt_pi_valid_time = 321 htonl(adv_pr->adv_pr_AdvValidExpiration); 322 } else { 323 po->nd_opt_pi_valid_time = 324 htonl(adv_pr->adv_pr_AdvValidLifetime); 325 } 326 if (adv_pr->adv_pr_AdvPreferredRealTime) { 327 po->nd_opt_pi_preferred_time = 328 htonl(adv_pr->adv_pr_AdvPreferredExpiration); 329 } else { 330 po->nd_opt_pi_preferred_time = 331 htonl(adv_pr->adv_pr_AdvPreferredLifetime); 332 } 333 po->nd_opt_pi_reserved2 = htonl(0); 334 po->nd_opt_pi_prefix = adv_pr->adv_pr_prefix; 335 336 po++; 337 packetlen += sizeof (*po); 338 } 339 if (debug & D_PKTOUT) { 340 print_route_adv("Sending advert to ", pi, 341 ra, packetlen, sin6); 342 } 343 sendpacket(sin6, pi->pi_sock, packetlen, 0); 344 /* Feed packet back in for router operation */ 345 loopback_ra_enqueue(pi, ra, packetlen); 346 } 347 348 /* Poll support */ 349 static int pollfd_num = 0; /* Allocated and initialized */ 350 static struct pollfd *pollfds = NULL; 351 352 /* 353 * Add fd to the set being polled. Returns 0 if ok; -1 if failed. 354 */ 355 int 356 poll_add(int fd) 357 { 358 int i; 359 int new_num; 360 struct pollfd *newfds; 361 362 /* Check if already present */ 363 for (i = 0; i < pollfd_num; i++) { 364 if (pollfds[i].fd == fd) 365 return (0); 366 } 367 /* Check for empty spot already present */ 368 for (i = 0; i < pollfd_num; i++) { 369 if (pollfds[i].fd == -1) { 370 pollfds[i].fd = fd; 371 return (0); 372 } 373 } 374 375 /* Allocate space for 32 more fds and initialize to -1 */ 376 new_num = pollfd_num + 32; 377 newfds = realloc(pollfds, new_num * sizeof (struct pollfd)); 378 if (newfds == NULL) { 379 logperror("realloc"); 380 return (-1); 381 } 382 383 newfds[pollfd_num].fd = fd; 384 newfds[pollfd_num++].events = POLLIN; 385 386 for (i = pollfd_num; i < new_num; i++) { 387 newfds[i].fd = -1; 388 newfds[i].events = POLLIN; 389 } 390 pollfd_num = new_num; 391 pollfds = newfds; 392 return (0); 393 } 394 395 /* 396 * Remove fd from the set being polled. Returns 0 if ok; -1 if failed. 397 */ 398 int 399 poll_remove(int fd) 400 { 401 int i; 402 403 /* Check if already present */ 404 for (i = 0; i < pollfd_num; i++) { 405 if (pollfds[i].fd == fd) { 406 pollfds[i].fd = -1; 407 return (0); 408 } 409 } 410 return (-1); 411 } 412 413 /* 414 * Extract information about the ifname (either a physical interface and 415 * the ":0" logical interface or just a logical interface). 416 * If the interface (still) exists in kernel set pr_in_use 417 * for caller to be able to detect interfaces that are removed. 418 * Starts sending advertisements/solicitations when new physical interfaces 419 * are detected. 420 */ 421 static void 422 if_process(int s, char *ifname, boolean_t first) 423 { 424 struct lifreq lifr; 425 struct phyint *pi; 426 struct prefix *pr; 427 char *cp; 428 char phyintname[LIFNAMSIZ + 1]; 429 430 if (debug & D_IFSCAN) 431 logmsg(LOG_DEBUG, "if_process(%s)\n", ifname); 432 433 (void) strncpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); 434 lifr.lifr_name[sizeof (lifr.lifr_name) - 1] = '\0'; 435 if (ioctl(s, SIOCGLIFFLAGS, (char *)&lifr) < 0) { 436 if (errno == ENXIO) { 437 /* 438 * Interface has disappeared 439 */ 440 return; 441 } 442 logperror("if_process: ioctl (get interface flags)"); 443 return; 444 } 445 446 /* 447 * Ignore loopback, point-to-multipoint and VRRP interfaces. 448 * The IP addresses over VRRP interfaces cannot be auto-configured. 449 * Point-to-point interfaces always have IFF_MULTICAST set. 450 */ 451 if (!(lifr.lifr_flags & IFF_MULTICAST) || 452 (lifr.lifr_flags & (IFF_LOOPBACK|IFF_VRRP))) { 453 return; 454 } 455 456 if (!(lifr.lifr_flags & IFF_IPV6)) 457 return; 458 459 (void) strncpy(phyintname, ifname, sizeof (phyintname)); 460 phyintname[sizeof (phyintname) - 1] = '\0'; 461 if ((cp = strchr(phyintname, IF_SEPARATOR)) != NULL) { 462 *cp = '\0'; 463 } 464 465 pi = phyint_lookup(phyintname); 466 if (pi == NULL) { 467 pi = phyint_create(phyintname); 468 if (pi == NULL) { 469 logmsg(LOG_ERR, "if_process: out of memory\n"); 470 return; 471 } 472 /* 473 * if in.ndpd is restarted, check with ipmgmtd if there is any 474 * interface id to be configured for this interface. 475 */ 476 if (first) { 477 if (phyint_check_ipadm_intfid(pi) == -1) 478 logmsg(LOG_ERR, "Could not get ipadm info\n"); 479 } 480 } else { 481 /* 482 * if the phyint already exists, synchronize it with 483 * the kernel state. For a newly created phyint, phyint_create 484 * calls phyint_init_from_k(). 485 */ 486 (void) phyint_init_from_k(pi); 487 } 488 if (pi->pi_sock == -1 && !(pi->pi_kernel_state & PI_PRESENT)) { 489 /* Interface is not yet present */ 490 if (debug & D_PHYINT) { 491 logmsg(LOG_DEBUG, "if_process: interface not yet " 492 "present %s\n", pi->pi_name); 493 } 494 return; 495 } 496 497 if (pi->pi_sock != -1) { 498 if (poll_add(pi->pi_sock) == -1) { 499 /* 500 * reset state. 501 */ 502 phyint_cleanup(pi); 503 } 504 } 505 506 /* 507 * Check if IFF_ROUTER has been turned off in kernel in which 508 * case we have to turn off AdvSendAdvertisements. 509 * The kernel will automatically turn off IFF_ROUTER if 510 * ip6_forwarding is turned off. 511 * Note that we do not switch back should IFF_ROUTER be turned on. 512 */ 513 if (!first && 514 pi->pi_AdvSendAdvertisements && !(pi->pi_flags & IFF_ROUTER)) { 515 logmsg(LOG_INFO, "No longer a router on %s\n", pi->pi_name); 516 check_to_advertise(pi, START_FINAL_ADV); 517 518 pi->pi_AdvSendAdvertisements = 0; 519 pi->pi_sol_state = NO_SOLICIT; 520 } 521 522 /* 523 * Send advertisments and solicitation only if the interface is 524 * present in the kernel. 525 */ 526 if (pi->pi_kernel_state & PI_PRESENT) { 527 528 if (pi->pi_AdvSendAdvertisements) { 529 if (pi->pi_adv_state == NO_ADV) 530 check_to_advertise(pi, START_INIT_ADV); 531 } else { 532 if (pi->pi_sol_state == NO_SOLICIT) 533 check_to_solicit(pi, START_INIT_SOLICIT); 534 } 535 } 536 537 /* 538 * Track static kernel prefixes to prevent in.ndpd from clobbering 539 * them by creating a struct prefix for each prefix detected in the 540 * kernel. 541 */ 542 pr = prefix_lookup_name(pi, ifname); 543 if (pr == NULL) { 544 pr = prefix_create_name(pi, ifname); 545 if (pr == NULL) { 546 logmsg(LOG_ERR, "if_process: out of memory\n"); 547 return; 548 } 549 if (prefix_init_from_k(pr) == -1) { 550 prefix_delete(pr); 551 return; 552 } 553 } 554 /* Detect prefixes which are removed */ 555 if (pr->pr_kernel_state != 0) 556 pr->pr_in_use = _B_TRUE; 557 558 if ((lifr.lifr_flags & IFF_DUPLICATE) && 559 !(lifr.lifr_flags & IFF_DHCPRUNNING) && 560 (pr->pr_flags & IFF_TEMPORARY)) { 561 in6_addr_t *token; 562 int i; 563 char abuf[INET6_ADDRSTRLEN]; 564 565 if (++pr->pr_attempts >= MAX_DAD_FAILURES) { 566 logmsg(LOG_ERR, "%s: token %s is duplicate after %d " 567 "attempts; disabling temporary addresses on %s", 568 pr->pr_name, inet_ntop(AF_INET6, 569 (void *)&pi->pi_tmp_token, abuf, sizeof (abuf)), 570 pr->pr_attempts, pi->pi_name); 571 pi->pi_TmpAddrsEnabled = 0; 572 tmptoken_delete(pi); 573 prefix_delete(pr); 574 return; 575 } 576 logmsg(LOG_WARNING, "%s: token %s is duplicate; trying again", 577 pr->pr_name, inet_ntop(AF_INET6, (void *)&pi->pi_tmp_token, 578 abuf, sizeof (abuf))); 579 if (!tmptoken_create(pi)) { 580 prefix_delete(pr); 581 return; 582 } 583 token = &pi->pi_tmp_token; 584 for (i = 0; i < 16; i++) { 585 /* 586 * prefix_create ensures that pr_prefix has all-zero 587 * bits after prefixlen. 588 */ 589 pr->pr_address.s6_addr[i] = pr->pr_prefix.s6_addr[i] | 590 token->s6_addr[i]; 591 } 592 if (prefix_lookup_addr_match(pr) != NULL) { 593 prefix_delete(pr); 594 return; 595 } 596 pr->pr_CreateTime = getcurrenttime() / MILLISEC; 597 /* 598 * We've got a new token. Clearing PR_AUTO causes 599 * prefix_update_k to bring the interface up and set the 600 * address. 601 */ 602 pr->pr_kernel_state &= ~PR_AUTO; 603 prefix_update_k(pr); 604 } 605 } 606 607 static int ifsock = -1; 608 609 /* 610 * Scan all interfaces to detect changes as well as new and deleted intefaces 611 * 'first' is set for the initial call only. Do not effect anything. 