xref: /illumos-gate/usr/src/cmd/cmd-inet/usr.bin/netstat/netstat.c (revision d327dbeacda682ba3d4efc9b451baa429ba8830c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 1990  Mentat Inc.
24  * netstat.c 2.2, last change 9/9/91
25  * MROUTING Revision 3.5
26  * Copyright 2018, Joyent, Inc.
27  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
28  * Copyright 2021 Racktop Systems, Inc.
29  */
30 
31 /*
32  * simple netstat based on snmp/mib-2 interface to the TCP/IP stack
33  *
34  * TODO:
35  *	Add ability to request subsets from kernel (with level = MIB2_IP;
36  *	name = 0 meaning everything for compatibility)
37  */
38 
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <stdarg.h>
42 #include <unistd.h>
43 #include <strings.h>
44 #include <string.h>
45 #include <errno.h>
46 #include <ctype.h>
47 #include <kstat.h>
48 #include <assert.h>
49 #include <locale.h>
50 #include <synch.h>
51 #include <thread.h>
52 #include <pwd.h>
53 #include <limits.h>
54 #include <sys/ccompile.h>
55 
56 #include <sys/types.h>
57 #include <sys/stat.h>
58 #include <sys/stream.h>
59 #include <stropts.h>
60 #include <sys/strstat.h>
61 #include <sys/tihdr.h>
62 #include <procfs.h>
63 #include <dirent.h>
64 
65 #include <sys/socket.h>
66 #include <sys/socketvar.h>
67 #include <sys/sockio.h>
68 #include <netinet/in.h>
69 #include <net/if.h>
70 #include <net/route.h>
71 
72 #include <inet/mib2.h>
73 #include <inet/ip.h>
74 #include <inet/arp.h>
75 #include <inet/tcp.h>
76 #include <netinet/igmp_var.h>
77 #include <netinet/ip_mroute.h>
78 
79 #include <arpa/inet.h>
80 #include <netdb.h>
81 #include <fcntl.h>
82 #include <sys/systeminfo.h>
83 #include <arpa/inet.h>
84 
85 #include <netinet/dhcp.h>
86 #include <dhcpagent_ipc.h>
87 #include <dhcpagent_util.h>
88 #include <compat.h>
89 #include <sys/mkdev.h>
90 
91 #include <libtsnet.h>
92 #include <tsol/label.h>
93 
94 #include <libproc.h>
95 
96 #include "statcommon.h"
97 
98 #define	STR_EXPAND	4
99 
100 #define	V4MASK_TO_V6(v4, v6)	((v6)._S6_un._S6_u32[0] = 0xfffffffful, \
101 				(v6)._S6_un._S6_u32[1] = 0xfffffffful, \
102 				(v6)._S6_un._S6_u32[2] = 0xfffffffful, \
103 				(v6)._S6_un._S6_u32[3] = (v4))
104 
105 #define	IN6_IS_V4MASK(v6)	((v6)._S6_un._S6_u32[0] == 0xfffffffful && \
106 				(v6)._S6_un._S6_u32[1] == 0xfffffffful && \
107 				(v6)._S6_un._S6_u32[2] == 0xfffffffful)
108 
109 /*
110  * This is used as a cushion in the buffer allocation directed by SIOCGLIFNUM.
111  * Because there's no locking between SIOCGLIFNUM and SIOCGLIFCONF, it's
112  * possible for an administrator to plumb new interfaces between those two
113  * calls, resulting in the failure of the latter.  This addition makes that
114  * less likely.
115  */
116 #define	LIFN_GUARD_VALUE	10
117 
118 typedef struct mib_item_s {
119 	struct mib_item_s	*next_item;
120 	int			group;
121 	int			mib_id;
122 	int			length;
123 	void			*valp;
124 } mib_item_t;
125 
126 struct	ifstat {
127 	uint64_t	ipackets;
128 	uint64_t	ierrors;
129 	uint64_t	opackets;
130 	uint64_t	oerrors;
131 	uint64_t	collisions;
132 };
133 
134 struct iflist {
135 	struct iflist	*next_if;
136 	char		ifname[LIFNAMSIZ];
137 	struct ifstat	tot;
138 };
139 
140 static void fatal(int, char *, ...) __NORETURN;
141 
142 static	mib_item_t	*mibget(int sd);
143 static	void		mibfree(mib_item_t *firstitem);
144 static	int		mibopen(void);
145 static void		mib_get_constants(mib_item_t *item);
146 static mib_item_t	*mib_item_dup(mib_item_t *item);
147 static mib_item_t	*mib_item_diff(mib_item_t *item1, mib_item_t *item2);
148 static void		mib_item_destroy(mib_item_t **item);
149 
150 static boolean_t	octetstrmatch(const Octet_t *a, const Octet_t *b);
151 static char		*octetstr(const Octet_t *op, int code,
152 			    char *dst, uint_t dstlen);
153 static char		*pr_addr(uint_t addr, char *dst, uint_t dstlen);
154 static char		*pr_addrnz(ipaddr_t addr, char *dst, uint_t dstlen);
155 static char		*pr_addr6(const in6_addr_t *addr,
156 			    char *dst, uint_t dstlen);
157 static char		*pr_mask(uint_t addr, char *dst, uint_t dstlen);
158 static char		*pr_prefix6(const struct in6_addr *addr,
159 			    uint_t prefixlen, char *dst, uint_t dstlen);
160 static char		*pr_ap(uint_t addr, uint_t port,
161 			    char *proto, char *dst, uint_t dstlen);
162 static char		*pr_ap6(const in6_addr_t *addr, uint_t port,
163 			    char *proto, char *dst, uint_t dstlen);
164 static char		*pr_net(uint_t addr, uint_t mask,
165 			    char *dst, uint_t dstlen);
166 static char		*pr_netaddr(uint_t addr, uint_t mask,
167 			    char *dst, uint_t dstlen);
168 static char		*fmodestr(uint_t fmode);
169 static char		*portname(uint_t port, char *proto,
170 			    char *dst, uint_t dstlen);
171 
172 static const char	*mitcp_state(int code,
173 			    const mib2_transportMLPEntry_t *attr);
174 static const char	*miudp_state(int code,
175 			    const mib2_transportMLPEntry_t *attr);
176 
177 static void		stat_report(mib_item_t *item);
178 static void		mrt_stat_report(mib_item_t *item);
179 static void		arp_report(mib_item_t *item);
180 static void		ndp_report(mib_item_t *item);
181 static void		mrt_report(mib_item_t *item);
182 static void		if_stat_total(struct ifstat *oldstats,
183 			    struct ifstat *newstats, struct ifstat *sumstats);
184 static void		if_report(mib_item_t *item, char *ifname,
185 			    int Iflag_only, boolean_t once_only);
186 static void		if_report_ip4(mib2_ipAddrEntry_t *ap,
187 			    char ifname[], char logintname[],
188 			    struct ifstat *statptr, boolean_t ksp_not_null);
189 static void		if_report_ip6(mib2_ipv6AddrEntry_t *ap6,
190 			    char ifname[], char logintname[],
191 			    struct ifstat *statptr, boolean_t ksp_not_null);
192 static void		ire_report(const mib_item_t *item);
193 static void		tcp_report(const mib_item_t *item);
194 static void		udp_report(const mib_item_t *item);
195 static void		uds_report(kstat_ctl_t *);
196 static void		group_report(mib_item_t *item);
197 static void		dce_report(mib_item_t *item);
198 static void		print_ip_stats(mib2_ip_t *ip);
199 static void		print_icmp_stats(mib2_icmp_t *icmp);
200 static void		print_ip6_stats(mib2_ipv6IfStatsEntry_t *ip6);
201 static void		print_icmp6_stats(mib2_ipv6IfIcmpEntry_t *icmp6);
202 static void		print_sctp_stats(mib2_sctp_t *tcp);
203 static void		print_tcp_stats(mib2_tcp_t *tcp);
204 static void		print_udp_stats(mib2_udp_t *udp);
205 static void		print_rawip_stats(mib2_rawip_t *rawip);
206 static void		print_igmp_stats(struct igmpstat *igps);
207 static void		print_mrt_stats(struct mrtstat *mrts);
208 static void		sctp_report(const mib_item_t *item);
209 static void		sum_ip6_stats(mib2_ipv6IfStatsEntry_t *ip6,
210 			    mib2_ipv6IfStatsEntry_t *sum6);
211 static void		sum_icmp6_stats(mib2_ipv6IfIcmpEntry_t *icmp6,
212 			    mib2_ipv6IfIcmpEntry_t *sum6);
213 static void		m_report(void);
214 static void		dhcp_report(char *);
215 
216 static	uint64_t	kstat_named_value(kstat_t *, char *);
217 static	kid_t		safe_kstat_read(kstat_ctl_t *, kstat_t *, void *);
218 static int		isnum(char *);
219 static char		*plural(int n);
220 static char		*pluraly(int n);
221 static char		*plurales(int n);
222 static void		process_filter(char *arg);
223 static char		*ifindex2str(uint_t, char *);
224 static boolean_t	family_selected(int family);
225 
226 static void		usage(char *);
227 static char		*get_username(uid_t);
228 
229 static void		process_hash_build(void);
230 static void		process_hash_free(void);
231 
232 #define	PLURAL(n) plural((int)n)
233 #define	PLURALY(n) pluraly((int)n)
234 #define	PLURALES(n) plurales((int)n)
235 #define	IFLAGMOD(flg, val1, val2)	if (flg == val1) flg = val2
236 #define	MDIFF(diff, elem2, elem1, member)	(diff)->member = \
237 	(elem2)->member - (elem1)->member
238 
239 static	boolean_t	Aflag = B_FALSE;	/* All sockets/ifs/rtng-tbls */
240 static	boolean_t	CIDRflag = B_FALSE;	/* CIDR for IPv4 -i/-r addrs */
241 static	boolean_t	Dflag = B_FALSE;	/* DCE info */
242 static	boolean_t	Iflag = B_FALSE;	/* IP Traffic Interfaces */
243 static	boolean_t	Mflag = B_FALSE;	/* STREAMS Memory Statistics */
244 static	boolean_t	Nflag = B_FALSE;	/* Numeric Network Addresses */
245 static	boolean_t	Rflag = B_FALSE;	/* Routing Tables */
246 static	boolean_t	RSECflag = B_FALSE;	/* Security attributes */
247 static	boolean_t	Sflag = B_FALSE;	/* Per-protocol Statistics */
248 static	boolean_t	Vflag = B_FALSE;	/* Verbose */
249 static	boolean_t	Uflag = B_FALSE;	/* Show PID and UID info. */
250 static	boolean_t	Pflag = B_FALSE;	/* Net to Media Tables */
251 static	boolean_t	Gflag = B_FALSE;	/* Multicast group membership */
252 static	boolean_t	MMflag = B_FALSE;	/* Multicast routing table */
253 static	boolean_t	DHCPflag = B_FALSE;	/* DHCP statistics */
254 static	boolean_t	Xflag = B_FALSE;	/* Debug Info */
255 
256 static	int	v4compat = 0;	/* Compatible printing format for status */
257 
258 static int	proto = IPPROTO_MAX;	/* all protocols */
259 kstat_ctl_t	*kc = NULL;
260 
261 /*
262  * Name service timeout detection constants.
263  */
264 static mutex_t ns_lock = ERRORCHECKMUTEX;
265 static boolean_t ns_active = B_FALSE;	/* Is a lookup ongoing? */
266 static hrtime_t ns_starttime;		/* Time the lookup started */
267 static int ns_sleeptime = 2;		/* Time in seconds between checks */
268 static int ns_warntime = 2;		/* Time in seconds before warning */
269 
270 /*
271  * Sizes of data structures extracted from the base mib.
272  * This allows the size of the tables entries to grow while preserving
273  * binary compatibility.
274  */
275 static int ipAddrEntrySize;
276 static int ipRouteEntrySize;
277 static int ipNetToMediaEntrySize;
278 static int ipMemberEntrySize;
279 static int ipGroupSourceEntrySize;
280 static int ipRouteAttributeSize;
281 static int vifctlSize;
282 static int mfcctlSize;
283 
284 static int ipv6IfStatsEntrySize;
285 static int ipv6IfIcmpEntrySize;
286 static int ipv6AddrEntrySize;
287 static int ipv6RouteEntrySize;
288 static int ipv6NetToMediaEntrySize;
289 static int ipv6MemberEntrySize;
290 static int ipv6GroupSourceEntrySize;
291 
292 static int ipDestEntrySize;
293 
294 static int transportMLPSize;
295 static int tcpConnEntrySize;
296 static int tcp6ConnEntrySize;
297 static int udpEntrySize;
298 static int udp6EntrySize;
299 static int sctpEntrySize;
300 static int sctpLocalEntrySize;
301 static int sctpRemoteEntrySize;
302 
303 #define	protocol_selected(p)	(proto == IPPROTO_MAX || proto == (p))
304 
305 /* Machinery used for -f (filter) option */
306 enum { FK_AF = 0, FK_OUTIF, FK_DST, FK_FLAGS, NFILTERKEYS };
307 
308 static const char *filter_keys[NFILTERKEYS] = {
309 	"af", "outif", "dst", "flags"
310 };
311 
312 static m_label_t *zone_security_label = NULL;
313 
314 /* Flags on routes */
315 #define	FLF_A		0x00000001
316 #define	FLF_b		0x00000002
317 #define	FLF_D		0x00000004
318 #define	FLF_G		0x00000008
319 #define	FLF_H		0x00000010
320 #define	FLF_L		0x00000020
321 #define	FLF_U		0x00000040
322 #define	FLF_M		0x00000080
323 #define	FLF_S		0x00000100
324 #define	FLF_C		0x00000200	/* IRE_IF_CLONE */
325 #define	FLF_I		0x00000400	/* RTF_INDIRECT */
326 #define	FLF_R		0x00000800	/* RTF_REJECT */
327 #define	FLF_B		0x00001000	/* RTF_BLACKHOLE */
328 #define	FLF_Z		0x00100000	/* RTF_ZONE */
329 
330 static const char flag_list[] = "AbDGHLUMSCIRBZ";
331 
332 typedef struct filter_rule filter_t;
333 
334 struct filter_rule {
335 	filter_t *f_next;
336 	union {
337 		int f_family;
338 		const char *f_ifname;
339 		struct {
340 			struct hostent *f_address;
341 			in6_addr_t f_mask;
342 		} a;
343 		struct {
344 			uint_t f_flagset;
345 			uint_t f_flagclear;
346 		} f;
347 	} u;
348 };
349 
350 /*
351  * The user-specified filters are linked into lists separated by
352  * keyword (type of filter).  Thus, the matching algorithm is:
353  *	For each non-empty filter list
354  *		If no filters in the list match
355  *			then stop here; route doesn't match
356  *	If loop above completes, then route does match and will be
357  *	displayed.
358  */
359 static filter_t *filters[NFILTERKEYS];
360 
361 static uint_t timestamp_fmt = NODATE;
362 
363 #if !defined(TEXT_DOMAIN)		/* Should be defined by cc -D */
364 #define	TEXT_DOMAIN "SYS_TEST"		/* Use this only if it isn't */
365 #endif
366 
367 static void
368 ns_lookup_start(void)
369 {
370 	mutex_enter(&ns_lock);
371 	ns_active = B_TRUE;
372 	ns_starttime = gethrtime();
373 	mutex_exit(&ns_lock);
374 }
375 
376 static void
377 ns_lookup_end(void)
378 {
379 	mutex_enter(&ns_lock);
380 	ns_active = B_FALSE;
381 	mutex_exit(&ns_lock);
382 }
383 
384 /*
385  * When name services are not functioning, this program appears to hang to the
386  * user. To try and give the user a chance of figuring out that this might be
387  * the case, we end up warning them and suggest that they may want to use the -n
388  * flag.
389  */
390 /* ARGSUSED */
391 static void *
392 ns_warning_thr(void *unsued)
393 {
394 	for (;;) {
395 		hrtime_t now;
396 
397 		(void) sleep(ns_sleeptime);
398 		now = gethrtime();
399 		mutex_enter(&ns_lock);
400 		if (ns_active && now - ns_starttime >= ns_warntime * NANOSEC) {
401 			(void) fprintf(stderr, "warning: data "
402 			    "available, but name service lookups are "
403 			    "taking a while. Use the -n option to "
404 			    "disable name service lookups.\n");
405 			mutex_exit(&ns_lock);
406 			return (NULL);
407 		}
408 		mutex_exit(&ns_lock);
409 	}
410 
411 	return (NULL);
412 }
413 
414 int
415 main(int argc, char **argv)
416 {
417 	char		*name;
418 	mib_item_t	*item = NULL;
419 	mib_item_t	*previtem = NULL;
420 	int		sd = -1;
421 	char	*ifname = NULL;
422 	int	interval = 0;	/* Single time by default */
423 	int	count = -1;	/* Forever */
424 	int	c;
425 	int	d;
426 	/*
427 	 * Possible values of 'Iflag_only':
428 	 * -1, no feature-flags;
429 	 *  0, IFlag and other feature-flags enabled
430 	 *  1, IFlag is the only feature-flag enabled
431 	 * : trinary variable, modified using IFLAGMOD()
432 	 */
433 	int Iflag_only = -1;
434 	boolean_t once_only = B_FALSE; /* '-i' with count > 1 */
435 	extern char	*optarg;
436 	extern int	optind;
437 	char *default_ip_str = NULL;
438 
439 	name = argv[0];
440 
441 	v4compat = get_compat_flag(&default_ip_str);
442 	if (v4compat == DEFAULT_PROT_BAD_VALUE)
443 		fatal(2, "%s: %s: Bad value for %s in %s\n", name,
444 		    default_ip_str, DEFAULT_IP, INET_DEFAULT_FILE);
445 	free(default_ip_str);
446 
447 	(void) setlocale(LC_ALL, "");
448 	(void) textdomain(TEXT_DOMAIN);
449 
450 	while ((c = getopt(argc, argv, "acdimnrspMguvxf:P:I:DRT:")) != -1) {
451 		switch ((char)c) {
452 		case 'a':		/* all connections */
453 			Aflag = B_TRUE;
454 			break;
455 
456 		case 'c':
457 			CIDRflag = B_TRUE;
458 			break;
459 
460 		case 'd':		/* DCE info */
461 			Dflag = B_TRUE;
462 			IFLAGMOD(Iflag_only, 1, 0); /* see macro def'n */
463 			break;
464 
465 		case 'i':		/* interface (ill/ipif report) */
466 			Iflag = B_TRUE;
467 			IFLAGMOD(Iflag_only, -1, 1); /* '-i' exists */
468 			break;
469 
470 		case 'm':		/* streams msg report */
471 			Mflag = B_TRUE;
472 			IFLAGMOD(Iflag_only, 1, 0); /* see macro def'n */
473 			break;
474 
475 		case 'n':		/* numeric format */
476 			Nflag = B_TRUE;
477 			break;
478 
479 		case 'r':		/* route tables */
480 			Rflag = B_TRUE;
481 			IFLAGMOD(Iflag_only, 1, 0); /* see macro def'n */
482 			break;
483 
484 		case 'R':		/* security attributes */
485 			RSECflag = B_TRUE;
486 			IFLAGMOD(Iflag_only, 1, 0); /* see macro def'n */
487 			break;
488 
489 		case 's':		/* per-protocol statistics */
490 			Sflag = B_TRUE;
491 			IFLAGMOD(Iflag_only, 1, 0); /* see macro def'n */
492 			break;
493 
494 		case 'p':		/* arp/ndp table */
495 			Pflag = B_TRUE;
496 			IFLAGMOD(Iflag_only, 1, 0); /* see macro def'n */
497 			break;
498 
499 		case 'M':		/* multicast routing tables */
500 			MMflag = B_TRUE;
501 			IFLAGMOD(Iflag_only, 1, 0); /* see macro def'n */
502 			break;
503 
504 		case 'g':		/* multicast group membership */
505 			Gflag = B_TRUE;
506 			IFLAGMOD(Iflag_only, 1, 0); /* see macro def'n */
507 			break;
508 
509 		case 'v':		/* verbose output format */
510 			Vflag = B_TRUE;
511 			IFLAGMOD(Iflag_only, 1, 0); /* see macro def'n */
512 			break;
513 
514 		case 'u':		/* show pid and uid information */
515 			Uflag = B_TRUE;
516 			break;
517 
518 		case 'x':		/* turn on debugging */
519 			Xflag = B_TRUE;
520 			break;
521 
522 		case 'f':
523 			process_filter(optarg);
524 			break;
525 
526 		case 'P':
527 			if (strcmp(optarg, "ip") == 0) {
528 				proto = IPPROTO_IP;
529 			} else if (strcmp(optarg, "ipv6") == 0 ||
530 			    strcmp(optarg, "ip6") == 0) {
531 				v4compat = 0;	/* Overridden */
532 				proto = IPPROTO_IPV6;
533 			} else if (strcmp(optarg, "icmp") == 0) {
534 				proto = IPPROTO_ICMP;
535 			} else if (strcmp(optarg, "icmpv6") == 0 ||
536 			    strcmp(optarg, "icmp6") == 0) {
537 				v4compat = 0;	/* Overridden */
538 				proto = IPPROTO_ICMPV6;
539 			} else if (strcmp(optarg, "igmp") == 0) {
540 				proto = IPPROTO_IGMP;
541 			} else if (strcmp(optarg, "udp") == 0) {
542 				proto = IPPROTO_UDP;
543 			} else if (strcmp(optarg, "tcp") == 0) {
544 				proto = IPPROTO_TCP;
545 			} else if (strcmp(optarg, "sctp") == 0) {
546 				proto = IPPROTO_SCTP;
547 			} else if (strcmp(optarg, "raw") == 0 ||
548 			    strcmp(optarg, "rawip") == 0) {
549 				proto = IPPROTO_RAW;
550 			} else {
551 				fatal(1, "%s: unknown protocol.\n", optarg);
552 			}
553 			break;
554 
555 		case 'I':
556 			ifname = optarg;
557 			Iflag = B_TRUE;
558 			IFLAGMOD(Iflag_only, -1, 1); /* see macro def'n */
559 			break;
560 
561 		case 'D':
562 			DHCPflag = B_TRUE;
563 			Iflag_only = 0;
564 			break;
565 
566 		case 'T':
567 			if (optarg) {
568 				if (*optarg == 'u')
569 					timestamp_fmt = UDATE;
570 				else if (*optarg == 'd')
571 					timestamp_fmt = DDATE;
572 				else
573 					usage(name);
574 			} else {
575 				usage(name);
576 			}
577 			break;
578 
579 		case '?':
580 		default:
581 			usage(name);
582 		}
583 	}
584 
585 	/*
586 	 * Make sure -R option is set only on a labeled system.
587 	 */
588 	if (RSECflag && !is_system_labeled()) {
589 		(void) fprintf(stderr, "-R set but labeling is not enabled\n");
590 		usage(name);
591 	}
592 
593 	/*
594 	 * Handle other arguments: find interval, count; the
595 	 * flags that accept 'interval' and 'count' are OR'd
596 	 * in the outermost 'if'; more flags may be added as
597 	 * required
598 	 */
599 	if (Iflag || Sflag || Mflag) {
600 		for (d = optind; d < argc; d++) {
601 			if (isnum(argv[d])) {
602 				interval = atoi(argv[d]);
603 				if (d + 1 < argc &&
604 				    isnum(argv[d + 1])) {
605 					count = atoi(argv[d + 1]);
606 					optind++;
607 				}
608 				optind++;
609 				if (interval == 0 || count == 0)
610 					usage(name);
611 				break;
612 			}
613 		}
614 	}
615 	if (optind < argc) {
616 		if (Iflag && isnum(argv[optind])) {
617 			count = atoi(argv[optind]);
618 			if (count == 0)
619 				usage(name);
620 			optind++;
621 		}
622 	}
623 	if (optind < argc) {
624 		(void) fprintf(stderr, "%s: extra arguments\n", name);
625 		usage(name);
626 	}
627 	if (interval)
628 		setbuf(stdout, NULL);
629 
630 	/*
631 	 * Start up the thread to check for name services warnings.
632 	 */
633 	if (thr_create(NULL, 0, ns_warning_thr, NULL,
634 	    THR_DETACHED | THR_DAEMON, NULL) != 0) {
635 		fatal(1, "%s: failed to create name services "
636 		    "thread: %s\n", name, strerror(errno));
637 	}
638 
639 	if (DHCPflag) {
640 		dhcp_report(Iflag ? ifname : NULL);
641 		exit(0);
642 	}
643 
644 	if (Uflag)
645 		process_hash_build();
646 
647 	/*
648 	 * Get this process's security label if the -R switch is set.
649 	 * We use this label as the current zone's security label.
650 	 */
651 	if (RSECflag) {
652 		zone_security_label = m_label_alloc(MAC_LABEL);
653 		if (zone_security_label == NULL)
654 			fatal(errno, "m_label_alloc() failed");
655 		if (getplabel(zone_security_label) < 0)
656 			fatal(errno, "getplabel() failed");
657 	}
658 
659 	/* Get data structures: priming before iteration */
660 	if (family_selected(AF_INET) || family_selected(AF_INET6)) {
661 		sd = mibopen();
662 		if (sd == -1)
663 			fatal(1, "can't open mib stream\n");
664 		if ((item = mibget(sd)) == NULL) {
665 			(void) close(sd);
666 			fatal(1, "mibget() failed\n");
667 		}
668 		/* Extract constant sizes - need do once only */
669 		mib_get_constants(item);
670 	}
671 	if ((kc = kstat_open()) == NULL) {
672 		mibfree(item);
673 		(void) close(sd);
674 		fail(1, "kstat_open(): can't open /dev/kstat");
675 	}
676 
677 	if (interval <= 0) {
678 		count = 1;
679 		once_only = B_TRUE;
680 	}
681 	for (;;) {
682 		mib_item_t *curritem = NULL; /* only for -[M]s */
683 
684 		if (timestamp_fmt != NODATE)
685 			print_timestamp(timestamp_fmt);
686 
687 		/* netstat: AF_INET[6] behaviour */
688 		if (family_selected(AF_INET) || family_selected(AF_INET6)) {
689 			if (Sflag) {
690 				curritem = mib_item_diff(previtem, item);
691 				if (curritem == NULL)
692 					fatal(1, "can't process mib data, "
693 					    "out of memory\n");
694 				mib_item_destroy(&previtem);
695 			}
696 
697 			if (!(Dflag || Iflag || Rflag || Sflag || Mflag ||
698 			    MMflag || Pflag || Gflag || DHCPflag)) {
699 				if (protocol_selected(IPPROTO_UDP))
700 					udp_report(item);
701 				if (protocol_selected(IPPROTO_TCP))
702 					tcp_report(item);
703 				if (protocol_selected(IPPROTO_SCTP))
704 					sctp_report(item);
705 			}
706 			if (Iflag)
707 				if_report(item, ifname, Iflag_only, once_only);
708 			if (Mflag)
709 				m_report();
710 			if (Rflag)
711 				ire_report(item);
712 			if (Sflag && MMflag) {
713 				mrt_stat_report(curritem);
714 			} else {
715 				if (Sflag)
716 					stat_report(curritem);
717 				if (MMflag)
718 					mrt_report(item);
719 			}
720 			if (Gflag)
721 				group_report(item);
722 			if (Pflag) {
723 				if (family_selected(AF_INET))
724 					arp_report(item);
725 				if (family_selected(AF_INET6))
726 					ndp_report(item);
727 			}
728 			if (Dflag)
729 				dce_report(item);
730 			mib_item_destroy(&curritem);
731 		}
732 
733 		/* netstat: AF_UNIX behaviour */
734 		if (family_selected(AF_UNIX) &&
735 		    (!(Dflag || Iflag || Rflag || Sflag || Mflag ||
736 		    MMflag || Pflag || Gflag)))
737 			uds_report(kc);
738 		(void) kstat_close(kc);
739 
740 		/* iteration handling code */
741 		if (count > 0 && --count == 0)
742 			break;
743 		(void) sleep(interval);
744 
745 		/* re-populating of data structures */
746 		if (family_selected(AF_INET) || family_selected(AF_INET6)) {
747 			if (Sflag) {
748 				/* previtem is a cut-down list */
749 				previtem = mib_item_dup(item);
750 				if (previtem == NULL)
751 					fatal(1, "can't process mib data, "
752 					    "out of memory\n");
753 			}
754 			mibfree(item);
755 			(void) close(sd);
756 			if ((sd = mibopen()) == -1)
757 				fatal(1, "can't open mib stream anymore\n");
758 			if ((item = mibget(sd)) == NULL) {
759 				(void) close(sd);
760 				fatal(1, "mibget() failed\n");
761 			}
762 		}
763 		if ((kc = kstat_open()) == NULL)
764 			fail(1, "kstat_open(): can't open /dev/kstat");
765 
766 	}
767 	mibfree(item);
768 	(void) close(sd);
769 	if (zone_security_label != NULL)
770 		m_label_free(zone_security_label);
771 
772 	if (Uflag)
773 		process_hash_free();
774 
775 	return (0);
776 }
777 
778 static int
779 isnum(char *p)
780 {
781 	int	len;
782 	int	i;
783 
784 	len = strlen(p);
785 	for (i = 0; i < len; i++)
786 		if (!isdigit(p[i]))
787 			return (0);
788 	return (1);
789 }
790 
791 /*
792  * ------------------------------ Process Hash -----------------------------
793  *
794  * When passed the -u option, netstat presents additional information against
795  * each socket showing the associated process ID(s), user(s) and command(s).
796  *
797  * The kernel provides some additional information for each socket, namely:
798  *   - inode;
799  *   - address family;
800  *   - socket type;
801  *   - major number;
802  *   - flags.
803  *
804  * Netstat must correlate this information against processes running on the
805  * system and the files which they have open.
806  *
807  * It does this by traversing /proc and checking each process' open files,
808  * looking for BSD sockets or file descriptors relating to TLI/XTI sockets.
809  * When it finds one, it retrieves information and records it in the
810  * 'process_table' hash table with the entry hashed by its inode.
811  *
812  * For a BSD socket, libproc is used to grab the process and retrieve
813  * further information. This is not necessary for TLI/XTI sockets since the
814  * information can be derived directly via stat().
815  *
816  * Note that each socket can be associated with more than one process.
817  */
818 
819 /*
820  * The size of the hash table for recording sockets found under /proc.
821  * This should be a prime number. The value below was chosen after testing
822  * on a busy web server to reduce the number of hash table collisions to
823  * fewer than five per slot.
824  */
825 #define	PROC_HASH_SIZE		2003
826 /* Maximum length of a username - anything larger will be truncated */
827 #define	PROC_USERNAME_SIZE	128
828 /* Maximum length of the string representation of a process ID */
829 #define	PROC_PID_SIZE		15
830 
831 #define	PROC_HASH(k) ((k) % PROC_HASH_SIZE)
832 
833 typedef struct proc_fdinfo {
834 	uint64_t ph_inode;
835 	uint64_t ph_fd;
836 	mode_t ph_mode;
837 	major_t ph_major;
838 	int ph_family;
839 	int ph_type;
840 
841 	char ph_fname[PRFNSZ];
842 	char ph_psargs[PRARGSZ];
843 	char ph_username[PROC_USERNAME_SIZE];
844 	pid_t ph_pid;
845 	char ph_pidstr[PROC_PID_SIZE];
846 
847 	struct proc_fdinfo *ph_next; /* Next (for collisions) */
848 	struct proc_fdinfo *ph_next_proc; /* Next process with this inode */
849 } proc_fdinfo_t;
850 
851 static proc_fdinfo_t *process_table[PROC_HASH_SIZE];
852 
853 static proc_fdinfo_t unknown_proc = {
854 	.ph_pid = 0,
855 	.ph_pidstr = "",
856 	.ph_username = "",
857 	.ph_fname = "",
858 	.ph_psargs = "",
859 	.ph_next_proc = NULL
860 };
861 
862 /*
863  * Gets username given uid. It doesn't return NULL.
864  */
865 static char *
866 get_username(uid_t u)
867 {
868 	static uid_t saved_uid = UID_MAX;
869 	static char saved_username[PROC_USERNAME_SIZE];
870 	struct passwd *pw = NULL;
871 
872 	if (u == UID_MAX)
873 		return ("<unknown>");
874 
875 	if (u == saved_uid && saved_username[0] != '\0')
876 		return (saved_username);
877 
878 	setpwent();
879 
880 	if ((pw = getpwuid(u)) != NULL) {
881 		(void) strlcpy(saved_username, pw->pw_name,
882 		    sizeof (saved_username));
883 	} else {
884 		(void) snprintf(saved_username, sizeof (saved_username),
885 		    "(%u)", u);
886 	}
887 
888 	saved_uid = u;
889 	return (saved_username);
890 }
891 
892 static proc_fdinfo_t *
893 process_hash_find(const mib2_socketInfoEntry_t *sie, int type, int family)
894 {
895 	proc_fdinfo_t *ph;
896 	uint_t idx = PROC_HASH(sie->sie_inode);
897 
898 	for (ph = process_table[idx]; ph != NULL; ph = ph->ph_next) {
899 		if (ph->ph_inode != sie->sie_inode)
900 			continue;
901 		if ((sie->sie_flags & MIB2_SOCKINFO_STREAM)) {
902 			/* TLI/XTI socket */
903 			if (S_ISCHR(ph->ph_mode) &&
904 			    major(sie->sie_dev) == ph->ph_major) {
905 				return (ph);
906 			}
907 		} else {
908 			if (S_ISSOCK(ph->ph_mode) && ph->ph_type == type &&
909 			    ph->ph_family == family) {
910 				return (ph);
911 			}
912 		}
913 	}
914 
915 	return (NULL);
916 }
917 
918 static proc_fdinfo_t *
919 process_hash_get(const mib2_socketInfoEntry_t *sie, int type, int family)
920 {
921 	proc_fdinfo_t *ph;
922 
923 	if (sie != NULL && sie->sie_inode > 0 &&
924 	    (ph = process_hash_find(sie, type, family)) != NULL) {
925 		return (ph);
926 	}
927 
928 	return (&unknown_proc);
929 }
930 
931 static void
932 process_hash_insert(proc_fdinfo_t *ph)
933 {
934 	uint_t idx = PROC_HASH(ph->ph_inode);
935 	proc_fdinfo_t *slotp;
936 
937 	mib2_socketInfoEntry_t sie = {
938 		.sie_inode = ph->ph_inode,
939 		.sie_dev = makedev(ph->ph_major, 0),
940 		.sie_flags = S_ISCHR(ph->ph_mode) ? MIB2_SOCKINFO_STREAM : 0
941 	};
942 
943 	slotp = process_hash_find(&sie, ph->ph_type, ph->ph_family);
944 
945 	if (slotp == NULL) {
946 		ph->ph_next = process_table[idx];
947 		process_table[idx] = ph;
948 	} else {
949 		ph->ph_next_proc = slotp->ph_next_proc;
950 		slotp->ph_next_proc = ph;
951 	}
952 }
953 
954 static void
955 process_hash_dump(void)
956 {
957 	unsigned int i;
958 
959 	(void) printf("--- Process hash table\n");
960 	for (i = 0; i < PROC_HASH_SIZE; i++) {
961 		proc_fdinfo_t *ph;
962 
963 		if (process_table[i] == NULL)
964 			continue;
965 
966 		(void) printf("Slot %d\n", i);
967 
968 		for (ph = process_table[i]; ph != NULL; ph = ph->ph_next) {
969 			proc_fdinfo_t *ph2;
970 
971 			(void) printf("    -> Inode %" PRIu64 "\n",
972 			    ph->ph_inode);
973 
974 			for (ph2 = ph; ph2 != NULL; ph2 = ph2->ph_next_proc) {
975 				(void) printf("        -> "
976 				    "/proc/%ld/fd/%" PRIu64 " %s - "
977 				    "fname %s - "
978 				    "psargs %s - "
979 				    "major %" PRIx32 " - "
980 				    "type/fam %d/%d\n",
981 				    ph2->ph_pid, ph2->ph_fd,
982 				    S_ISCHR(ph2->ph_mode) ? "CHR" : "SOCK",
983 				    ph2->ph_fname, ph2->ph_psargs,
984 				    ph2->ph_major,
985 				    ph2->ph_type, ph2->ph_family);
986 			}
987 		}
988 	}
989 }
990 
991 static int
992 process_hash_iterfd(const prfdinfo_t *pr, void *psinfop)
993 {
994 	psinfo_t *psinfo = psinfop;
995 	proc_fdinfo_t *ph;
996 
997 	/*
998 	 * We are interested both in sockets and in descriptors linked to
999 	 * network STREAMS character devices.
1000 	 */
1001 	if (S_ISCHR(pr->pr_mode)) {
1002 		/*
1003 		 * There's no elegant way to determine if a character device
1004 		 * supports TLI, so just check a hardcoded list of known TLI
1005 		 * devices.
1006 		 */
1007 		const char *tlidevs[] = {
1008 		    "tcp", "tcp6", "udp", "udp6", NULL
1009 		};
1010 		boolean_t istli = B_FALSE;
1011 		const char *path;
1012 		char *dev;
1013 		int i;
1014 
1015 		path = proc_fdinfo_misc(pr, PR_PATHNAME, NULL);
1016 		if (path == NULL)
1017 			return (0);
1018 
1019 		/* global zone: /devices paths */
1020 		dev = strrchr(path, ':');
1021 		/* also check the /dev path for zones */
1022 		if (dev == NULL)
1023 			dev = strrchr(path, '/');
1024 		if (dev == NULL)
1025 			return (0);
1026 		dev++; /* skip past the `:' or '/' */
1027 
1028 		for (i = 0; tlidevs[i] != NULL; i++) {
1029 			if (strcmp(dev, tlidevs[i]) == 0) {
1030 				istli = B_TRUE;
1031 				break;
1032 			}
1033 		}
1034 		if (!istli)
1035 			return (0);
1036 	} else if (!S_ISSOCK(pr->pr_mode)) {
1037 		return (0);
1038 	}
1039 
1040 	if ((ph = calloc(1, sizeof (proc_fdinfo_t))) == NULL)
1041 		fatal(1, "out of memory\n");
1042 
1043 	ph->ph_pid = psinfo->pr_pid;
1044 	if (ph->ph_pid > 0)
1045 		(void) snprintf(ph->ph_pidstr, PROC_PID_SIZE, "%" PRIu64,
1046 		    ph->ph_pid);
1047 	ph->ph_inode = pr->pr_ino;
1048 	ph->ph_fd = pr->pr_fd;
1049 	ph->ph_major = pr->pr_rmajor;
1050 	ph->ph_mode = pr->pr_mode;
1051 	(void) strlcpy(ph->ph_fname, psinfo->pr_fname, sizeof (ph->ph_fname));
1052 	(void) strlcpy(ph->ph_psargs, psinfo->pr_psargs,
1053 	    sizeof (ph->ph_psargs));
1054 	(void) strlcpy(ph->ph_username, get_username(psinfo->pr_uid),
1055 	    sizeof (ph->ph_username));
1056 
1057 	if (S_ISSOCK(pr->pr_mode)) {
1058 		const struct sockaddr *sa;
1059 		const int *type;
1060 
1061 		/* Determine the socket type */
1062 		type = proc_fdinfo_misc(pr, PR_SOCKOPT_TYPE, NULL);
1063 		if (type != NULL)
1064 			ph->ph_type = *type;
1065 
1066 		/* Determine the protocol family */
1067 		sa = proc_fdinfo_misc(pr, PR_SOCKETNAME, NULL);
1068 		if (sa != NULL)
1069 			ph->ph_family = sa->sa_family;
1070 	}
1071 
1072 	process_hash_insert(ph);
1073 
1074 	return (0);
1075 }
1076 
1077 static int
1078 process_hash_iterproc(psinfo_t *psinfo, lwpsinfo_t *lwp __unused,
1079     void *arg __unused)
1080 {
1081 	static pid_t me = -1;
1082 
1083 	if (me == -1)
1084 		me = getpid();
1085 
1086 	if (psinfo->pr_pid == me)
1087 		return (0);
1088 
1089 	/*
1090 	 * We do not use libproc's Pfdinfo_iter() here as it requires
1091 	 * grabbing the process.
1092 	 */
1093 	return (proc_fdwalk(psinfo->pr_pid, process_hash_iterfd, psinfo));
1094 }
1095 
1096 static void
1097 process_hash_build(void)
1098 {
1099 	(void) proc_walk(process_hash_iterproc, NULL, PR_WALK_PROC);
1100 
1101 	if (Xflag)
1102 		process_hash_dump();
1103 }
1104 
1105 static void
1106 process_hash_free(void)
1107 {
1108 	unsigned int i;
1109 
1110 	for (i = 0; i < PROC_HASH_SIZE; i++) {
1111 		proc_fdinfo_t *ph, *ph_next;
1112 
1113 		for (ph = process_table[i]; ph != NULL; ph = ph_next) {
1114 			ph_next = ph->ph_next;
1115 			free(ph);
1116 		}
1117 		process_table[i] = NULL;
1118 	}
1119 }
1120 
1121 /* --------------------------------- MIBGET -------------------------------- */
1122 
1123 static mib_item_t *
1124 mibget(int sd)
1125 {
1126 	/*
1127 	 * buf is an automatic for this function, so the
1128 	 * compiler has complete control over its alignment;
1129 	 * it is assumed this alignment is satisfactory for
1130 	 * it to be casted to certain other struct pointers
1131 	 * here, such as struct T_optmgmt_ack * .
1132 	 */
1133 	uintptr_t		buf[512 / sizeof (uintptr_t)];
1134 	int			flags;
1135 	int			i, j, getcode;
1136 	struct strbuf		ctlbuf, databuf;
1137 	struct T_optmgmt_req	*tor = (struct T_optmgmt_req *)buf;
1138 	struct T_optmgmt_ack	*toa = (struct T_optmgmt_ack *)buf;
1139 	struct T_error_ack	*tea = (struct T_error_ack *)buf;
1140 	struct opthdr		*req;
1141 	mib_item_t		*first_item = NULL;
1142 	mib_item_t		*last_item  = NULL;
1143 	mib_item_t		*temp;
1144 
1145 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
1146 	tor->OPT_offset = sizeof (struct T_optmgmt_req);
1147 	tor->OPT_length = sizeof (struct opthdr);
1148 	tor->MGMT_flags = T_CURRENT;
1149 
1150 	/*
1151 	 * Note: we use the special level value below so that IP will return
1152 	 * us information concerning IRE_MARK_TESTHIDDEN routes.
1153 	 */
1154 	req = (struct opthdr *)&tor[1];
1155 	req->level = EXPER_IP_AND_ALL_IRES;
1156 	req->name  = 0;
1157 	req->len   = 1;
1158 
1159 	ctlbuf.buf = (char *)buf;
1160 	ctlbuf.len = tor->OPT_length + tor->OPT_offset;
1161 	flags = 0;
1162 	if (putmsg(sd, &ctlbuf, (struct strbuf *)0, flags) == -1) {
1163 		perror("mibget: putmsg(ctl) failed");
1164 		goto error_exit;
1165 	}
1166 
1167 	/*
1168 	 * Each reply consists of a ctl part for one fixed structure
1169 	 * or table, as defined in mib2.h.  The format is a T_OPTMGMT_ACK,
1170 	 * containing an opthdr structure.  level/name identify the entry,
1171 	 * len is the size of the data part of the message.
1172 	 */
1173 	req = (struct opthdr *)&toa[1];
1174 	ctlbuf.maxlen = sizeof (buf);
1175 	j = 1;
1176 	for (;;) {
1177 		flags = 0;
1178 		getcode = getmsg(sd, &ctlbuf, (struct strbuf *)0, &flags);
1179 		if (getcode == -1) {
1180 			perror("mibget getmsg(ctl) failed");
1181 			if (Xflag) {
1182 				(void) fputs("#   level   name    len\n",
1183 				    stderr);
1184 				i = 0;
1185 				for (last_item = first_item; last_item;
1186 				    last_item = last_item->next_item)
1187 					(void) printf("%d  %4d   %5d   %d\n",
1188 					    ++i,
1189 					    last_item->group,
1190 					    last_item->mib_id,
1191 					    last_item->length);
1192 			}
1193 			goto error_exit;
1194 		}
1195 		if (getcode == 0 &&
1196 		    ctlbuf.len >= sizeof (struct T_optmgmt_ack) &&
1197 		    toa->PRIM_type == T_OPTMGMT_ACK &&
1198 		    toa->MGMT_flags == T_SUCCESS &&
1199 		    req->len == 0) {
1200 			if (Xflag)
1201 				(void) printf("mibget getmsg() %d returned "
1202 				    "EOD (level %ld, name %ld)\n",
1203 				    j, req->level, req->name);
1204 			return (first_item);		/* this is EOD msg */
1205 		}
1206 
1207 		if (ctlbuf.len >= sizeof (struct T_error_ack) &&
1208 		    tea->PRIM_type == T_ERROR_ACK) {
1209 			(void) fprintf(stderr,
1210 			    "mibget %d gives T_ERROR_ACK: TLI_error = 0x%lx, "
1211 			    "UNIX_error = 0x%lx\n",
1212 			    j, tea->TLI_error, tea->UNIX_error);
1213 
1214 			errno = (tea->TLI_error == TSYSERR) ?
1215 			    tea->UNIX_error : EPROTO;
1216 			goto error_exit;
1217 		}
1218 
1219 		if (getcode != MOREDATA ||
1220 		    ctlbuf.len < sizeof (struct T_optmgmt_ack) ||
1221 		    toa->PRIM_type != T_OPTMGMT_ACK ||
1222 		    toa->MGMT_flags != T_SUCCESS) {
1223 			(void) printf("mibget getmsg(ctl) %d returned %d, "
1224 			    "ctlbuf.len = %d, PRIM_type = %ld\n",
1225 			    j, getcode, ctlbuf.len, toa->PRIM_type);
1226 
1227 			if (toa->PRIM_type == T_OPTMGMT_ACK)
1228 				(void) printf("T_OPTMGMT_ACK: "
1229 				    "MGMT_flags = 0x%lx, req->len = %ld\n",
1230 				    toa->MGMT_flags, req->len);
1231 			errno = ENOMSG;
1232 			goto error_exit;
1233 		}
1234 
1235 		temp = (mib_item_t *)malloc(sizeof (mib_item_t));
1236 		if (temp == NULL) {
1237 			perror("mibget malloc failed");
1238 			goto error_exit;
1239 		}
1240 		if (last_item != NULL)
1241 			last_item->next_item = temp;
1242 		else
1243 			first_item = temp;
1244 		last_item = temp;
1245 		last_item->next_item = NULL;
1246 		last_item->group = req->level;
1247 		last_item->mib_id = req->name;
1248 		last_item->length = req->len;
1249 		last_item->valp = malloc((int)req->len);
1250 		if (last_item->valp == NULL)
1251 			goto error_exit;
1252 		if (Xflag)
1253 			(void) printf("msg %4d: group = %-4d mib_id = %-5d "
1254 			    "length = %d\n",
1255 			    j, last_item->group, last_item->mib_id,
1256 			    last_item->length);
1257 
1258 		databuf.maxlen = last_item->length;
1259 		databuf.buf    = (char *)last_item->valp;
1260 		databuf.len    = 0;
1261 		flags = 0;
1262 		getcode = getmsg(sd, (struct strbuf *)0, &databuf, &flags);
1263 		if (getcode == -1) {
1264 			perror("mibget getmsg(data) failed");
1265 			goto error_exit;
1266 		} else if (getcode != 0) {
1267 			(void) printf("mibget getmsg(data) returned %d, "
1268 			    "databuf.maxlen = %d, databuf.len = %d\n",
1269 			    getcode, databuf.maxlen, databuf.len);
1270 			goto error_exit;
1271 		}
1272 		j++;
1273 	}
1274 	/* NOTREACHED */
1275 
1276 error_exit:;
1277 	mibfree(first_item);
1278 	return (NULL);
1279 }
1280 
1281 /*
1282  * mibfree: frees a linked list of type (mib_item_t *)
1283  * returned by mibget(); this is NOT THE SAME AS
1284  * mib_item_destroy(), so should be used for objects
1285  * returned by mibget() only
1286  */
1287 static void
1288 mibfree(mib_item_t *firstitem)
1289 {
1290 	mib_item_t *lastitem;
1291 
1292 	while (firstitem != NULL) {
1293 		lastitem = firstitem;
1294 		firstitem = firstitem->next_item;
1295 		if (lastitem->valp != NULL)
1296 			free(lastitem->valp);
1297 		free(lastitem);
1298 	}
1299 }
1300 
1301 static int
1302 mibopen(void)
1303 {
1304 	int	sd;
1305 
1306 	sd = open("/dev/arp", O_RDWR);
1307 	if (sd == -1) {
1308 		perror("arp open");
1309 		return (-1);
1310 	}
1311 	if (ioctl(sd, I_PUSH, "tcp") == -1) {
1312 		perror("tcp I_PUSH");
1313 		(void) close(sd);
1314 		return (-1);
1315 	}
1316 	if (ioctl(sd, I_PUSH, "udp") == -1) {
1317 		perror("udp I_PUSH");
1318 		(void) close(sd);
1319 		return (-1);
1320 	}
1321 	if (ioctl(sd, I_PUSH, "icmp") == -1) {
1322 		perror("icmp I_PUSH");
1323 		(void) close(sd);
1324 		return (-1);
1325 	}
1326 	return (sd);
1327 }
1328 
1329 /*
1330  * mib_item_dup: returns a clean mib_item_t * linked
1331  * list, so that for every element item->mib_id is 0;
1332  * to deallocate this linked list, use mib_item_destroy
1333  */
1334 static mib_item_t *
1335 mib_item_dup(mib_item_t *item)
1336 {
1337 	int	c = 0;
1338 	mib_item_t *localp;
1339 	mib_item_t *tempp;
1340 
1341 	for (tempp = item; tempp; tempp = tempp->next_item)
1342 		if (tempp->mib_id == 0)
1343 			c++;
1344 	tempp = NULL;
1345 
1346 	localp = (mib_item_t *)malloc(c * sizeof (mib_item_t));
1347 	if (localp == NULL)
1348 		return (NULL);
1349 	c = 0;
1350 	for (; item; item = item->next_item) {
1351 		if (item->mib_id == 0) {
1352 			/* Replicate item in localp */
1353 			(localp[c]).next_item = NULL;
1354 			(localp[c]).group = item->group;
1355 			(localp[c]).mib_id = item->mib_id;
1356 			(localp[c]).length = item->length;
1357 			(localp[c]).valp = (uintptr_t *)malloc(
1358 			    item->length);
1359 			if ((localp[c]).valp == NULL) {
1360 				mib_item_destroy(&localp);
1361 				return (NULL);
1362 			}
1363 			(void *) memcpy((localp[c]).valp,
1364 			    item->valp,
1365 			    item->length);
1366 			tempp = &(localp[c]);
1367 			if (c > 0)
1368 				(localp[c - 1]).next_item = tempp;
1369 			c++;
1370 		}
1371 	}
1372 	return (localp);
1373 }
1374 
1375 /*
1376  * mib_item_diff: takes two (mib_item_t *) linked lists
1377  * item1 and item2 and computes the difference between
1378  * differentiable values in item2 against item1 for every
1379  * given member of item2; returns an mib_item_t * linked
1380  * list of diff's, or a copy of item2 if item1 is NULL;
1381  * will return NULL if system out of memory; works only
1382  * for item->mib_id == 0
1383  */
1384 static mib_item_t *
1385 mib_item_diff(mib_item_t *item1, mib_item_t *item2)
1386 {
1387 	int	nitems	= 0; /* no. of items in item2 */
1388 	mib_item_t *tempp2;  /* walking copy of item2 */
1389 	mib_item_t *tempp1;  /* walking copy of item1 */
1390 	mib_item_t *diffp;
1391 	mib_item_t *diffptr; /* walking copy of diffp */
1392 	mib_item_t *prevp = NULL;
1393 
1394 	if (item1 == NULL) {
1395 		diffp = mib_item_dup(item2);
1396 		return (diffp);
1397 	}
1398 
1399 	for (tempp2 = item2;
1400 	    tempp2;
1401 	    tempp2 = tempp2->next_item) {
1402 		if (tempp2->mib_id == 0)
1403 			switch (tempp2->group) {
1404 			/*
1405 			 * upon adding a case here, the same
1406 			 * must also be added in the next
1407 			 * switch statement, alongwith
1408 			 * appropriate code
1409 			 */
1410 			case MIB2_IP:
1411 			case MIB2_IP6:
1412 			case EXPER_DVMRP:
1413 			case EXPER_IGMP:
1414 			case MIB2_ICMP:
1415 			case MIB2_ICMP6:
1416 			case MIB2_TCP:
1417 			case MIB2_UDP:
1418 			case MIB2_SCTP:
1419 			case EXPER_RAWIP:
1420 				nitems++;
1421 			}
1422 	}
1423 	tempp2 = NULL;
1424 	if (nitems == 0) {
1425 		diffp = mib_item_dup(item2);
1426 		return (diffp);
1427 	}
1428 
1429 	diffp = calloc(nitems, sizeof (mib_item_t));
1430 	if (diffp == NULL)
1431 		return (NULL);
1432 	diffptr = diffp;
1433 	for (tempp2 = item2; tempp2 != NULL; tempp2 = tempp2->next_item) {
1434 		if (tempp2->mib_id != 0)
1435 			continue;
1436 		for (tempp1 = item1; tempp1 != NULL;
1437 		    tempp1 = tempp1->next_item) {
1438 			if (!(tempp1->mib_id == 0 &&
1439 			    tempp1->group == tempp2->group &&
1440 			    tempp1->mib_id == tempp2->mib_id))
1441 				continue;
1442 			/* found comparable data sets */
1443 			if (prevp != NULL)
1444 				prevp->next_item = diffptr;
1445 			switch (tempp2->group) {
1446 			/*
1447 			 * Indenting note: Because of long variable names
1448 			 * in cases MIB2_IP6 and MIB2_ICMP6, their contents
1449 			 * have been indented by one tab space only
1450 			 */
1451 			case MIB2_IP: {
1452 				mib2_ip_t *i2 = (mib2_ip_t *)tempp2->valp;
1453 				mib2_ip_t *i1 = (mib2_ip_t *)tempp1->valp;
1454 				mib2_ip_t *d;
1455 
1456 				diffptr->group = tempp2->group;
1457 				diffptr->mib_id = tempp2->mib_id;
1458 				diffptr->length = tempp2->length;
1459 				d = calloc(1, tempp2->length);
1460 				if (d == NULL)
1461 					goto mibdiff_out_of_memory;
1462 				diffptr->valp = d;
1463 				d->ipForwarding = i2->ipForwarding;
1464 				d->ipDefaultTTL = i2->ipDefaultTTL;
1465 				MDIFF(d, i2, i1, ipInReceives);
1466 				MDIFF(d, i2, i1, ipInHdrErrors);
1467 				MDIFF(d, i2, i1, ipInAddrErrors);
1468 				MDIFF(d, i2, i1, ipInCksumErrs);
1469 				MDIFF(d, i2, i1, ipForwDatagrams);
1470 				MDIFF(d, i2, i1, ipForwProhibits);
1471 				MDIFF(d, i2, i1, ipInUnknownProtos);
1472 				MDIFF(d, i2, i1, ipInDiscards);
1473 				MDIFF(d, i2, i1, ipInDelivers);
1474 				MDIFF(d, i2, i1, ipOutRequests);
1475 				MDIFF(d, i2, i1, ipOutDiscards);
1476 				MDIFF(d, i2, i1, ipOutNoRoutes);
1477 				MDIFF(d, i2, i1, ipReasmTimeout);
1478 				MDIFF(d, i2, i1, ipReasmReqds);
1479 				MDIFF(d, i2, i1, ipReasmOKs);
1480 				MDIFF(d, i2, i1, ipReasmFails);
1481 				MDIFF(d, i2, i1, ipReasmDuplicates);
1482 				MDIFF(d, i2, i1, ipReasmPartDups);
1483 				MDIFF(d, i2, i1, ipFragOKs);
1484 				MDIFF(d, i2, i1, ipFragFails);
1485 				MDIFF(d, i2, i1, ipFragCreates);
1486 				MDIFF(d, i2, i1, ipRoutingDiscards);
1487 				MDIFF(d, i2, i1, tcpInErrs);
1488 				MDIFF(d, i2, i1, udpNoPorts);
1489 				MDIFF(d, i2, i1, udpInCksumErrs);
1490 				MDIFF(d, i2, i1, udpInOverflows);
1491 				MDIFF(d, i2, i1, rawipInOverflows);
1492 				MDIFF(d, i2, i1, ipsecInSucceeded);
1493 				MDIFF(d, i2, i1, ipsecInFailed);
1494 				MDIFF(d, i2, i1, ipInIPv6);
1495 				MDIFF(d, i2, i1, ipOutIPv6);
1496 				MDIFF(d, i2, i1, ipOutSwitchIPv6);
1497 				prevp = diffptr++;
1498 				break;
1499 			}
1500 			case MIB2_IP6: {
1501 			mib2_ipv6IfStatsEntry_t *i2;
1502 			mib2_ipv6IfStatsEntry_t *i1;
1503 			mib2_ipv6IfStatsEntry_t *d;
1504 
1505 			i2 = (mib2_ipv6IfStatsEntry_t *)tempp2->valp;
1506 			i1 = (mib2_ipv6IfStatsEntry_t *)tempp1->valp;
1507 			diffptr->group = tempp2->group;
1508 			diffptr->mib_id = tempp2->mib_id;
1509 			diffptr->length = tempp2->length;
1510 			d = calloc(1, tempp2->length);
1511 			if (d == NULL)
1512 				goto mibdiff_out_of_memory;
1513 			diffptr->valp = d;
1514 			d->ipv6Forwarding = i2->ipv6Forwarding;
1515 			d->ipv6DefaultHopLimit =
1516 			    i2->ipv6DefaultHopLimit;
1517 
1518 			MDIFF(d, i2, i1, ipv6InReceives);
1519 			MDIFF(d, i2, i1, ipv6InHdrErrors);
1520 			MDIFF(d, i2, i1, ipv6InTooBigErrors);
1521 			MDIFF(d, i2, i1, ipv6InNoRoutes);
1522 			MDIFF(d, i2, i1, ipv6InAddrErrors);
1523 			MDIFF(d, i2, i1, ipv6InUnknownProtos);
1524 			MDIFF(d, i2, i1, ipv6InTruncatedPkts);
1525 			MDIFF(d, i2, i1, ipv6InDiscards);
1526 			MDIFF(d, i2, i1, ipv6InDelivers);
1527 			MDIFF(d, i2, i1, ipv6OutForwDatagrams);
1528 			MDIFF(d, i2, i1, ipv6OutRequests);
1529 			MDIFF(d, i2, i1, ipv6OutDiscards);
1530 			MDIFF(d, i2, i1, ipv6OutNoRoutes);
1531 			MDIFF(d, i2, i1, ipv6OutFragOKs);
1532 			MDIFF(d, i2, i1, ipv6OutFragFails);
1533 			MDIFF(d, i2, i1, ipv6OutFragCreates);
1534 			MDIFF(d, i2, i1, ipv6ReasmReqds);
1535 			MDIFF(d, i2, i1, ipv6ReasmOKs);
1536 			MDIFF(d, i2, i1, ipv6ReasmFails);
1537 			MDIFF(d, i2, i1, ipv6InMcastPkts);
1538 			MDIFF(d, i2, i1, ipv6OutMcastPkts);
1539 			MDIFF(d, i2, i1, ipv6ReasmDuplicates);
1540 			MDIFF(d, i2, i1, ipv6ReasmPartDups);
1541 			MDIFF(d, i2, i1, ipv6ForwProhibits);
1542 			MDIFF(d, i2, i1, udpInCksumErrs);
1543 			MDIFF(d, i2, i1, udpInOverflows);
1544 			MDIFF(d, i2, i1, rawipInOverflows);
1545 			MDIFF(d, i2, i1, ipv6InIPv4);
1546 			MDIFF(d, i2, i1, ipv6OutIPv4);
1547 			MDIFF(d, i2, i1, ipv6OutSwitchIPv4);
1548 			prevp = diffptr++;
1549 			break;
1550 			}
1551 			case EXPER_DVMRP: {
1552 				struct mrtstat *m2;
1553 				struct mrtstat *m1;
1554 				struct mrtstat *d;
1555 
1556 				m2 = (struct mrtstat *)tempp2->valp;
1557 				m1 = (struct mrtstat *)tempp1->valp;
1558 				diffptr->group = tempp2->group;
1559 				diffptr->mib_id = tempp2->mib_id;
1560 				diffptr->length = tempp2->length;
1561 				d = calloc(1, tempp2->length);
1562 				if (d == NULL)
1563 					goto mibdiff_out_of_memory;
1564 				diffptr->valp = d;
1565 				MDIFF(d, m2, m1, mrts_mfc_hits);
1566 				MDIFF(d, m2, m1, mrts_mfc_misses);
1567 				MDIFF(d, m2, m1, mrts_fwd_in);
1568 				MDIFF(d, m2, m1, mrts_fwd_out);
1569 				d->mrts_upcalls = m2->mrts_upcalls;
1570 				MDIFF(d, m2, m1, mrts_fwd_drop);
1571 				MDIFF(d, m2, m1, mrts_bad_tunnel);
1572 				MDIFF(d, m2, m1, mrts_cant_tunnel);
1573 				MDIFF(d, m2, m1, mrts_wrong_if);
1574 				MDIFF(d, m2, m1, mrts_upq_ovflw);
1575 				MDIFF(d, m2, m1, mrts_cache_cleanups);
1576 				MDIFF(d, m2, m1, mrts_drop_sel);
1577 				MDIFF(d, m2, m1, mrts_q_overflow);
1578 				MDIFF(d, m2, m1, mrts_pkt2large);
1579 				MDIFF(d, m2, m1, mrts_pim_badversion);
1580 				MDIFF(d, m2, m1, mrts_pim_rcv_badcsum);
1581 				MDIFF(d, m2, m1, mrts_pim_badregisters);
1582 				MDIFF(d, m2, m1, mrts_pim_regforwards);
1583 				MDIFF(d, m2, m1, mrts_pim_regsend_drops);
1584 				MDIFF(d, m2, m1, mrts_pim_malformed);
1585 				MDIFF(d, m2, m1, mrts_pim_nomemory);
1586 				prevp = diffptr++;
1587 				break;
1588 			}
1589 			case EXPER_IGMP: {
1590 				struct igmpstat *i2;
1591 				struct igmpstat *i1;
1592 				struct igmpstat *d;
1593 
1594 				i2 = (struct igmpstat *)tempp2->valp;
1595 				i1 = (struct igmpstat *)tempp1->valp;
1596 				diffptr->group = tempp2->group;
1597 				diffptr->mib_id = tempp2->mib_id;
1598 				diffptr->length = tempp2->length;
1599 				d = calloc(1, tempp2->length);
1600 				if (d == NULL)
1601 					goto mibdiff_out_of_memory;
1602 				diffptr->valp = d;
1603 				MDIFF(d, i2, i1, igps_rcv_total);
1604 				MDIFF(d, i2, i1, igps_rcv_tooshort);
1605 				MDIFF(d, i2, i1, igps_rcv_badsum);
1606 				MDIFF(d, i2, i1, igps_rcv_queries);
1607 				MDIFF(d, i2, i1, igps_rcv_badqueries);
1608 				MDIFF(d, i2, i1, igps_rcv_reports);
1609 				MDIFF(d, i2, i1, igps_rcv_badreports);
1610 				MDIFF(d, i2, i1, igps_rcv_ourreports);
1611 				MDIFF(d, i2, i1, igps_snd_reports);
1612 				prevp = diffptr++;
1613 				break;
1614 			}
1615 			case MIB2_ICMP: {
1616 				mib2_icmp_t *i2;
1617 				mib2_icmp_t *i1;
1618 				mib2_icmp_t *d;
1619 
1620 				i2 = (mib2_icmp_t *)tempp2->valp;
1621 				i1 = (mib2_icmp_t *)tempp1->valp;
1622 				diffptr->group = tempp2->group;
1623 				diffptr->mib_id = tempp2->mib_id;
1624 				diffptr->length = tempp2->length;
1625 				d = calloc(1, tempp2->length);
1626 				if (d == NULL)
1627 					goto mibdiff_out_of_memory;
1628 				diffptr->valp = d;
1629 				MDIFF(d, i2, i1, icmpInMsgs);
1630 				MDIFF(d, i2, i1, icmpInErrors);
1631 				MDIFF(d, i2, i1, icmpInCksumErrs);
1632 				MDIFF(d, i2, i1, icmpInUnknowns);
1633 				MDIFF(d, i2, i1, icmpInDestUnreachs);
1634 				MDIFF(d, i2, i1, icmpInTimeExcds);