612 */ 613 static void 614 initifs(boolean_t first) 615 { 616 char *buf; 617 int bufsize; 618 int numifs; 619 int n; 620 struct lifnum lifn; 621 struct lifconf lifc; 622 struct lifreq *lifr; 623 struct phyint *pi; 624 struct phyint *next_pi; 625 struct prefix *pr; 626 627 if (debug & D_IFSCAN) 628 logmsg(LOG_DEBUG, "Reading interface configuration\n"); 629 if (ifsock < 0) { 630 ifsock = socket(AF_INET6, SOCK_DGRAM, 0); 631 if (ifsock < 0) { 632 logperror("initifs: socket"); 633 return; 634 } 635 } 636 lifn.lifn_family = AF_INET6; 637 lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY; 638 if (ioctl(ifsock, SIOCGLIFNUM, (char *)&lifn) < 0) { 639 logperror("initifs: ioctl (get interface numbers)"); 640 return; 641 } 642 numifs = lifn.lifn_count; 643 bufsize = numifs * sizeof (struct lifreq); 644 645 buf = (char *)malloc(bufsize); 646 if (buf == NULL) { 647 logmsg(LOG_ERR, "initifs: out of memory\n"); 648 return; 649 } 650 651 /* 652 * Mark the interfaces so that we can find phyints and prefixes 653 * which have disappeared from the kernel. 654 * if_process will set pr_in_use when it finds the interface 655 * in the kernel. 656 */ 657 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 658 /* 659 * Before re-examining the state of the interfaces, 660 * PI_PRESENT should be cleared from pi_kernel_state. 661 */ 662 pi->pi_kernel_state &= ~PI_PRESENT; 663 for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) { 664 pr->pr_in_use = _B_FALSE; 665 } 666 } 667 668 lifc.lifc_family = AF_INET6; 669 lifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY; 670 lifc.lifc_len = bufsize; 671 lifc.lifc_buf = buf; 672 673 if (ioctl(ifsock, SIOCGLIFCONF, (char *)&lifc) < 0) { 674 logperror("initifs: ioctl (get interface configuration)"); 675 free(buf); 676 return; 677 } 678 679 lifr = (struct lifreq *)lifc.lifc_req; 680 for (n = lifc.lifc_len / sizeof (struct lifreq); n > 0; n--, lifr++) 681 if_process(ifsock, lifr->lifr_name, first); 682 free(buf); 683 684 /* 685 * Detect phyints that have been removed from the kernel. 686 * Since we can't recreate it here (would require ifconfig plumb 687 * logic) we just terminate use of that phyint. 688 */ 689 for (pi = phyints; pi != NULL; pi = next_pi) { 690 next_pi = pi->pi_next; 691 /* 692 * If interface (still) exists in kernel, set 693 * pi_state to indicate that. 694 */ 695 if (pi->pi_kernel_state & PI_PRESENT) { 696 pi->pi_state |= PI_PRESENT; 697 } 698 699 check_if_removed(pi); 700 } 701 if (show_ifs) 702 phyint_print_all(); 703 } 704 705 706 /* 707 * Router advertisement state machine. Used for everything but timer 708 * events which use advertise_event directly. 709 */ 710 void 711 check_to_advertise(struct phyint *pi, enum adv_events event) 712 { 713 uint_t delay; 714 enum adv_states old_state = pi->pi_adv_state; 715 716 if (debug & D_STATE) { 717 logmsg(LOG_DEBUG, "check_to_advertise(%s, %d) state %d\n", 718 pi->pi_name, (int)event, (int)old_state); 719 } 720 delay = advertise_event(pi, event, 0); 721 if (delay != TIMER_INFINITY) { 722 /* Make sure the global next event is updated */ 723 timer_schedule(delay); 724 } 725 726 if (debug & D_STATE) { 727 logmsg(LOG_DEBUG, "check_to_advertise(%s, %d) state %d -> %d\n", 728 pi->pi_name, (int)event, (int)old_state, 729 (int)pi->pi_adv_state); 730 } 731 } 732 733 /* 734 * Router advertisement state machine. 735 * Return the number of milliseconds until next timeout (TIMER_INFINITY 736 * if never). 737 * For the ADV_TIMER event the caller passes in the number of milliseconds 738 * since the last timer event in the 'elapsed' parameter. 739 */ 740 uint_t 741 advertise_event(struct phyint *pi, enum adv_events event, uint_t elapsed) 742 { 743 uint_t delay; 744 745 if (debug & D_STATE) { 746 logmsg(LOG_DEBUG, "advertise_event(%s, %d, %d) state %d\n", 747 pi->pi_name, (int)event, elapsed, (int)pi->pi_adv_state); 748 } 749 check_daemonize(); 750 if (!pi->pi_AdvSendAdvertisements) 751 return (TIMER_INFINITY); 752 if (pi->pi_flags & IFF_NORTEXCH) { 753 if (debug & D_PKTOUT) { 754 logmsg(LOG_DEBUG, "Suppress sending RA packet on %s " 755 "(no route exchange on interface)\n", 756 pi->pi_name); 757 } 758 return (TIMER_INFINITY); 759 } 760 761 switch (event) { 762 case ADV_OFF: 763 pi->pi_adv_state = NO_ADV; 764 return (TIMER_INFINITY); 765 766 case START_INIT_ADV: 767 if (pi->pi_adv_state == INIT_ADV) 768 return (pi->pi_adv_time_left); 769 pi->pi_adv_count = ND_MAX_INITIAL_RTR_ADVERTISEMENTS; 770 pi->pi_adv_time_left = 0; 771 pi->pi_adv_state = INIT_ADV; 772 break; /* send advertisement */ 773 774 case START_FINAL_ADV: 775 if (pi->pi_adv_state == NO_ADV) 776 return (TIMER_INFINITY); 777 if (pi->pi_adv_state == FINAL_ADV) 778 return (pi->pi_adv_time_left); 779 pi->pi_adv_count = ND_MAX_FINAL_RTR_ADVERTISEMENTS; 780 pi->pi_adv_time_left = 0; 781 pi->pi_adv_state = FINAL_ADV; 782 break; /* send advertisement */ 783 784 case RECEIVED_SOLICIT: 785 if (pi->pi_adv_state == NO_ADV) 786 return (TIMER_INFINITY); 787 if (pi->pi_adv_state == SOLICIT_ADV) { 788 if (pi->pi_adv_time_left != 0) 789 return (pi->pi_adv_time_left); 790 break; 791 } 792 delay = GET_RANDOM(0, ND_MAX_RA_DELAY_TIME); 793 if (delay < pi->pi_adv_time_left) 794 pi->pi_adv_time_left = delay; 795 if (pi->pi_adv_time_since_sent < ND_MIN_DELAY_BETWEEN_RAS) { 796 /* 797 * Send an advertisement (ND_MIN_DELAY_BETWEEN_RAS 798 * plus random delay) after the previous 799 * advertisement was sent. 800 */ 801 pi->pi_adv_time_left = delay + 802 ND_MIN_DELAY_BETWEEN_RAS - 803 pi->pi_adv_time_since_sent; 804 } 805 pi->pi_adv_state = SOLICIT_ADV; 806 break; 807 808 case ADV_TIMER: 809 if (pi->pi_adv_state == NO_ADV) 810 return (TIMER_INFINITY); 811 /* Decrease time left */ 812 if (pi->pi_adv_time_left >= elapsed) 813 pi->pi_adv_time_left -= elapsed; 814 else 815 pi->pi_adv_time_left = 0; 816 817 /* Increase time since last advertisement was sent */ 818 pi->pi_adv_time_since_sent += elapsed; 819 break; 820 default: 821 logmsg(LOG_ERR, "advertise_event: Unknown event %d\n", 822 (int)event); 823 return (TIMER_INFINITY); 824 } 825 826 if (pi->pi_adv_time_left != 0) 827 return (pi->pi_adv_time_left); 828 829 /* Send advertisement and calculate next time to send */ 830 if (pi->pi_adv_state == FINAL_ADV) { 831 /* Omit the prefixes */ 832 advertise(&v6allnodes, pi, _B_TRUE); 833 } else { 834 advertise(&v6allnodes, pi, _B_FALSE); 835 } 836 pi->pi_adv_time_since_sent = 0; 837 838 switch (pi->pi_adv_state) { 839 case SOLICIT_ADV: 840 /* 841 * The solicited advertisement has been sent. 842 * Revert to periodic advertisements. 843 */ 844 pi->pi_adv_state = REG_ADV; 845 /* FALLTHRU */ 846 case REG_ADV: 847 pi->pi_adv_time_left = 848 GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval, 849 1000 * pi->pi_MaxRtrAdvInterval); 850 break; 851 852 case INIT_ADV: 853 if (--pi->pi_adv_count > 0) { 854 delay = GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval, 855 1000 * pi->pi_MaxRtrAdvInterval); 856 if (delay > ND_MAX_INITIAL_RTR_ADVERT_INTERVAL) 857 delay = ND_MAX_INITIAL_RTR_ADVERT_INTERVAL; 858 pi->pi_adv_time_left = delay; 859 } else { 860 pi->pi_adv_time_left = 861 GET_RANDOM(1000 * pi->pi_MinRtrAdvInterval, 862 1000 * pi->pi_MaxRtrAdvInterval); 863 pi->pi_adv_state = REG_ADV; 864 } 865 break; 866 867 case FINAL_ADV: 868 if (--pi->pi_adv_count > 0) { 869 pi->pi_adv_time_left = 870 ND_MAX_INITIAL_RTR_ADVERT_INTERVAL; 871 } else { 872 pi->pi_adv_state = NO_ADV; 873 } 874 break; 875 } 876 if (pi->pi_adv_state != NO_ADV) 877 return (pi->pi_adv_time_left); 878 else 879 return (TIMER_INFINITY); 880 } 881 882 /* 883 * Router solicitation state machine. Used for everything but timer 884 * events which use solicit_event directly. 885 */ 886 void 887 check_to_solicit(struct phyint *pi, enum solicit_events event) 888 { 889 uint_t delay; 890 enum solicit_states old_state = pi->pi_sol_state; 891 892 if (debug & D_STATE) { 893 logmsg(LOG_DEBUG, "check_to_solicit(%s, %d) state %d\n", 894 pi->pi_name, (int)event, (int)old_state); 895 } 896 delay = solicit_event(pi, event, 0); 897 if (delay != TIMER_INFINITY) { 898 /* Make sure the global next event is updated */ 899 timer_schedule(delay); 900 } 901 902 if (debug & D_STATE) { 903 logmsg(LOG_DEBUG, "check_to_solicit(%s, %d) state %d -> %d\n", 904 pi->pi_name, (int)event, (int)old_state, 905 (int)pi->pi_sol_state); 906 } 907 } 908 909 static void 910 daemonize_ndpd(void) 911 { 912 struct itimerval it; 913 boolean_t timerval = _B_TRUE; 914 915 /* 916 * Need to get current timer settings so they can be restored 917 * after the fork(), as the it_value and it_interval values for 918 * the ITIMER_REAL timer are reset to 0 in the child process. 919 */ 920 if (getitimer(ITIMER_REAL, &it) < 0) { 921 if (debug & D_TIMER) 922 logmsg(LOG_DEBUG, 923 "daemonize_ndpd: failed to get itimerval\n"); 924 timerval = _B_FALSE; 925 } 926 927 /* Daemonize. */ 928 if (daemon(0, 0) == -1) { 929 logperror("fork"); 930 exit(1); 931 } 932 933 already_daemonized = _B_TRUE; 934 935 /* 936 * Restore timer values, if we were able to save them; if not, 937 * check and set the right value by calling run_timeouts(). 938 */ 939 if (timerval) { 940 if (setitimer(ITIMER_REAL, &it, NULL) < 0) { 941 logperror("daemonize_ndpd: setitimer"); 942 exit(2); 943 } 944 } else { 945 run_timeouts(); 946 } 947 } 948 949 /* 950 * Check to see if the time is right to daemonize. The right time is when: 951 * 952 * 1. We haven't already daemonized. 953 * 2. We are not in debug mode. 954 * 3. All interfaces are marked IFF_NOXMIT. 955 * 4. All non-router interfaces have their prefixes set up and we're 956 * done sending router solicitations on those interfaces without 957 * prefixes. 958 */ 959 static void 960 check_daemonize(void) 961 { 962 struct phyint *pi; 963 964 if (already_daemonized || debug != 0) 965 return; 966 967 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 968 if (!(pi->pi_flags & IFF_NOXMIT)) 969 break; 970 } 971 972 /* 973 * If we can't transmit on any of the interfaces there is no reason 974 * to hold up progress. 975 */ 976 if (pi == NULL) { 977 daemonize_ndpd(); 978 return; 979 } 980 981 /* Check all interfaces. If any are still soliciting, just return. */ 982 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 983 if (pi->pi_AdvSendAdvertisements || 984 !(pi->pi_kernel_state & PI_PRESENT)) 985 continue; 986 987 if (pi->pi_sol_state == INIT_SOLICIT) 988 return; 989 } 990 991 daemonize_ndpd(); 992 } 993 994 /* 995 * Router solicitation state machine. 996 * Return the number of milliseconds until next timeout (TIMER_INFINITY 997 * if never). 998 * For the SOL_TIMER event the caller passes in the number of milliseconds 999 * since the last timer event in the 'elapsed' parameter. 1000 */ 1001 uint_t 1002 solicit_event(struct phyint *pi, enum solicit_events event, uint_t elapsed) 1003 { 1004 if (debug & D_STATE) { 1005 logmsg(LOG_DEBUG, "solicit_event(%s, %d, %d) state %d\n", 1006 pi->pi_name, (int)event, elapsed, (int)pi->pi_sol_state); 1007 } 1008 1009 if (pi->pi_AdvSendAdvertisements) 1010 return (TIMER_INFINITY); 1011 if (pi->pi_flags & IFF_NORTEXCH) { 1012 if (debug & D_PKTOUT) { 1013 logmsg(LOG_DEBUG, "Suppress sending RS packet on %s " 1014 "(no route exchange on interface)\n", 1015 pi->pi_name); 1016 } 1017 return (TIMER_INFINITY); 1018 } 1019 1020 switch (event) { 1021 case SOLICIT_OFF: 1022 pi->pi_sol_state = NO_SOLICIT; 1023 check_daemonize(); 1024 return (TIMER_INFINITY); 1025 1026 case SOLICIT_DONE: 1027 pi->pi_sol_state = DONE_SOLICIT; 1028 check_daemonize(); 1029 return (TIMER_INFINITY); 1030 1031 case RESTART_INIT_SOLICIT: 1032 /* 1033 * This event allows us to start solicitation over again 1034 * without losing the RA flags. We start solicitation over 1035 * when we are missing an interface prefix for a newly- 1036 * encountered DHCP interface. 1037 */ 1038 if (pi->pi_sol_state == INIT_SOLICIT) 1039 return (pi->pi_sol_time_left); 1040 pi->pi_sol_count = ND_MAX_RTR_SOLICITATIONS; 1041 pi->pi_sol_time_left = 1042 GET_RANDOM(0, ND_MAX_RTR_SOLICITATION_DELAY); 1043 pi->pi_sol_state = INIT_SOLICIT; 1044 break; 1045 1046 case START_INIT_SOLICIT: 1047 if (pi->pi_sol_state == INIT_SOLICIT) 1048 return (pi->pi_sol_time_left); 1049 pi->pi_ra_flags = 0; 1050 pi->pi_sol_count = ND_MAX_RTR_SOLICITATIONS; 1051 pi->pi_sol_time_left = 1052 GET_RANDOM(0, ND_MAX_RTR_SOLICITATION_DELAY); 1053 pi->pi_sol_state = INIT_SOLICIT; 1054 break; 1055 1056 case SOL_TIMER: 1057 if (pi->pi_sol_state == NO_SOLICIT) 1058 return (TIMER_INFINITY); 1059 /* Decrease time left */ 1060 if (pi->pi_sol_time_left >= elapsed) 1061 pi->pi_sol_time_left -= elapsed; 1062 else 1063 pi->pi_sol_time_left = 0; 1064 break; 1065 default: 1066 logmsg(LOG_ERR, "solicit_event: Unknown event %d\n", 1067 (int)event); 1068 return (TIMER_INFINITY); 1069 } 1070 1071 if (pi->pi_sol_time_left != 0) 1072 return (pi->pi_sol_time_left); 1073 1074 /* Send solicitation and calculate next time */ 1075 switch (pi->pi_sol_state) { 1076 case INIT_SOLICIT: 1077 solicit(&v6allrouters, pi); 1078 if (--pi->pi_sol_count == 0) { 1079 if (debug & D_STATE) { 1080 logmsg(LOG_DEBUG, "solicit_event: no routers " 1081 "found on %s; assuming default flags\n", 1082 pi->pi_name); 1083 } 1084 if (pi->pi_autoconf && pi->pi_StatefulAddrConf) { 1085 pi->pi_ra_flags |= ND_RA_FLAG_MANAGED | 1086 ND_RA_FLAG_OTHER; 1087 start_dhcp(pi); 1088 } 1089 pi->pi_sol_state = DONE_SOLICIT; 1090 check_daemonize(); 1091 return (TIMER_INFINITY); 1092 } 1093 pi->pi_sol_time_left = ND_RTR_SOLICITATION_INTERVAL; 1094 return (pi->pi_sol_time_left); 1095 case NO_SOLICIT: 1096 case DONE_SOLICIT: 1097 return (TIMER_INFINITY); 1098 default: 1099 return (pi->pi_sol_time_left); 1100 } 1101 } 1102 1103 /* 1104 * Timer mechanism using relative time (in milliseconds) from the 1105 * previous timer event. Timers exceeding TIMER_INFINITY milliseconds 1106 * will fire after TIMER_INFINITY milliseconds. 1107 */ 1108 static uint_t timer_previous; /* When last SIGALRM occurred */ 1109 static uint_t timer_next; /* Currently scheduled timeout */ 1110 1111 static void 1112 timer_init(void) 1113 { 1114 timer_previous = getcurrenttime(); 1115 timer_next = TIMER_INFINITY; 1116 run_timeouts(); 1117 } 1118 1119 /* 1120 * Make sure the next SIGALRM occurs delay milliseconds from the current 1121 * time if not earlier. 1122 * Handles getcurrenttime (32 bit integer holding milliseconds) wraparound 1123 * by treating differences greater than 0x80000000 as negative. 1124 */ 1125 void 1126 timer_schedule(uint_t delay) 1127 { 1128 uint_t now; 1129 struct itimerval itimerval; 1130 1131 now = getcurrenttime(); 1132 if (debug & D_TIMER) { 1133 logmsg(LOG_DEBUG, "timer_schedule(%u): now %u next %u\n", 1134 delay, now, timer_next); 1135 } 1136 /* Will this timer occur before the currently scheduled SIGALRM? */ 1137 if (delay >= timer_next - now) { 1138 if (debug & D_TIMER) { 1139 logmsg(LOG_DEBUG, "timer_schedule(%u): no action - " 1140 "next in %u ms\n", 1141 delay, timer_next - now); 1142 } 1143 return; 1144 } 1145 if (delay == 0) { 1146 /* Minimum allowed delay */ 1147 delay = 1; 1148 } 1149 timer_next = now + delay; 1150 1151 itimerval.it_value.tv_sec = delay / 1000; 1152 itimerval.it_value.tv_usec = (delay % 1000) * 1000; 1153 itimerval.it_interval.tv_sec = 0; 1154 itimerval.it_interval.tv_usec = 0; 1155 if (debug & D_TIMER) { 1156 logmsg(LOG_DEBUG, "timer_schedule(%u): sec %lu usec %lu\n", 1157 delay, 1158 itimerval.it_value.tv_sec, itimerval.it_value.tv_usec); 1159 } 1160 if (setitimer(ITIMER_REAL, &itimerval, NULL) < 0) { 1161 logperror("timer_schedule: setitimer"); 1162 exit(2); 1163 } 1164 } 1165 1166 /* 1167 * Conditional running of timer. If more than 'minimal_time' millseconds 1168 * since the timer routines were last run we run them. 1169 * Used when packets arrive. 