1635 				MDIFF(d, i2, i1, icmpInParmProbs);
1636 				MDIFF(d, i2, i1, icmpInSrcQuenchs);
1637 				MDIFF(d, i2, i1, icmpInRedirects);
1638 				MDIFF(d, i2, i1, icmpInBadRedirects);
1639 				MDIFF(d, i2, i1, icmpInEchos);
1640 				MDIFF(d, i2, i1, icmpInEchoReps);
1641 				MDIFF(d, i2, i1, icmpInTimestamps);
1642 				MDIFF(d, i2, i1, icmpInAddrMasks);
1643 				MDIFF(d, i2, i1, icmpInAddrMaskReps);
1644 				MDIFF(d, i2, i1, icmpInFragNeeded);
1645 				MDIFF(d, i2, i1, icmpOutMsgs);
1646 				MDIFF(d, i2, i1, icmpOutDrops);
1647 				MDIFF(d, i2, i1, icmpOutErrors);
1648 				MDIFF(d, i2, i1, icmpOutDestUnreachs);
1649 				MDIFF(d, i2, i1, icmpOutTimeExcds);
1650 				MDIFF(d, i2, i1, icmpOutParmProbs);
1651 				MDIFF(d, i2, i1, icmpOutSrcQuenchs);
1652 				MDIFF(d, i2, i1, icmpOutRedirects);
1653 				MDIFF(d, i2, i1, icmpOutEchos);
1654 				MDIFF(d, i2, i1, icmpOutEchoReps);
1655 				MDIFF(d, i2, i1, icmpOutTimestamps);
1656 				MDIFF(d, i2, i1, icmpOutTimestampReps);
1657 				MDIFF(d, i2, i1, icmpOutAddrMasks);
1658 				MDIFF(d, i2, i1, icmpOutAddrMaskReps);
1659 				MDIFF(d, i2, i1, icmpOutFragNeeded);
1660 				MDIFF(d, i2, i1, icmpInOverflows);
1661 				prevp = diffptr++;
1662 				break;
1663 			}
1664 			case MIB2_ICMP6: {
1665 	mib2_ipv6IfIcmpEntry_t *i2;
1666 	mib2_ipv6IfIcmpEntry_t *i1;
1667 	mib2_ipv6IfIcmpEntry_t *d;
1668 
1669 	i2 = (mib2_ipv6IfIcmpEntry_t *)tempp2->valp;
1670 	i1 = (mib2_ipv6IfIcmpEntry_t *)tempp1->valp;
1671 	diffptr->group = tempp2->group;
1672 	diffptr->mib_id = tempp2->mib_id;
1673 	diffptr->length = tempp2->length;
1674 	d = calloc(1, tempp2->length);
1675 	if (d == NULL)
1676 		goto mibdiff_out_of_memory;
1677 	diffptr->valp = d;
1678 	MDIFF(d, i2, i1, ipv6IfIcmpInMsgs);
1679 	MDIFF(d, i2, i1, ipv6IfIcmpInErrors);
1680 	MDIFF(d, i2, i1, ipv6IfIcmpInDestUnreachs);
1681 	MDIFF(d, i2, i1, ipv6IfIcmpInAdminProhibs);
1682 	MDIFF(d, i2, i1, ipv6IfIcmpInTimeExcds);
1683 	MDIFF(d, i2, i1, ipv6IfIcmpInParmProblems);
1684 	MDIFF(d, i2, i1, ipv6IfIcmpInPktTooBigs);
1685 	MDIFF(d, i2, i1, ipv6IfIcmpInEchos);
1686 	MDIFF(d, i2, i1, ipv6IfIcmpInEchoReplies);
1687 	MDIFF(d, i2, i1, ipv6IfIcmpInRouterSolicits);
1688 	MDIFF(d, i2, i1, ipv6IfIcmpInRouterAdvertisements);
1689 	MDIFF(d, i2, i1, ipv6IfIcmpInNeighborSolicits);
1690 	MDIFF(d, i2, i1, ipv6IfIcmpInNeighborAdvertisements);
1691 	MDIFF(d, i2, i1, ipv6IfIcmpInRedirects);
1692 	MDIFF(d, i2, i1, ipv6IfIcmpInBadRedirects);
1693 	MDIFF(d, i2, i1, ipv6IfIcmpInGroupMembQueries);
1694 	MDIFF(d, i2, i1, ipv6IfIcmpInGroupMembResponses);
1695 	MDIFF(d, i2, i1, ipv6IfIcmpInGroupMembReductions);
1696 	MDIFF(d, i2, i1, ipv6IfIcmpInOverflows);
1697 	MDIFF(d, i2, i1, ipv6IfIcmpOutMsgs);
1698 	MDIFF(d, i2, i1, ipv6IfIcmpOutErrors);
1699 	MDIFF(d, i2, i1, ipv6IfIcmpOutDestUnreachs);
1700 	MDIFF(d, i2, i1, ipv6IfIcmpOutAdminProhibs);
1701 	MDIFF(d, i2, i1, ipv6IfIcmpOutTimeExcds);
1702 	MDIFF(d, i2, i1, ipv6IfIcmpOutParmProblems);
1703 	MDIFF(d, i2, i1, ipv6IfIcmpOutPktTooBigs);
1704 	MDIFF(d, i2, i1, ipv6IfIcmpOutEchos);
1705 	MDIFF(d, i2, i1, ipv6IfIcmpOutEchoReplies);
1706 	MDIFF(d, i2, i1, ipv6IfIcmpOutRouterSolicits);
1707 	MDIFF(d, i2, i1, ipv6IfIcmpOutRouterAdvertisements);
1708 	MDIFF(d, i2, i1, ipv6IfIcmpOutNeighborSolicits);
1709 	MDIFF(d, i2, i1, ipv6IfIcmpOutNeighborAdvertisements);
1710 	MDIFF(d, i2, i1, ipv6IfIcmpOutRedirects);
1711 	MDIFF(d, i2, i1, ipv6IfIcmpOutGroupMembQueries);
1712 	MDIFF(d, i2, i1, ipv6IfIcmpOutGroupMembResponses);
1713 	MDIFF(d, i2, i1, ipv6IfIcmpOutGroupMembReductions);
1714 	prevp = diffptr++;
1715 	break;
1716 			}
1717 			case MIB2_TCP: {
1718 				mib2_tcp_t *t2;
1719 				mib2_tcp_t *t1;
1720 				mib2_tcp_t *d;
1721 
1722 				t2 = (mib2_tcp_t *)tempp2->valp;
1723 				t1 = (mib2_tcp_t *)tempp1->valp;
1724 				diffptr->group = tempp2->group;
1725 				diffptr->mib_id = tempp2->mib_id;
1726 				diffptr->length = tempp2->length;
1727 				d = calloc(1, tempp2->length);
1728 				if (d == NULL)
1729 					goto mibdiff_out_of_memory;
1730 				diffptr->valp = d;
1731 				d->tcpRtoMin = t2->tcpRtoMin;
1732 				d->tcpRtoMax = t2->tcpRtoMax;
1733 				d->tcpMaxConn = t2->tcpMaxConn;
1734 				MDIFF(d, t2, t1, tcpActiveOpens);
1735 				MDIFF(d, t2, t1, tcpPassiveOpens);
1736 				MDIFF(d, t2, t1, tcpAttemptFails);
1737 				MDIFF(d, t2, t1, tcpEstabResets);
1738 				d->tcpCurrEstab = t2->tcpCurrEstab;
1739 				MDIFF(d, t2, t1, tcpHCOutSegs);
1740 				MDIFF(d, t2, t1, tcpOutDataSegs);
1741 				MDIFF(d, t2, t1, tcpOutDataBytes);
1742 				MDIFF(d, t2, t1, tcpRetransSegs);
1743 				MDIFF(d, t2, t1, tcpRetransBytes);
1744 				MDIFF(d, t2, t1, tcpOutAck);
1745 				MDIFF(d, t2, t1, tcpOutAckDelayed);
1746 				MDIFF(d, t2, t1, tcpOutUrg);
1747 				MDIFF(d, t2, t1, tcpOutWinUpdate);
1748 				MDIFF(d, t2, t1, tcpOutWinProbe);
1749 				MDIFF(d, t2, t1, tcpOutControl);
1750 				MDIFF(d, t2, t1, tcpOutRsts);
1751 				MDIFF(d, t2, t1, tcpOutFastRetrans);
1752 				MDIFF(d, t2, t1, tcpHCInSegs);
1753 				MDIFF(d, t2, t1, tcpInAckSegs);
1754 				MDIFF(d, t2, t1, tcpInAckBytes);
1755 				MDIFF(d, t2, t1, tcpInDupAck);
1756 				MDIFF(d, t2, t1, tcpInAckUnsent);
1757 				MDIFF(d, t2, t1, tcpInDataInorderSegs);
1758 				MDIFF(d, t2, t1, tcpInDataInorderBytes);
1759 				MDIFF(d, t2, t1, tcpInDataUnorderSegs);
1760 				MDIFF(d, t2, t1, tcpInDataUnorderBytes);
1761 				MDIFF(d, t2, t1, tcpInDataDupSegs);
1762 				MDIFF(d, t2, t1, tcpInDataDupBytes);
1763 				MDIFF(d, t2, t1, tcpInDataPartDupSegs);
1764 				MDIFF(d, t2, t1, tcpInDataPartDupBytes);
1765 				MDIFF(d, t2, t1, tcpInDataPastWinSegs);
1766 				MDIFF(d, t2, t1, tcpInDataPastWinBytes);
1767 				MDIFF(d, t2, t1, tcpInWinProbe);
1768 				MDIFF(d, t2, t1, tcpInWinUpdate);
1769 				MDIFF(d, t2, t1, tcpInClosed);
1770 				MDIFF(d, t2, t1, tcpRttNoUpdate);
1771 				MDIFF(d, t2, t1, tcpRttUpdate);
1772 				MDIFF(d, t2, t1, tcpTimRetrans);
1773 				MDIFF(d, t2, t1, tcpTimRetransDrop);
1774 				MDIFF(d, t2, t1, tcpTimKeepalive);
1775 				MDIFF(d, t2, t1, tcpTimKeepaliveProbe);
1776 				MDIFF(d, t2, t1, tcpTimKeepaliveDrop);
1777 				MDIFF(d, t2, t1, tcpListenDrop);
1778 				MDIFF(d, t2, t1, tcpListenDropQ0);
1779 				MDIFF(d, t2, t1, tcpHalfOpenDrop);
1780 				MDIFF(d, t2, t1, tcpOutSackRetransSegs);
1781 				prevp = diffptr++;
1782 				break;
1783 			}
1784 			case MIB2_UDP: {
1785 				mib2_udp_t *u2;
1786 				mib2_udp_t *u1;
1787 				mib2_udp_t *d;
1788 
1789 				u2 = (mib2_udp_t *)tempp2->valp;
1790 				u1 = (mib2_udp_t *)tempp1->valp;
1791 				diffptr->group = tempp2->group;
1792 				diffptr->mib_id = tempp2->mib_id;
1793 				diffptr->length = tempp2->length;
1794 				d = calloc(1, tempp2->length);
1795 				if (d == NULL)
1796 					goto mibdiff_out_of_memory;
1797 				diffptr->valp = d;
1798 				MDIFF(d, u2, u1, udpHCInDatagrams);
1799 				MDIFF(d, u2, u1, udpInErrors);
1800 				MDIFF(d, u2, u1, udpHCOutDatagrams);
1801 				MDIFF(d, u2, u1, udpOutErrors);
1802 				prevp = diffptr++;
1803 				break;
1804 			}
1805 			case MIB2_SCTP: {
1806 				mib2_sctp_t *s2;
1807 				mib2_sctp_t *s1;
1808 				mib2_sctp_t *d;
1809 
1810 				s2 = (mib2_sctp_t *)tempp2->valp;
1811 				s1 = (mib2_sctp_t *)tempp1->valp;
1812 				diffptr->group = tempp2->group;
1813 				diffptr->mib_id = tempp2->mib_id;
1814 				diffptr->length = tempp2->length;
1815 				d = calloc(1, tempp2->length);
1816 				if (d == NULL)
1817 					goto mibdiff_out_of_memory;
1818 				diffptr->valp = d;
1819 				d->sctpRtoAlgorithm = s2->sctpRtoAlgorithm;
1820 				d->sctpRtoMin = s2->sctpRtoMin;
1821 				d->sctpRtoMax = s2->sctpRtoMax;
1822 				d->sctpRtoInitial = s2->sctpRtoInitial;
1823 				d->sctpMaxAssocs = s2->sctpMaxAssocs;
1824 				d->sctpValCookieLife = s2->sctpValCookieLife;
1825 				d->sctpMaxInitRetr = s2->sctpMaxInitRetr;
1826 				d->sctpCurrEstab = s2->sctpCurrEstab;
1827 				MDIFF(d, s2, s1, sctpActiveEstab);
1828 				MDIFF(d, s2, s1, sctpPassiveEstab);
1829 				MDIFF(d, s2, s1, sctpAborted);
1830 				MDIFF(d, s2, s1, sctpShutdowns);
1831 				MDIFF(d, s2, s1, sctpOutOfBlue);
1832 				MDIFF(d, s2, s1, sctpChecksumError);
1833 				MDIFF(d, s2, s1, sctpOutCtrlChunks);
1834 				MDIFF(d, s2, s1, sctpOutOrderChunks);
1835 				MDIFF(d, s2, s1, sctpOutUnorderChunks);
1836 				MDIFF(d, s2, s1, sctpRetransChunks);
1837 				MDIFF(d, s2, s1, sctpOutAck);
1838 				MDIFF(d, s2, s1, sctpOutAckDelayed);
1839 				MDIFF(d, s2, s1, sctpOutWinUpdate);
1840 				MDIFF(d, s2, s1, sctpOutFastRetrans);
1841 				MDIFF(d, s2, s1, sctpOutWinProbe);
1842 				MDIFF(d, s2, s1, sctpInCtrlChunks);
1843 				MDIFF(d, s2, s1, sctpInOrderChunks);
1844 				MDIFF(d, s2, s1, sctpInUnorderChunks);
1845 				MDIFF(d, s2, s1, sctpInAck);
1846 				MDIFF(d, s2, s1, sctpInDupAck);
1847 				MDIFF(d, s2, s1, sctpInAckUnsent);
1848 				MDIFF(d, s2, s1, sctpFragUsrMsgs);
1849 				MDIFF(d, s2, s1, sctpReasmUsrMsgs);
1850 				MDIFF(d, s2, s1, sctpOutSCTPPkts);
1851 				MDIFF(d, s2, s1, sctpInSCTPPkts);
1852 				MDIFF(d, s2, s1, sctpInInvalidCookie);
1853 				MDIFF(d, s2, s1, sctpTimRetrans);
1854 				MDIFF(d, s2, s1, sctpTimRetransDrop);
1855 				MDIFF(d, s2, s1, sctpTimHeartBeatProbe);
1856 				MDIFF(d, s2, s1, sctpTimHeartBeatDrop);
1857 				MDIFF(d, s2, s1, sctpListenDrop);
1858 				MDIFF(d, s2, s1, sctpInClosed);
1859 				prevp = diffptr++;
1860 				break;
1861 			}
1862 			case EXPER_RAWIP: {
1863 				mib2_rawip_t *r2;
1864 				mib2_rawip_t *r1;
1865 				mib2_rawip_t *d;
1866 
1867 				r2 = (mib2_rawip_t *)tempp2->valp;
1868 				r1 = (mib2_rawip_t *)tempp1->valp;
1869 				diffptr->group = tempp2->group;
1870 				diffptr->mib_id = tempp2->mib_id;
1871 				diffptr->length = tempp2->length;
1872 				d = calloc(1, tempp2->length);
1873 				if (d == NULL)
1874 					goto mibdiff_out_of_memory;
1875 				diffptr->valp = d;
1876 				MDIFF(d, r2, r1, rawipInDatagrams);
1877 				MDIFF(d, r2, r1, rawipInErrors);
1878 				MDIFF(d, r2, r1, rawipInCksumErrs);
1879 				MDIFF(d, r2, r1, rawipOutDatagrams);
1880 				MDIFF(d, r2, r1, rawipOutErrors);
1881 				prevp = diffptr++;
1882 				break;
1883 			}
1884 			/*
1885 			 * there are more "group" types but they aren't
1886 			 * required for the -s and -Ms options
1887 			 */
1888 			}
1889 		}
1890 		tempp1 = NULL;
1891 	}
1892 	tempp2 = NULL;
1893 	diffptr--;
1894 	diffptr->next_item = NULL;
1895 	return (diffp);
1896 
1897 mibdiff_out_of_memory:;
1898 	mib_item_destroy(&diffp);
1899 	return (NULL);
1900 }
1901 
1902 /*
1903  * mib_item_destroy: cleans up a mib_item_t *
1904  * that was created by calling mib_item_dup or
1905  * mib_item_diff
1906  */
1907 static void
1908 mib_item_destroy(mib_item_t **itemp)
1909 {
1910 	int	nitems = 0;
1911 	int	c = 0;
1912 	mib_item_t *tempp;
1913 
1914 	if (itemp == NULL || *itemp == NULL)
1915 		return;
1916 
1917 	for (tempp = *itemp; tempp != NULL; tempp = tempp->next_item)
1918 		if (tempp->mib_id == 0)
1919 			nitems++;
1920 		else
1921 			return;	/* cannot destroy! */
1922 
1923 	if (nitems == 0)
1924 		return;		/* cannot destroy! */
1925 
1926 	for (c = nitems - 1; c >= 0; c--) {
1927 		if ((itemp[0][c]).valp != NULL)
1928 			free((itemp[0][c]).valp);
1929 	}
1930 	free(*itemp);
1931 
1932 	*itemp = NULL;
1933 }
1934 
1935 /* Compare two Octet_ts.  Return B_TRUE if they match, B_FALSE if not. */
1936 static boolean_t
1937 octetstrmatch(const Octet_t *a, const Octet_t *b)
1938 {
1939 	if (a == NULL || b == NULL)
1940 		return (B_FALSE);
1941 
1942 	if (a->o_length != b->o_length)
1943 		return (B_FALSE);
1944 
1945 	return (memcmp(a->o_bytes, b->o_bytes, a->o_length) == 0);
1946 }
1947 
1948 /* If octetstr() changes make an appropriate change to STR_EXPAND */
1949 static char *
1950 octetstr(const Octet_t *op, int code, char *dst, uint_t dstlen)
1951 {
1952 	int	i;
1953 	char	*cp;
1954 
1955 	cp = dst;
1956 	if (op) {
1957 		for (i = 0; i < op->o_length; i++) {
1958 			switch (code) {
1959 			case 'd':
1960 				if (cp - dst + 4 > dstlen) {
1961 					*cp = '\0';
1962 					return (dst);
1963 				}
1964 				(void) snprintf(cp, 5, "%d.",
1965 				    0xff & op->o_bytes[i]);
1966 				cp = strchr(cp, '\0');
1967 				break;
1968 			case 'a':
1969 				if (cp - dst + 1 > dstlen) {
1970 					*cp = '\0';
1971 					return (dst);
1972 				}
1973 				*cp++ = op->o_bytes[i];
1974 				break;
1975 			case 'h':
1976 			default:
1977 				if (cp - dst + 3 > dstlen) {
1978 					*cp = '\0';
1979 					return (dst);
1980 				}
1981 				(void) snprintf(cp, 4, "%02x:",
1982 				    0xff & op->o_bytes[i]);
1983 				cp += 3;
1984 				break;
1985 			}
1986 		}
1987 	}
1988 	if (code != 'a' && cp != dst)
1989 		cp--;
1990 	*cp = '\0';
1991 	return (dst);
1992 }
1993 
1994 static const char *
1995 mitcp_state(int state, const mib2_transportMLPEntry_t *attr)
1996 {
1997 	static char tcpsbuf[50];
1998 	const char *cp;
1999 
2000 	switch (state) {
2001 	case TCPS_CLOSED:
2002 		cp = "CLOSED";
2003 		break;
2004 	case TCPS_IDLE:
2005 		cp = "IDLE";
2006 		break;
2007 	case TCPS_BOUND:
2008 		cp = "BOUND";
2009 		break;
2010 	case TCPS_LISTEN:
2011 		cp = "LISTEN";
2012 		break;
2013 	case TCPS_SYN_SENT:
2014 		cp = "SYN_SENT";
2015 		break;
2016 	case TCPS_SYN_RCVD:
2017 		cp = "SYN_RCVD";
2018 		break;
2019 	case TCPS_ESTABLISHED:
2020 		cp = "ESTABLISHED";
2021 		break;
2022 	case TCPS_CLOSE_WAIT:
2023 		cp = "CLOSE_WAIT";
2024 		break;
2025 	case TCPS_FIN_WAIT_1:
2026 		cp = "FIN_WAIT_1";
2027 		break;
2028 	case TCPS_CLOSING:
2029 		cp = "CLOSING";
2030 		break;
2031 	case TCPS_LAST_ACK:
2032 		cp = "LAST_ACK";
2033 		break;
2034 	case TCPS_FIN_WAIT_2:
2035 		cp = "FIN_WAIT_2";
2036 		break;
2037 	case TCPS_TIME_WAIT:
2038 		cp = "TIME_WAIT";
2039 		break;
2040 	default:
2041 		(void) snprintf(tcpsbuf, sizeof (tcpsbuf),
2042 		    "UnknownState(%d)", state);
2043 		cp = tcpsbuf;
2044 		break;
2045 	}
2046 
2047 	if (RSECflag && attr != NULL && attr->tme_flags != 0) {
2048 		if (cp != tcpsbuf) {
2049 			(void) strlcpy(tcpsbuf, cp, sizeof (tcpsbuf));
2050 			cp = tcpsbuf;
2051 		}
2052 		if (attr->tme_flags & MIB2_TMEF_PRIVATE)
2053 			(void) strlcat(tcpsbuf, " P", sizeof (tcpsbuf));
2054 		if (attr->tme_flags & MIB2_TMEF_SHARED)
2055 			(void) strlcat(tcpsbuf, " S", sizeof (tcpsbuf));
2056 	}
2057 
2058 	return (cp);
2059 }
2060 
2061 static const char *
2062 miudp_state(int state, const mib2_transportMLPEntry_t *attr)
2063 {
2064 	static char udpsbuf[50];
2065 	const char *cp;
2066 
2067 	switch (state) {
2068 	case MIB2_UDP_unbound:
2069 		cp = "Unbound";
2070 		break;
2071 	case MIB2_UDP_idle:
2072 		cp = "Idle";
2073 		break;
2074 	case MIB2_UDP_connected:
2075 		cp = "Connected";
2076 		break;
2077 	default:
2078 		(void) snprintf(udpsbuf, sizeof (udpsbuf),
2079 		    "Unknown State(%d)", state);
2080 		cp = udpsbuf;
2081 		break;
2082 	}
2083 
2084 	if (RSECflag && attr != NULL && attr->tme_flags != 0) {
2085 		if (cp != udpsbuf) {
2086 			(void) strlcpy(udpsbuf, cp, sizeof (udpsbuf));
2087 			cp = udpsbuf;
2088 		}
2089 		if (attr->tme_flags & MIB2_TMEF_PRIVATE)
2090 			(void) strlcat(udpsbuf, " P", sizeof (udpsbuf));
2091 		if (attr->tme_flags & MIB2_TMEF_SHARED)
2092 			(void) strlcat(udpsbuf, " S", sizeof (udpsbuf));
2093 	}
2094 
2095 	return (cp);
2096 }
2097 
2098 static int odd;
2099 
2100 static void
2101 prval_init(void)
2102 {
2103 	odd = 0;
2104 }
2105 
2106 static void
2107 prval(char *str, Counter val)
2108 {
2109 	(void) printf("\t%-20s=%6u", str, val);
2110 	if (odd++ & 1)
2111 		(void) putchar('\n');
2112 }
2113 
2114 static void
2115 prval64(char *str, Counter64 val)
2116 {
2117 	(void) printf("\t%-20s=%6llu", str, val);
2118 	if (odd++ & 1)
2119 		(void) putchar('\n');
2120 }
2121 
2122 static void
2123 pr_int_val(char *str, int val)
2124 {
2125 	(void) printf("\t%-20s=%6d", str, val);
2126 	if (odd++ & 1)
2127 		(void) putchar('\n');
2128 }
2129 
2130 static void
2131 pr_sctp_rtoalgo(char *str, int val)
2132 {
2133 	(void) printf("\t%-20s=", str);
2134 	switch (val) {
2135 		case MIB2_SCTP_RTOALGO_OTHER:
2136 			(void) printf("%6.6s", "other");
2137 			break;
2138 
2139 		case MIB2_SCTP_RTOALGO_VANJ:
2140 			(void) printf("%6.6s", "vanj");
2141 			break;
2142 
2143 		default:
2144 			(void) printf("%6d", val);
2145 			break;
2146 	}
2147 	if (odd++ & 1)
2148 		(void) putchar('\n');
2149 }
2150 
2151 static void
2152 prval_end(void)
2153 {
2154 	if (odd++ & 1)
2155 		(void) putchar('\n');
2156 }
2157 
2158 /* Extract constant sizes */
2159 static void
2160 mib_get_constants(mib_item_t *item)
2161 {
2162 	for (; item; item = item->next_item) {
2163 		if (item->mib_id != 0)
2164 			continue;
2165 
2166 		switch (item->group) {
2167 		case MIB2_IP: {
2168 			mib2_ip_t	*ip = (mib2_ip_t *)item->valp;
2169 
2170 			ipAddrEntrySize = ip->ipAddrEntrySize;
2171 			ipRouteEntrySize = ip->ipRouteEntrySize;
2172 			ipNetToMediaEntrySize = ip->ipNetToMediaEntrySize;
2173 			ipMemberEntrySize = ip->ipMemberEntrySize;
2174 			ipGroupSourceEntrySize = ip->ipGroupSourceEntrySize;
2175 			ipRouteAttributeSize = ip->ipRouteAttributeSize;
2176 			transportMLPSize = ip->transportMLPSize;
2177 			ipDestEntrySize = ip->ipDestEntrySize;
2178 			assert(IS_P2ALIGNED(ipAddrEntrySize,
2179 			    sizeof (mib2_ipAddrEntry_t *)));
2180 			assert(IS_P2ALIGNED(ipRouteEntrySize,
2181 			    sizeof (mib2_ipRouteEntry_t *)));
2182 			assert(IS_P2ALIGNED(ipNetToMediaEntrySize,
2183 			    sizeof (mib2_ipNetToMediaEntry_t *)));
2184 			assert(IS_P2ALIGNED(ipMemberEntrySize,
2185 			    sizeof (ip_member_t *)));
2186 			assert(IS_P2ALIGNED(ipGroupSourceEntrySize,
2187 			    sizeof (ip_grpsrc_t *)));
2188 			assert(IS_P2ALIGNED(ipRouteAttributeSize,
2189 			    sizeof (mib2_ipAttributeEntry_t *)));
2190 			assert(IS_P2ALIGNED(transportMLPSize,
2191 			    sizeof (mib2_transportMLPEntry_t *)));
2192 			break;
2193 		}
2194 		case EXPER_DVMRP: {
2195 			struct mrtstat	*mrts = (struct mrtstat *)item->valp;
2196 
2197 			vifctlSize = mrts->mrts_vifctlSize;
2198 			mfcctlSize = mrts->mrts_mfcctlSize;
2199 			assert(IS_P2ALIGNED(vifctlSize,
2200 			    sizeof (struct vifclt *)));
2201 			assert(IS_P2ALIGNED(mfcctlSize,
2202 			    sizeof (struct mfcctl *)));
2203 			break;
2204 		}
2205 		case MIB2_IP6: {
2206 			mib2_ipv6IfStatsEntry_t *ip6;
2207 			/* Just use the first entry */
2208 
2209 			ip6 = (mib2_ipv6IfStatsEntry_t *)item->valp;
2210 			ipv6IfStatsEntrySize = ip6->ipv6IfStatsEntrySize;
2211 			ipv6AddrEntrySize = ip6->ipv6AddrEntrySize;
2212 			ipv6RouteEntrySize = ip6->ipv6RouteEntrySize;
2213 			ipv6NetToMediaEntrySize = ip6->ipv6NetToMediaEntrySize;
2214 			ipv6MemberEntrySize = ip6->ipv6MemberEntrySize;
2215 			ipv6GroupSourceEntrySize =
2216 			    ip6->ipv6GroupSourceEntrySize;
2217 			assert(IS_P2ALIGNED(ipv6IfStatsEntrySize,
2218 			    sizeof (mib2_ipv6IfStatsEntry_t *)));
2219 			assert(IS_P2ALIGNED(ipv6AddrEntrySize,
2220 			    sizeof (mib2_ipv6AddrEntry_t *)));
2221 			assert(IS_P2ALIGNED(ipv6RouteEntrySize,
2222 			    sizeof (mib2_ipv6RouteEntry_t *)));
2223 			assert(IS_P2ALIGNED(ipv6NetToMediaEntrySize,
2224 			    sizeof (mib2_ipv6NetToMediaEntry_t *)));
2225 			assert(IS_P2ALIGNED(ipv6MemberEntrySize,
2226 			    sizeof (ipv6_member_t *)));
2227 			assert(IS_P2ALIGNED(ipv6GroupSourceEntrySize,
2228 			    sizeof (ipv6_grpsrc_t *)));
2229 			break;
2230 		}
2231 		case MIB2_ICMP6: {
2232 			mib2_ipv6IfIcmpEntry_t *icmp6;
2233 			/* Just use the first entry */
2234 
2235 			icmp6 = (mib2_ipv6IfIcmpEntry_t *)item->valp;
2236 			ipv6IfIcmpEntrySize = icmp6->ipv6IfIcmpEntrySize;
2237 			assert(IS_P2ALIGNED(ipv6IfIcmpEntrySize,
2238 			    sizeof (mib2_ipv6IfIcmpEntry_t *)));
2239 			break;
2240 		}
2241 		case MIB2_TCP: {
2242 			mib2_tcp_t	*tcp = (mib2_tcp_t *)item->valp;
2243 
2244 			tcpConnEntrySize = tcp->tcpConnTableSize;
2245 			tcp6ConnEntrySize = tcp->tcp6ConnTableSize;
2246 			assert(IS_P2ALIGNED(tcpConnEntrySize,
2247 			    sizeof (mib2_tcpConnEntry_t *)));
2248 			assert(IS_P2ALIGNED(tcp6ConnEntrySize,
2249 			    sizeof (mib2_tcp6ConnEntry_t *)));
2250 			break;
2251 		}
2252 		case MIB2_UDP: {
2253 			mib2_udp_t	*udp = (mib2_udp_t *)item->valp;
2254 
2255 			udpEntrySize = udp->udpEntrySize;
2256 			udp6EntrySize = udp->udp6EntrySize;
2257 			assert(IS_P2ALIGNED(udpEntrySize,
2258 			    sizeof (mib2_udpEntry_t *)));
2259 			assert(IS_P2ALIGNED(udp6EntrySize,
2260 			    sizeof (mib2_udp6Entry_t *)));
2261 			break;
2262 		}
2263 		case MIB2_SCTP: {
2264 			mib2_sctp_t	*sctp = (mib2_sctp_t *)item->valp;
2265 
2266 			sctpEntrySize = sctp->sctpEntrySize;
2267 			sctpLocalEntrySize = sctp->sctpLocalEntrySize;
2268 			sctpRemoteEntrySize = sctp->sctpRemoteEntrySize;
2269 			break;
2270 		}
2271 		}
2272 	}
2273 
2274 	if (Xflag) {
2275 		(void) puts("mib_get_constants:");
2276 		(void) printf("\tipv6IfStatsEntrySize %d\n",
2277 		    ipv6IfStatsEntrySize);
2278 		(void) printf("\tipAddrEntrySize %d\n", ipAddrEntrySize);
2279 		(void) printf("\tipRouteEntrySize %d\n", ipRouteEntrySize);
2280 		(void) printf("\tipNetToMediaEntrySize %d\n",
2281 		    ipNetToMediaEntrySize);
2282 		(void) printf("\tipMemberEntrySize %d\n", ipMemberEntrySize);
2283 		(void) printf("\tipRouteAttributeSize %d\n",
2284 		    ipRouteAttributeSize);
2285 		(void) printf("\tvifctlSize %d\n", vifctlSize);
2286 		(void) printf("\tmfcctlSize %d\n", mfcctlSize);
2287 
2288 		(void) printf("\tipv6AddrEntrySize %d\n", ipv6AddrEntrySize);
2289 		(void) printf("\tipv6RouteEntrySize %d\n", ipv6RouteEntrySize);
2290 		(void) printf("\tipv6NetToMediaEntrySize %d\n",
2291 		    ipv6NetToMediaEntrySize);
2292 		(void) printf("\tipv6MemberEntrySize %d\n",
2293 		    ipv6MemberEntrySize);
2294 		(void) printf("\tipv6IfIcmpEntrySize %d\n",
2295 		    ipv6IfIcmpEntrySize);
2296 		(void) printf("\tipDestEntrySize %d\n", ipDestEntrySize);
2297 		(void) printf("\ttransportMLPSize %d\n", transportMLPSize);
2298 		(void) printf("\ttcpConnEntrySize %d\n", tcpConnEntrySize);
2299 		(void) printf("\ttcp6ConnEntrySize %d\n", tcp6ConnEntrySize);
2300 		(void) printf("\tudpEntrySize %d\n", udpEntrySize);
2301 		(void) printf("\tudp6EntrySize %d\n", udp6EntrySize);
2302 		(void) printf("\tsctpEntrySize %d\n", sctpEntrySize);
2303 		(void) printf("\tsctpLocalEntrySize %d\n", sctpLocalEntrySize);
2304 		(void) printf("\tsctpRemoteEntrySize %d\n",
2305 		    sctpRemoteEntrySize);
2306 	}
2307 }
2308 
2309 /* ----------------------------- STAT_REPORT ------------------------------- */
2310 
2311 static void
2312 stat_report(mib_item_t *item)
2313 {
2314 	int	jtemp = 0;
2315 	char	ifname[LIFNAMSIZ + 1];
2316 
2317 	for (; item; item = item->next_item) {
2318 		if (Xflag) {
2319 			(void) printf("[%4d] Group = %d, mib_id = %d, "
2320 			    "length = %d, valp = 0x%p\n",
2321 			    jtemp++, item->group, item->mib_id,
2322 			    item->length, item->valp);
2323 		}
2324 		if (item->mib_id != 0)
2325 			continue;
2326 
2327 		switch (item->group) {
2328 		case MIB2_IP: {
2329 			mib2_ip_t	*ip = (mib2_ip_t *)item->valp;
2330 
2331 			if (protocol_selected(IPPROTO_IP) &&
2332 			    family_selected(AF_INET)) {
2333 				(void) fputs(v4compat ? "\nIP" : "\nIPv4",
2334 				    stdout);
2335 				print_ip_stats(ip);
2336 			}
2337 			break;
2338 		}
2339 		case MIB2_ICMP: {
2340 			mib2_icmp_t	*icmp =
2341 			    (mib2_icmp_t *)item->valp;
2342 
2343 			if (protocol_selected(IPPROTO_ICMP) &&
2344 			    family_selected(AF_INET)) {
2345 				(void) fputs(v4compat ? "\nICMP" : "\nICMPv4",
2346 				    stdout);
2347 				print_icmp_stats(icmp);
2348 			}
2349 			break;
2350 		}
2351 		case MIB2_IP6: {
2352 			mib2_ipv6IfStatsEntry_t *ip6;
2353 			mib2_ipv6IfStatsEntry_t sum6;
2354 
2355 			if (!(protocol_selected(IPPROTO_IPV6)) ||
2356 			    !(family_selected(AF_INET6)))
2357 				break;
2358 			bzero(&sum6, sizeof (sum6));
2359 			for (ip6 = (mib2_ipv6IfStatsEntry_t *)item->valp;
2360 			    (char *)ip6 < (char *)item->valp + item->length;
2361 			    ip6 = (mib2_ipv6IfStatsEntry_t *)((char *)ip6 +
2362 			    ipv6IfStatsEntrySize)) {
2363 				if (ip6->ipv6IfIndex == 0) {
2364 					/*
2365 					 * The "unknown interface" ip6
2366 					 * mib. Just add to the sum.
2367 					 */
2368 					sum_ip6_stats(ip6, &sum6);
2369 					continue;
2370 				}
2371 				if (Aflag) {
2372 					(void) printf("\nIPv6 for %s\n",
2373 					    ifindex2str(ip6->ipv6IfIndex,
2374 					    ifname));
2375 					print_ip6_stats(ip6);
2376 				}
2377 				sum_ip6_stats(ip6, &sum6);
2378 			}
2379 			(void) fputs("\nIPv6", stdout);
2380 			print_ip6_stats(&sum6);
2381 			break;
2382 		}
2383 		case MIB2_ICMP6: {
2384 			mib2_ipv6IfIcmpEntry_t *icmp6;
2385 			mib2_ipv6IfIcmpEntry_t sum6;
2386 
2387 			if (!(protocol_selected(IPPROTO_ICMPV6)) ||
2388 			    !(family_selected(AF_INET6)))
2389 				break;
2390 			bzero(&sum6, sizeof (sum6));
2391 			for (icmp6 = (mib2_ipv6IfIcmpEntry_t *)item->valp;
2392 			    (char *)icmp6 < (char *)item->valp + item->length;
2393 			    icmp6 = (void *)((char *)icmp6 +
2394 			    ipv6IfIcmpEntrySize)) {
2395 				if (icmp6->ipv6IfIcmpIfIndex == 0) {
2396 					/*
2397 					 * The "unknown interface" icmp6
2398 					 * mib. Just add to the sum.
2399 					 */
2400 					sum_icmp6_stats(icmp6, &sum6);
2401 					continue;
2402 				}
2403 				if (Aflag) {
2404 					(void) printf("\nICMPv6 for %s\n",
2405 					    ifindex2str(
2406 					    icmp6->ipv6IfIcmpIfIndex, ifname));
2407 					print_icmp6_stats(icmp6);
2408 				}
2409 				sum_icmp6_stats(icmp6, &sum6);
2410 			}
2411 			(void) fputs("\nICMPv6", stdout);
2412 			print_icmp6_stats(&sum6);
2413 			break;
2414 		}
2415 		case MIB2_TCP: {
2416 			mib2_tcp_t	*tcp = (mib2_tcp_t *)item->valp;
2417 
2418 			if (protocol_selected(IPPROTO_TCP) &&
2419 			    (family_selected(AF_INET) ||
2420 			    family_selected(AF_INET6))) {
2421 				(void) fputs("\nTCP", stdout);
2422 				print_tcp_stats(tcp);
2423 			}
2424 			break;
2425 		}
2426 		case MIB2_UDP: {
2427 			mib2_udp_t	*udp = (mib2_udp_t *)item->valp;
2428 
2429 			if (protocol_selected(IPPROTO_UDP) &&
2430 			    (family_selected(AF_INET) ||
2431 			    family_selected(AF_INET6))) {
2432 				(void) fputs("\nUDP", stdout);
2433 				print_udp_stats(udp);
2434 			}
2435 			break;
2436 		}
2437 		case MIB2_SCTP: {
2438 			mib2_sctp_t	*sctp = (mib2_sctp_t *)item->valp;
2439 
2440 			if (protocol_selected(IPPROTO_SCTP) &&
2441 			    (family_selected(AF_INET) ||
2442 			    family_selected(AF_INET6))) {
2443 				(void) fputs("\nSCTP", stdout);
2444 				print_sctp_stats(sctp);
2445 			}
2446 			break;
2447 		}
2448 		case EXPER_RAWIP: {
2449 			mib2_rawip_t	*rawip =
2450 			    (mib2_rawip_t *)item->valp;
2451 
2452 			if (protocol_selected(IPPROTO_RAW) &&
2453 			    (family_selected(AF_INET) ||
2454 			    family_selected(AF_INET6))) {
2455 				(void) fputs("\nRAWIP", stdout);
2456 				print_rawip_stats(rawip);
2457 			}
2458 			break;
2459 		}
2460 		case EXPER_IGMP: {
2461 			struct igmpstat	*igps =
2462 			    (struct igmpstat *)item->valp;
2463 
2464 			if (protocol_selected(IPPROTO_IGMP) &&
2465 			    (family_selected(AF_INET))) {
2466 				(void) fputs("\nIGMP:\n", stdout);
2467 				print_igmp_stats(igps);
2468 			}
2469 			break;
2470 		}
2471 		}
2472 	}
2473 	(void) putchar('\n');
2474 	(void) fflush(stdout);
2475 }
2476 
2477 static void
2478 print_ip_stats(mib2_ip_t *ip)
2479 {
2480 	prval_init();
2481 	pr_int_val("ipForwarding",	ip->ipForwarding);
2482 	pr_int_val("ipDefaultTTL",	ip->ipDefaultTTL);
2483 	prval("ipInReceives",		ip->ipInReceives);
2484 	prval("ipInHdrErrors",		ip->ipInHdrErrors);
2485 	prval("ipInAddrErrors",		ip->ipInAddrErrors);
2486 	prval("ipInCksumErrs",		ip->ipInCksumErrs);
2487 	prval("ipForwDatagrams",	ip->ipForwDatagrams);
2488 	prval("ipForwProhibits",	ip->ipForwProhibits);
2489 	prval("ipInUnknownProtos",	ip->ipInUnknownProtos);
2490 	prval("ipInDiscards",		ip->ipInDiscards);
2491 	prval("ipInDelivers",		ip->ipInDelivers);
2492 	prval("ipOutRequests",		ip->ipOutRequests);
2493 	prval("ipOutDiscards",		ip->ipOutDiscards);
2494 	prval("ipOutNoRoutes",		ip->ipOutNoRoutes);
2495 	pr_int_val("ipReasmTimeout",	ip->ipReasmTimeout);
2496 	prval("ipReasmReqds",		ip->ipReasmReqds);
2497 	prval("ipReasmOKs",		ip->ipReasmOKs);
2498 	prval("ipReasmFails",		ip->ipReasmFails);
2499 	prval("ipReasmDuplicates",	ip->ipReasmDuplicates);
2500 	prval("ipReasmPartDups",	ip->ipReasmPartDups);
2501 	prval("ipFragOKs",		ip->ipFragOKs);
2502 	prval("ipFragFails",		ip->ipFragFails);
2503 	prval("ipFragCreates",		ip->ipFragCreates);
2504 	prval("ipRoutingDiscards",	ip->ipRoutingDiscards);
2505 
2506 	prval("tcpInErrs",		ip->tcpInErrs);
2507 	prval("udpNoPorts",		ip->udpNoPorts);
2508 	prval("udpInCksumErrs",		ip->udpInCksumErrs);
2509 	prval("udpInOverflows",		ip->udpInOverflows);
2510 	prval("rawipInOverflows",	ip->rawipInOverflows);
2511 	prval("ipsecInSucceeded",	ip->ipsecInSucceeded);
2512 	prval("ipsecInFailed",		ip->ipsecInFailed);
2513 	prval("ipInIPv6",		ip->ipInIPv6);
2514 	prval("ipOutIPv6",		ip->ipOutIPv6);
2515 	prval("ipOutSwitchIPv6",	ip->ipOutSwitchIPv6);
2516 	prval_end();
2517 }
2518 
2519 static void
2520 print_icmp_stats(mib2_icmp_t *icmp)
2521 {
2522 	prval_init();
2523 	prval("icmpInMsgs",		icmp->icmpInMsgs);
2524 	prval("icmpInErrors",		icmp->icmpInErrors);
2525 	prval("icmpInCksumErrs",	icmp->icmpInCksumErrs);
2526 	prval("icmpInUnknowns",		icmp->icmpInUnknowns);
2527 	prval("icmpInDestUnreachs",	icmp->icmpInDestUnreachs);
2528 	prval("icmpInTimeExcds",	icmp->icmpInTimeExcds);
2529 	prval("icmpInParmProbs",	icmp->icmpInParmProbs);
2530 	prval("icmpInSrcQuenchs",	icmp->icmpInSrcQuenchs);
2531 	prval("icmpInRedirects",	icmp->icmpInRedirects);
2532 	prval("icmpInBadRedirects",	icmp->icmpInBadRedirects);
2533 	prval("icmpInEchos",		icmp->icmpInEchos);
2534 	prval("icmpInEchoReps",		icmp->icmpInEchoReps);
2535 	prval("icmpInTimestamps",	icmp->icmpInTimestamps);
2536 	prval("icmpInTimestampReps",	icmp->icmpInTimestampReps);
2537 	prval("icmpInAddrMasks",	icmp->icmpInAddrMasks);
2538 	prval("icmpInAddrMaskReps",	icmp->icmpInAddrMaskReps);
2539 	prval("icmpInFragNeeded",	icmp->icmpInFragNeeded);
2540 	prval("icmpOutMsgs",		icmp->icmpOutMsgs);
2541 	prval("icmpOutDrops",		icmp->icmpOutDrops);
2542 	prval("icmpOutErrors",		icmp->icmpOutErrors);
2543 	prval("icmpOutDestUnreachs",	icmp->icmpOutDestUnreachs);
2544 	prval("icmpOutTimeExcds",	icmp->icmpOutTimeExcds);
2545 	prval("icmpOutParmProbs",	icmp->icmpOutParmProbs);
2546 	prval("icmpOutSrcQuenchs",	icmp->icmpOutSrcQuenchs);
2547 	prval("icmpOutRedirects",	icmp->icmpOutRedirects);
2548 	prval("icmpOutEchos",		icmp->icmpOutEchos);
2549 	prval("icmpOutEchoReps",	icmp->icmpOutEchoReps);
2550 	prval("icmpOutTimestamps",	icmp->icmpOutTimestamps);
2551 	prval("icmpOutTimestampReps",	icmp->icmpOutTimestampReps);
2552 	prval("icmpOutAddrMasks",	icmp->icmpOutAddrMasks);
2553 	prval("icmpOutAddrMaskReps",	icmp->icmpOutAddrMaskReps);
2554 	prval("icmpOutFragNeeded",	icmp->icmpOutFragNeeded);
2555 	prval("icmpInOverflows",	icmp->icmpInOverflows);
2556 	prval_end();
2557 }
2558 
2559 static void
2560 print_ip6_stats(mib2_ipv6IfStatsEntry_t *ip6)
2561 {
2562 	prval_init();
2563 	prval("ipv6Forwarding",		ip6->ipv6Forwarding);
2564 	prval("ipv6DefaultHopLimit",	ip6->ipv6DefaultHopLimit);
2565 
2566 	prval("ipv6InReceives",		ip6->ipv6InReceives);
2567 	prval("ipv6InHdrErrors",	ip6->ipv6InHdrErrors);
2568 	prval("ipv6InTooBigErrors",	ip6->ipv6InTooBigErrors);
2569 	prval("ipv6InNoRoutes",		ip6->ipv6InNoRoutes);
2570 	prval("ipv6InAddrErrors",	ip6->ipv6InAddrErrors);
2571 	prval("ipv6InUnknownProtos",	ip6->ipv6InUnknownProtos);
2572 	prval("ipv6InTruncatedPkts",	ip6->ipv6InTruncatedPkts);
2573 	prval("ipv6InDiscards",		ip6->ipv6InDiscards);
2574 	prval("ipv6InDelivers",		ip6->ipv6InDelivers);
2575 	prval("ipv6OutForwDatagrams",	ip6->ipv6OutForwDatagrams);
2576 	prval("ipv6OutRequests",	ip6->ipv6OutRequests);
2577 	prval("ipv6OutDiscards",	ip6->ipv6OutDiscards);
2578 	prval("ipv6OutNoRoutes",	ip6->ipv6OutNoRoutes);
2579 	prval("ipv6OutFragOKs",		ip6->ipv6OutFragOKs);
2580 	prval("ipv6OutFragFails",	ip6->ipv6OutFragFails);
2581 	prval("ipv6OutFragCreates",	ip6->ipv6OutFragCreates);
2582 	prval("ipv6ReasmReqds",		ip6->ipv6ReasmReqds);
2583 	prval("ipv6ReasmOKs",		ip6->ipv6ReasmOKs);
2584 	prval("ipv6ReasmFails",		ip6->ipv6ReasmFails);
2585 	prval("ipv6InMcastPkts",	ip6->ipv6InMcastPkts);
2586 	prval("ipv6OutMcastPkts",	ip6->ipv6OutMcastPkts);
2587 	prval("ipv6ReasmDuplicates",	ip6->ipv6ReasmDuplicates);
2588 	prval("ipv6ReasmPartDups",	ip6->ipv6ReasmPartDups);
2589 	prval("ipv6ForwProhibits",	ip6->ipv6ForwProhibits);
2590 	prval("udpInCksumErrs",		ip6->udpInCksumErrs);
2591 	prval("udpInOverflows",		ip6->udpInOverflows);
2592 	prval("rawipInOverflows",	ip6->rawipInOverflows);
2593 	prval("ipv6InIPv4",		ip6->ipv6InIPv4);
2594 	prval("ipv6OutIPv4",		ip6->ipv6OutIPv4);
2595 	prval("ipv6OutSwitchIPv4",	ip6->ipv6OutSwitchIPv4);
2596 	prval_end();
2597 }
2598 
2599 static void
2600 print_icmp6_stats(mib2_ipv6IfIcmpEntry_t *icmp6)
2601 {
2602 	prval_init();
2603 	prval("icmp6InMsgs",		icmp6->ipv6IfIcmpInMsgs);
2604 	prval("icmp6InErrors",		icmp6->ipv6IfIcmpInErrors);
2605 	prval("icmp6InDestUnreachs",	icmp6->ipv6IfIcmpInDestUnreachs);
2606 	prval("icmp6InAdminProhibs",	icmp6->ipv6IfIcmpInAdminProhibs);
2607 	prval("icmp6InTimeExcds",	icmp6->ipv6IfIcmpInTimeExcds);
2608 	prval("icmp6InParmProblems",	icmp6->ipv6IfIcmpInParmProblems);
2609 	prval("icmp6InPktTooBigs",	icmp6->ipv6IfIcmpInPktTooBigs);
2610 	prval("icmp6InEchos",		icmp6->ipv6IfIcmpInEchos);
2611 	prval("icmp6InEchoReplies",	icmp6->ipv6IfIcmpInEchoReplies);
2612 	prval("icmp6InRouterSols",	icmp6->ipv6IfIcmpInRouterSolicits);
2613 	prval("icmp6InRouterAds",
2614 	    icmp6->ipv6IfIcmpInRouterAdvertisements);
2615 	prval("icmp6InNeighborSols",	icmp6->ipv6IfIcmpInNeighborSolicits);
2616 	prval("icmp6InNeighborAds",
2617 	    icmp6->ipv6IfIcmpInNeighborAdvertisements);
2618 	prval("icmp6InRedirects",	icmp6->ipv6IfIcmpInRedirects);
2619 	prval("icmp6InBadRedirects",	icmp6->ipv6IfIcmpInBadRedirects);
2620 	prval("icmp6InGroupQueries",	icmp6->ipv6IfIcmpInGroupMembQueries);
2621 	prval("icmp6InGroupResps",	icmp6->ipv6IfIcmpInGroupMembResponses);
2622 	prval("icmp6InGroupReds",	icmp6->ipv6IfIcmpInGroupMembReductions);
2623 	prval("icmp6InOverflows",	icmp6->ipv6IfIcmpInOverflows);
2624 	prval_end();
2625 	prval_init();
2626 	prval("icmp6OutMsgs",		icmp6->ipv6IfIcmpOutMsgs);
2627 	prval("icmp6OutErrors",		icmp6->ipv6IfIcmpOutErrors);
2628 	prval("icmp6OutDestUnreachs",	icmp6->ipv6IfIcmpOutDestUnreachs);
2629 	prval("icmp6OutAdminProhibs",	icmp6->ipv6IfIcmpOutAdminProhibs);
2630 	prval("icmp6OutTimeExcds",	icmp6->ipv6IfIcmpOutTimeExcds);
2631 	prval("icmp6OutParmProblems",	icmp6->ipv6IfIcmpOutParmProblems);
2632 	prval("icmp6OutPktTooBigs",	icmp6->ipv6IfIcmpOutPktTooBigs);
2633 	prval("icmp6OutEchos",		icmp6->ipv6IfIcmpOutEchos);
2634 	prval("icmp6OutEchoReplies",	icmp6->ipv6IfIcmpOutEchoReplies);
2635 	prval("icmp6OutRouterSols",	icmp6->ipv6IfIcmpOutRouterSolicits);
2636 	prval("icmp6OutRouterAds",
2637 	    icmp6->ipv6IfIcmpOutRouterAdvertisements);
2638 	prval("icmp6OutNeighborSols",	icmp6->ipv6IfIcmpOutNeighborSolicits);
2639 	prval("icmp6OutNeighborAds",
2640 	    icmp6->ipv6IfIcmpOutNeighborAdvertisements);
2641 	prval("icmp6OutRedirects",	icmp6->ipv6IfIcmpOutRedirects);
2642 	prval("icmp6OutGroupQueries",	icmp6->ipv6IfIcmpOutGroupMembQueries);
2643 	prval("icmp6OutGroupResps",
2644 	    icmp6->ipv6IfIcmpOutGroupMembResponses);
2645 	prval("icmp6OutGroupReds",
2646 	    icmp6->ipv6IfIcmpOutGroupMembReductions);
2647 	prval_end();
2648 }
2649 
2650 static void
2651 print_sctp_stats(mib2_sctp_t *sctp)
2652 {
2653 	prval_init();
2654 	pr_sctp_rtoalgo("sctpRtoAlgorithm", sctp->sctpRtoAlgorithm);
2655 	prval("sctpRtoMin",		sctp->sctpRtoMin);
2656 	prval("sctpRtoMax",		sctp->sctpRtoMax);
2657 	prval("sctpRtoInitial",		sctp->sctpRtoInitial);
2658 	pr_int_val("sctpMaxAssocs",	sctp->sctpMaxAssocs);
2659 	prval("sctpValCookieLife",	sctp->sctpValCookieLife);
2660 	prval("sctpMaxInitRetr",	sctp->sctpMaxInitRetr);
2661 	prval("sctpCurrEstab",		sctp->sctpCurrEstab);
2662 	prval("sctpActiveEstab",	sctp->sctpActiveEstab);
2663 	prval("sctpPassiveEstab",	sctp->sctpPassiveEstab);
2664 	prval("sctpAborted",		sctp->sctpAborted);
2665 	prval("sctpShutdowns",		sctp->sctpShutdowns);
2666 	prval("sctpOutOfBlue",		sctp->sctpOutOfBlue);
2667 	prval("sctpChecksumError",	sctp->sctpChecksumError);
2668 	prval64("sctpOutCtrlChunks",	sctp->sctpOutCtrlChunks);
2669 	prval64("sctpOutOrderChunks",	sctp->sctpOutOrderChunks);
2670 	prval64("sctpOutUnorderChunks",	sctp->sctpOutUnorderChunks);
2671 	prval64("sctpRetransChunks",	sctp->sctpRetransChunks);
2672 	prval("sctpOutAck",		sctp->sctpOutAck);
2673 	prval("sctpOutAckDelayed",	sctp->sctpOutAckDelayed);
2674 	prval("sctpOutWinUpdate",	sctp->sctpOutWinUpdate);
2675 	prval("sctpOutFastRetrans",	sctp->sctpOutFastRetrans);
2676 	prval("sctpOutWinProbe",	sctp->sctpOutWinProbe);
2677 	prval64("sctpInCtrlChunks",	sctp->sctpInCtrlChunks);
2678 	prval64("sctpInOrderChunks",	sctp->sctpInOrderChunks);
2679 	prval64("sctpInUnorderChunks",	sctp->sctpInUnorderChunks);
2680 	prval("sctpInAck",		sctp->sctpInAck);
2681 	prval("sctpInDupAck",		sctp->sctpInDupAck);
2682 	prval("sctpInAckUnsent",	sctp->sctpInAckUnsent);
2683 	prval64("sctpFragUsrMsgs",	sctp->sctpFragUsrMsgs);
2684 	prval64("sctpReasmUsrMsgs",	sctp->sctpReasmUsrMsgs);
2685 	prval64("sctpOutSCTPPkts",	sctp->sctpOutSCTPPkts);
2686 	prval64("sctpInSCTPPkts",	sctp->sctpInSCTPPkts);
2687 	prval("sctpInInvalidCookie",	sctp->sctpInInvalidCookie);
2688 	prval("sctpTimRetrans",		sctp->sctpTimRetrans);
2689 	prval("sctpTimRetransDrop",	sctp->sctpTimRetransDrop);
2690 	prval("sctpTimHearBeatProbe",	sctp->sctpTimHeartBeatProbe);
2691 	prval("sctpTimHearBeatDrop",	sctp->sctpTimHeartBeatDrop);
2692 	prval("sctpListenDrop",		sctp->sctpListenDrop);
2693 	prval("sctpInClosed",		sctp->sctpInClosed);
2694 	prval_end();
2695 }
2696 
2697 static void
2698 print_tcp_stats(mib2_tcp_t *tcp)
2699 {
2700 	prval_init();
2701 	pr_int_val("tcpRtoAlgorithm",	tcp->tcpRtoAlgorithm);
2702 	pr_int_val("tcpRtoMin",		tcp->tcpRtoMin);
2703 	pr_int_val("tcpRtoMax",		tcp->tcpRtoMax);
2704 	pr_int_val("tcpMaxConn",	tcp->tcpMaxConn);
2705 	prval("tcpActiveOpens",		tcp->tcpActiveOpens);
2706 	prval("tcpPassiveOpens",	tcp->tcpPassiveOpens);
2707 	prval("tcpAttemptFails",	tcp->tcpAttemptFails);
2708 	prval("tcpEstabResets",		tcp->tcpEstabResets);
2709 	prval("tcpCurrEstab",		tcp->tcpCurrEstab);
2710 	prval64("tcpOutSegs",		tcp->tcpHCOutSegs);
2711 	prval("tcpOutDataSegs",		tcp->tcpOutDataSegs);
2712 	prval("tcpOutDataBytes",	tcp->tcpOutDataBytes);
2713 	prval("tcpRetransSegs",		tcp->tcpRetransSegs);
2714 	prval("tcpRetransBytes",	tcp->tcpRetransBytes);
2715 	prval("tcpOutAck",		tcp->tcpOutAck);
2716 	prval("tcpOutAckDelayed",	tcp->tcpOutAckDelayed);
2717 	prval("tcpOutUrg",		tcp->tcpOutUrg);
2718 	prval("tcpOutWinUpdate",	tcp->tcpOutWinUpdate);
2719 	prval("tcpOutWinProbe",		tcp->tcpOutWinProbe);
2720 	prval("tcpOutControl",		tcp->tcpOutControl);
2721 	prval("tcpOutRsts",		tcp->tcpOutRsts);
2722 	prval("tcpOutFastRetrans",	tcp->tcpOutFastRetrans);
2723 	prval64("tcpInSegs",		tcp->tcpHCInSegs);
2724 	prval_end();
2725 	prval("tcpInAckSegs",		tcp->tcpInAckSegs);
2726 	prval("tcpInAckBytes",		tcp->tcpInAckBytes);
2727 	prval("tcpInDupAck",		tcp->tcpInDupAck);
2728 	prval("tcpInAckUnsent",		tcp->tcpInAckUnsent);
2729 	prval("tcpInInorderSegs",	tcp->tcpInDataInorderSegs);
2730 	prval("tcpInInorderBytes",	tcp->tcpInDataInorderBytes);
2731 	prval("tcpInUnorderSegs",	tcp->tcpInDataUnorderSegs);
2732 	prval("tcpInUnorderBytes",	tcp->tcpInDataUnorderBytes);
2733 	prval("tcpInDupSegs",		tcp->tcpInDataDupSegs);
2734 	prval("tcpInDupBytes",		tcp->tcpInDataDupBytes);
2735 	prval("tcpInPartDupSegs",	tcp->tcpInDataPartDupSegs);
2736 	prval("tcpInPartDupBytes",	tcp->tcpInDataPartDupBytes);
2737 	prval("tcpInPastWinSegs",	tcp->tcpInDataPastWinSegs);
2738 	prval("tcpInPastWinBytes",	tcp->tcpInDataPastWinBytes);
2739 	prval("tcpInWinProbe",		tcp->tcpInWinProbe);
2740 	prval("tcpInWinUpdate",		tcp->tcpInWinUpdate);
2741 	prval("tcpInClosed",		tcp->tcpInClosed);
2742 	prval("tcpRttNoUpdate",		tcp->tcpRttNoUpdate);
2743 	prval("tcpRttUpdate",		tcp->tcpRttUpdate);
2744 	prval("tcpTimRetrans",		tcp->tcpTimRetrans);
2745 	prval("tcpTimRetransDrop",	tcp->tcpTimRetransDrop);
2746 	prval("tcpTimKeepalive",	tcp->tcpTimKeepalive);
2747 	prval("tcpTimKeepaliveProbe",	tcp->tcpTimKeepaliveProbe);
2748 	prval("tcpTimKeepaliveDrop",	tcp->tcpTimKeepaliveDrop);
2749 	prval("tcpListenDrop",		tcp->tcpListenDrop);
2750 	prval("tcpListenDropQ0",	tcp->tcpListenDropQ0);
2751 	prval("tcpHalfOpenDrop",	tcp->tcpHalfOpenDrop);
2752 	prval("tcpOutSackRetrans",	tcp->tcpOutSackRetransSegs);
2753 	prval_end();
2754 
2755 }
2756 
2757 static void
2758 print_udp_stats(mib2_udp_t *udp)
2759 {
2760 	prval_init();
2761 	prval64("udpInDatagrams",	udp->udpHCInDatagrams);
2762 	prval("udpInErrors",		udp->udpInErrors);
2763 	prval64("udpOutDatagrams",	udp->udpHCOutDatagrams);
2764 	prval("udpOutErrors",		udp->udpOutErrors);
2765 	prval_end();
2766 }
2767 
2768 static void
2769 print_rawip_stats(mib2_rawip_t *rawip)
2770 {
2771 	prval_init();
2772 	prval("rawipInDatagrams",	rawip->rawipInDatagrams);
2773 	prval("rawipInErrors",		rawip->rawipInErrors);
2774 	prval("rawipInCksumErrs",	rawip->rawipInCksumErrs);
2775 	prval("rawipOutDatagrams",	rawip->rawipOutDatagrams);
2776 	prval("rawipOutErrors",		rawip->rawipOutErrors);
2777 	prval_end();
2778 }
2779 
2780 void
2781 print_igmp_stats(struct igmpstat *igps)
2782 {
2783 	(void) printf(" %10u message%s received\n",
2784 	    igps->igps_rcv_total, PLURAL(igps->igps_rcv_total));
2785 	(void) printf(" %10u message%s received with too few bytes\n",
2786 	    igps->igps_rcv_tooshort, PLURAL(igps->igps_rcv_tooshort));
2787 	(void) printf(" %10u message%s received with bad checksum\n",
2788 	    igps->igps_rcv_badsum, PLURAL(igps->igps_rcv_badsum));
2789 	(void) printf(" %10u membership quer%s received\n",
2790 	    igps->igps_rcv_queries, PLURALY(igps->igps_rcv_queries));
2791 	(void) printf(" %10u membership quer%s received with invalid "
2792 	    "field(s)\n",
2793 	    igps->igps_rcv_badqueries, PLURALY(igps->igps_rcv_badqueries));
2794 	(void) printf(" %10u membership report%s received\n",
2795 	    igps->igps_rcv_reports, PLURAL(igps->igps_rcv_reports));
2796 	(void) printf(" %10u membership report%s received with invalid "
2797 	    "field(s)\n",
2798 	    igps->igps_rcv_badreports, PLURAL(igps->igps_rcv_badreports));
2799 	(void) printf(" %10u membership report%s received for groups to "
2800 	    "which we belong\n",
2801 	    igps->igps_rcv_ourreports, PLURAL(igps->igps_rcv_ourreports));
2802 	(void) printf(" %10u membership report%s sent\n",
2803 	    igps->igps_snd_reports, PLURAL(igps->igps_snd_reports));
2804 }
2805 
2806 static void
2807 print_mrt_stats(struct mrtstat *mrts)
2808 {
2809 	(void) puts("DVMRP multicast routing:");
2810 	(void) printf(" %10u hit%s - kernel forwarding cache hits\n",
2811 	    mrts->mrts_mfc_hits, PLURAL(mrts->mrts_mfc_hits));
2812 	(void) printf(" %10u miss%s - kernel forwarding cache misses\n",
2813 	    mrts->mrts_mfc_misses, PLURALES(mrts->mrts_mfc_misses));
2814 	(void) printf(" %10u packet%s potentially forwarded\n",
2815 	    mrts->mrts_fwd_in, PLURAL(mrts->mrts_fwd_in));
2816 	(void) printf(" %10u packet%s actually sent out\n",
2817 	    mrts->mrts_fwd_out, PLURAL(mrts->mrts_fwd_out));
2818 	(void) printf(" %10u upcall%s - upcalls made to mrouted\n",
2819 	    mrts->mrts_upcalls, PLURAL(mrts->mrts_upcalls));
2820 	(void) printf(" %10u packet%s not sent out due to lack of resources\n",
2821 	    mrts->mrts_fwd_drop, PLURAL(mrts->mrts_fwd_drop));
2822 	(void) printf(" %10u datagram%s with malformed tunnel options\n",
2823 	    mrts->mrts_bad_tunnel, PLURAL(mrts->mrts_bad_tunnel));
2824 	(void) printf(" %10u datagram%s with no room for tunnel options\n",
2825 	    mrts->mrts_cant_tunnel, PLURAL(mrts->mrts_cant_tunnel));
2826 	(void) printf(" %10u datagram%s arrived on wrong interface\n",
2827 	    mrts->mrts_wrong_if, PLURAL(mrts->mrts_wrong_if));
2828 	(void) printf(" %10u datagram%s dropped due to upcall Q overflow\n",
2829 	    mrts->mrts_upq_ovflw, PLURAL(mrts->mrts_upq_ovflw));
2830 	(void) printf(" %10u datagram%s cleaned up by the cache\n",
2831 	    mrts->mrts_cache_cleanups, PLURAL(mrts->mrts_cache_cleanups));
2832 	(void) printf(" %10u datagram%s dropped selectively by ratelimiter\n",
2833 	    mrts->mrts_drop_sel, PLURAL(mrts->mrts_drop_sel));
2834 	(void) printf(" %10u datagram%s dropped - bucket Q overflow\n",
2835 	    mrts->mrts_q_overflow, PLURAL(mrts->mrts_q_overflow));
2836 	(void) printf(" %10u datagram%s dropped - larger than bkt size\n",
2837 	    mrts->mrts_pkt2large, PLURAL(mrts->mrts_pkt2large));
2838 	(void) printf("\nPIM multicast routing:\n");
2839 	(void) printf(" %10u datagram%s dropped - bad version number\n",
2840 	    mrts->mrts_pim_badversion, PLURAL(mrts->mrts_pim_badversion));
2841 	(void) printf(" %10u datagram%s dropped - bad checksum\n",
2842 	    mrts->mrts_pim_rcv_badcsum, PLURAL(mrts->mrts_pim_rcv_badcsum));
2843 	(void) printf(" %10u datagram%s dropped - bad register packets\n",
2844 	    mrts->mrts_pim_badregisters, PLURAL(mrts->mrts_pim_badregisters));
2845 	(void) printf(
2846 	    " %10u datagram%s potentially forwarded - register packets\n",
2847 	    mrts->mrts_pim_regforwards, PLURAL(mrts->mrts_pim_regforwards));
2848 	(void) printf(" %10u datagram%s dropped - register send drops\n",
2849 	    mrts->mrts_pim_regsend_drops, PLURAL(mrts->mrts_pim_regsend_drops));
2850 	(void) printf(" %10u datagram%s dropped - packet malformed\n",
2851 	    mrts->mrts_pim_malformed, PLURAL(mrts->mrts_pim_malformed));
2852 	(void) printf(" %10u datagram%s dropped - no memory to forward\n",
2853 	    mrts->mrts_pim_nomemory, PLURAL(mrts->mrts_pim_nomemory));
2854 }
2855 
2856 static void
2857 sum_ip6_stats(mib2_ipv6IfStatsEntry_t *ip6, mib2_ipv6IfStatsEntry_t *sum6)
2858 {
2859 	/* First few are not additive */
2860 	sum6->ipv6Forwarding = ip6->ipv6Forwarding;
2861 	sum6->ipv6DefaultHopLimit = ip6->ipv6DefaultHopLimit;
2862 
2863 	sum6->ipv6InReceives += ip6->ipv6InReceives;
2864 	sum6->ipv6InHdrErrors += ip6->ipv6InHdrErrors;
2865 	sum6->ipv6InTooBigErrors += ip6->ipv6InTooBigErrors;
2866 	sum6->ipv6InNoRoutes += ip6->ipv6InNoRoutes;