1170 */ 1171 static void 1172 conditional_run_timeouts(uint_t minimal_time) 1173 { 1174 uint_t now; 1175 uint_t elapsed; 1176 1177 now = getcurrenttime(); 1178 elapsed = now - timer_previous; 1179 if (elapsed > minimal_time) { 1180 if (debug & D_TIMER) { 1181 logmsg(LOG_DEBUG, "conditional_run_timeouts: " 1182 "elapsed %d\n", elapsed); 1183 } 1184 run_timeouts(); 1185 } 1186 } 1187 1188 /* 1189 * Timer has fired. 1190 * Determine when the next timer event will occur by asking all 1191 * the timer routines. 1192 * Should not be called from a timer routine but in some cases this is 1193 * done because the code doesn't know that e.g. it was called from 1194 * ifconfig_timer(). In this case the nested run_timeouts will just return but 1195 * the running run_timeouts will ensure to call all the timer functions by 1196 * looping once more. 1197 */ 1198 static void 1199 run_timeouts(void) 1200 { 1201 uint_t now; 1202 uint_t elapsed; 1203 uint_t next; 1204 uint_t nexti; 1205 struct phyint *pi; 1206 struct phyint *next_pi; 1207 struct prefix *pr; 1208 struct prefix *next_pr; 1209 struct adv_prefix *adv_pr; 1210 struct adv_prefix *next_adv_pr; 1211 struct router *dr; 1212 struct router *next_dr; 1213 static boolean_t timeout_running; 1214 static boolean_t do_retry; 1215 1216 if (timeout_running) { 1217 if (debug & D_TIMER) 1218 logmsg(LOG_DEBUG, "run_timeouts: nested call\n"); 1219 do_retry = _B_TRUE; 1220 return; 1221 } 1222 timeout_running = _B_TRUE; 1223 retry: 1224 /* How much time since the last time we were called? */ 1225 now = getcurrenttime(); 1226 elapsed = now - timer_previous; 1227 timer_previous = now; 1228 1229 if (debug & D_TIMER) 1230 logmsg(LOG_DEBUG, "run_timeouts: elapsed %d\n", elapsed); 1231 1232 next = TIMER_INFINITY; 1233 for (pi = phyints; pi != NULL; pi = next_pi) { 1234 next_pi = pi->pi_next; 1235 nexti = phyint_timer(pi, elapsed); 1236 if (nexti != TIMER_INFINITY && nexti < next) 1237 next = nexti; 1238 if (debug & D_TIMER) { 1239 logmsg(LOG_DEBUG, "run_timeouts (pi %s): %d -> %u ms\n", 1240 pi->pi_name, nexti, next); 1241 } 1242 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) { 1243 next_pr = pr->pr_next; 1244 nexti = prefix_timer(pr, elapsed); 1245 if (nexti != TIMER_INFINITY && nexti < next) 1246 next = nexti; 1247 if (debug & D_TIMER) { 1248 logmsg(LOG_DEBUG, "run_timeouts (pr %s): " 1249 "%d -> %u ms\n", pr->pr_name, nexti, next); 1250 } 1251 } 1252 for (adv_pr = pi->pi_adv_prefix_list; adv_pr != NULL; 1253 adv_pr = next_adv_pr) { 1254 next_adv_pr = adv_pr->adv_pr_next; 1255 nexti = adv_prefix_timer(adv_pr, elapsed); 1256 if (nexti != TIMER_INFINITY && nexti < next) 1257 next = nexti; 1258 if (debug & D_TIMER) { 1259 logmsg(LOG_DEBUG, "run_timeouts " 1260 "(adv pr on %s): %d -> %u ms\n", 1261 adv_pr->adv_pr_physical->pi_name, 1262 nexti, next); 1263 } 1264 } 1265 for (dr = pi->pi_router_list; dr != NULL; dr = next_dr) { 1266 next_dr = dr->dr_next; 1267 nexti = router_timer(dr, elapsed); 1268 if (nexti != TIMER_INFINITY && nexti < next) 1269 next = nexti; 1270 if (debug & D_TIMER) { 1271 logmsg(LOG_DEBUG, "run_timeouts (dr): " 1272 "%d -> %u ms\n", nexti, next); 1273 } 1274 } 1275 if (pi->pi_TmpAddrsEnabled) { 1276 nexti = tmptoken_timer(pi, elapsed); 1277 if (nexti != TIMER_INFINITY && nexti < next) 1278 next = nexti; 1279 if (debug & D_TIMER) { 1280 logmsg(LOG_DEBUG, "run_timeouts (tmp on %s): " 1281 "%d -> %u ms\n", pi->pi_name, nexti, next); 1282 } 1283 } 1284 } 1285 /* 1286 * Make sure the timer functions are run at least once 1287 * an hour. 1288 */ 1289 if (next == TIMER_INFINITY) 1290 next = 3600 * 1000; /* 1 hour */ 1291 1292 if (debug & D_TIMER) 1293 logmsg(LOG_DEBUG, "run_timeouts: %u ms\n", next); 1294 timer_schedule(next); 1295 if (do_retry) { 1296 if (debug & D_TIMER) 1297 logmsg(LOG_DEBUG, "run_timeouts: retry\n"); 1298 do_retry = _B_FALSE; 1299 goto retry; 1300 } 1301 timeout_running = _B_FALSE; 1302 } 1303 1304 static int eventpipe_read = -1; /* Used for synchronous signal delivery */ 1305 static int eventpipe_write = -1; 1306 1307 /* 1308 * Ensure that signals are processed synchronously with the rest of 1309 * the code by just writing a one character signal number on the pipe. 1310 * The poll loop will pick this up and process the signal event. 1311 */ 1312 static void 1313 sig_handler(int signo) 1314 { 1315 uchar_t buf = (uchar_t)signo; 1316 1317 if (eventpipe_write == -1) { 1318 logmsg(LOG_ERR, "sig_handler: no pipe\n"); 1319 return; 1320 } 1321 if (write(eventpipe_write, &buf, sizeof (buf)) < 0) 1322 logperror("sig_handler: write"); 1323 } 1324 1325 /* 1326 * Pick up a signal "byte" from the pipe and process it. 1327 */ 1328 static void 1329 in_signal(int fd) 1330 { 1331 uchar_t buf; 1332 struct phyint *pi; 1333 struct phyint *next_pi; 1334 1335 switch (read(fd, &buf, sizeof (buf))) { 1336 case -1: 1337 logperror("in_signal: read"); 1338 exit(1); 1339 /* NOTREACHED */ 1340 case 1: 1341 break; 1342 case 0: 1343 logmsg(LOG_ERR, "in_signal: read eof\n"); 1344 exit(1); 1345 /* NOTREACHED */ 1346 default: 1347 logmsg(LOG_ERR, "in_signal: read > 1\n"); 1348 exit(1); 1349 } 1350 1351 if (debug & D_TIMER) 1352 logmsg(LOG_DEBUG, "in_signal() got %d\n", buf); 1353 1354 switch (buf) { 1355 case SIGALRM: 1356 if (debug & D_TIMER) { 1357 uint_t now = getcurrenttime(); 1358 1359 logmsg(LOG_DEBUG, "in_signal(SIGALRM) delta %u\n", 1360 now - timer_next); 1361 } 1362 timer_next = TIMER_INFINITY; 1363 run_timeouts(); 1364 break; 1365 case SIGHUP: 1366 /* Re-read config file by exec'ing ourselves */ 1367 for (pi = phyints; pi != NULL; pi = next_pi) { 1368 next_pi = pi->pi_next; 1369 if (pi->pi_AdvSendAdvertisements) 1370 check_to_advertise(pi, START_FINAL_ADV); 1371 1372 /* 1373 * Remove all the configured addresses. 1374 * Remove the addrobj names created with ipmgmtd. 1375 * Release the dhcpv6 addresses if any. 1376 * Cleanup the phyints. 1377 */ 1378 phyint_delete(pi); 1379 } 1380 1381 /* 1382 * Prevent fd leaks. Everything gets re-opened at start-up 1383 * time. 0, 1, and 2 are closed and re-opened as 1384 * /dev/null, so we'll leave those open. 1385 */ 1386 closefrom(3); 1387 1388 logmsg(LOG_ERR, "SIGHUP: restart and reread config file\n"); 1389 (void) execv(argv0[0], argv0); 1390 _exit(0177); 1391 /* NOTREACHED */ 1392 case SIGUSR1: 1393 logmsg(LOG_DEBUG, "Printing configuration:\n"); 1394 phyint_print_all(); 1395 break; 1396 case SIGINT: 1397 case SIGTERM: 1398 case SIGQUIT: 1399 for (pi = phyints; pi != NULL; pi = next_pi) { 1400 next_pi = pi->pi_next; 1401 if (pi->pi_AdvSendAdvertisements) 1402 check_to_advertise(pi, START_FINAL_ADV); 1403 1404 phyint_delete(pi); 1405 } 1406 (void) unlink(NDPD_SNMP_SOCKET); 1407 exit(0); 1408 /* NOTREACHED */ 1409 case 255: 1410 /* 1411 * Special "signal" from loopback_ra_enqueue. 1412 * Handle any queued loopback router advertisements. 1413 */ 1414 loopback_ra_dequeue(); 1415 break; 1416 default: 1417 logmsg(LOG_ERR, "in_signal: unknown signal: %d\n", buf); 1418 } 1419 } 1420 1421 /* 1422 * Create pipe for signal delivery and set up signal handlers. 1423 */ 1424 static void 1425 setup_eventpipe(void) 1426 { 1427 int fds[2]; 1428 struct sigaction act; 1429 1430 if ((pipe(fds)) < 0) { 1431 logperror("setup_eventpipe: pipe"); 1432 exit(1); 1433 } 1434 eventpipe_read = fds[0]; 1435 eventpipe_write = fds[1]; 1436 if (poll_add(eventpipe_read) == -1) { 1437 exit(1); 1438 } 1439 act.sa_handler = sig_handler; 1440 act.sa_flags = SA_RESTART; 1441 (void) sigaction(SIGALRM, &act, NULL); 1442 1443 (void) sigset(SIGHUP, sig_handler); 1444 (void) sigset(SIGUSR1, sig_handler); 1445 (void) sigset(SIGTERM, sig_handler); 1446 (void) sigset(SIGINT, sig_handler); 1447 (void) sigset(SIGQUIT, sig_handler); 1448 } 1449 1450 /* 1451 * Create a routing socket for receiving RTM_IFINFO messages and initialize 1452 * the routing socket message header and as much of the sockaddrs as possible. 