2867 	sum6->ipv6InAddrErrors += ip6->ipv6InAddrErrors;
2868 	sum6->ipv6InUnknownProtos += ip6->ipv6InUnknownProtos;
2869 	sum6->ipv6InTruncatedPkts += ip6->ipv6InTruncatedPkts;
2870 	sum6->ipv6InDiscards += ip6->ipv6InDiscards;
2871 	sum6->ipv6InDelivers += ip6->ipv6InDelivers;
2872 	sum6->ipv6OutForwDatagrams += ip6->ipv6OutForwDatagrams;
2873 	sum6->ipv6OutRequests += ip6->ipv6OutRequests;
2874 	sum6->ipv6OutDiscards += ip6->ipv6OutDiscards;
2875 	sum6->ipv6OutFragOKs += ip6->ipv6OutFragOKs;
2876 	sum6->ipv6OutFragFails += ip6->ipv6OutFragFails;
2877 	sum6->ipv6OutFragCreates += ip6->ipv6OutFragCreates;
2878 	sum6->ipv6ReasmReqds += ip6->ipv6ReasmReqds;
2879 	sum6->ipv6ReasmOKs += ip6->ipv6ReasmOKs;
2880 	sum6->ipv6ReasmFails += ip6->ipv6ReasmFails;
2881 	sum6->ipv6InMcastPkts += ip6->ipv6InMcastPkts;
2882 	sum6->ipv6OutMcastPkts += ip6->ipv6OutMcastPkts;
2883 	sum6->ipv6OutNoRoutes += ip6->ipv6OutNoRoutes;
2884 	sum6->ipv6ReasmDuplicates += ip6->ipv6ReasmDuplicates;
2885 	sum6->ipv6ReasmPartDups += ip6->ipv6ReasmPartDups;
2886 	sum6->ipv6ForwProhibits += ip6->ipv6ForwProhibits;
2887 	sum6->udpInCksumErrs += ip6->udpInCksumErrs;
2888 	sum6->udpInOverflows += ip6->udpInOverflows;
2889 	sum6->rawipInOverflows += ip6->rawipInOverflows;
2890 }
2891 
2892 static void
2893 sum_icmp6_stats(mib2_ipv6IfIcmpEntry_t *icmp6, mib2_ipv6IfIcmpEntry_t *sum6)
2894 {
2895 	sum6->ipv6IfIcmpInMsgs += icmp6->ipv6IfIcmpInMsgs;
2896 	sum6->ipv6IfIcmpInErrors += icmp6->ipv6IfIcmpInErrors;
2897 	sum6->ipv6IfIcmpInDestUnreachs += icmp6->ipv6IfIcmpInDestUnreachs;
2898 	sum6->ipv6IfIcmpInAdminProhibs += icmp6->ipv6IfIcmpInAdminProhibs;
2899 	sum6->ipv6IfIcmpInTimeExcds += icmp6->ipv6IfIcmpInTimeExcds;
2900 	sum6->ipv6IfIcmpInParmProblems += icmp6->ipv6IfIcmpInParmProblems;
2901 	sum6->ipv6IfIcmpInPktTooBigs += icmp6->ipv6IfIcmpInPktTooBigs;
2902 	sum6->ipv6IfIcmpInEchos += icmp6->ipv6IfIcmpInEchos;
2903 	sum6->ipv6IfIcmpInEchoReplies += icmp6->ipv6IfIcmpInEchoReplies;
2904 	sum6->ipv6IfIcmpInRouterSolicits += icmp6->ipv6IfIcmpInRouterSolicits;
2905 	sum6->ipv6IfIcmpInRouterAdvertisements +=
2906 	    icmp6->ipv6IfIcmpInRouterAdvertisements;
2907 	sum6->ipv6IfIcmpInNeighborSolicits +=
2908 	    icmp6->ipv6IfIcmpInNeighborSolicits;
2909 	sum6->ipv6IfIcmpInNeighborAdvertisements +=
2910 	    icmp6->ipv6IfIcmpInNeighborAdvertisements;
2911 	sum6->ipv6IfIcmpInRedirects += icmp6->ipv6IfIcmpInRedirects;
2912 	sum6->ipv6IfIcmpInGroupMembQueries +=
2913 	    icmp6->ipv6IfIcmpInGroupMembQueries;
2914 	sum6->ipv6IfIcmpInGroupMembResponses +=
2915 	    icmp6->ipv6IfIcmpInGroupMembResponses;
2916 	sum6->ipv6IfIcmpInGroupMembReductions +=
2917 	    icmp6->ipv6IfIcmpInGroupMembReductions;
2918 	sum6->ipv6IfIcmpOutMsgs += icmp6->ipv6IfIcmpOutMsgs;
2919 	sum6->ipv6IfIcmpOutErrors += icmp6->ipv6IfIcmpOutErrors;
2920 	sum6->ipv6IfIcmpOutDestUnreachs += icmp6->ipv6IfIcmpOutDestUnreachs;
2921 	sum6->ipv6IfIcmpOutAdminProhibs += icmp6->ipv6IfIcmpOutAdminProhibs;
2922 	sum6->ipv6IfIcmpOutTimeExcds += icmp6->ipv6IfIcmpOutTimeExcds;
2923 	sum6->ipv6IfIcmpOutParmProblems += icmp6->ipv6IfIcmpOutParmProblems;
2924 	sum6->ipv6IfIcmpOutPktTooBigs += icmp6->ipv6IfIcmpOutPktTooBigs;
2925 	sum6->ipv6IfIcmpOutEchos += icmp6->ipv6IfIcmpOutEchos;
2926 	sum6->ipv6IfIcmpOutEchoReplies += icmp6->ipv6IfIcmpOutEchoReplies;
2927 	sum6->ipv6IfIcmpOutRouterSolicits +=
2928 	    icmp6->ipv6IfIcmpOutRouterSolicits;
2929 	sum6->ipv6IfIcmpOutRouterAdvertisements +=
2930 	    icmp6->ipv6IfIcmpOutRouterAdvertisements;
2931 	sum6->ipv6IfIcmpOutNeighborSolicits +=
2932 	    icmp6->ipv6IfIcmpOutNeighborSolicits;
2933 	sum6->ipv6IfIcmpOutNeighborAdvertisements +=
2934 	    icmp6->ipv6IfIcmpOutNeighborAdvertisements;
2935 	sum6->ipv6IfIcmpOutRedirects += icmp6->ipv6IfIcmpOutRedirects;
2936 	sum6->ipv6IfIcmpOutGroupMembQueries +=
2937 	    icmp6->ipv6IfIcmpOutGroupMembQueries;
2938 	sum6->ipv6IfIcmpOutGroupMembResponses +=
2939 	    icmp6->ipv6IfIcmpOutGroupMembResponses;
2940 	sum6->ipv6IfIcmpOutGroupMembReductions +=
2941 	    icmp6->ipv6IfIcmpOutGroupMembReductions;
2942 	sum6->ipv6IfIcmpInOverflows += icmp6->ipv6IfIcmpInOverflows;
2943 }
2944 
2945 /* ----------------------------- MRT_STAT_REPORT --------------------------- */
2946 
2947 static void
2948 mrt_stat_report(mib_item_t *curritem)
2949 {
2950 	int	jtemp = 0;
2951 	mib_item_t *tempitem;
2952 
2953 	if (!(family_selected(AF_INET)))
2954 		return;
2955 
2956 	(void) putchar('\n');
2957 	for (tempitem = curritem;
2958 	    tempitem;
2959 	    tempitem = tempitem->next_item) {
2960 		if (Xflag) {
2961 			(void) printf("[%4d] Group = %d, mib_id = %d, "
2962 			    "length = %d, valp = 0x%p\n",
2963 			    jtemp++, tempitem->group, tempitem->mib_id,
2964 			    tempitem->length, tempitem->valp);
2965 		}
2966 
2967 		if (tempitem->mib_id == 0) {
2968 			switch (tempitem->group) {
2969 			case EXPER_DVMRP: {
2970 				struct mrtstat	*mrts;
2971 				mrts = (struct mrtstat *)tempitem->valp;
2972 
2973 				if (!(family_selected(AF_INET)))
2974 					continue;
2975 
2976 				print_mrt_stats(mrts);
2977 				break;
2978 			}
2979 			}
2980 		}
2981 	}
2982 	(void) putchar('\n');
2983 	(void) fflush(stdout);
2984 }
2985 
2986 /*
2987  * if_stat_total() - Computes totals for interface statistics
2988  *                   and returns result by updating sumstats.
2989  */
2990 static void
2991 if_stat_total(struct ifstat *oldstats, struct ifstat *newstats,
2992     struct ifstat *sumstats)
2993 {
2994 	sumstats->ipackets += newstats->ipackets - oldstats->ipackets;
2995 	sumstats->opackets += newstats->opackets - oldstats->opackets;
2996 	sumstats->ierrors += newstats->ierrors - oldstats->ierrors;
2997 	sumstats->oerrors += newstats->oerrors - oldstats->oerrors;
2998 	sumstats->collisions += newstats->collisions - oldstats->collisions;
2999 }
3000 
3001 /* --------------------- IF_REPORT (netstat -i)  -------------------------- */
3002 
3003 static struct	ifstat	zerostat = {
3004 	0LL, 0LL, 0LL, 0LL, 0LL
3005 };
3006 
3007 static void
3008 if_report(mib_item_t *item, char *matchname,
3009     int Iflag_only, boolean_t once_only)
3010 {
3011 	static boolean_t	reentry = B_FALSE;
3012 	boolean_t		alreadydone = B_FALSE;
3013 	int			jtemp = 0;
3014 	uint32_t		ifindex_v4 = 0;
3015 	uint32_t		ifindex_v6 = 0;
3016 	boolean_t		first_header = B_TRUE;
3017 
3018 	for (; item; item = item->next_item) {
3019 		if (Xflag) {
3020 			(void) printf("[%4d] Group = %d, mib_id = %d, "
3021 			    "length = %d, valp = 0x%p\n", jtemp++,
3022 			    item->group, item->mib_id, item->length,
3023 			    item->valp);
3024 		}
3025 
3026 		switch (item->group) {
3027 		case MIB2_IP:
3028 		if (item->mib_id != MIB2_IP_ADDR ||
3029 		    !family_selected(AF_INET))
3030 			continue;
3031 		{
3032 			static struct ifstat	old = {0L, 0L, 0L, 0L, 0L};
3033 			static struct ifstat	new = {0L, 0L, 0L, 0L, 0L};
3034 			struct ifstat		sum;
3035 			struct iflist		*newlist = NULL;
3036 			static struct iflist	*oldlist = NULL;
3037 			kstat_t	 *ksp;
3038 
3039 			if (once_only) {
3040 				char    ifname[LIFNAMSIZ + 1];
3041 				char    logintname[LIFNAMSIZ + 1];
3042 				mib2_ipAddrEntry_t *ap;
3043 				struct ifstat	stat = {0L, 0L, 0L, 0L, 0L};
3044 				boolean_t	first = B_TRUE;
3045 				uint32_t	new_ifindex;
3046 
3047 				if (Xflag)
3048 					(void) printf("if_report: %d items\n",
3049 					    (item->length)
3050 					    / sizeof (mib2_ipAddrEntry_t));
3051 
3052 				for (ap = (mib2_ipAddrEntry_t *)item->valp;
3053 				    (char *)ap < (char *)item->valp
3054 				    + item->length;
3055 				    ap++) {
3056 					(void) octetstr(&ap->ipAdEntIfIndex,
3057 					    'a', logintname,
3058 					    sizeof (logintname));
3059 					(void) strcpy(ifname, logintname);
3060 					(void) strtok(ifname, ":");
3061 					if (matchname != NULL &&
3062 					    strcmp(matchname, ifname) != 0 &&
3063 					    strcmp(matchname, logintname) != 0)
3064 						continue;
3065 					new_ifindex =
3066 					    if_nametoindex(logintname);
3067 					/*
3068 					 * First lookup the "link" kstats in
3069 					 * case the link is renamed. Then
3070 					 * fallback to the legacy kstats for
3071 					 * those non-GLDv3 links.
3072 					 */
3073 					if (new_ifindex != ifindex_v4 &&
3074 					    (((ksp = kstat_lookup(kc, "link", 0,
3075 					    ifname)) != NULL) ||
3076 					    ((ksp = kstat_lookup(kc, NULL, -1,
3077 					    ifname)) != NULL))) {
3078 						(void) safe_kstat_read(kc, ksp,
3079 						    NULL);
3080 						stat.ipackets =
3081 						    kstat_named_value(ksp,
3082 						    "ipackets");
3083 						stat.ierrors =
3084 						    kstat_named_value(ksp,
3085 						    "ierrors");
3086 						stat.opackets =
3087 						    kstat_named_value(ksp,
3088 						    "opackets");
3089 						stat.oerrors =
3090 						    kstat_named_value(ksp,
3091 						    "oerrors");
3092 						stat.collisions =
3093 						    kstat_named_value(ksp,
3094 						    "collisions");
3095 						if (first) {
3096 							if (!first_header)
3097 								(void) putchar(
3098 								    '\n');
3099 							first_header = B_FALSE;
3100 							(void) printf(
3101 							    "%-5.5s %-5.5s"
3102 							    "%-13.13s %-14.14s "
3103 							    "%-6.6s %-5.5s "
3104 							    "%-6.6s %-5.5s "
3105 							    "%-6.6s %-6.6s\n",
3106 							    "Name", "Mtu",
3107 							    "Net/Dest",
3108 							    "Address", "Ipkts",
3109 							    "Ierrs", "Opkts",
3110 							    "Oerrs", "Collis",
3111 							    "Queue");
3112 							first = B_FALSE;
3113 						}
3114 						if_report_ip4(ap, ifname,
3115 						    logintname, &stat, B_TRUE);
3116 						ifindex_v4 = new_ifindex;
3117 					} else {
3118 						if_report_ip4(ap, ifname,
3119 						    logintname, &stat, B_FALSE);
3120 					}
3121 				}
3122 			} else if (!alreadydone) {
3123 				char    ifname[LIFNAMSIZ + 1];
3124 				char    buf[LIFNAMSIZ + 1];
3125 				mib2_ipAddrEntry_t *ap;
3126 				struct ifstat   t;
3127 				struct iflist	*tlp = NULL;
3128 				struct iflist	**nextnew = &newlist;
3129 				struct iflist	*walkold;
3130 				struct iflist	*cleanlist;
3131 				boolean_t	found_if = B_FALSE;
3132 
3133 				alreadydone = B_TRUE; /* ignore other case */
3134 
3135 				/*
3136 				 * Check if there is anything to do.
3137 				 */
3138 				if (item->length <
3139 				    sizeof (mib2_ipAddrEntry_t)) {
3140 					fail(0, "No compatible interfaces");
3141 				}
3142 
3143 				/*
3144 				 * Find the "right" entry:
3145 				 * If an interface name to match has been
3146 				 * supplied then try and find it, otherwise
3147 				 * match the first non-loopback interface found.
3148 				 * Use lo0 if all else fails.
3149 				 */
3150 				for (ap = (mib2_ipAddrEntry_t *)item->valp;
3151 				    (char *)ap < (char *)item->valp
3152 				    + item->length;
3153 				    ap++) {
3154 					(void) octetstr(&ap->ipAdEntIfIndex,
3155 					    'a', ifname, sizeof (ifname));
3156 					(void) strtok(ifname, ":");
3157 
3158 					if (matchname) {
3159 						if (strcmp(matchname,
3160 						    ifname) == 0) {
3161 							found_if = B_TRUE;
3162 							break;
3163 						}
3164 					} else if (strcmp(ifname, "lo0") != 0)
3165 						break;
3166 				}
3167 
3168 				if (matchname == NULL) {
3169 					matchname = ifname;
3170 				} else {
3171 					if (!found_if)
3172 						fail(0, "-I: %s no such "
3173 						    "interface.", matchname);
3174 				}
3175 
3176 				if (Iflag_only == 0 || !reentry) {
3177 					(void) printf("    input   %-6.6s    "
3178 					    "output	",
3179 					    matchname);
3180 					(void) printf("   input  (Total)    "
3181 					"output\n");
3182 					(void) printf("%-7.7s %-5.5s %-7.7s "
3183 					    "%-5.5s %-6.6s ",
3184 					    "packets", "errs", "packets",
3185 					    "errs", "colls");
3186 					(void) printf("%-7.7s %-5.5s %-7.7s "
3187 					    "%-5.5s %-6.6s\n",
3188 					    "packets", "errs", "packets",
3189 					    "errs", "colls");
3190 				}
3191 
3192 				sum = zerostat;
3193 
3194 				for (ap = (mib2_ipAddrEntry_t *)item->valp;
3195 				    (char *)ap < (char *)item->valp
3196 				    + item->length;
3197 				    ap++) {
3198 					(void) octetstr(&ap->ipAdEntIfIndex,
3199 					    'a', buf, sizeof (buf));
3200 					(void) strtok(buf, ":");
3201 
3202 					/*
3203 					 * We have reduced the IP interface
3204 					 * name, which could have been a
3205 					 * logical, down to a name suitable
3206 					 * for use with kstats.
3207 					 * We treat this name as unique and
3208 					 * only collate statistics for it once
3209 					 * per pass. This is to avoid falsely
3210 					 * amplifying these statistics by the
3211 					 * the number of logical instances.
3212 					 */
3213 					if ((tlp != NULL) &&
3214 					    ((strcmp(buf, tlp->ifname) == 0))) {
3215 						continue;
3216 					}
3217 
3218 					/*
3219 					 * First lookup the "link" kstats in
3220 					 * case the link is renamed. Then
3221 					 * fallback to the legacy kstats for
3222 					 * those non-GLDv3 links.
3223 					 */
3224 					if (((ksp = kstat_lookup(kc, "link",
3225 					    0, buf)) != NULL ||
3226 					    (ksp = kstat_lookup(kc, NULL, -1,
3227 					    buf)) != NULL) && (ksp->ks_type ==
3228 					    KSTAT_TYPE_NAMED)) {
3229 						(void) safe_kstat_read(kc, ksp,
3230 						    NULL);
3231 					}
3232 
3233 					t.ipackets = kstat_named_value(ksp,
3234 					    "ipackets");
3235 					t.ierrors = kstat_named_value(ksp,
3236 					    "ierrors");
3237 					t.opackets = kstat_named_value(ksp,
3238 					    "opackets");
3239 					t.oerrors = kstat_named_value(ksp,
3240 					    "oerrors");
3241 					t.collisions = kstat_named_value(ksp,
3242 					    "collisions");
3243 
3244 					if (strcmp(buf, matchname) == 0)
3245 						new = t;
3246 
3247 					/* Build the interface list */
3248 
3249 					tlp = malloc(sizeof (struct iflist));
3250 					(void) strlcpy(tlp->ifname, buf,
3251 					    sizeof (tlp->ifname));
3252 					tlp->tot = t;
3253 					*nextnew = tlp;
3254 					nextnew = &tlp->next_if;
3255 
3256 					/*
3257 					 * First time through.
3258 					 * Just add up the interface stats.
3259 					 */
3260 
3261 					if (oldlist == NULL) {
3262 						if_stat_total(&zerostat,
3263 						    &t, &sum);
3264 						continue;
3265 					}
3266 
3267 					/*
3268 					 * Walk old list for the interface.
3269 					 *
3270 					 * If found, add difference to total.
3271 					 *
3272 					 * If not, an interface has been plumbed
3273 					 * up.  In this case, we will simply
3274 					 * ignore the new interface until the
3275 					 * next interval; as there's no easy way
3276 					 * to acquire statistics between time
3277 					 * of the plumb and the next interval
3278 					 * boundary.  This results in inaccurate
3279 					 * total values for current interval.
3280 					 *
3281 					 * Note the case when an interface is
3282 					 * unplumbed; as similar problems exist.
3283 					 * The unplumbed interface is not in the
3284 					 * current list, and there's no easy way
3285 					 * to account for the statistics between
3286 					 * the previous interval and time of the
3287 					 * unplumb.  Therefore, we (in a sense)
3288 					 * ignore the removed interface by only
3289 					 * involving "current" interfaces when
3290 					 * computing the total statistics.
3291 					 * Unfortunately, this also results in
3292 					 * inaccurate values for interval total.
3293 					 */
3294 
3295 					for (walkold = oldlist;
3296 					    walkold != NULL;
3297 					    walkold = walkold->next_if) {
3298 						if (strcmp(walkold->ifname,
3299 						    buf) == 0) {
3300 							if_stat_total(
3301 							    &walkold->tot,
3302 							    &t, &sum);
3303 							break;
3304 						}
3305 					}
3306 
3307 				}
3308 
3309 				*nextnew = NULL;
3310 
3311 				(void) printf("%-7llu %-5llu %-7llu "
3312 				    "%-5llu %-6llu ",
3313 				    new.ipackets - old.ipackets,
3314 				    new.ierrors - old.ierrors,
3315 				    new.opackets - old.opackets,
3316 				    new.oerrors - old.oerrors,
3317 				    new.collisions - old.collisions);
3318 
3319 				(void) printf("%-7llu %-5llu %-7llu "
3320 				    "%-5llu %-6llu\n", sum.ipackets,
3321 				    sum.ierrors, sum.opackets,
3322 				    sum.oerrors, sum.collisions);
3323 
3324 				/*
3325 				 * Tidy things up once finished.
3326 				 */
3327 
3328 				old = new;
3329 				cleanlist = oldlist;
3330 				oldlist = newlist;
3331 				while (cleanlist != NULL) {
3332 					tlp = cleanlist->next_if;
3333 					free(cleanlist);
3334 					cleanlist = tlp;
3335 				}
3336 			}
3337 			break;
3338 		}
3339 		case MIB2_IP6:
3340 		if (item->mib_id != MIB2_IP6_ADDR ||
3341 		    !family_selected(AF_INET6))
3342 			continue;
3343 		{
3344 			static struct ifstat	old6 = {0L, 0L, 0L, 0L, 0L};
3345 			static struct ifstat	new6 = {0L, 0L, 0L, 0L, 0L};
3346 			struct ifstat		sum6;
3347 			struct iflist		*newlist6 = NULL;
3348 			static struct iflist	*oldlist6 = NULL;
3349 			kstat_t	 *ksp;
3350 
3351 			if (once_only) {
3352 				char    ifname[LIFNAMSIZ + 1];
3353 				char    logintname[LIFNAMSIZ + 1];
3354 				mib2_ipv6AddrEntry_t *ap6;
3355 				struct ifstat	stat = {0L, 0L, 0L, 0L, 0L};
3356 				boolean_t	first = B_TRUE;
3357 				uint32_t	new_ifindex;
3358 
3359 				if (Xflag)
3360 					(void) printf("if_report: %d items\n",
3361 					    (item->length)
3362 					    / sizeof (mib2_ipv6AddrEntry_t));
3363 				for (ap6 = (mib2_ipv6AddrEntry_t *)item->valp;
3364 				    (char *)ap6 < (char *)item->valp
3365 				    + item->length;
3366 				    ap6++) {
3367 					(void) octetstr(&ap6->ipv6AddrIfIndex,
3368 					    'a', logintname,
3369 					    sizeof (logintname));
3370 					(void) strcpy(ifname, logintname);
3371 					(void) strtok(ifname, ":");
3372 					if (matchname != NULL &&
3373 					    strcmp(matchname, ifname) != 0 &&
3374 					    strcmp(matchname, logintname) != 0)
3375 						continue;
3376 					new_ifindex =
3377 					    if_nametoindex(logintname);
3378 
3379 					/*
3380 					 * First lookup the "link" kstats in
3381 					 * case the link is renamed. Then
3382 					 * fallback to the legacy kstats for
3383 					 * those non-GLDv3 links.
3384 					 */
3385 					if (new_ifindex != ifindex_v6 &&
3386 					    ((ksp = kstat_lookup(kc, "link", 0,
3387 					    ifname)) != NULL ||
3388 					    (ksp = kstat_lookup(kc, NULL, -1,
3389 					    ifname)) != NULL)) {
3390 						(void) safe_kstat_read(kc, ksp,
3391 						    NULL);
3392 						stat.ipackets =
3393 						    kstat_named_value(ksp,
3394 						    "ipackets");
3395 						stat.ierrors =
3396 						    kstat_named_value(ksp,
3397 						    "ierrors");
3398 						stat.opackets =
3399 						    kstat_named_value(ksp,
3400 						    "opackets");
3401 						stat.oerrors =
3402 						    kstat_named_value(ksp,
3403 						    "oerrors");
3404 						stat.collisions =
3405 						    kstat_named_value(ksp,
3406 						    "collisions");
3407 						if (first) {
3408 							if (!first_header)
3409 								(void) putchar(
3410 								    '\n');
3411 							first_header = B_FALSE;
3412 							(void) printf(
3413 							    "%-5.5s %-5.5s%"
3414 							    "-27.27s %-27.27s "
3415 							    "%-6.6s %-5.5s "
3416 							    "%-6.6s %-5.5s "
3417 							    "%-6.6s\n",
3418 							    "Name", "Mtu",
3419 							    "Net/Dest",
3420 							    "Address", "Ipkts",
3421 							    "Ierrs", "Opkts",
3422 							    "Oerrs", "Collis");
3423 							first = B_FALSE;
3424 						}
3425 						if_report_ip6(ap6, ifname,
3426 						    logintname, &stat, B_TRUE);
3427 						ifindex_v6 = new_ifindex;
3428 					} else {
3429 						if_report_ip6(ap6, ifname,
3430 						    logintname, &stat, B_FALSE);
3431 					}
3432 				}
3433 			} else if (!alreadydone) {
3434 				char    ifname[LIFNAMSIZ + 1];
3435 				char    buf[IFNAMSIZ + 1];
3436 				mib2_ipv6AddrEntry_t *ap6;
3437 				struct ifstat   t;
3438 				struct iflist	*tlp = NULL;
3439 				struct iflist	**nextnew = &newlist6;
3440 				struct iflist	*walkold;
3441 				struct iflist	*cleanlist;
3442 				boolean_t	found_if = B_FALSE;
3443 
3444 				alreadydone = B_TRUE; /* ignore other case */
3445 
3446 				/*
3447 				 * Check if there is anything to do.
3448 				 */
3449 				if (item->length <
3450 				    sizeof (mib2_ipv6AddrEntry_t)) {
3451 					fail(0, "No compatible interfaces");
3452 				}
3453 
3454 				/*
3455 				 * Find the "right" entry:
3456 				 * If an interface name to match has been
3457 				 * supplied then try and find it, otherwise
3458 				 * match the first non-loopback interface found.
3459 				 * Use lo0 if all else fails.
3460 				 */
3461 				for (ap6 = (mib2_ipv6AddrEntry_t *)item->valp;
3462 				    (char *)ap6 < (char *)item->valp
3463 				    + item->length;
3464 				    ap6++) {
3465 					(void) octetstr(&ap6->ipv6AddrIfIndex,
3466 					    'a', ifname, sizeof (ifname));
3467 					(void) strtok(ifname, ":");
3468 
3469 					if (matchname) {
3470 						if (strcmp(matchname,
3471 						    ifname) == 0) {
3472 							found_if = B_TRUE;
3473 							break;
3474 						}
3475 					} else if (strcmp(ifname, "lo0") != 0)
3476 						break;
3477 				}
3478 
3479 				if (matchname == NULL) {
3480 					matchname = ifname;
3481 				} else {
3482 					if (!found_if)
3483 						fail(0, "-I: %s no such "
3484 						    "interface.", matchname);
3485 				}
3486 
3487 				if (Iflag_only == 0 || !reentry) {
3488 					(void) printf(
3489 					    "    input   %-6.6s"
3490 					    "    output	",
3491 					    matchname);
3492 					(void) printf("   input  (Total)"
3493 					    "    output\n");
3494 					(void) printf("%-7.7s %-5.5s %-7.7s "
3495 					    "%-5.5s %-6.6s ",
3496 					    "packets", "errs", "packets",
3497 					    "errs", "colls");
3498 					(void) printf("%-7.7s %-5.5s %-7.7s "
3499 					    "%-5.5s %-6.6s\n",
3500 					    "packets", "errs", "packets",
3501 					    "errs", "colls");
3502 				}
3503 
3504 				sum6 = zerostat;
3505 
3506 				for (ap6 = (mib2_ipv6AddrEntry_t *)item->valp;
3507 				    (char *)ap6 < (char *)item->valp
3508 				    + item->length;
3509 				    ap6++) {
3510 					(void) octetstr(&ap6->ipv6AddrIfIndex,
3511 					    'a', buf, sizeof (buf));
3512 					(void) strtok(buf, ":");
3513 
3514 					/*
3515 					 * We have reduced the IP interface
3516 					 * name, which could have been a
3517 					 * logical, down to a name suitable
3518 					 * for use with kstats.