1453 */ 1454 static int 1455 setup_rtsock(void) 1456 { 1457 int s; 1458 int ret; 1459 char *cp; 1460 struct sockaddr_in6 *sin6; 1461 1462 s = socket(PF_ROUTE, SOCK_RAW, AF_INET6); 1463 if (s == -1) { 1464 logperror("socket(PF_ROUTE)"); 1465 exit(1); 1466 } 1467 ret = fcntl(s, F_SETFL, O_NDELAY|O_NONBLOCK); 1468 if (ret < 0) { 1469 logperror("fcntl(O_NDELAY)"); 1470 exit(1); 1471 } 1472 if (poll_add(s) == -1) { 1473 exit(1); 1474 } 1475 1476 /* 1477 * Allocate storage for the routing socket message. 1478 */ 1479 rt_msg = (struct rt_msghdr *)malloc(NDP_RTM_MSGLEN); 1480 if (rt_msg == NULL) { 1481 logperror("malloc"); 1482 exit(1); 1483 } 1484 1485 /* 1486 * Initialize the routing socket message by zero-filling it and then 1487 * setting the fields where are constant through the lifetime of the 1488 * process. 1489 */ 1490 bzero(rt_msg, NDP_RTM_MSGLEN); 1491 rt_msg->rtm_msglen = NDP_RTM_MSGLEN; 1492 rt_msg->rtm_version = RTM_VERSION; 1493 rt_msg->rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFP; 1494 rt_msg->rtm_pid = getpid(); 1495 if (rt_msg->rtm_pid < 0) { 1496 logperror("getpid"); 1497 exit(1); 1498 } 1499 1500 /* 1501 * The RTA_DST sockaddr does not change during the lifetime of the 1502 * process so it can be completely initialized at this time. 1503 */ 1504 cp = (char *)rt_msg + sizeof (struct rt_msghdr); 1505 sin6 = (struct sockaddr_in6 *)cp; 1506 sin6->sin6_family = AF_INET6; 1507 sin6->sin6_addr = in6addr_any; 1508 1509 /* 1510 * Initialize the constant portion of the RTA_GATEWAY sockaddr. 1511 */ 1512 cp += sizeof (struct sockaddr_in6); 1513 rta_gateway = (struct sockaddr_in6 *)cp; 1514 rta_gateway->sin6_family = AF_INET6; 1515 1516 /* 1517 * The RTA_NETMASK sockaddr does not change during the lifetime of the 1518 * process so it can be completely initialized at this time. 1519 */ 1520 cp += sizeof (struct sockaddr_in6); 1521 sin6 = (struct sockaddr_in6 *)cp; 1522 sin6->sin6_family = AF_INET6; 1523 sin6->sin6_addr = in6addr_any; 1524 1525 /* 1526 * Initialize the constant portion of the RTA_IFP sockaddr. 1527 */ 1528 cp += sizeof (struct sockaddr_in6); 1529 rta_ifp = (struct sockaddr_dl *)cp; 1530 rta_ifp->sdl_family = AF_LINK; 1531 1532 return (s); 1533 } 1534 1535 static int 1536 setup_mibsock(void) 1537 { 1538 int sock; 1539 int ret; 1540 int len; 1541 struct sockaddr_un laddr; 1542 1543 sock = socket(AF_UNIX, SOCK_DGRAM, 0); 1544 if (sock == -1) { 1545 logperror("setup_mibsock: socket(AF_UNIX)"); 1546 exit(1); 1547 } 1548 1549 bzero(&laddr, sizeof (laddr)); 1550 laddr.sun_family = AF_UNIX; 1551 1552 (void) strncpy(laddr.sun_path, NDPD_SNMP_SOCKET, 1553 sizeof (laddr.sun_path)); 1554 len = sizeof (struct sockaddr_un); 1555 1556 (void) unlink(NDPD_SNMP_SOCKET); 1557 ret = bind(sock, (struct sockaddr *)&laddr, len); 1558 if (ret < 0) { 1559 logperror("setup_mibsock: bind\n"); 1560 exit(1); 1561 } 1562 1563 ret = fcntl(sock, F_SETFL, O_NONBLOCK); 1564 if (ret < 0) { 1565 logperror("fcntl(O_NONBLOCK)"); 1566 exit(1); 1567 } 1568 if (poll_add(sock) == -1) { 1569 exit(1); 1570 } 1571 return (sock); 1572 } 1573 1574 /* 1575 * Retrieve one routing socket message. If RTM_IFINFO indicates 1576 * new phyint do a full scan of the interfaces. If RTM_IFINFO 1577 * indicates an existing phyint, only scan that phyint and associated 1578 * prefixes. 1579 */ 1580 static void 1581 process_rtsock(int rtsock) 1582 { 1583 int n; 1584 #define MSG_SIZE 2048/8 1585 int64_t msg[MSG_SIZE]; 1586 struct rt_msghdr *rtm; 1587 struct if_msghdr *ifm; 1588 struct phyint *pi; 1589 struct prefix *pr; 1590 boolean_t need_initifs = _B_FALSE; 1591 boolean_t need_ifscan = _B_FALSE; 1592 int64_t ifscan_msg[10][MSG_SIZE]; 1593 int ifscan_index = 0; 1594 int i; 1595 1596 /* Empty the rtsock and coealesce all the work that we have */ 1597 while (ifscan_index < 10) { 1598 n = read(rtsock, msg, sizeof (msg)); 1599 if (n <= 0) { 1600 /* No more messages */ 1601 break; 1602 } 1603 rtm = (struct rt_msghdr *)msg; 1604 if (rtm->rtm_version != RTM_VERSION) { 1605 logmsg(LOG_ERR, 1606 "process_rtsock: version %d not understood\n", 1607 rtm->rtm_version); 1608 return; 1609 } 1610 switch (rtm->rtm_type) { 1611 case RTM_NEWADDR: 1612 case RTM_DELADDR: 1613 /* 1614 * Some logical interface has changed - have to scan 1615 * everything to determine what actually changed. 1616 */ 1617 if (debug & D_IFSCAN) { 1618 logmsg(LOG_DEBUG, "process_rtsock: " 1619 "message %d\n", rtm->rtm_type); 1620 } 1621 need_initifs = _B_TRUE; 1622 break; 1623 case RTM_IFINFO: 1624 need_ifscan = _B_TRUE; 1625 (void) memcpy(ifscan_msg[ifscan_index], rtm, 1626 sizeof (msg)); 1627 ifscan_index++; 1628 /* Handled below */ 1629 break; 1630 default: 1631 /* Not interesting */ 1632 break; 1633 } 1634 } 1635 /* 1636 * If we do full scan i.e initifs, we don't need to 1637 * scan a particular interface as we should have 1638 * done that as part of initifs. 1639 */ 1640 if (need_initifs) { 1641 initifs(_B_FALSE); 1642 return; 1643 } 1644 1645 if (!need_ifscan) 1646 return; 1647 1648 for (i = 0; i < ifscan_index; i++) { 1649 ifm = (struct if_msghdr *)ifscan_msg[i]; 1650 if (debug & D_IFSCAN) 1651 logmsg(LOG_DEBUG, "process_rtsock: index %d\n", 1652 ifm->ifm_index); 1653 1654 pi = phyint_lookup_on_index(ifm->ifm_index); 1655 if (pi == NULL) { 1656 /* 1657 * A new physical interface. Do a full scan of the 1658 * to catch any new logical interfaces. 1659 */ 1660 initifs(_B_FALSE); 1661 return; 1662 } 1663 1664 if (ifm->ifm_flags != (uint_t)pi->pi_flags) { 1665 if (debug & D_IFSCAN) { 1666 logmsg(LOG_DEBUG, "process_rtsock: clr for " 1667 "%s old flags 0x%llx new flags 0x%x\n", 1668 pi->pi_name, pi->pi_flags, ifm->ifm_flags); 1669 } 1670 } 1671 1672 1673 /* 1674 * Mark the interfaces so that we can find phyints and prefixes 1675 * which have disappeared from the kernel. 1676 * if_process will set pr_in_use when it finds the 1677 * interface in the kernel. 1678 * Before re-examining the state of the interfaces, 1679 * PI_PRESENT should be cleared from pi_kernel_state. 1680 */ 1681 pi->pi_kernel_state &= ~PI_PRESENT; 1682 for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) { 1683 pr->pr_in_use = _B_FALSE; 1684 } 1685 1686 if (ifsock < 0) { 1687 ifsock = socket(AF_INET6, SOCK_DGRAM, 0); 1688 if (ifsock < 0) { 1689 logperror("process_rtsock: socket"); 1690 return; 1691 } 1692 } 1693 if_process(ifsock, pi->pi_name, _B_FALSE); 1694 for (pr = pi->pi_prefix_list; pr != NULL; pr = pr->pr_next) { 1695 if_process(ifsock, pr->pr_name, _B_FALSE); 1696 } 1697 /* 1698 * If interface (still) exists in kernel, set 1699 * pi_state to indicate that. 1700 */ 1701 if (pi->pi_kernel_state & PI_PRESENT) { 1702 pi->pi_state |= PI_PRESENT; 1703 } 1704 check_if_removed(pi); 1705 if (show_ifs) 1706 phyint_print_all(); 1707 } 1708 } 1709 1710 static void 1711 process_mibsock(int mibsock) 1712 { 1713 struct phyint *pi; 1714 socklen_t fromlen; 1715 struct sockaddr_un from; 1716 ndpd_info_t ndpd_info; 1717 ssize_t len; 1718 int command; 1719 1720 fromlen = (socklen_t)sizeof (from); 1721 len = recvfrom(mibsock, &command, sizeof (int), 0, 1722 (struct sockaddr *)&from, &fromlen); 1723 1724 if (len < sizeof (int) || command != NDPD_SNMP_INFO_REQ) { 1725 logperror("process_mibsock: bad command \n"); 1726 return; 1727 } 1728 1729 ndpd_info.info_type = NDPD_SNMP_INFO_RESPONSE; 1730 ndpd_info.info_version = NDPD_SNMP_INFO_VER; 1731 ndpd_info.info_num_of_phyints = num_of_phyints; 1732 1733 (void) sendto(mibsock, &ndpd_info, sizeof (ndpd_info_t), 0, 1734 (struct sockaddr *)&from, fromlen); 1735 1736 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 1737 int prefixes; 1738 int routers; 1739 struct prefix *prefix_list; 1740 struct router *router_list; 1741 ndpd_phyint_info_t phyint; 1742 ndpd_prefix_info_t prefix; 1743 ndpd_router_info_t router; 1744 /* 1745 * get number of prefixes 1746 */ 1747 routers = 0; 1748 prefixes = 0; 1749 prefix_list = pi->pi_prefix_list; 1750 while (prefix_list != NULL) { 1751 prefixes++; 1752 prefix_list = prefix_list->pr_next; 1753 } 1754 1755 /* 1756 * get number of routers 1757 */ 1758 router_list = pi->pi_router_list; 1759 while (router_list != NULL) { 1760 routers++; 1761 router_list = router_list->dr_next; 1762 } 1763 1764 phyint.phyint_info_type = NDPD_PHYINT_INFO; 1765 phyint.phyint_info_version = NDPD_PHYINT_INFO_VER; 1766 phyint.phyint_index = pi->pi_index; 1767 bcopy(pi->pi_config, 1768 phyint.phyint_config, I_IFSIZE); 1769 phyint.phyint_num_of_prefixes = prefixes; 1770 phyint.phyint_num_of_routers = routers; 1771 (void) sendto(mibsock, &phyint, sizeof (phyint), 0, 1772 (struct sockaddr *)&from, fromlen); 1773 1774 /* 1775 * Copy prefix information 1776 */ 1777 1778 prefix_list = pi->pi_prefix_list; 1779 while (prefix_list != NULL) { 1780 prefix.prefix_info_type = NDPD_PREFIX_INFO; 1781 prefix.prefix_info_version = NDPD_PREFIX_INFO_VER; 1782 prefix.prefix_prefix = prefix_list->pr_prefix; 1783 prefix.prefix_len = prefix_list->pr_prefix_len; 1784 prefix.prefix_flags = prefix_list->pr_flags; 1785 prefix.prefix_phyint_index = pi->pi_index; 1786 prefix.prefix_ValidLifetime = 1787 prefix_list->pr_ValidLifetime; 1788 prefix.prefix_PreferredLifetime = 1789 prefix_list->pr_PreferredLifetime; 1790 prefix.prefix_OnLinkLifetime = 1791 prefix_list->pr_OnLinkLifetime; 1792 prefix.prefix_OnLinkFlag = 1793 prefix_list->pr_OnLinkFlag; 1794 prefix.prefix_AutonomousFlag = 1795 prefix_list->pr_AutonomousFlag; 1796 (void) sendto(mibsock, &prefix, sizeof (prefix), 0, 1797 (struct sockaddr *)&from, fromlen); 1798 prefix_list = prefix_list->pr_next; 1799 } 1800 /* 1801 * Copy router information 1802 */ 1803 router_list = pi->pi_router_list; 1804 while (router_list != NULL) { 1805 router.router_info_type = NDPD_ROUTER_INFO; 1806 router.router_info_version = NDPD_ROUTER_INFO_VER; 1807 router.router_address = router_list->dr_address; 1808 router.router_lifetime = router_list->dr_lifetime; 1809 router.router_phyint_index = pi->pi_index; 1810 (void) sendto(mibsock, &router, sizeof (router), 0, 1811 (struct sockaddr *)&from, fromlen); 1812 router_list = router_list->dr_next; 1813 } 1814 } 1815 } 1816 1817 /* 1818 * Look if the phyint or one of its prefixes have been removed from 1819 * the kernel and take appropriate action. 1820 * Uses pr_in_use and pi{,_kernel}_state. 1821 */ 1822 static void 1823 check_if_removed(struct phyint *pi) 1824 { 1825 struct prefix *pr, *next_pr; 1826 1827 /* 1828 * Detect prefixes which are removed. 1829 * Static prefixes are just removed from our tables. 1830 * Non-static prefixes are recreated i.e. in.ndpd takes precedence 1831 * over manually removing prefixes via ifconfig. 1832 */ 1833 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) { 1834 next_pr = pr->pr_next; 1835 if (!pr->pr_in_use) { 1836 /* Clear everything except PR_STATIC */ 1837 pr->pr_kernel_state &= PR_STATIC; 1838 if (pr->pr_state & PR_STATIC) 1839 prefix_update_ipadm_addrobj(pr, _B_FALSE); 1840 pr->pr_name[0] = '\0'; 1841 if (pr->pr_state & PR_STATIC) { 1842 prefix_delete(pr); 1843 } else if (!(pi->pi_kernel_state & PI_PRESENT)) { 1844 /* 1845 * Ensure that there are no future attempts to 1846 * run prefix_update_k since the phyint is gone. 1847 */ 1848 pr->pr_state = pr->pr_kernel_state; 1849 } else if (pr->pr_state != pr->pr_kernel_state) { 1850 logmsg(LOG_INFO, "Prefix manually removed " 1851 "on %s; recreating\n", pi->pi_name); 1852 prefix_update_k(pr); 1853 } 1854 } 1855 } 1856 1857 /* 1858 * Detect phyints that have been removed from the kernel, and tear 1859 * down any prefixes we created that are associated with that phyint. 1860 * (NOTE: IPMP depends on in.ndpd tearing down these prefixes so an 1861 * administrator can easily place an IP interface with ADDRCONF'd 1862 * addresses into an IPMP group.) 1863 */ 1864 if (!(pi->pi_kernel_state & PI_PRESENT) && 1865 (pi->pi_state & PI_PRESENT)) { 1866 logmsg(LOG_ERR, "Interface %s has been removed from kernel. " 1867 "in.ndpd will no longer use it\n", pi->pi_name); 1868 1869 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) { 1870 next_pr = pr->pr_next; 1871 if (pr->pr_state & PR_AUTO) 1872 prefix_update_ipadm_addrobj(pr, _B_FALSE); 1873 prefix_delete(pr); 1874 } 1875 1876 /* 1877 * Clear state so that should the phyint reappear we will 1878 * start with initial advertisements or solicitations. 1879 */ 1880 phyint_cleanup(pi); 1881 } 1882 } 1883 1884 1885 /* 1886 * Queuing mechanism for router advertisements that are sent by in.ndpd 1887 * and that also need to be processed by in.ndpd. 1888 * Uses "signal number" 255 to indicate to the main poll loop 1889 * that there is something to dequeue and send to incomining_ra(). 1890 */ 1891 struct raq { 1892 struct raq *raq_next; 1893 struct phyint *raq_pi; 1894 int raq_packetlen; 1895 uchar_t *raq_packet; 1896 }; 1897 static struct raq *raq_head = NULL; 1898 1899 /* 1900 * Allocate a struct raq and memory for the packet. 1901 * Send signal 255 to have poll dequeue. 1902 */ 1903 static void 1904 loopback_ra_enqueue(struct phyint *pi, struct nd_router_advert *ra, int len) 1905 { 1906 struct raq *raq; 1907 struct raq **raqp; 1908 1909 if (no_loopback) 1910 return; 1911 1912 if (debug & D_PKTOUT) 1913 logmsg(LOG_DEBUG, "loopback_ra_enqueue for %s\n", pi->pi_name); 1914 1915 raq = calloc(sizeof (struct raq), 1); 1916 if (raq == NULL) { 1917 logmsg(LOG_ERR, "loopback_ra_enqueue: out of memory\n"); 1918 return; 1919 } 1920 raq->raq_packet = malloc(len); 1921 if (raq->raq_packet == NULL) { 1922 free(raq); 1923 logmsg(LOG_ERR, "loopback_ra_enqueue: out of memory\n"); 1924 return; 1925 } 1926 bcopy(ra, raq->raq_packet, len); 1927 raq->raq_packetlen = len; 1928 raq->raq_pi = pi; 1929 1930 /* Tail insert */ 1931 raqp = &raq_head; 1932 while (*raqp != NULL) 1933 raqp = &((*raqp)->raq_next); 1934 *raqp = raq; 1935 1936 /* Signal for poll loop */ 1937 sig_handler(255); 1938 } 1939 1940 /* 1941 * Dequeue and process all queued advertisements. 1942 */ 1943 static void 1944 loopback_ra_dequeue(void) 1945 { 1946 struct sockaddr_in6 from = IN6ADDR_LOOPBACK_INIT; 1947 struct raq *raq; 1948 1949 if (debug & D_PKTIN) 1950 logmsg(LOG_DEBUG, "loopback_ra_dequeue()\n"); 1951 1952 while ((raq = raq_head) != NULL) { 1953 raq_head = raq->raq_next; 1954 raq->raq_next = NULL; 1955 1956 if (debug & D_PKTIN) { 1957 logmsg(LOG_DEBUG, "loopback_ra_dequeue for %s\n", 1958 raq->raq_pi->pi_name); 1959 } 1960 1961 incoming_ra(raq->raq_pi, 1962 (struct nd_router_advert *)raq->raq_packet, 1963 raq->raq_packetlen, &from, _B_TRUE); 1964 free(raq->raq_packet); 1965 free(raq); 1966 } 1967 } 1968 1969 1970 static void 1971 usage(char *cmd) 1972 { 1973 (void) fprintf(stderr, 1974 "usage: %s [ -adt ] [-f <config file>]\n", cmd); 1975 } 1976 1977 int 1978 main(int argc, char *argv[]) 1979 { 1980 int i; 1981 struct phyint *pi; 1982 int c; 1983 char *config_file = PATH_NDPD_CONF; 1984 boolean_t file_required = _B_FALSE; 1985 1986 argv0 = argv; 1987 srandom(gethostid()); 1988 (void) umask(0022); 1989 1990 while ((c = getopt(argc, argv, "adD:ntIf:")) != EOF) { 1991 switch (c) { 1992 case 'a': 1993 /* 1994 * The StatelessAddrConf variable in ndpd.conf, if 1995 * present, will override this setting. 1996 */ 1997 ifdefaults[I_StatelessAddrConf].cf_value = 0; 1998 break; 1999 case 'd': 2000 debug = D_ALL; 2001 break; 2002 case 'D': 2003 i = strtol((char *)optarg, NULL, 0); 2004 if (i == 0) { 2005 (void) fprintf(stderr, "Bad debug flags: %s\n", 2006 (char *)optarg); 2007 exit(1); 2008 } 2009 debug |= i; 2010 break; 2011 case 'n': 2012 no_loopback = 1; 2013 break; 2014 case 'I': 2015 show_ifs = 1; 2016 break; 2017 case 't': 2018 debug |= D_PKTIN | D_PKTOUT | D_PKTBAD; 2019 break; 2020 case 'f': 2021 config_file = (char *)optarg; 2022 file_required = _B_TRUE; 2023 break; 2024 case '?': 2025 usage(argv[0]); 2026 exit(1); 2027 } 2028 } 2029 2030 if (parse_config(config_file, file_required) == -1) 2031 exit(2); 2032 2033 if (show_ifs) 2034 phyint_print_all(); 2035 2036 if (debug == 0) 2037 initlog(); 2038 2039 cmdsock = ndpd_setup_cmd_listener(); 2040 setup_eventpipe(); 2041 rtsock = setup_rtsock(); 2042 mibsock = setup_mibsock(); 2043 timer_init(); 2044 initifs(_B_TRUE); 2045 2046 check_daemonize(); 2047 2048 for (;;) { 2049 if (poll(pollfds, pollfd_num, -1) < 0) { 2050 if (errno == EINTR) 2051 continue; 2052 logperror("main: poll"); 2053 exit(1); 2054 } 2055 for (i = 0; i < pollfd_num; i++) { 2056 if (!