3519 					 * We treat this name as unique and
3520 					 * only collate statistics for it once
3521 					 * per pass. This is to avoid falsely
3522 					 * amplifying these statistics by the
3523 					 * the number of logical instances.
3524 					 */
3525 
3526 					if ((tlp != NULL) &&
3527 					    ((strcmp(buf, tlp->ifname) == 0))) {
3528 						continue;
3529 					}
3530 
3531 					/*
3532 					 * First lookup the "link" kstats in
3533 					 * case the link is renamed. Then
3534 					 * fallback to the legacy kstats for
3535 					 * those non-GLDv3 links.
3536 					 */
3537 					if (((ksp = kstat_lookup(kc, "link",
3538 					    0, buf)) != NULL ||
3539 					    (ksp = kstat_lookup(kc, NULL, -1,
3540 					    buf)) != NULL) && (ksp->ks_type ==
3541 					    KSTAT_TYPE_NAMED)) {
3542 						(void) safe_kstat_read(kc,
3543 						    ksp, NULL);
3544 					}
3545 
3546 					t.ipackets = kstat_named_value(ksp,
3547 					    "ipackets");
3548 					t.ierrors = kstat_named_value(ksp,
3549 					    "ierrors");
3550 					t.opackets = kstat_named_value(ksp,
3551 					    "opackets");
3552 					t.oerrors = kstat_named_value(ksp,
3553 					    "oerrors");
3554 					t.collisions = kstat_named_value(ksp,
3555 					    "collisions");
3556 
3557 					if (strcmp(buf, matchname) == 0)
3558 						new6 = t;
3559 
3560 					/* Build the interface list */
3561 
3562 					tlp = malloc(sizeof (struct iflist));
3563 					(void) strlcpy(tlp->ifname, buf,
3564 					    sizeof (tlp->ifname));
3565 					tlp->tot = t;
3566 					*nextnew = tlp;
3567 					nextnew = &tlp->next_if;
3568 
3569 					/*
3570 					 * First time through.
3571 					 * Just add up the interface stats.
3572 					 */
3573 
3574 					if (oldlist6 == NULL) {
3575 						if_stat_total(&zerostat,
3576 						    &t, &sum6);
3577 						continue;
3578 					}
3579 
3580 					/*
3581 					 * Walk old list for the interface.
3582 					 *
3583 					 * If found, add difference to total.
3584 					 *
3585 					 * If not, an interface has been plumbed
3586 					 * up.  In this case, we will simply
3587 					 * ignore the new interface until the
3588 					 * next interval; as there's no easy way
3589 					 * to acquire statistics between time
3590 					 * of the plumb and the next interval
3591 					 * boundary.  This results in inaccurate
3592 					 * total values for current interval.
3593 					 *
3594 					 * Note the case when an interface is
3595 					 * unplumbed; as similar problems exist.
3596 					 * The unplumbed interface is not in the
3597 					 * current list, and there's no easy way
3598 					 * to account for the statistics between
3599 					 * the previous interval and time of the
3600 					 * unplumb.  Therefore, we (in a sense)
3601 					 * ignore the removed interface by only
3602 					 * involving "current" interfaces when
3603 					 * computing the total statistics.
3604 					 * Unfortunately, this also results in
3605 					 * inaccurate values for interval total.
3606 					 */
3607 
3608 					for (walkold = oldlist6;
3609 					    walkold != NULL;
3610 					    walkold = walkold->next_if) {
3611 						if (strcmp(walkold->ifname,
3612 						    buf) == 0) {
3613 							if_stat_total(
3614 							    &walkold->tot,
3615 							    &t, &sum6);
3616 							break;
3617 						}
3618 					}
3619 
3620 				}
3621 
3622 				*nextnew = NULL;
3623 
3624 				(void) printf("%-7llu %-5llu %-7llu "
3625 				    "%-5llu %-6llu ",
3626 				    new6.ipackets - old6.ipackets,
3627 				    new6.ierrors - old6.ierrors,
3628 				    new6.opackets - old6.opackets,
3629 				    new6.oerrors - old6.oerrors,
3630 				    new6.collisions - old6.collisions);
3631 
3632 				(void) printf("%-7llu %-5llu %-7llu "
3633 				    "%-5llu %-6llu\n", sum6.ipackets,
3634 				    sum6.ierrors, sum6.opackets,
3635 				    sum6.oerrors, sum6.collisions);
3636 
3637 				/*
3638 				 * Tidy things up once finished.
3639 				 */
3640 
3641 				old6 = new6;
3642 				cleanlist = oldlist6;
3643 				oldlist6 = newlist6;
3644 				while (cleanlist != NULL) {
3645 					tlp = cleanlist->next_if;
3646 					free(cleanlist);
3647 					cleanlist = tlp;
3648 				}
3649 			}
3650 			break;
3651 		}
3652 		}
3653 		(void) fflush(stdout);
3654 	}
3655 	if ((Iflag_only == 0) && (!once_only))
3656 		(void) putchar('\n');
3657 	reentry = B_TRUE;
3658 }
3659 
3660 static void
3661 if_report_ip4(mib2_ipAddrEntry_t *ap,
3662     char ifname[], char logintname[], struct ifstat *statptr,
3663     boolean_t ksp_not_null)
3664 {
3665 
3666 	char abuf[MAXHOSTNAMELEN + 4];	/* Include /<num> for CIDR-printing. */
3667 	char dstbuf[MAXHOSTNAMELEN + 1];
3668 
3669 	if (ksp_not_null) {
3670 		(void) printf("%-5s %-4u ",
3671 		    ifname, ap->ipAdEntInfo.ae_mtu);
3672 		if (ap->ipAdEntInfo.ae_flags & IFF_POINTOPOINT)
3673 			(void) pr_addr(ap->ipAdEntInfo.ae_pp_dst_addr,
3674 			    abuf, sizeof (abuf));
3675 		else
3676 			(void) pr_netaddr(ap->ipAdEntAddr,
3677 			    ap->ipAdEntNetMask, abuf, sizeof (abuf));
3678 		(void) printf("%-13s %-14s %-6llu %-5llu %-6llu %-5llu "
3679 		    "%-6llu %-6llu\n",
3680 		    abuf, pr_addr(ap->ipAdEntAddr, dstbuf, sizeof (dstbuf)),
3681 		    statptr->ipackets, statptr->ierrors,
3682 		    statptr->opackets, statptr->oerrors,
3683 		    statptr->collisions, 0LL);
3684 	}
3685 	/*
3686 	 * Print logical interface info if Aflag set (including logical unit 0)
3687 	 */
3688 	if (Aflag) {
3689 		*statptr = zerostat;
3690 		statptr->ipackets = ap->ipAdEntInfo.ae_ibcnt;
3691 		statptr->opackets = ap->ipAdEntInfo.ae_obcnt;
3692 
3693 		(void) printf("%-5s %-4u ", logintname, ap->ipAdEntInfo.ae_mtu);
3694 		if (ap->ipAdEntInfo.ae_flags & IFF_POINTOPOINT)
3695 			(void) pr_addr(ap->ipAdEntInfo.ae_pp_dst_addr, abuf,
3696 			    sizeof (abuf));
3697 		else
3698 			(void) pr_netaddr(ap->ipAdEntAddr, ap->ipAdEntNetMask,
3699 			    abuf, sizeof (abuf));
3700 
3701 		(void) printf("%-13s %-14s %-6llu %-5s %-6s "
3702 		    "%-5s %-6s %-6llu\n", abuf,
3703 		    pr_addr(ap->ipAdEntAddr, dstbuf, sizeof (dstbuf)),
3704 		    statptr->ipackets, "N/A", "N/A", "N/A", "N/A",
3705 		    0LL);
3706 	}
3707 }
3708 
3709 static void
3710 if_report_ip6(mib2_ipv6AddrEntry_t *ap6,
3711     char ifname[], char logintname[], struct ifstat *statptr,
3712     boolean_t ksp_not_null)
3713 {
3714 
3715 	char abuf[MAXHOSTNAMELEN + 1];
3716 	char dstbuf[MAXHOSTNAMELEN + 1];
3717 
3718 	if (ksp_not_null) {
3719 		(void) printf("%-5s %-4u ", ifname, ap6->ipv6AddrInfo.ae_mtu);
3720 		if (ap6->ipv6AddrInfo.ae_flags &
3721 		    IFF_POINTOPOINT) {
3722 			(void) pr_addr6(&ap6->ipv6AddrInfo.ae_pp_dst_addr,
3723 			    abuf, sizeof (abuf));
3724 		} else {
3725 			(void) pr_prefix6(&ap6->ipv6AddrAddress,
3726 			    ap6->ipv6AddrPfxLength, abuf,
3727 			    sizeof (abuf));
3728 		}
3729 		(void) printf("%-27s %-27s %-6llu %-5llu "
3730 		    "%-6llu %-5llu %-6llu\n",
3731 		    abuf, pr_addr6(&ap6->ipv6AddrAddress, dstbuf,
3732 		    sizeof (dstbuf)),
3733 		    statptr->ipackets, statptr->ierrors, statptr->opackets,
3734 		    statptr->oerrors, statptr->collisions);
3735 	}
3736 	/*
3737 	 * Print logical interface info if Aflag set (including logical unit 0)
3738 	 */
3739 	if (Aflag) {
3740 		*statptr = zerostat;
3741 		statptr->ipackets = ap6->ipv6AddrInfo.ae_ibcnt;
3742 		statptr->opackets = ap6->ipv6AddrInfo.ae_obcnt;
3743 
3744 		(void) printf("%-5s %-4u ", logintname,
3745 		    ap6->ipv6AddrInfo.ae_mtu);
3746 		if (ap6->ipv6AddrInfo.ae_flags & IFF_POINTOPOINT)
3747 			(void) pr_addr6(&ap6->ipv6AddrInfo.ae_pp_dst_addr,
3748 			    abuf, sizeof (abuf));
3749 		else
3750 			(void) pr_prefix6(&ap6->ipv6AddrAddress,
3751 			    ap6->ipv6AddrPfxLength, abuf, sizeof (abuf));
3752 		(void) printf("%-27s %-27s %-6llu %-5s %-6s %-5s %-6s\n",
3753 		    abuf, pr_addr6(&ap6->ipv6AddrAddress, dstbuf,
3754 		    sizeof (dstbuf)),
3755 		    statptr->ipackets, "N/A", "N/A", "N/A", "N/A");
3756 	}
3757 }
3758 
3759 /* --------------------- DHCP_REPORT  (netstat -D) ------------------------- */
3760 
3761 static boolean_t
3762 dhcp_do_ipc(dhcp_ipc_type_t type, const char *ifname, boolean_t printed_one)
3763 {
3764 	dhcp_ipc_request_t	*request;
3765 	dhcp_ipc_reply_t	*reply;
3766 	int			error;
3767 
3768 	request = dhcp_ipc_alloc_request(type, ifname, NULL, 0, DHCP_TYPE_NONE);
3769 	if (request == NULL)
3770 		fail(0, "dhcp_do_ipc: out of memory");
3771 
3772 	error = dhcp_ipc_make_request(request, &reply, DHCP_IPC_WAIT_DEFAULT);
3773 	if (error != 0) {
3774 		free(request);
3775 		fail(0, "dhcp_do_ipc: %s", dhcp_ipc_strerror(error));
3776 	}
3777 
3778 	free(request);
3779 	error = reply->return_code;
3780 	if (error == DHCP_IPC_E_UNKIF) {
3781 		free(reply);
3782 		return (printed_one);
3783 	}
3784 	if (error != 0) {
3785 		free(reply);
3786 		fail(0, "dhcp_do_ipc: %s", dhcp_ipc_strerror(error));
3787 	}
3788 
3789 	if (timestamp_fmt != NODATE)
3790 		print_timestamp(timestamp_fmt);
3791 
3792 	if (!printed_one)
3793 		(void) printf("%s", dhcp_status_hdr_string());
3794 
3795 	(void) printf("%s", dhcp_status_reply_to_string(reply));
3796 	free(reply);
3797 	return (B_TRUE);
3798 }
3799 
3800 /*
3801  * dhcp_walk_interfaces: walk the list of interfaces for a given address
3802  * family (af).  For each, print out the DHCP status using dhcp_do_ipc.
3803  */
3804 static boolean_t
3805 dhcp_walk_interfaces(int af, boolean_t printed_one)
3806 {
3807 	struct lifnum	lifn;
3808 	struct lifconf	lifc;
3809 	int		n_ifs, i, sock_fd;
3810 
3811 	sock_fd = socket(af, SOCK_DGRAM, 0);
3812 	if (sock_fd == -1)
3813 		return (printed_one);
3814 
3815 	/*
3816 	 * SIOCGLIFNUM is just an estimate.  If the ioctl fails, we don't care;
3817 	 * just drive on and use SIOCGLIFCONF with increasing buffer sizes, as
3818 	 * is traditional.
3819 	 */
3820 	(void) memset(&lifn, 0, sizeof (lifn));
3821 	lifn.lifn_family = af;
3822 	lifn.lifn_flags = LIFC_ALLZONES | LIFC_NOXMIT | LIFC_UNDER_IPMP;
3823 	if (ioctl(sock_fd, SIOCGLIFNUM, &lifn) == -1)
3824 		n_ifs = LIFN_GUARD_VALUE;
3825 	else
3826 		n_ifs = lifn.lifn_count + LIFN_GUARD_VALUE;
3827 
3828 	(void) memset(&lifc, 0, sizeof (lifc));
3829 	lifc.lifc_family = af;
3830 	lifc.lifc_flags = lifn.lifn_flags;
3831 	lifc.lifc_len = n_ifs * sizeof (struct lifreq);
3832 	lifc.lifc_buf = malloc(lifc.lifc_len);
3833 	if (lifc.lifc_buf != NULL) {
3834 
3835 		if (ioctl(sock_fd, SIOCGLIFCONF, &lifc) == -1) {
3836 			(void) close(sock_fd);
3837 			free(lifc.lifc_buf);
3838 			return (B_FALSE);
3839 		}
3840 
3841 		n_ifs = lifc.lifc_len / sizeof (struct lifreq);
3842 
3843 		for (i = 0; i < n_ifs; i++) {
3844 			printed_one = dhcp_do_ipc(DHCP_STATUS |
3845 			    (af == AF_INET6 ? DHCP_V6 : 0),
3846 			    lifc.lifc_req[i].lifr_name, printed_one);
3847 		}
3848 	}
3849 	(void) close(sock_fd);
3850 	free(lifc.lifc_buf);
3851 	return (printed_one);
3852 }
3853 
3854 static void
3855 dhcp_report(char *ifname)
3856 {
3857 	boolean_t printed_one;
3858 
3859 	if (!family_selected(AF_INET) && !family_selected(AF_INET6))
3860 		return;
3861 
3862 	printed_one = B_FALSE;
3863 	if (ifname != NULL) {
3864 		if (family_selected(AF_INET)) {
3865 			printed_one = dhcp_do_ipc(DHCP_STATUS, ifname,
3866 			    printed_one);
3867 		}
3868 		if (family_selected(AF_INET6)) {
3869 			printed_one = dhcp_do_ipc(DHCP_STATUS | DHCP_V6,
3870 			    ifname, printed_one);
3871 		}
3872 		if (!printed_one) {
3873 			fail(0, "%s: %s", ifname,
3874 			    dhcp_ipc_strerror(DHCP_IPC_E_UNKIF));
3875 		}
3876 	} else {
3877 		if (family_selected(AF_INET)) {
3878 			printed_one = dhcp_walk_interfaces(AF_INET,
3879 			    printed_one);
3880 		}
3881 		if (family_selected(AF_INET6))
3882 			(void) dhcp_walk_interfaces(AF_INET6, printed_one);
3883 	}
3884 }
3885 
3886 /* --------------------- GROUP_REPORT (netstat -g) ------------------------- */
3887 
3888 static void
3889 group_report(mib_item_t *item)
3890 {
3891 	mib_item_t	*v4grp = NULL, *v4src = NULL;
3892 	mib_item_t	*v6grp = NULL, *v6src = NULL;
3893 	int		jtemp = 0;
3894 	char		ifname[LIFNAMSIZ + 1];
3895 	char		abuf[MAXHOSTNAMELEN + 1];
3896 	ip_member_t	*ipmp;
3897 	ip_grpsrc_t	*ips;
3898 	ipv6_member_t	*ipmp6;
3899 	ipv6_grpsrc_t	*ips6;
3900 	boolean_t	first, first_src;
3901 
3902 	for (; item; item = item->next_item) {
3903 		if (Xflag) {
3904 			(void) printf("[%4d] Group = %d, mib_id = %d, "
3905 			    "length = %d, valp = 0x%p\n",
3906 			    jtemp++, item->group, item->mib_id, item->length,
3907 			    item->valp);
3908 		}
3909 		if (item->group == MIB2_IP && family_selected(AF_INET)) {
3910 			switch (item->mib_id) {
3911 			case EXPER_IP_GROUP_MEMBERSHIP:
3912 				v4grp = item;
3913 				if (Xflag)
3914 					(void) printf("item is v4grp info\n");
3915 				break;
3916 			case EXPER_IP_GROUP_SOURCES:
3917 				v4src = item;
3918 				if (Xflag)
3919 					(void) printf("item is v4src info\n");
3920 				break;
3921 			default:
3922 				continue;
3923 			}
3924 			continue;
3925 		}
3926 		if (item->group == MIB2_IP6 && family_selected(AF_INET6)) {
3927 			switch (item->mib_id) {
3928 			case EXPER_IP6_GROUP_MEMBERSHIP:
3929 				v6grp = item;
3930 				if (Xflag)
3931 					(void) printf("item is v6grp info\n");
3932 				break;
3933 			case EXPER_IP6_GROUP_SOURCES:
3934 				v6src = item;
3935 				if (Xflag)
3936 					(void) printf("item is v6src info\n");
3937 				break;
3938 			default:
3939 				continue;
3940 			}
3941 		}
3942 	}
3943 
3944 	if (family_selected(AF_INET) && v4grp != NULL) {
3945 		if (Xflag)
3946 			(void) printf("%u records for ipGroupMember:\n",
3947 			    v4grp->length / sizeof (ip_member_t));
3948 
3949 		first = B_TRUE;
3950 		for (ipmp = (ip_member_t *)v4grp->valp;
3951 		    (char *)ipmp < (char *)v4grp->valp + v4grp->length;
3952 		    ipmp = (ip_member_t *)((char *)ipmp + ipMemberEntrySize)) {
3953 			if (first) {
3954 				(void) puts(v4compat ?
3955 				    "Group Memberships" :
3956 				    "Group Memberships: IPv4");
3957 				(void) puts("Interface "
3958 				    "Group                RefCnt");
3959 				(void) puts("--------- "
3960 				    "-------------------- ------");
3961 				first = B_FALSE;
3962 			}
3963 
3964 			(void) printf("%-9s %-20s %6u\n",
3965 			    octetstr(&ipmp->ipGroupMemberIfIndex, 'a',
3966 			    ifname, sizeof (ifname)),
3967 			    pr_addr(ipmp->ipGroupMemberAddress,
3968 			    abuf, sizeof (abuf)),
3969 			    ipmp->ipGroupMemberRefCnt);
3970 
3971 			if (!Vflag || v4src == NULL)
3972 				continue;
3973 
3974 			if (Xflag)
3975 				(void) printf("scanning %u ipGroupSource "
3976 				    "records...\n",
3977 				    v4src->length/sizeof (ip_grpsrc_t));
3978 
3979 			first_src = B_TRUE;
3980 			for (ips = (ip_grpsrc_t *)v4src->valp;
3981 			    (char *)ips < (char *)v4src->valp + v4src->length;
3982 			    ips = (ip_grpsrc_t *)((char *)ips +
3983 			    ipGroupSourceEntrySize)) {
3984 				/*
3985 				 * We assume that all source addrs for a given
3986 				 * interface/group pair are contiguous, so on
3987 				 * the first non-match after we've found at
3988 				 * least one, we bail.
3989 				 */
3990 				if ((ipmp->ipGroupMemberAddress !=
3991 				    ips->ipGroupSourceGroup) ||
3992 				    (!octetstrmatch(&ipmp->ipGroupMemberIfIndex,
3993 				    &ips->ipGroupSourceIfIndex))) {
3994 					if (first_src)
3995 						continue;
3996 					else
3997 						break;
3998 				}
3999 				if (first_src) {
4000 					(void) printf("\t%s:    %s\n",
4001 					    fmodestr(
4002 					    ipmp->ipGroupMemberFilterMode),
4003 					    pr_addr(ips->ipGroupSourceAddress,
4004 					    abuf, sizeof (abuf)));
4005 					first_src = B_FALSE;
4006 					continue;
4007 				}
4008 
4009 				(void) printf("\t            %s\n",
4010 				    pr_addr(ips->ipGroupSourceAddress, abuf,
4011 				    sizeof (abuf)));
4012 			}
4013 		}
4014 		(void) putchar('\n');
4015 	}
4016 
4017 	if (family_selected(AF_INET6) && v6grp != NULL) {
4018 		if (Xflag)
4019 			(void) printf("%u records for ipv6GroupMember:\n",
4020 			    v6grp->length / sizeof (ipv6_member_t));
4021 
4022 		first = B_TRUE;
4023 		for (ipmp6 = (ipv6_member_t *)v6grp->valp;
4024 		    (char *)ipmp6 < (char *)v6grp->valp + v6grp->length;
4025 		    ipmp6 = (ipv6_member_t *)((char *)ipmp6 +
4026 		    ipv6MemberEntrySize)) {
4027 			if (first) {
4028 				(void) puts("Group Memberships: "
4029 				    "IPv6");
4030 				(void) puts(" If       "
4031 				    "Group                   RefCnt");
4032 				(void) puts("----- "
4033 				    "--------------------------- ------");
4034 				first = B_FALSE;
4035 			}
4036 
4037 			(void) printf("%-5s %-27s %5u\n",
4038 			    ifindex2str(ipmp6->ipv6GroupMemberIfIndex, ifname),
4039 			    pr_addr6(&ipmp6->ipv6GroupMemberAddress,
4040 			    abuf, sizeof (abuf)),
4041 			    ipmp6->ipv6GroupMemberRefCnt);
4042 
4043 			if (!Vflag || v6src == NULL)
4044 				continue;
4045 
4046 			if (Xflag)
4047 				(void) printf("scanning %u ipv6GroupSource "
4048 				    "records...\n",
4049 				    v6src->length/sizeof (ipv6_grpsrc_t));
4050 
4051 			first_src = B_TRUE;
4052 			for (ips6 = (ipv6_grpsrc_t *)v6src->valp;
4053 			    (char *)ips6 < (char *)v6src->valp + v6src->length;
4054 			    ips6 = (ipv6_grpsrc_t *)((char *)ips6 +
4055 			    ipv6GroupSourceEntrySize)) {
4056 				/* same assumption as in the v4 case above */
4057 				if ((ipmp6->ipv6GroupMemberIfIndex !=
4058 				    ips6->ipv6GroupSourceIfIndex) ||
4059 				    (!IN6_ARE_ADDR_EQUAL(
4060 				    &ipmp6->ipv6GroupMemberAddress,
4061 				    &ips6->ipv6GroupSourceGroup))) {
4062 					if (first_src)
4063 						continue;
4064 					else
4065 						break;
4066 				}
4067 				if (first_src) {
4068 					(void) printf("\t%s:    %s\n",
4069 					    fmodestr(
4070 					    ipmp6->ipv6GroupMemberFilterMode),
4071 					    pr_addr6(
4072 					    &ips6->ipv6GroupSourceAddress,
4073 					    abuf, sizeof (abuf)));
4074 					first_src = B_FALSE;
4075 					continue;
4076 				}
4077 
4078 				(void) printf("\t            %s\n",
4079 				    pr_addr6(&ips6->ipv6GroupSourceAddress,
4080 				    abuf, sizeof (abuf)));
4081 			}
4082 		}
4083 		(void) putchar('\n');
4084 	}
4085 
4086 	(void) putchar('\n');
4087 	(void) fflush(stdout);
4088 }
4089 
4090 /* --------------------- DCE_REPORT (netstat -d) ------------------------- */
4091 
4092 #define	FLBUFSIZE	8
4093 
4094 /* Assumes flbuf is at least 5 characters; callers use FLBUFSIZE */
4095 static char *
4096 dceflags2str(uint32_t flags, char *flbuf)
4097 {
4098 	char *str = flbuf;
4099 
4100 	if (flags & DCEF_DEFAULT)
4101 		*str++ = 'D';
4102 	if (flags & DCEF_PMTU)
4103 		*str++ = 'P';
4104 	if (flags & DCEF_UINFO)
4105 		*str++ = 'U';
4106 	if (flags & DCEF_TOO_SMALL_PMTU)
4107 		*str++ = 'S';
4108 	*str++ = '\0';
4109 	return (flbuf);
4110 }
4111 
4112 static void
4113 dce_report(mib_item_t *item)
4114 {
4115 	mib_item_t	*v4dce = NULL;
4116 	mib_item_t	*v6dce = NULL;
4117 	int		jtemp = 0;
4118 	char		ifname[LIFNAMSIZ + 1];
4119 	char		abuf[MAXHOSTNAMELEN + 1];
4120 	char		flbuf[FLBUFSIZE];
4121 	boolean_t	first;
4122 	dest_cache_entry_t *dce;
4123 
4124 	for (; item; item = item->next_item) {
4125 		if (Xflag) {
4126 			(void) printf("[%4d] Group = %d, mib_id = %d, "
4127 			    "length = %d, valp = 0x%p\n", jtemp++,
4128 			    item->group, item->mib_id, item->length,
4129 			    item->valp);
4130 		}
4131 		if (item->group == MIB2_IP && family_selected(AF_INET) &&
4132 		    item->mib_id == EXPER_IP_DCE) {
4133 			v4dce = item;
4134 			if (Xflag)
4135 				(void) printf("item is v4dce info\n");
4136 		}
4137 		if (item->group == MIB2_IP6 && family_selected(AF_INET6) &&
4138 		    item->mib_id == EXPER_IP_DCE) {
4139 			v6dce = item;
4140 			if (Xflag)
4141 				(void) printf("item is v6dce info\n");
4142 		}
4143 	}
4144 
4145 	if (family_selected(AF_INET) && v4dce != NULL) {
4146 		if (Xflag)
4147 			(void) printf("%u records for DestCacheEntry:\n",
4148 			    v4dce->length / ipDestEntrySize);
4149 
4150 		first = B_TRUE;
4151 		for (dce = (dest_cache_entry_t *)v4dce->valp;
4152 		    (char *)dce < (char *)v4dce->valp + v4dce->length;
4153 		    dce = (dest_cache_entry_t *)((char *)dce +
4154 		    ipDestEntrySize)) {
4155 			if (first) {
4156 				(void) putchar('\n');
4157 				(void) puts("Destination Cache Entries: IPv4");
4158 				(void) puts(
4159 				    "Address               PMTU   Age  Flags");
4160 				(void) puts(
4161 				    "-------------------- ------ ----- -----");
4162 				first = B_FALSE;
4163 			}
4164 
4165 			(void) printf("%-20s %6u %5u %-5s\n",
4166 			    pr_addr(dce->DestIpv4Address, abuf, sizeof (abuf)),
4167 			    dce->DestPmtu, dce->DestAge,
4168 			    dceflags2str(dce->DestFlags, flbuf));
4169 		}
4170 	}
4171 
4172 	if (family_selected(AF_INET6) && v6dce != NULL) {
4173 		if (Xflag)
4174 			(void) printf("%u records for DestCacheEntry:\n",
4175 			    v6dce->length / ipDestEntrySize);
4176 
4177 		first = B_TRUE;
4178 		for (dce = (dest_cache_entry_t *)v6dce->valp;
4179 		    (char *)dce < (char *)v6dce->valp + v6dce->length;
4180 		    dce = (dest_cache_entry_t *)((char *)dce +
4181 		    ipDestEntrySize)) {
4182 			if (first) {
4183 				(void) putchar('\n');
4184 				(void) puts("Destination Cache Entries: IPv6");
4185 				(void) puts(
4186 				    "Address                      PMTU  "
4187 				    " Age Flags If ");
4188 				(void) puts(
4189 				    "--------------------------- ------ "
4190 				    "----- ----- ---");
4191 				first = B_FALSE;
4192 			}
4193 
4194 			(void) printf("%-27s %6u %5u %-5s %s\n",
4195 			    pr_addr6(&dce->DestIpv6Address, abuf,
4196 			    sizeof (abuf)),
4197 			    dce->DestPmtu, dce->DestAge,
4198 			    dceflags2str(dce->DestFlags, flbuf),
4199 			    dce->DestIfindex == 0 ? "" :
4200 			    ifindex2str(dce->DestIfindex, ifname));
4201 		}
4202 	}
4203 	(void) fflush(stdout);
4204 }
4205 
4206 /* --------------------- ARP_REPORT (netstat -p) -------------------------- */
4207 
4208 static void
4209 arp_report(mib_item_t *item)
4210 {
4211 	int		jtemp = 0;
4212 	char		ifname[LIFNAMSIZ + 1];
4213 	char		abuf[MAXHOSTNAMELEN + 1];
4214 	char		maskbuf[STR_EXPAND * OCTET_LENGTH + 1];
4215 	char		flbuf[32];	/* ACE_F_ flags */
4216 	char		xbuf[STR_EXPAND * OCTET_LENGTH + 1];
4217 	mib2_ipNetToMediaEntry_t	*np;
4218 	int		flags;
4219 	boolean_t	first;
4220 
4221 	if (!(family_selected(AF_INET)))
4222 		return;
4223 
4224 	for (; item; item = item->next_item) {
4225 		if (Xflag) {
4226 			(void) printf("[%4d] Group = %d, mib_id = %d, "
4227 			    "length = %d, valp = 0x%p\n", jtemp++,
4228 			    item->group, item->mib_id, item->length,
4229 			    item->valp);
4230 		}
4231 		if (!(item->group == MIB2_IP && item->mib_id == MIB2_IP_MEDIA))
4232 			continue;
4233 
4234 		if (Xflag)
4235 			(void) printf("%u records for "
4236 			    "ipNetToMediaEntryTable:\n",
4237 			    item->length/sizeof (mib2_ipNetToMediaEntry_t));
4238 
4239 		first = B_TRUE;
4240 		for (np = (mib2_ipNetToMediaEntry_t *)item->valp;
4241 		    (char *)np < (char *)item->valp + item->length;
4242 		    np = (mib2_ipNetToMediaEntry_t *)((char *)np +
4243 		    ipNetToMediaEntrySize)) {
4244 			if (first) {
4245 				(void) puts(v4compat ?
4246 				    "Net to Media Table" :
4247 				    "Net to Media Table: IPv4");
4248 				(void) puts("Device "
4249 				    "  IP Address               Mask      "
4250 				    "Flags      Phys Addr");
4251 				(void) puts("------ "
4252 				    "-------------------- --------------- "
4253 				    "-------- ---------------");
4254 				first = B_FALSE;
4255 			}
4256 
4257 			flbuf[0] = '\0';
4258 			flags = np->ipNetToMediaInfo.ntm_flags;
4259 			/*
4260 			 * Note that not all flags are possible at the same
4261 			 * time.  Patterns: SPLAy DUo
4262 			 */
4263 			if (flags & ACE_F_PERMANENT)
4264 				(void) strcat(flbuf, "S");
4265 			if (flags & ACE_F_PUBLISH)
4266 				(void) strcat(flbuf, "P");
4267 			if (flags & ACE_F_DYING)
4268 				(void) strcat(flbuf, "D");
4269 			if (!(flags & ACE_F_RESOLVED))
4270 				(void) strcat(flbuf, "U");
4271 			if (flags & ACE_F_MAPPING)
4272 				(void) strcat(flbuf, "M");
4273 			if (flags & ACE_F_MYADDR)
4274 				(void) strcat(flbuf, "L");
4275 			if (flags & ACE_F_UNVERIFIED)
4276 				(void) strcat(flbuf, "d");
4277 			if (flags & ACE_F_AUTHORITY)
4278 				(void) strcat(flbuf, "A");
4279 			if (flags & ACE_F_OLD)
4280 				(void) strcat(flbuf, "o");
4281 			if (flags & ACE_F_DELAYED)
4282 				(void) strcat(flbuf, "y");
4283 			(void) printf("%-6s %-20s %-15s %-8s %s\n",
4284 			    octetstr(&np->ipNetToMediaIfIndex, 'a',
4285 			    ifname, sizeof (ifname)),
4286 			    pr_addr(np->ipNetToMediaNetAddress,
4287 			    abuf, sizeof (abuf)),
4288 			    octetstr(&np->ipNetToMediaInfo.ntm_mask, 'd',
4289 			    maskbuf, sizeof (maskbuf)),
4290 			    flbuf,
4291 			    octetstr(&np->ipNetToMediaPhysAddress, 'h',
4292 			    xbuf, sizeof (xbuf)));
4293 		}
4294 	}
4295 	(void) fflush(stdout);
4296 }
4297 
4298 /* --------------------- NDP_REPORT (netstat -p) -------------------------- */
4299 
4300 static void
4301 ndp_report(mib_item_t *item)
4302 {
4303 	int		jtemp = 0;
4304 	char		abuf[MAXHOSTNAMELEN + 1];
4305 	char		*state;
4306 	char		*type;
4307 	char		xbuf[STR_EXPAND * OCTET_LENGTH + 1];
4308 	mib2_ipv6NetToMediaEntry_t	*np6;
4309 	char		ifname[LIFNAMSIZ + 1];
4310 	boolean_t	first;
4311 
4312 	if (!(family_selected(AF_INET6)))
4313 		return;
4314 
4315 	for (; item; item = item->next_item) {
4316 		if (Xflag) {
4317 			(void) printf("\n--- Entry %d ---\n", ++jtemp);
4318 			(void) printf("Group = %d, mib_id = %d, "
4319 			    "length = %d, valp = 0x%p\n",
4320 			    item->group, item->mib_id, item->length,
4321 			    item->valp);
4322 		}
4323 		if (!(item->group == MIB2_IP6 &&
4324 		    item->mib_id == MIB2_IP6_MEDIA))
4325 			continue;
4326 
4327 		first = B_TRUE;
4328 		for (np6 = (mib2_ipv6NetToMediaEntry_t *)item->valp;
4329 		    (char *)np6 < (char *)item->valp + item->length;
4330 		    np6 = (mib2_ipv6NetToMediaEntry_t *)((char *)np6 +
4331 		    ipv6NetToMediaEntrySize)) {
4332 			if (first) {
4333 				(void) puts("\nNet to Media Table: IPv6");
4334 				(void) puts(" If   Physical Address   "
4335 				    " Type      State      Destination/Mask");
4336 				(void) puts("----- -----------------  "
4337 				    "------- ------------ "
4338 				    "---------------------------");
4339 				first = B_FALSE;
4340 			}
4341 
4342 			switch (np6->ipv6NetToMediaState) {
4343 			case ND_INCOMPLETE:
4344 				state = "INCOMPLETE";
4345 				break;
4346 			case ND_REACHABLE:
4347 				state = "REACHABLE";
4348 				break;
4349 			case ND_STALE:
4350 				state = "STALE";
4351 				break;
4352 			case ND_DELAY:
4353 				state = "DELAY";
4354 				break;
4355 			case ND_PROBE:
4356 				state = "PROBE";
4357 				break;
4358 			case ND_UNREACHABLE:
4359 				state = "UNREACHABLE";
4360 				break;
4361 			default:
4362 				state = "UNKNOWN";
4363 			}
4364 
4365 			switch (np6->ipv6NetToMediaType) {
4366 			case 1:
4367 				type = "other";
4368 				break;
4369 			case 2:
4370 				type = "dynamic";
4371 				break;
4372 			case 3:
4373 				type = "static";
4374 				break;
4375 			case 4:
4376 				type = "local";
4377 				break;
4378 			default:
4379 				type = "UNKNOWN";
4380 			}
4381 			(void) printf("%-5s %-17s  %-7s %-12s %-27s\n",
4382 			    ifindex2str(np6->ipv6NetToMediaIfIndex, ifname),
4383 			    octetstr(&np6->ipv6NetToMediaPhysAddress, 'h',
4384 			    xbuf, sizeof (xbuf)),
4385 			    type,
4386 			    state,
4387 			    pr_addr6(&np6->ipv6NetToMediaNetAddress,
4388 			    abuf, sizeof (abuf)));
4389 		}
4390 	}
4391 	(void) putchar('\n');
4392 	(void) fflush(stdout);
4393 }
4394 
4395 /* ------------------------- ire_report (netstat -r) ------------------------ */
4396 
4397 typedef struct sec_attr_list_s {
4398 	struct sec_attr_list_s *sal_next;
4399 	const mib2_ipAttributeEntry_t *sal_attr;
4400 } sec_attr_list_t;
4401 
4402 static boolean_t ire_report_item_v4(const mib2_ipRouteEntry_t *, boolean_t,
4403     const sec_attr_list_t *);
4404 static boolean_t ire_report_item_v6(const mib2_ipv6RouteEntry_t *, boolean_t,
4405     const sec_attr_list_t *);
4406 static const char *pr_secattr(const sec_attr_list_t *);
4407 
4408 static void
4409 ire_report(const mib_item_t *item)
4410 {
4411 	int			jtemp = 0;
4412 	boolean_t		print_hdr_once_v4 = B_TRUE;
4413 	boolean_t		print_hdr_once_v6 = B_TRUE;
4414 	mib2_ipRouteEntry_t	*rp;
4415 	mib2_ipv6RouteEntry_t	*rp6;
4416 	sec_attr_list_t		**v4_attrs, **v4a;
4417 	sec_attr_list_t		**v6_attrs, **v6a;
4418 	sec_attr_list_t		*all_attrs, *aptr;
4419 	const mib_item_t	*iptr;
4420 	int			ipv4_route_count, ipv6_route_count;
4421 	int			route_attrs_count;
4422 
4423 	/*
4424 	 * Preparation pass: the kernel returns separate entries for IP routing
4425 	 * table entries and security attributes.  We loop through the
4426 	 * attributes first and link them into lists.
4427 	 */
4428 	ipv4_route_count = ipv6_route_count = route_attrs_count = 0;
4429 	for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
4430 		if (iptr->group == MIB2_IP6 && iptr->mib_id == MIB2_IP6_ROUTE)
4431 			ipv6_route_count += iptr->length / ipv6RouteEntrySize;
4432 		if (iptr->group == MIB2_IP && iptr->mib_id == MIB2_IP_ROUTE)
4433 			ipv4_route_count += iptr->length / ipRouteEntrySize;
4434 		if ((iptr->group == MIB2_IP || iptr->group == MIB2_IP6) &&
4435 		    iptr->mib_id == EXPER_IP_RTATTR)
4436 			route_attrs_count += iptr->length /
4437 			    ipRouteAttributeSize;
4438 	}
4439 	v4_attrs = v6_attrs = NULL;
4440 	all_attrs = NULL;
4441 	if (family_selected(AF_INET) && ipv4_route_count > 0) {
4442 		v4_attrs = calloc(ipv4_route_count, sizeof (*v4_attrs));
4443 		if (v4_attrs == NULL) {
4444 			perror("ire_report calloc v4_attrs failed");
4445 			return;
4446 		}
4447 	}
4448 	if (family_selected(AF_INET6) && ipv6_route_count > 0) {
4449 		v6_attrs = calloc(ipv6_route_count, sizeof (*v6_attrs));
4450 		if (v6_attrs == NULL) {
4451 			perror("ire_report calloc v6_attrs failed");
4452 			goto ire_report_done;
4453 		}
4454 	}
4455 	if (route_attrs_count > 0) {
4456 		all_attrs = malloc(route_attrs_count * sizeof (*all_attrs));
4457 		if (all_attrs == NULL) {
4458 			perror("ire_report malloc all_attrs failed");
4459 			goto ire_report_done;
4460 		}
4461 	}
4462 	aptr = all_attrs;
4463 	for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
4464 		mib2_ipAttributeEntry_t *iae;
4465 		sec_attr_list_t **alp;
4466 
4467 		if (v4_attrs != NULL && iptr->group == MIB2_IP &&
4468 		    iptr->mib_id == EXPER_IP_RTATTR) {
4469 			alp = v4_attrs;
4470 		} else if (v6_attrs != NULL && iptr->group == MIB2_IP6 &&
4471 		    iptr->mib_id == EXPER_IP_RTATTR) {
4472 			alp = v6_attrs;
4473 		} else {
4474 			continue;
4475 		}
4476 		for (iae = iptr->valp;
4477 		    (char *)iae < (char *)iptr->valp + iptr->length;
4478 		    iae = (mib2_ipAttributeEntry_t *)((char *)iae +
4479 		    ipRouteAttributeSize)) {
4480 			aptr->sal_next = alp[iae->iae_routeidx];
4481 			aptr->sal_attr = iae;
4482 			alp[iae->iae_routeidx] = aptr++;
4483 		}
4484 	}
4485 
4486 	v4a = v4_attrs;
4487 	v6a = v6_attrs;
4488 	for (; item != NULL; item = item->next_item) {
4489 		if (Xflag) {
4490 			(void) printf("[%4d] Group = %d, mib_id = %d, "
4491 			    "length = %d, valp = 0x%p\n", jtemp++,
4492 			    item->group, item->mib_id,
4493 			    item->length, item->valp);
4494 		}
4495 		if (!((item->group == MIB2_IP &&
4496 		    item->mib_id == MIB2_IP_ROUTE) ||
4497 		    (item->group == MIB2_IP6 &&
4498 		    item->mib_id == MIB2_IP6_ROUTE)))
4499 			continue;
4500 
4501 		if (item->group == MIB2_IP && !family_selected(AF_INET))
4502 			continue;
4503 		else if (item->group == MIB2_IP6 && !family_selected(AF_INET6))
4504 			continue;
4505 
4506 		if (Xflag) {
4507 			if (item->group == MIB2_IP) {
4508 				(void) printf("%u records for "
4509 				    "ipRouteEntryTable:\n",
4510 				    item->length/sizeof (mib2_ipRouteEntry_t));
4511 			} else {
4512 				(void) printf("%u records for "
4513 				    "ipv6RouteEntryTable:\n",
4514 				    item->length/
4515 				    sizeof (mib2_ipv6RouteEntry_t));
4516 			}
4517 		}
4518 
4519 		if (item->group == MIB2_IP) {
4520 			for (rp = (mib2_ipRouteEntry_t *)item->valp;
4521 			    (char *)rp < (char *)item->valp + item->length;
4522 			    rp = (mib2_ipRouteEntry_t *)((char *)rp +
4523 			    ipRouteEntrySize)) {
4524 				aptr = v4a == NULL ? NULL : *v4a++;
4525 				print_hdr_once_v4 = ire_report_item_v4(rp,
4526 				    print_hdr_once_v4, aptr);
4527 			}
4528 		} else {
4529 			for (rp6 = (mib2_ipv6RouteEntry_t *)item->valp;
4530 			    (char *)rp6 < (char *)item->valp + item->length;
4531 			    rp6 = (mib2_ipv6RouteEntry_t *)((char *)rp6 +
4532 			    ipv6RouteEntrySize)) {
4533 				aptr = v6a == NULL ? NULL : *v6a++;
4534 				print_hdr_once_v6 = ire_report_item_v6(rp6,
4535 				    print_hdr_once_v6, aptr);
4536 			}
4537 		}
4538 	}
4539 	(void) fflush(stdout);
4540 ire_report_done:
4541 	if (v4_attrs != NULL)
4542 		free(v4_attrs);
4543 	if (v6_attrs != NULL)
4544 		free(v6_attrs);
4545 	if (all_attrs != NULL)
4546 		free(all_attrs);
4547 }
4548 
4549 /*
4550  * Match a user-supplied device name.  We do this by string because
4551  * the MIB2 interface gives us interface name strings rather than
4552  * ifIndex numbers.  The "none" rule matches only routes with no
4553  * interface.  The "any" rule matches routes with any non-blank
4554  * interface.  A base name ("hme0") matches all aliases as well
4555  * ("hme0:1").
4556  */
4557 static boolean_t
4558 dev_name_match(const DeviceName *devnam, const char *ifname)
4559 {
4560 	int iflen;
4561 
4562 	if (ifname == NULL)
4563 		return (devnam->o_length == 0);		/* "none" */
4564 	if (*ifname == '\0')
4565 		return (devnam->o_length != 0);		/* "any" */
4566 	iflen = strlen(ifname);
4567 	/* The check for ':' here supports interface aliases. */
4568 	if (iflen > devnam->o_length ||
4569 	    (iflen < devnam->o_length && devnam->o_bytes[iflen] != ':'))
4570 		return (B_FALSE);
4571 	return (strncmp(ifname, devnam->o_bytes, iflen) == 0);
4572 }
4573 
4574 /*
4575  * Match a user-supplied IP address list.  The "any" rule matches any
4576  * non-zero address.  The "none" rule matches only the zero address.
4577  * IPv6 addresses supplied by the user are ignored.  If the user
4578  * supplies a subnet mask, then match routes that are at least that
4579  * specific (use the user's mask).  If the user supplies only an
4580  * address, then select any routes that would match (use the route's
4581  * mask).
4582  */
4583 static boolean_t
4584 v4_addr_match(IpAddress addr, IpAddress mask, const filter_t *fp)
4585 {
4586 	char **app;
4587 	char *aptr;
4588 	in_addr_t faddr, fmask;
4589 
4590 	if (fp->u.a.f_address == NULL) {
4591 		if (IN6_IS_ADDR_UNSPECIFIED(&fp->u.a.f_mask))
4592 			return (addr != INADDR_ANY);	/* "any" */
4593 		else
4594 			return (addr == INADDR_ANY);	/* "none" */
4595 	}
4596 	if (!IN6_IS_V4MASK(fp->u.a.f_mask))
4597 		return (B_FALSE);
4598 	IN6_V4MAPPED_TO_IPADDR(&fp->u.a.f_mask, fmask);
4599 	if (fmask != IP_HOST_MASK) {
4600 		if (fmask > mask)
4601 			return (B_FALSE);
4602 		mask = fmask;
4603 	}
4604 	for (app = fp->u.a.f_address->h_addr_list; (aptr = *app) != NULL; app++)
4605 		if (IN6_IS_ADDR_V4MAPPED((in6_addr_t *)aptr)) {
4606 			IN6_V4MAPPED_TO_IPADDR((in6_addr_t *)aptr, faddr);
4607 			if (((faddr ^ addr) & mask) == 0)
4608 				return (B_TRUE);
4609 		}
4610 	return (B_FALSE);
4611 }
4612 
4613 /*
4614  * Run through the filter list for an IPv4 MIB2 route entry.  If all
4615  * filters of a given type fail to match, then the route is filtered
4616  * out (not displayed).  If no filter is given or at least one filter
4617  * of each type matches, then display the route.
4618  */
4619 static boolean_t
4620 ire_filter_match_v4(const mib2_ipRouteEntry_t *rp, uint_t flag_b)
4621 {
4622 	filter_t *fp;
4623 	int idx;
4624 
4625 	for (idx = 0; idx < NFILTERKEYS; idx++)
4626 		if ((fp = filters[idx]) != NULL) {
4627 			for (; fp != NULL; fp = fp->f_next) {
4628 				switch (idx) {
4629 				case FK_AF:
4630 					if (fp->u.f_family != AF_INET)
4631 						continue;
4632 					break;
4633 				case FK_OUTIF:
4634 					if (!dev_name_match(&rp->ipRouteIfIndex,
4635 					    fp->u.f_ifname))
4636 						continue;
4637 					break;
4638 				case FK_DST:
4639 					if (!v4_addr_match(rp->ipRouteDest,
4640 					    rp->ipRouteMask, fp))
4641 						continue;
4642 					break;
4643 				case FK_FLAGS:
4644 					if ((flag_b & fp->u.f.f_flagset) !=
4645 					    fp->u.f.f_flagset ||
4646 					    (flag_b & fp->u.f.f_flagclear))
4647 						continue;
4648 					break;
4649 				}
4650 				break;
4651 			}
4652 			if (fp == NULL)
4653 				return (B_FALSE);
4654 		}
4655 	return (B_TRUE);
4656 }
4657 
4658 /*
4659  * Given an IPv4 MIB2 route entry, form the list of flags for the
4660  * route.
4661  */
4662 static uint_t
4663 form_v4_route_flags(const mib2_ipRouteEntry_t *rp, char *flags)
4664 {
4665 	uint_t flag_b;
4666 
4667 	flag_b = FLF_U;
4668 	(void) strcpy(flags, "U");
4669 	/* RTF_INDIRECT wins over RTF_GATEWAY - don't display both */
4670 	if (rp->ipRouteInfo.re_flags & RTF_INDIRECT) {
4671 		(void) strcat(flags, "I");
4672 		flag_b |= FLF_I;
4673 	} else if (rp->ipRouteInfo.re_ire_type & IRE_OFFLINK) {
4674 		(void) strcat(flags, "G");
4675 		flag_b |= FLF_G;
4676 	}
4677 	/* IRE_IF_CLONE wins over RTF_HOST - don't display both */
4678 	if (rp->ipRouteInfo.re_ire_type & IRE_IF_CLONE) {
4679 		(void) strcat(flags, "C");
4680 		flag_b |= FLF_C;
4681 	} else if (rp->ipRouteMask == IP_HOST_MASK) {
4682 		(void) strcat(flags, "H");
4683 		flag_b |= FLF_H;
4684 	}
4685 	if (rp->ipRouteInfo.re_flags & RTF_DYNAMIC) {
4686 		(void) strcat(flags, "D");
4687 		flag_b |= FLF_D;
4688 	}
4689 	if (rp->ipRouteInfo.re_ire_type == IRE_BROADCAST) {	/* Broadcast */
4690 		(void) strcat(flags, "b");
4691 		flag_b |= FLF_b;
4692 	}
4693 	if (rp->ipRouteInfo.re_ire_type == IRE_LOCAL) {		/* Local */
4694 		(void) strcat(flags, "L");
4695 		flag_b |= FLF_L;
4696 	}
4697 	if (rp->ipRouteInfo.re_flags & RTF_MULTIRT) {
4698 		(void) strcat(flags, "M");			/* Multiroute */
4699 		flag_b |= FLF_M;
4700 	}
4701 	if (rp->ipRouteInfo.re_flags & RTF_SETSRC) {
4702 		(void) strcat(flags, "S");			/* Setsrc */
4703 		flag_b |= FLF_S;
4704 	}
4705 	if (rp->ipRouteInfo.re_flags & RTF_REJECT) {
4706 		(void) strcat(flags, "R");
4707 		flag_b |= FLF_R;
4708 	}
4709 	if (rp->ipRouteInfo.re_flags & RTF_BLACKHOLE) {
4710 		(void) strcat(flags, "B");
4711 		flag_b |= FLF_B;
4712 	}
4713 	if (rp->ipRouteInfo.re_flags & RTF_ZONE) {
4714 		(void) strcat(flags, "Z");
4715 		flag_b |= FLF_Z;
4716 	}
4717 	return (flag_b);
4718 }
4719 
4720 /*
4721  * Central definitions for the columns used in the reports.
4722  * For each column, there's a definition for the heading, the underline and
4723  * the formatted value.
4724  * Since most reports select different columns depending on command line
4725  * options, defining everything here avoids duplication in the report
4726  * format strings and makes it easy to make changes as necessary.
4727  */
4728 #define	IRE_V4_DEST		"  Destination       "
4729 #define	IRE_V4_DEST_		"--------------------"
4730 #define	IRE_V4_DEST_F		"%-20s"
4731 #define	IRE_V4_MASK		"     Mask      "
4732 #define	IRE_V4_MASK_		"---------------"
4733 #define	IRE_V4_MASK_F		"%-15s"
4734 #define	IRE_V4_GATEWAY		"    Gateway         "
4735 #define	IRE_V4_GATEWAY_		"--------------------"
4736 #define	IRE_V4_GATEWAY_F	"%-20s"
4737 #define	IRE_V4_DEVICE		"Device"
4738 #define	IRE_V4_DEVICE_		"------"
4739 #define	IRE_V4_DEVICE_F		"%-6s"
4740 #define	IRE_V4_MTU		" MTU "
4741 #define	IRE_V4_MTU_		"-----"
4742 #define	IRE_V4_MTU_F		"%5u"
4743 #define	IRE_V4_REF		"Ref"
4744 #define	IRE_V4_REF_		"---"
4745 #define	IRE_V4_REF_F		"%3u"
4746 #define	IRE_V4_FLAGS		"Flg"
4747 #define	IRE_V4_FLAGS_		"---"
4748 #define	IRE_V4_FLAGS_F		"%-4s"
4749 #define	IRE_V4_OUT		" Out  "
4750 #define	IRE_V4_OUT_		"------"
4751 #define	IRE_V4_OUT_F		"%-6s"
4752 #define	IRE_V4_INFWD		"In/Fwd"
4753 #define	IRE_V4_INFWD_		"------"
4754 #define	IRE_V4_INFWD_F		"%6u"
4755 #define	IRE_V4_LFLAGS		"Flags"
4756 #define	IRE_V4_LFLAGS_		"-----"
4757 #define	IRE_V4_LFLAGS_F		"%-5s"
4758 #define	IRE_V4_LREF		" Ref "
4759 #define	IRE_V4_LREF_		"-----"
4760 #define	IRE_V4_LREF_F		" %4u"
4761 #define	IRE_V4_USE		"   Use    "
4762 #define	IRE_V4_USE_		"----------"
4763 #define	IRE_V4_USE_F		"%10u"
4764 #define	IRE_V4_INTERFACE	"Interface"
4765 #define	IRE_V4_INTERFACE_	"---------"
4766 #define	IRE_V4_INTERFACE_F	"%-9s"
4767 
4768 static const char ire_hdr_v4[] =
4769 "\n%s Table: IPv4\n";
4770 static const char ire_hdr_v4_compat[] =
4771 "\n%s Table:\n";
4772 
4773 static const char ire_hdr_v4_verbose[] =
4774     IRE_V4_DEST " " IRE_V4_MASK " " IRE_V4_GATEWAY " " IRE_V4_DEVICE " "
4775     IRE_V4_MTU " " IRE_V4_REF " " IRE_V4_FLAGS " "
4776     IRE_V4_OUT " " IRE_V4_INFWD " %s\n"
4777     IRE_V4_DEST_" " IRE_V4_MASK_" " IRE_V4_GATEWAY_" " IRE_V4_DEVICE_" "
4778     IRE_V4_MTU_" " IRE_V4_REF_" " IRE_V4_FLAGS_" "
4779     IRE_V4_OUT_" " IRE_V4_INFWD_" %s\n";
4780 
4781 static const char ire_hdr_v4_normal[] =
4782     IRE_V4_DEST " " IRE_V4_GATEWAY " "
4783     IRE_V4_LFLAGS " " IRE_V4_LREF " " IRE_V4_USE " "
4784     IRE_V4_INTERFACE " %s\n"
4785     IRE_V4_DEST_" " IRE_V4_GATEWAY_" "
4786     IRE_V4_LFLAGS_" " IRE_V4_LREF_" " IRE_V4_USE_" "
4787     IRE_V4_INTERFACE_" %s\n";
4788 
4789 static boolean_t
4790 ire_report_item_v4(const mib2_ipRouteEntry_t *rp, boolean_t first,
4791     const sec_attr_list_t *attrs)
4792 {
4793 	char			dstbuf[MAXHOSTNAMELEN + 4]; /* + "/<num>" */
4794 	char			maskbuf[MAXHOSTNAMELEN + 1];
4795 	char			gwbuf[MAXHOSTNAMELEN + 1];
4796 	char			ifname[LIFNAMSIZ + 1];
4797 	char			flags[10];	/* RTF_ flags */
4798 	uint_t			flag_b;
4799 
4800 	if (!(Aflag || (rp->ipRouteInfo.re_ire_type != IRE_IF_CLONE &&
4801 	    rp->ipRouteInfo.re_ire_type != IRE_BROADCAST &&
4802 	    rp->ipRouteInfo.re_ire_type != IRE_MULTICAST &&
4803 	    rp->ipRouteInfo.re_ire_type != IRE_NOROUTE &&
4804 	    rp->ipRouteInfo.re_ire_type != IRE_LOCAL))) {
4805 		return (first);
4806 	}
4807 
4808 	flag_b = form_v4_route_flags(rp, flags);
4809 
4810 	if (!ire_filter_match_v4(rp, flag_b))
4811 		return (first);
4812 
4813 	if (first) {
4814 		(void) printf(v4compat ? ire_hdr_v4_compat : ire_hdr_v4,
4815 		    Vflag ? "IRE" : "Routing");
4816 		(void) printf(Vflag ? ire_hdr_v4_verbose : ire_hdr_v4_normal,
4817 		    RSECflag ? "  Gateway security attributes  " : "",
4818 		    RSECflag ? "-------------------------------" : "");
4819 		first = B_FALSE;
4820 	}
4821 
4822 	if (flag_b & FLF_H) {
4823 		(void) pr_addr(rp->ipRouteDest, dstbuf, sizeof (dstbuf));
4824 	} else {
4825 		(void) pr_net(rp->ipRouteDest, rp->ipRouteMask,
4826 		    dstbuf, sizeof (dstbuf));
4827 	}
4828 	if (Vflag) {
4829 		(void) printf(
4830 		    IRE_V4_DEST_F " " IRE_V4_MASK_F " " IRE_V4_GATEWAY_F " "
4831 		    IRE_V4_DEVICE_F " " IRE_V4_MTU_F " " IRE_V4_REF_F " "
4832 		    IRE_V4_FLAGS_F IRE_V4_INFWD_F " " IRE_V4_INFWD_F " %s\n",
4833 		    dstbuf,
4834 		    pr_mask(rp->ipRouteMask, maskbuf, sizeof (maskbuf)),
4835 		    pr_addrnz(rp->ipRouteNextHop, gwbuf, sizeof (gwbuf)),
4836 		    octetstr(&rp->ipRouteIfIndex, 'a', ifname, sizeof (ifname)),
4837 		    rp->ipRouteInfo.re_max_frag,
4838 		    rp->ipRouteInfo.re_ref,
4839 		    flags,
4840 		    rp->ipRouteInfo.re_obpkt,
4841 		    rp->ipRouteInfo.re_ibpkt,
4842 		    pr_secattr(attrs));
4843 	} else {
4844 		(void) printf(
4845 		    IRE_V4_DEST_F " " IRE_V4_GATEWAY_F " "
4846 		    IRE_V4_LFLAGS_F " " IRE_V4_LREF_F " "
4847 		    IRE_V4_USE_F " " IRE_V4_INTERFACE_F " %s\n",
4848 		    dstbuf,
4849 		    pr_addrnz(rp->ipRouteNextHop, gwbuf, sizeof (gwbuf)),
4850 		    flags,
4851 		    rp->ipRouteInfo.re_ref,
4852 		    rp->ipRouteInfo.re_obpkt + rp->ipRouteInfo.re_ibpkt,
4853 		    octetstr(&rp->ipRouteIfIndex, 'a',
4854 		    ifname, sizeof (ifname)),
4855 		    pr_secattr(attrs));
4856 	}
4857 	return (first);
4858 }
4859 
4860 /*
4861  * Match a user-supplied IP address list against an IPv6 route entry.
4862  * If the user specified "any," then any non-zero address matches.  If
4863  * the user specified "none," then only the zero address matches.  If
4864  * the user specified a subnet mask length, then use that in matching
4865  * routes (select routes that are at least as specific).  If the user
4866  * specified only an address, then use the route's mask (select routes
4867  * that would match that address).  IPv4 addresses are ignored.
4868  */
4869 static boolean_t
4870 v6_addr_match(const Ip6Address *addr, int masklen, const filter_t *fp)
4871 {
4872 	const uint8_t *ucp;
4873 	int fmasklen;
4874 	int i;
4875 	char **app;
4876 	const uint8_t *aptr;
4877 
4878 	if (fp->u.a.f_address == NULL) {
4879 		if (IN6_IS_ADDR_UNSPECIFIED(&fp->u.a.f_mask))	/* any */
4880 			return (!IN6_IS_ADDR_UNSPECIFIED(addr));
4881 		return (IN6_IS_ADDR_UNSPECIFIED(addr));		/* "none" */
4882 	}
4883 	fmasklen = 0;
4884 	for (ucp = fp->u.a.f_mask.s6_addr;
4885 	    ucp < fp->u.a.f_mask.s6_addr + sizeof (fp->u.a.f_mask.s6_addr);
4886 	    ucp++) {
4887 		if (*ucp != 0xff) {
4888 			if (*ucp != 0)
4889 				fmasklen += 9 - ffs(*ucp);
4890 			break;
4891 		}
4892 		fmasklen += 8;
4893 	}
4894 	if (fmasklen != IPV6_ABITS) {
4895 		if (fmasklen > masklen)
4896 			return (B_FALSE);
4897 		masklen = fmasklen;
4898 	}
4899 	for (app = fp->u.a.f_address->h_addr_list;
4900 	    (aptr = (uint8_t *)*app) != NULL; app++) {
4901 		if (IN6_IS_ADDR_V4MAPPED((in6_addr_t *)aptr))
4902 			continue;
4903 		ucp = addr->s6_addr;
4904 		for (i = masklen; i >= 8; i -= 8)
4905 			if (*ucp++ != *aptr++)
4906 				break;
4907 		if (i == 0 ||
4908 		    (i < 8 && ((*ucp ^ *aptr) & ~(0xff >> i)) == 0))
4909 			return (B_TRUE);
4910 	}
4911 	return (B_FALSE);
4912 }
4913 
4914 /*
4915  * Run through the filter list for an IPv6 MIB2 IRE.  For a given
4916  * type, if there's at least one filter and all filters of that type
4917  * fail to match, then the route doesn't match and isn't displayed.
4918  * If at least one matches, or none are specified, for each of the
4919  * types, then the route is selected and displayed.
4920  */
4921 static boolean_t
4922 ire_filter_match_v6(const mib2_ipv6RouteEntry_t *rp6, uint_t flag_b)
4923 {
4924 	filter_t *fp;
4925 	int idx;
4926 
4927 	for (idx = 0; idx < NFILTERKEYS; idx++)
4928 		if ((fp = filters[idx]) != NULL) {
4929 			for (; fp != NULL; fp = fp->f_next) {
4930 				switch (idx) {
4931 				case FK_AF:
4932 					if (fp->u.f_family != AF_INET6)
4933 						continue;
4934 					break;
4935 				case FK_OUTIF:
4936 					if (!dev_name_match(&rp6->
4937 					    ipv6RouteIfIndex, fp->u.f_ifname))
4938 						continue;
4939 					break;
4940 				case FK_DST:
4941 					if (!v6_addr_match(&rp6->ipv6RouteDest,
4942 					    rp6->ipv6RoutePfxLength, fp))
4943 						continue;
4944 					break;
4945 				case FK_FLAGS:
4946 					if ((flag_b & fp->u.f.f_flagset) !=
4947 					    fp->u.f.f_flagset ||
4948 					    (flag_b & fp->u.f.f_flagclear))
4949 						continue;
4950 					break;
4951 				}
4952 				break;
4953 			}
4954 			if (fp == NULL)
4955 				return (B_FALSE);
4956 		}
4957 	return (B_TRUE);
4958 }
4959 
4960 /*
4961  * Given an IPv6 MIB2 route entry, form the list of flags for the
4962  * route.