(pollfds[i].revents & POLLIN)) 2057 continue; 2058 if (pollfds[i].fd == eventpipe_read) { 2059 in_signal(eventpipe_read); 2060 break; 2061 } 2062 if (pollfds[i].fd == rtsock) { 2063 process_rtsock(rtsock); 2064 break; 2065 } 2066 if (pollfds[i].fd == mibsock) { 2067 process_mibsock(mibsock); 2068 break; 2069 } 2070 if (pollfds[i].fd == cmdsock) { 2071 ndpd_cmd_handler(cmdsock); 2072 break; 2073 } 2074 /* 2075 * Run timer routine to advance clock if more than 2076 * half a second since the clock was advanced. 2077 * This limits CPU usage under severe packet 2078 * arrival rates but it creates a slight inaccuracy 2079 * in the timer mechanism. 2080 */ 2081 conditional_run_timeouts(500U); 2082 for (pi = phyints; pi != NULL; pi = pi->pi_next) { 2083 if (pollfds[i].fd == pi->pi_sock) { 2084 in_data(pi); 2085 break; 2086 } 2087 } 2088 } 2089 } 2090 /* NOTREACHED */ 2091 return (0); 2092 } 2093 2094 /* 2095 * LOGGER 2096 */ 2097 2098 static boolean_t logging = _B_FALSE; 2099 2100 static void 2101 initlog(void) 2102 { 2103 logging = _B_TRUE; 2104 openlog("in.ndpd", LOG_PID | LOG_CONS, LOG_DAEMON); 2105 } 2106 2107 /* Print the date/time without a trailing carridge return */ 2108 static void 2109 fprintdate(FILE *file) 2110 { 2111 char buf[BUFSIZ]; 2112 struct tm tms; 2113 time_t now; 2114 2115 now = time(NULL); 2116 (void) localtime_r(&now, &tms); 2117 (void) strftime(buf, sizeof (buf), "%h %d %X", &tms); 2118 (void) fprintf(file, "%s ", buf); 2119 } 2120 2121 /* PRINTFLIKE2 */ 2122 void 2123 logmsg(int level, const char *fmt, ...) 2124 { 2125 va_list ap; 2126 va_start(ap, fmt); 2127 2128 if (logging) { 2129 vsyslog(level, fmt, ap); 2130 } else { 2131 fprintdate(stderr); 2132 (void) vfprintf(stderr, fmt, ap); 2133 } 2134 va_end(ap); 2135 } 2136 2137 void 2138 logperror(const char *str) 2139 { 2140 if (logging) { 2141 syslog(LOG_ERR, "%s: %m\n", str); 2142 } else { 2143 fprintdate(stderr); 2144 (void) fprintf(stderr, "%s: %s\n", str, strerror(errno)); 2145 } 2146 } 2147 2148 void 2149 logperror_pi(const struct phyint *pi, const char *str) 2150 { 2151 if (logging) { 2152 syslog(LOG_ERR, "%s (interface %s): %m\n", 2153 str, pi->pi_name); 2154 } else { 2155 fprintdate(stderr); 2156 (void) fprintf(stderr, "%s (interface %s): %s\n", 2157 str, pi->pi_name, strerror(errno)); 2158 } 2159 } 2160 2161 void 2162 logperror_pr(const struct prefix *pr, const char *str) 2163 { 2164 if (logging) { 2165 syslog(LOG_ERR, "%s (prefix %s if %s): %m\n", 2166 str, pr->pr_name, pr->pr_physical->pi_name); 2167 } else { 2168 fprintdate(stderr); 2169 (void) fprintf(stderr, "%s (prefix %s if %s): %s\n", 2170 str, pr->pr_name, pr->pr_physical->pi_name, 2171 strerror(errno)); 2172 } 2173 } 2174 2175 static int 2176 ndpd_setup_cmd_listener(void) 2177 { 2178 int sock; 2179 int ret; 2180 struct sockaddr_un servaddr; 2181 2182 sock = socket(AF_UNIX, SOCK_STREAM, 0); 2183 if (sock < 0) { 2184 logperror("socket"); 2185 exit(1); 2186 } 2187 2188 bzero(&servaddr, sizeof (servaddr)); 2189 servaddr.sun_family = AF_UNIX; 2190 (void) strlcpy(servaddr.sun_path, IPADM_UDS_PATH, 2191 sizeof (servaddr.sun_path)); 2192 (void) unlink(servaddr.sun_path); 2193 ret = bind(sock, (struct sockaddr *)&servaddr, sizeof (servaddr)); 2194 if (ret < 0) { 2195 logperror("bind"); 2196 exit(1); 2197 } 2198 if (listen(sock, 30) < 0) { 2199 logperror("listen"); 2200 exit(1); 2201 } 2202 if (poll_add(sock) == -1) { 2203 logmsg(LOG_ERR, "command socket could not be added to the " 2204 "polling set\n"); 2205 exit(1); 2206 } 2207 2208 return (sock); 2209 } 2210 2211 /* 2212 * Commands received over the command socket come here 2213 */ 2214 static void 2215 ndpd_cmd_handler(int sock) 2216 { 2217 int newfd; 2218 struct sockaddr_storage peer; 2219 socklen_t peerlen; 2220 ipadm_ndpd_msg_t ndpd_msg; 2221 int retval; 2222 2223 peerlen = sizeof (peer); 2224 newfd = accept(sock, (struct sockaddr *)&peer, &peerlen); 2225 if (newfd < 0) { 2226 logperror("accept"); 2227 return; 2228 } 2229 2230 retval = ipadm_ndpd_read(newfd, &ndpd_msg, sizeof (ndpd_msg)); 2231 if (retval != 0) 2232 logperror("Could not read ndpd command"); 2233 2234 retval = ndpd_process_cmd(newfd, &ndpd_msg); 2235 if (retval != 0) { 2236 logmsg(LOG_ERR, "ndpd command on interface %s failed with " 2237 "error %s\n", ndpd_msg.inm_ifname, strerror(retval)); 2238 } 2239 (void) close(newfd); 2240 } 2241 2242 /* 2243 * Process the commands received from the cmd listener socket. 2244 */ 2245 static int 2246 ndpd_process_cmd(int newfd, ipadm_ndpd_msg_t *msg) 2247 { 2248 int err; 2249 2250 if (!ipadm_check_auth()) { 2251 logmsg(LOG_ERR, "User not authorized to send the command\n"); 2252 (void) ndpd_send_error(newfd, EPERM); 2253 return (EPERM); 2254 } 2255 switch (msg->inm_cmd) { 2256 case IPADM_DISABLE_AUTOCONF: 2257 err = ndpd_set_autoconf(msg->inm_ifname, _B_FALSE); 2258 break; 2259 2260 case IPADM_ENABLE_AUTOCONF: 2261 err = ndpd_set_autoconf(msg->inm_ifname, _B_TRUE); 2262 break; 2263 2264 case IPADM_CREATE_ADDRS: 2265 err = ndpd_create_addrs(msg->inm_ifname, msg->inm_intfid, 2266 msg->inm_intfidlen, msg->inm_stateless, 2267 msg->inm_stateful, msg->inm_aobjname); 2268 break; 2269 2270 case IPADM_DELETE_ADDRS: 2271 err = ndpd_delete_addrs(msg->inm_ifname); 2272 break; 2273 2274 default: 2275 err = EINVAL; 2276 break; 2277 } 2278 2279 (void) ndpd_send_error(newfd, err); 2280 2281 return (err); 2282 } 2283 2284 static int 2285 ndpd_send_error(int fd, int error) 2286 { 2287 return (ipadm_ndpd_write(fd, &error, sizeof (error))); 2288 } 2289 2290 /* 2291 * Disables/Enables autoconfiguration of addresses on the 2292 * given physical interface. 2293 * This is provided to support the legacy method of configuring IPv6 2294 * addresses. i.e. `ifconfig bge0 inet6 plumb` will plumb the interface 2295 * and start stateless and stateful autoconfiguration. If this function is 2296 * not called with enable=_B_FALSE, no autoconfiguration will be done until 2297 * ndpd_create_addrs() is called with an Interface ID. 2298 */ 2299 static int 2300 ndpd_set_autoconf(const char *ifname, boolean_t enable) 2301 { 2302 struct phyint *pi; 2303 2304 pi = phyint_lookup((char *)ifname); 2305 if (pi == NULL) { 2306 /* 2307 * If the physical interface was plumbed but no 2308 * addresses were configured yet, phyint will not exist. 2309 */ 2310 pi = phyint_create((char *)ifname); 2311 if (pi == NULL) { 2312 logmsg(LOG_ERR, "could not create phyint for " 2313 "interface %s", ifname); 2314 return (ENOMEM); 2315 } 2316 } 2317 pi->pi_autoconf = enable; 2318 2319 if (debug & D_PHYINT) { 2320 logmsg(LOG_DEBUG, "ndpd_set_autoconf: %s autoconf for " 2321 "interface %s\n", (enable ? "enabled" : "disabled"), 2322 pi->pi_name); 2323 } 2324 return (0); 2325 } 2326 2327 /* 2328 * Create auto-configured addresses on the given interface using 2329 * the given token as the interface id during the next Router Advertisement. 2330 * Currently, only one token per interface is supported. 2331 */ 2332 static int 2333 ndpd_create_addrs(const char *ifname, struct sockaddr_in6 intfid, int intfidlen, 2334 boolean_t stateless, boolean_t stateful, char *addrobj) 2335 { 2336 struct phyint *pi; 2337 struct lifreq lifr; 2338 struct sockaddr_in6 *sin6; 2339 int err; 2340 2341 pi = phyint_lookup((char *)ifname); 2342 if (pi == NULL) { 2343 /* 2344 * If the physical interface was plumbed but no 2345 * addresses were configured yet, phyint will not exist. 2346 */ 2347 pi = phyint_create((char *)ifname); 2348 if (pi == NULL) { 2349 if (debug & D_PHYINT) 2350 logmsg(LOG_ERR, "could not create phyint " 2351 "for interface %s", ifname); 2352 return (ENOMEM); 2353 } 2354 } else if (pi->pi_autoconf) { 2355 logmsg(LOG_ERR, "autoconfiguration already in progress\n"); 2356 return (EEXIST); 2357 } 2358 check_autoconf_var_consistency(pi, stateless, stateful); 2359 2360 if (intfidlen == 0) { 2361 pi->pi_default_token = _B_TRUE; 2362 if (ifsock < 0) { 2363 ifsock = socket(AF_INET6, SOCK_DGRAM, 0); 2364 if (ifsock < 0) { 2365 err = errno; 2366 logperror("ndpd_create_addrs: socket"); 2367 return (err); 2368 } 2369 } 2370 (void) strncpy(lifr.lifr_name, ifname, sizeof (lifr.lifr_name)); 2371 sin6 = (struct sockaddr_in6 *)&lifr.lifr_addr; 2372 if (ioctl(ifsock, SIOCGLIFTOKEN, (char *)&lifr) < 0) { 2373 err = errno; 2374 logperror("SIOCGLIFTOKEN"); 2375 return (err); 2376 } 2377 pi->pi_token = sin6->sin6_addr; 2378 pi->pi_token_length = lifr.lifr_addrlen; 2379 } else { 2380 pi->pi_default_token = _B_FALSE; 2381 pi->pi_token = intfid.sin6_addr; 2382 pi->pi_token_length = intfidlen; 2383 } 2384 pi->pi_stateless = stateless; 2385 pi->pi_stateful = stateful; 2386 (void) strlcpy(pi->pi_ipadm_aobjname, addrobj, 2387 sizeof (pi->pi_ipadm_aobjname)); 2388 2389 /* We can allow autoconfiguration now. */ 2390 pi->pi_autoconf = _B_TRUE; 2391 2392 /* Restart the solicitations. */ 2393 if (pi->pi_sol_state == DONE_SOLICIT) 2394 pi->pi_sol_state = NO_SOLICIT; 2395 if (pi->pi_sol_state == NO_SOLICIT) 2396 check_to_solicit(pi, START_INIT_SOLICIT); 2397 if (debug & D_PHYINT) 2398 logmsg(LOG_DEBUG, "ndpd_create_addrs: " 2399 "added token to interface %s\n", pi->pi_name); 2400 return (0); 2401 } 2402 2403 /* 2404 * This function deletes all addresses on the given interface 2405 * with the given Interface ID. 2406 */ 2407 static int 2408 ndpd_delete_addrs(const char *ifname) 2409 { 2410 struct phyint *pi; 2411 struct prefix *pr, *next_pr; 2412 struct lifreq lifr; 2413 int err; 2414 2415 pi = phyint_lookup((char *)ifname); 2416 if (pi == NULL) { 2417 logmsg(LOG_ERR, "no phyint found for %s", ifname); 2418 return (ENXIO); 2419 } 2420 if (IN6_IS_ADDR_UNSPECIFIED(&pi->pi_token)) { 2421 logmsg(LOG_ERR, "token does not exist for %s", ifname); 2422 return (ENOENT); 2423 } 2424 2425 if (ifsock < 0) { 2426 ifsock = socket(AF_INET6, SOCK_DGRAM, 0); 2427 if (ifsock < 0) { 2428 err = errno; 2429 logperror("ndpd_delete_addrs: socket"); 2430 return (err); 2431 } 2432 } 2433 /* Remove the prefixes for this phyint if they exist */ 2434 for (pr = pi->pi_prefix_list; pr != NULL; pr = next_pr) { 2435 next_pr = pr->pr_next; 2436 if (pr->pr_name[0] == '\0') { 2437 prefix_delete(pr); 2438 continue; 2439 } 2440 /* 2441 * Delete all the prefixes for the auto-configured 2442 * addresses as well as the DHCPv6 addresses. 2443 */ 2444 (void) strncpy(lifr.lifr_name, pr->pr_name, 2445 sizeof (lifr.lifr_name)); 2446 if (ioctl(ifsock, SIOCGLIFFLAGS, (char *)&lifr) < 0) { 2447 err = errno; 2448 logperror("SIOCGLIFFLAGS"); 2449 return (err); 2450 } 2451 if ((lifr.lifr_flags & IFF_ADDRCONF) || 2452 (lifr.lifr_flags & IFF_DHCPRUNNING)) { 2453 prefix_update_ipadm_addrobj(pr, _B_FALSE); 2454 } 2455 prefix_delete(pr); 2456 } 2457 2458 /* 2459 * If we had started dhcpagent, we need to release the leases 2460 * if any are required. 2461 */ 2462 if (pi->pi_stateful) { 2463 (void) strncpy(lifr.lifr_name, pi->pi_name, 2464 sizeof (lifr.lifr_name)); 2465 if (ioctl(ifsock, SIOCGLIFFLAGS, (char *)&lifr) < 0) { 2466 err = errno; 2467 logperror("SIOCGLIFFLAGS"); 2468 return (err); 2469 } 2470 if (lifr.lifr_flags & IFF_DHCPRUNNING) 2471 release_dhcp(pi); 2472 } 2473 2474 /* 2475 * Reset the Interface ID on this phyint and stop autoconfigurations 2476 * until a new interface ID is provided. 2477 */ 2478 pi->pi_token = in6addr_any; 2479 pi->pi_ifaddr = in6addr_any; 2480 pi->pi_token_length = 0; 2481 pi->pi_autoconf = _B_FALSE; 2482 pi->pi_ipadm_aobjname[0] = '\0'; 2483 2484 /* Reset the stateless and stateful settings to default. */ 2485 pi->pi_stateless = pi->pi_StatelessAddrConf; 2486 pi->pi_stateful = pi->pi_StatefulAddrConf; 2487 2488 if (debug & D_PHYINT) { 2489 logmsg(LOG_DEBUG, "ndpd_delete_addrs: " 2490 "removed token from interface %s\n", pi->pi_name); 2491 } 2492 return (0); 2493 } 2494 2495 void 2496 check_autoconf_var_consistency(struct phyint *pi, boolean_t stateless, 2497 boolean_t stateful) 2498 { 2499 /* 2500 * If StatelessAddrConf and StatelessAddrConf are set in 2501 * /etc/inet/ndpd.conf, check if the new values override those 2502 * settings. If so, log a warning. 2503 */ 2504 if ((pi->pi_StatelessAddrConf != 2505 ifdefaults[I_StatelessAddrConf].cf_value && 2506 stateless != pi->pi_StatelessAddrConf) || 2507 (pi->pi_StatefulAddrConf != 2508 ifdefaults[I_StatefulAddrConf].cf_value && 2509 stateful != pi->pi_StatefulAddrConf)) { 2510 logmsg(LOG_ERR, "check_autoconf_var_consistency: " 2511 "Overriding the StatelessAddrConf or StatefulAddrConf " 2512 "settings in ndpd.conf with the new values for " 2513 "interface %s\n", pi->pi_name); 2514 } 2515 } 2516 2517 /* 2518 * If ipadm was used to start autoconfiguration and in.ndpd was restarted 2519 * for some reason, in.ndpd has to resume autoconfiguration when it comes up. 2520 * In this function, it scans the ipadm_addr_info() output to find a link-local 2521 * on this interface with address type "addrconf" and extracts the interface id. 2522 * It also stores the addrobj name to be used later when new addresses are 2523 * created for the prefixes advertised by the router. 2524 * If autoconfiguration was never started on this interface before in.ndpd 2525 * was killed, then in.ndpd should refrain from configuring prefixes, even if 2526 * there is a valid link-local on this interface, created by ipadm (identified 2527 * if there is a valid addrobj name). 2528 */ 2529 static int 2530 phyint_check_ipadm_intfid(struct phyint *pi) 2531 { 2532 ipadm_status_t status; 2533 ipadm_addr_info_t *addrinfo; 2534 struct ifaddrs *ifap; 2535 ipadm_addr_info_t *ainfop; 2536 struct sockaddr_in6 *sin6; 2537 ipadm_handle_t iph; 2538 2539 if (ipadm_open(&iph, 0) != IPADM_SUCCESS) { 2540 logmsg(LOG_ERR, "could not open handle to libipadm\n"); 2541 return (-1); 2542 } 2543 2544 status = ipadm_addr_info(iph, pi->pi_name, &addrinfo, 2545 IPADM_OPT_ZEROADDR, LIFC_NOXMIT|LIFC_TEMPORARY); 2546 if (status != IPADM_SUCCESS) { 2547 ipadm_close(iph); 2548 return (-1); 2549 } 2550 pi->pi_autoconf = _B_TRUE; 2551 for (ainfop = addrinfo; ainfop != NULL; ainfop = IA_NEXT(ainfop)) { 2552 ifap = &ainfop->ia_ifa; 2553 if (ifap->ifa_addr->sa_family != AF_INET6 || 2554 ainfop->ia_state == IFA_DISABLED) 2555 continue; 2556 sin6 = (struct sockaddr_in6 *)ifap->ifa_addr; 2557 if (IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 2558 if (ainfop->ia_atype == IPADM_ADDR_IPV6_ADDRCONF) { 2559 pi->pi_token = sin6->sin6_addr; 2560 pi->pi_token._S6_un._S6_u32[0] = 0; 2561 pi->pi_token._S6_un._S6_u32[1] = 0; 2562 pi->pi_autoconf = _B_TRUE; 2563 (void) strlcpy(pi->pi_ipadm_aobjname, 2564 ainfop->ia_aobjname, 2565 sizeof (pi->pi_ipadm_aobjname)); 2566 break; 2567 } 2568 /* 2569 * If IFF_NOLINKLOCAL is set, then the link-local 2570 * was created using ipadm. Do not autoconfigure until 2571 * ipadm is explicitly used for autoconfiguration. 2572 */ 2573 if (ifap->ifa_flags & IFF_NOLINKLOCAL) 2574 pi->pi_autoconf = _B_FALSE; 2575 } else if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) && 2576 strrchr(ifap->ifa_name, ':') == NULL) { 2577 /* The interface was created using ipadm. */ 2578 pi->pi_autoconf = _B_FALSE; 2579 } 2580 } 2581 ipadm_free_addr_info(addrinfo); 2582 if (!pi->pi_autoconf) { 2583 pi->pi_token = in6addr_any; 2584 pi->pi_token_length = 0; 2585 } 2586 ipadm_close(iph); 2587 return (0); 2588 } 2589