4963  */
4964 static uint_t
4965 form_v6_route_flags(const mib2_ipv6RouteEntry_t *rp6, char *flags)
4966 {
4967 	uint_t flag_b;
4968 
4969 	flag_b = FLF_U;
4970 	(void) strcpy(flags, "U");
4971 	/* RTF_INDIRECT wins over RTF_GATEWAY - don't display both */
4972 	if (rp6->ipv6RouteInfo.re_flags & RTF_INDIRECT) {
4973 		(void) strcat(flags, "I");
4974 		flag_b |= FLF_I;
4975 	} else if (rp6->ipv6RouteInfo.re_ire_type & IRE_OFFLINK) {
4976 		(void) strcat(flags, "G");
4977 		flag_b |= FLF_G;
4978 	}
4979 
4980 	/* IRE_IF_CLONE wins over RTF_HOST - don't display both */
4981 	if (rp6->ipv6RouteInfo.re_ire_type & IRE_IF_CLONE) {
4982 		(void) strcat(flags, "C");
4983 		flag_b |= FLF_C;
4984 	} else if (rp6->ipv6RoutePfxLength == IPV6_ABITS) {
4985 		(void) strcat(flags, "H");
4986 		flag_b |= FLF_H;
4987 	}
4988 
4989 	if (rp6->ipv6RouteInfo.re_flags & RTF_DYNAMIC) {
4990 		(void) strcat(flags, "D");
4991 		flag_b |= FLF_D;
4992 	}
4993 	if (rp6->ipv6RouteInfo.re_ire_type == IRE_LOCAL) {	/* Local */
4994 		(void) strcat(flags, "L");
4995 		flag_b |= FLF_L;
4996 	}
4997 	if (rp6->ipv6RouteInfo.re_flags & RTF_MULTIRT) {
4998 		(void) strcat(flags, "M");			/* Multiroute */
4999 		flag_b |= FLF_M;
5000 	}
5001 	if (rp6->ipv6RouteInfo.re_flags & RTF_SETSRC) {
5002 		(void) strcat(flags, "S");			/* Setsrc */
5003 		flag_b |= FLF_S;
5004 	}
5005 	if (rp6->ipv6RouteInfo.re_flags & RTF_REJECT) {
5006 		(void) strcat(flags, "R");
5007 		flag_b |= FLF_R;
5008 	}
5009 	if (rp6->ipv6RouteInfo.re_flags & RTF_BLACKHOLE) {
5010 		(void) strcat(flags, "B");
5011 		flag_b |= FLF_B;
5012 	}
5013 	if (rp6->ipv6RouteInfo.re_flags & RTF_ZONE) {
5014 		(void) strcat(flags, "Z");
5015 		flag_b |= FLF_Z;
5016 	}
5017 	return (flag_b);
5018 }
5019 
5020 /*
5021  * Central definitions for the columns used in the reports.
5022  * For each column, there's a definition for the heading, the underline and
5023  * the formatted value.
5024  * Since most reports select different columns depending on command line
5025  * options, defining everything here avoids duplication in the report
5026  * format strings and makes it easy to make changes as necessary.
5027  */
5028 #define	IRE_V6_DEST		"  Destination/Mask         "
5029 #define	IRE_V6_DEST_		"---------------------------"
5030 #define	IRE_V6_DEST_F		"%-27s"
5031 #define	IRE_V6_GATEWAY		"  Gateway                  "
5032 #define	IRE_V6_GATEWAY_		"---------------------------"
5033 #define	IRE_V6_GATEWAY_F	"%-27s"
5034 #define	IRE_V6_IF		" If  "
5035 #define	IRE_V6_IF_		"-----"
5036 #define	IRE_V6_IF_F		"%-5s"
5037 #define	IRE_V6_MTU		" MTU "
5038 #define	IRE_V6_MTU_		"-----"
5039 #define	IRE_V6_MTU_F		"%5u"
5040 #define	IRE_V6_REF		"Ref"
5041 #define	IRE_V6_REF_		"---"
5042 #define	IRE_V6_REF_F		"%3u"
5043 #define	IRE_V6_USE		"  Use  "
5044 #define	IRE_V6_USE_		"-------"
5045 #define	IRE_V6_USE_F		"%7u"
5046 #define	IRE_V6_FLAGS		"Flags"
5047 #define	IRE_V6_FLAGS_		"-----"
5048 #define	IRE_V6_FLAGS_F		"%-5s"
5049 #define	IRE_V6_OUT		" Out  "
5050 #define	IRE_V6_OUT_		"------"
5051 #define	IRE_V6_OUT_F		"%6u"
5052 #define	IRE_V6_INFWD		"In/Fwd"
5053 #define	IRE_V6_INFWD_		"------"
5054 #define	IRE_V6_INFWD_F		"%6u"
5055 
5056 static const char ire_hdr_v6[] =
5057 "\n%s Table: IPv6\n";
5058 static const char ire_hdr_v6_verbose[] =
5059     IRE_V6_DEST " " IRE_V6_GATEWAY " " IRE_V6_IF " " IRE_V6_MTU " "
5060     IRE_V6_REF " " IRE_V6_FLAGS " " IRE_V6_OUT " " IRE_V6_INFWD " %s\n"
5061     IRE_V6_DEST_" " IRE_V6_GATEWAY_" " IRE_V6_IF_" " IRE_V6_MTU_" "
5062     IRE_V6_REF_" " IRE_V6_FLAGS_" " IRE_V6_OUT_" " IRE_V6_INFWD_" %s\n";
5063 static const char ire_hdr_v6_normal[] =
5064     IRE_V6_DEST " " IRE_V6_GATEWAY " "
5065     IRE_V6_FLAGS " " IRE_V6_REF " " IRE_V6_USE " " IRE_V6_IF " %s\n"
5066     IRE_V6_DEST_" " IRE_V6_GATEWAY_" "
5067     IRE_V6_FLAGS_" " IRE_V6_REF_" " IRE_V6_USE_" " IRE_V6_IF_" %s\n";
5068 
5069 static boolean_t
5070 ire_report_item_v6(const mib2_ipv6RouteEntry_t *rp6, boolean_t first,
5071     const sec_attr_list_t *attrs)
5072 {
5073 	char			dstbuf[MAXHOSTNAMELEN + 1];
5074 	char			gwbuf[MAXHOSTNAMELEN + 1];
5075 	char			ifname[LIFNAMSIZ + 1];
5076 	char			flags[10];	/* RTF_ flags */
5077 	uint_t			flag_b;
5078 
5079 	if (!(Aflag || (rp6->ipv6RouteInfo.re_ire_type != IRE_IF_CLONE &&
5080 	    rp6->ipv6RouteInfo.re_ire_type != IRE_MULTICAST &&
5081 	    rp6->ipv6RouteInfo.re_ire_type != IRE_NOROUTE &&
5082 	    rp6->ipv6RouteInfo.re_ire_type != IRE_LOCAL))) {
5083 		return (first);
5084 	}
5085 
5086 	flag_b = form_v6_route_flags(rp6, flags);
5087 
5088 	if (!ire_filter_match_v6(rp6, flag_b))
5089 		return (first);
5090 
5091 	if (first) {
5092 		(void) printf(ire_hdr_v6, Vflag ? "IRE" : "Routing");
5093 		(void) printf(Vflag ? ire_hdr_v6_verbose : ire_hdr_v6_normal,
5094 		    RSECflag ? "  Gateway security attributes  " : "",
5095 		    RSECflag ? "-------------------------------" : "");
5096 		first = B_FALSE;
5097 	}
5098 
5099 	if (Vflag) {
5100 		(void) printf(
5101 		    IRE_V6_DEST_F " " IRE_V6_GATEWAY_F " "
5102 		    IRE_V6_IF_F " " IRE_V6_MTU_F " " IRE_V6_REF_F " "
5103 		    IRE_V6_FLAGS_F " " IRE_V6_OUT_F " " IRE_V6_INFWD_F " %s\n",
5104 		    pr_prefix6(&rp6->ipv6RouteDest,
5105 		    rp6->ipv6RoutePfxLength, dstbuf, sizeof (dstbuf)),
5106 		    IN6_IS_ADDR_UNSPECIFIED(&rp6->ipv6RouteNextHop) ?
5107 		    "    --" :
5108 		    pr_addr6(&rp6->ipv6RouteNextHop, gwbuf, sizeof (gwbuf)),
5109 		    octetstr(&rp6->ipv6RouteIfIndex, 'a',
5110 		    ifname, sizeof (ifname)),
5111 		    rp6->ipv6RouteInfo.re_max_frag,
5112 		    rp6->ipv6RouteInfo.re_ref,
5113 		    flags,
5114 		    rp6->ipv6RouteInfo.re_obpkt,
5115 		    rp6->ipv6RouteInfo.re_ibpkt,
5116 		    pr_secattr(attrs));
5117 	} else {
5118 		(void) printf(
5119 		    IRE_V6_DEST_F " " IRE_V6_GATEWAY_F " "
5120 		    IRE_V6_FLAGS_F " " IRE_V6_REF_F " "
5121 		    IRE_V6_USE_F " " IRE_V6_IF_F " %s\n",
5122 		    pr_prefix6(&rp6->ipv6RouteDest,
5123 		    rp6->ipv6RoutePfxLength, dstbuf, sizeof (dstbuf)),
5124 		    IN6_IS_ADDR_UNSPECIFIED(&rp6->ipv6RouteNextHop) ?
5125 		    "    --" :
5126 		    pr_addr6(&rp6->ipv6RouteNextHop, gwbuf, sizeof (gwbuf)),
5127 		    flags,
5128 		    rp6->ipv6RouteInfo.re_ref,
5129 		    rp6->ipv6RouteInfo.re_obpkt + rp6->ipv6RouteInfo.re_ibpkt,
5130 		    octetstr(&rp6->ipv6RouteIfIndex, 'a',
5131 		    ifname, sizeof (ifname)),
5132 		    pr_secattr(attrs));
5133 	}
5134 	return (first);
5135 }
5136 
5137 /*
5138  * Common attribute-gathering routine for all transports.
5139  */
5140 static mib2_transportMLPEntry_t **
5141 gather_attrs(const mib_item_t *item, int group, int mib_id, int esize)
5142 {
5143 	size_t transport_count = 0;
5144 	const mib_item_t *iptr;
5145 	mib2_transportMLPEntry_t **attrs, *tme;
5146 
5147 	for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
5148 		if (iptr->group == group && iptr->mib_id == mib_id) {
5149 			size_t els = iptr->length / esize;
5150 			if (transport_count > SIZE_MAX - els) {
5151 				fprintf(stderr, "Connection table too large\n");
5152 				return (NULL);
5153 			} else {
5154 				transport_count += els;
5155 			}
5156 		}
5157 	}
5158 
5159 	if (transport_count == 0)
5160 		return (NULL);
5161 
5162 	attrs = recallocarray(NULL, 0, transport_count, sizeof (*attrs));
5163 
5164 	if (attrs == NULL) {
5165 		perror("gather_attrs allocation failed");
5166 		return (NULL);
5167 	}
5168 
5169 	for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
5170 		if (iptr->group == group && iptr->mib_id == EXPER_XPORT_MLP) {
5171 			for (tme = iptr->valp;
5172 			    (char *)tme < (char *)iptr->valp + iptr->length;
5173 			    tme = (mib2_transportMLPEntry_t *)((char *)tme +
5174 			    transportMLPSize)) {
5175 				attrs[tme->tme_connidx] = tme;
5176 			}
5177 		}
5178 	}
5179 	return (attrs);
5180 }
5181 
5182 static void
5183 sie_report(const mib2_socketInfoEntry_t *sie)
5184 {
5185 	if (sie == NULL)
5186 		return;
5187 
5188 	(void) printf("INFO[%" PRIu64 "] = "
5189 	    "inode %" PRIu64 ", "
5190 	    "major %" PRIx32 ", "
5191 	    "flags %#" PRIx64 "\n",
5192 	    sie->sie_connidx, sie->sie_inode,
5193 	    major((dev_t)sie->sie_dev), sie->sie_flags);
5194 }
5195 
5196 /*
5197  * Common info-gathering routine for all transports.
5198  *
5199  * The linked list of MIB data pointed to by item consists of a number of
5200  * tables covering several protocol families and socket types, one after
5201  * another. These are generally tables containing information about network
5202  * connections, such as mib2_tcpConnEntry, as defined in RFC 1213/4022.
5203  *
5204  * There are also ancilliary tables which contain optional additional
5205  * information about each socket. The data in these ancilliary tables is
5206  * indexed by the table position of the connection to which it relates, and
5207  * data may not be available for all connections.
5208  *
5209  * The code here determines the size of the connection table, allocates an
5210  * array of that size to hold the ancilliary data and then fills that in
5211  * if data is present.
5212  *
5213  * As an example, if the data contains a mib2_tcpConnEntry table containing
5214  * three connections, but there is no ancilliary data for the second, then
5215  * the accompanying mib2_socketInfoEntry table will only contain two entries.
5216  * However, the first entry is tagged as referring to connection slot 0, and
5217  * the second is tagged with connection slot 2.
5218  * This function would return an array with:
5219  * { <data for conn0>, NULL, <data for conn2> }
5220  *
5221  */
5222 static mib2_socketInfoEntry_t **
5223 gather_info(const mib_item_t *item, int group, int mib_id, int esize)
5224 {
5225 	size_t transport_count = 0;
5226 	const mib_item_t *iptr;
5227 	mib2_socketInfoEntry_t **info, *sie;
5228 
5229 	for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
5230 		if (iptr->group == group && iptr->mib_id == mib_id) {
5231 			size_t els = iptr->length / esize;
5232 			if (transport_count > SIZE_MAX - els) {
5233 				fprintf(stderr, "Connection table too large\n");
5234 				return (NULL);
5235 			} else {
5236 				transport_count += els;
5237 			}
5238 		}
5239 	}
5240 
5241 	if (transport_count == 0)
5242 		return (NULL);
5243 
5244 	info = recallocarray(NULL, 0, transport_count, sizeof (*info));
5245 
5246 	if (info == NULL) {
5247 		perror("gather_info allocation failed");
5248 		return (NULL);
5249 	}
5250 
5251 	for (iptr = item; iptr != NULL; iptr = iptr->next_item) {
5252 		if (iptr->group != group || iptr->mib_id != EXPER_SOCK_INFO)
5253 			continue;
5254 
5255 		for (sie = (mib2_socketInfoEntry_t *)iptr->valp;
5256 		    (uintptr_t)sie < (uintptr_t)iptr->valp + iptr->length;
5257 		    sie++) {
5258 			assert(sie->sie_connidx < transport_count);
5259 			info[sie->sie_connidx] = sie;
5260 		}
5261 	}
5262 	return (info);
5263 }
5264 
5265 static void
5266 print_transport_label(const mib2_transportMLPEntry_t *attr)
5267 {
5268 	if (!RSECflag || attr == NULL ||
5269 	    !(attr->tme_flags & MIB2_TMEF_IS_LABELED))
5270 		return;
5271 
5272 	if (bisinvalid(&attr->tme_label)) {
5273 		(void) printf("   INVALID\n");
5274 	} else if (!blequal(&attr->tme_label, zone_security_label)) {
5275 		char *sl_str;
5276 
5277 		sl_str = sl_to_str(&attr->tme_label);
5278 		(void) printf("   %s\n", sl_str);
5279 		free(sl_str);
5280 	}
5281 }
5282 
5283 /* ------------------------------ TCP_REPORT------------------------------- */
5284 
5285 static const char tcp_hdr_v4[] =
5286 "\nTCP: IPv4\n";
5287 static const char tcp_hdr_v4_compat[] =
5288 "\nTCP\n";
5289 
5290 /*
5291  * Central definitions for the columns used in the reports.
5292  * For each column, there's a definition for the heading, the underline and
5293  * the formatted value.
5294  * Since most reports select different columns depending on command line
5295  * options, defining everything here avoids duplication in the report
5296  * format strings and makes it easy to make changes as necessary.
5297  */
5298 #define	TCP_V4_LOCAL		"   Local Address    "
5299 #define	TCP_V4_LOCAL_		"--------------------"
5300 #define	TCP_V4_LOCAL_F		"%-20s"
5301 #define	TCP_V4_REMOTE		"   Remote Address   "
5302 #define	TCP_V4_REMOTE_		"--------------------"
5303 #define	TCP_V4_REMOTE_F		"%-20s"
5304 #define	TCP_V4_ADDRESS		"Local/Remote Address"
5305 #define	TCP_V4_ADDRESS_		"--------------------"
5306 #define	TCP_V4_ADDRESS_F	"%-20s"
5307 #define	TCP_V4_SWIND		"Swind "
5308 #define	TCP_V4_SWIND_		"------"
5309 #define	TCP_V4_SWIND_F		"%6u"
5310 #define	TCP_V4_SENDQ		"Send-Q"
5311 #define	TCP_V4_SENDQ_		"------"
5312 #define	TCP_V4_SENDQ_F		"%6" PRId64
5313 #define	TCP_V4_RWIND		"Rwind "
5314 #define	TCP_V4_RWIND_		"------"
5315 #define	TCP_V4_RWIND_F		"%6u"
5316 #define	TCP_V4_RECVQ		"Recv-Q"
5317 #define	TCP_V4_RECVQ_		"------"
5318 #define	TCP_V4_RECVQ_F		"%6" PRId64
5319 #define	TCP_V4_SNEXT		" Snext  "
5320 #define	TCP_V4_SNEXT_		"--------"
5321 #define	TCP_V4_SNEXT_F		"%08x"
5322 #define	TCP_V4_SUNA		"  Suna  "
5323 #define	TCP_V4_SUNA_		"--------"
5324 #define	TCP_V4_SUNA_F		"%08x"
5325 #define	TCP_V4_RNEXT		" Rnext  "
5326 #define	TCP_V4_RNEXT_		"--------"
5327 #define	TCP_V4_RNEXT_F		"%08x"
5328 #define	TCP_V4_RACK		"  Rack  "
5329 #define	TCP_V4_RACK_		"--------"
5330 #define	TCP_V4_RACK_F		"%08x"
5331 #define	TCP_V4_RTO		" Rto "
5332 #define	TCP_V4_RTO_		"-----"
5333 #define	TCP_V4_RTO_F		"%5u"
5334 #define	TCP_V4_MSS		" Mss "
5335 #define	TCP_V4_MSS_		"-----"
5336 #define	TCP_V4_MSS_F		"%5u"
5337 #define	TCP_V4_STATE		"   State   "
5338 #define	TCP_V4_STATE_		"-----------"
5339 #define	TCP_V4_STATE_F		"%-11s"
5340 #define	TCP_V4_USER		"  User  "
5341 #define	TCP_V4_USER_		"--------"
5342 #define	TCP_V4_USER_F		"%-8.8s"
5343 #define	TCP_V4_PID		" Pid  "
5344 #define	TCP_V4_PID_		"------"
5345 #define	TCP_V4_PID_F		"%6s"
5346 #define	TCP_V4_COMMAND		"   Command    "
5347 #define	TCP_V4_COMMAND_		"--------------"
5348 #define	TCP_V4_COMMAND_F	"%-14.14s"
5349 
5350 static const char tcp_hdr_v4_normal[] =
5351     TCP_V4_LOCAL " " TCP_V4_REMOTE " "
5352     TCP_V4_SWIND " " TCP_V4_SENDQ " " TCP_V4_RWIND " " TCP_V4_RECVQ " "
5353     TCP_V4_STATE "\n"
5354     TCP_V4_LOCAL_" " TCP_V4_REMOTE_" "
5355     TCP_V4_SWIND_" " TCP_V4_SENDQ_" " TCP_V4_RWIND_" " TCP_V4_RECVQ_" "
5356     TCP_V4_STATE_"\n";
5357 static const char tcp_hdr_v4_normal_pid[] =
5358     TCP_V4_LOCAL " " TCP_V4_REMOTE " "
5359     TCP_V4_USER " " TCP_V4_PID " " TCP_V4_COMMAND " "
5360     TCP_V4_SWIND " " TCP_V4_SENDQ " " TCP_V4_RWIND " " TCP_V4_RECVQ " "
5361     TCP_V4_STATE "\n"
5362     TCP_V4_LOCAL_" " TCP_V4_REMOTE_" "
5363     TCP_V4_USER_" " TCP_V4_PID_" " TCP_V4_COMMAND_" "
5364     TCP_V4_SWIND_" " TCP_V4_SENDQ_" " TCP_V4_RWIND_" " TCP_V4_RECVQ_" "
5365     TCP_V4_STATE_"\n";
5366 static const char tcp_hdr_v4_verbose[] =
5367     TCP_V4_ADDRESS " "
5368     TCP_V4_SWIND " " TCP_V4_SNEXT " " TCP_V4_SUNA " "
5369     TCP_V4_RWIND " " TCP_V4_RNEXT " " TCP_V4_RACK " "
5370     TCP_V4_RTO " " TCP_V4_MSS " " TCP_V4_STATE "\n"
5371     TCP_V4_ADDRESS_" "
5372     TCP_V4_SWIND_" " TCP_V4_SNEXT_" " TCP_V4_SUNA_" "
5373     TCP_V4_RWIND_" " TCP_V4_RNEXT_" " TCP_V4_RACK_" "
5374     TCP_V4_RTO_" " TCP_V4_MSS_" " TCP_V4_STATE_"\n";
5375 static const char tcp_hdr_v4_verbose_pid[] =
5376     TCP_V4_ADDRESS " "
5377     TCP_V4_SWIND " " TCP_V4_SNEXT " " TCP_V4_SUNA " "
5378     TCP_V4_RWIND " " TCP_V4_RNEXT " " TCP_V4_RACK " "
5379     TCP_V4_RTO " " TCP_V4_MSS " " TCP_V4_STATE " "
5380     TCP_V4_USER " " TCP_V4_PID " " TCP_V4_COMMAND "\n"
5381     TCP_V4_ADDRESS_" "
5382     TCP_V4_SWIND_" " TCP_V4_SNEXT_" " TCP_V4_SUNA_" "
5383     TCP_V4_RWIND_" " TCP_V4_RNEXT_" " TCP_V4_RACK_" "
5384     TCP_V4_RTO_" " TCP_V4_MSS_" " TCP_V4_STATE_" "
5385     TCP_V4_USER_" " TCP_V4_PID_" " TCP_V4_COMMAND_"\n";
5386 
5387 #define	TCP_V6_LOCAL		"   Local Address                 "
5388 #define	TCP_V6_LOCAL_		"---------------------------------"
5389 #define	TCP_V6_LOCAL_F		"%-33s"
5390 #define	TCP_V6_REMOTE		"   Remote Address                "
5391 #define	TCP_V6_REMOTE_		"---------------------------------"
5392 #define	TCP_V6_REMOTE_F		"%-33s"
5393 #define	TCP_V6_ADDRESS		"Local/Remote Address             "
5394 #define	TCP_V6_ADDRESS_		"---------------------------------"
5395 #define	TCP_V6_ADDRESS_F	"%-33s"
5396 #define	TCP_V6_IF		"  If "
5397 #define	TCP_V6_IF_		"-----"
5398 #define	TCP_V6_IF_F		"%-5.5s"
5399 #define	TCP_V6_SWIND		TCP_V4_SWIND
5400 #define	TCP_V6_SWIND_		TCP_V4_SWIND_
5401 #define	TCP_V6_SWIND_F		TCP_V4_SWIND_F
5402 #define	TCP_V6_SENDQ		TCP_V4_SENDQ
5403 #define	TCP_V6_SENDQ_		TCP_V4_SENDQ_
5404 #define	TCP_V6_SENDQ_F		TCP_V4_SENDQ_F
5405 #define	TCP_V6_RWIND		TCP_V4_RWIND
5406 #define	TCP_V6_RWIND_		TCP_V4_RWIND_
5407 #define	TCP_V6_RWIND_F		TCP_V4_RWIND_F
5408 #define	TCP_V6_RECVQ		TCP_V4_RECVQ
5409 #define	TCP_V6_RECVQ_		TCP_V4_RECVQ_
5410 #define	TCP_V6_RECVQ_F		TCP_V4_RECVQ_F
5411 #define	TCP_V6_SNEXT		TCP_V4_SNEXT
5412 #define	TCP_V6_SNEXT_		TCP_V4_SNEXT_
5413 #define	TCP_V6_SNEXT_F		TCP_V4_SNEXT_F
5414 #define	TCP_V6_SUNA		TCP_V4_SUNA
5415 #define	TCP_V6_SUNA_		TCP_V4_SUNA_
5416 #define	TCP_V6_SUNA_F		TCP_V4_SUNA_F
5417 #define	TCP_V6_RNEXT		TCP_V4_RNEXT
5418 #define	TCP_V6_RNEXT_		TCP_V4_RNEXT_
5419 #define	TCP_V6_RNEXT_F		TCP_V4_RNEXT_F
5420 #define	TCP_V6_RACK		TCP_V4_RACK
5421 #define	TCP_V6_RACK_		TCP_V4_RACK_
5422 #define	TCP_V6_RACK_F		TCP_V4_RACK_F
5423 #define	TCP_V6_RTO		TCP_V4_RTO
5424 #define	TCP_V6_RTO_		TCP_V4_RTO_
5425 #define	TCP_V6_RTO_F		TCP_V4_RTO_F
5426 #define	TCP_V6_MSS		TCP_V4_MSS
5427 #define	TCP_V6_MSS_		TCP_V4_MSS_
5428 #define	TCP_V6_MSS_F		TCP_V4_MSS_F
5429 #define	TCP_V6_STATE		TCP_V4_STATE
5430 #define	TCP_V6_STATE_		TCP_V4_STATE_
5431 #define	TCP_V6_STATE_F		TCP_V4_STATE_F
5432 #define	TCP_V6_USER		TCP_V4_USER
5433 #define	TCP_V6_USER_		TCP_V4_USER_
5434 #define	TCP_V6_USER_F		TCP_V4_USER_F
5435 #define	TCP_V6_PID		TCP_V4_PID
5436 #define	TCP_V6_PID_		TCP_V4_PID_
5437 #define	TCP_V6_PID_F		TCP_V4_PID_F
5438 #define	TCP_V6_COMMAND		TCP_V4_COMMAND
5439 #define	TCP_V6_COMMAND_		TCP_V4_COMMAND_
5440 #define	TCP_V6_COMMAND_F	TCP_V4_COMMAND_F
5441 
5442 static const char tcp_hdr_v6[] =
5443 "\nTCP: IPv6\n";
5444 static const char tcp_hdr_v6_normal[] =
5445     TCP_V6_LOCAL " " TCP_V6_REMOTE " "
5446     TCP_V6_SWIND " " TCP_V6_SENDQ " " TCP_V6_RWIND " " TCP_V6_RECVQ " "
5447     TCP_V6_STATE " " TCP_V6_IF "\n"
5448     TCP_V6_LOCAL_" " TCP_V6_REMOTE_" "
5449     TCP_V6_SWIND_" " TCP_V6_SENDQ_" " TCP_V6_RWIND_" " TCP_V6_RECVQ_" "
5450     TCP_V6_STATE_" " TCP_V6_IF_"\n";
5451 static const char tcp_hdr_v6_normal_pid[] =
5452     TCP_V6_LOCAL " " TCP_V6_REMOTE " "
5453     TCP_V6_USER " " TCP_V6_PID " " TCP_V6_COMMAND " "
5454     TCP_V6_SWIND " " TCP_V6_SENDQ " " TCP_V6_RWIND " " TCP_V6_RECVQ " "
5455     TCP_V6_STATE " " TCP_V6_IF "\n"
5456     TCP_V6_LOCAL_" " TCP_V6_REMOTE_" "
5457     TCP_V6_USER_" " TCP_V6_PID_" " TCP_V6_COMMAND_" "
5458     TCP_V6_SWIND_" " TCP_V6_SENDQ_" " TCP_V6_RWIND_" " TCP_V6_RECVQ_" "
5459     TCP_V6_STATE_" " TCP_V6_IF_"\n";
5460 static const char tcp_hdr_v6_verbose[] =
5461     TCP_V6_ADDRESS " "
5462     TCP_V6_SWIND " " TCP_V6_SNEXT " " TCP_V6_SUNA " "
5463     TCP_V6_RWIND " " TCP_V6_RNEXT " " TCP_V6_RACK " "
5464     TCP_V6_RTO " " TCP_V6_MSS " " TCP_V6_STATE " " TCP_V6_IF "\n"
5465     TCP_V6_ADDRESS_" "
5466     TCP_V6_SWIND_" " TCP_V6_SNEXT_" " TCP_V6_SUNA_" "
5467     TCP_V6_RWIND_" " TCP_V6_RNEXT_" " TCP_V6_RACK_" "
5468     TCP_V6_RTO_" " TCP_V6_MSS_" " TCP_V6_STATE_" " TCP_V6_IF_"\n";
5469 static const char tcp_hdr_v6_verbose_pid[] =
5470     TCP_V6_ADDRESS " "
5471     TCP_V6_SWIND " " TCP_V6_SNEXT " " TCP_V6_SUNA " "
5472     TCP_V6_RWIND " " TCP_V6_RNEXT " " TCP_V6_RACK " "
5473     TCP_V6_RTO " " TCP_V6_MSS " " TCP_V6_STATE " " TCP_V6_IF " "
5474     TCP_V6_USER " " TCP_V6_PID " " TCP_V6_COMMAND "\n"
5475     TCP_V6_ADDRESS_" "
5476     TCP_V6_SWIND_" " TCP_V6_SNEXT_" " TCP_V6_SUNA_" "
5477     TCP_V6_RWIND_" " TCP_V6_RNEXT_" " TCP_V6_RACK_" "
5478     TCP_V6_RTO_" " TCP_V6_MSS_" " TCP_V6_STATE_" " TCP_V6_IF_" "
5479     TCP_V6_USER_" " TCP_V6_PID_" " TCP_V6_COMMAND_"\n";
5480 
5481 static boolean_t tcp_report_item_v4(const mib2_tcpConnEntry_t *,
5482     boolean_t first, const mib2_transportMLPEntry_t *,
5483     const mib2_socketInfoEntry_t *);
5484 static boolean_t tcp_report_item_v6(const mib2_tcp6ConnEntry_t *,
5485     boolean_t first, const mib2_transportMLPEntry_t *,
5486     const mib2_socketInfoEntry_t *);
5487 
5488 static void
5489 tcp_report(const mib_item_t *item)
5490 {
5491 	int				jtemp = 0;
5492 	boolean_t			print_hdr_once_v4 = B_TRUE;
5493 	boolean_t			print_hdr_once_v6 = B_TRUE;
5494 	mib2_tcpConnEntry_t		*tp;
5495 	mib2_tcp6ConnEntry_t		*tp6;
5496 	mib2_transportMLPEntry_t	**v4_attrs, **v6_attrs, **v4a, **v6a;
5497 	mib2_transportMLPEntry_t	*aptr;
5498 	mib2_socketInfoEntry_t		**v4_info, **v6_info, **v4i, **v6i;
5499 	mib2_socketInfoEntry_t		*iptr;
5500 
5501 	if (!protocol_selected(IPPROTO_TCP))
5502 		return;
5503 
5504 	/*
5505 	 * Preparation pass: the kernel returns separate entries for TCP
5506 	 * connection table entries, Multilevel Port attributes and extra
5507 	 * socket information.  We loop through the attributes first and set up
5508 	 * an array for each address family.
5509 	 */
5510 	v4_attrs = family_selected(AF_INET) && RSECflag ?
5511 	    gather_attrs(item, MIB2_TCP, MIB2_TCP_CONN, tcpConnEntrySize) :
5512 	    NULL;
5513 	v6_attrs = family_selected(AF_INET6) && RSECflag ?
5514 	    gather_attrs(item, MIB2_TCP6, MIB2_TCP6_CONN, tcp6ConnEntrySize) :
5515 	    NULL;
5516 
5517 	v4_info = Uflag && family_selected(AF_INET) ?
5518 	    gather_info(item, MIB2_TCP, MIB2_TCP_CONN, tcpConnEntrySize) :
5519 	    NULL;
5520 	v6_info = Uflag && family_selected(AF_INET6) ?
5521 	    gather_info(item, MIB2_TCP6, MIB2_TCP6_CONN, tcp6ConnEntrySize) :
5522 	    NULL;
5523 
5524 	v4a = v4_attrs;
5525 	v6a = v6_attrs;
5526 	v4i = v4_info;
5527 	v6i = v6_info;
5528 	for (; item != NULL; item = item->next_item) {
5529 		if (Xflag) {
5530 			(void) printf("[%4d] Group = %d, mib_id = %d, "
5531 			    "length = %d, valp = 0x%p\n", jtemp++,
5532 			    item->group, item->mib_id,
5533 			    item->length, item->valp);
5534 		}
5535 
5536 		if (!((item->group == MIB2_TCP &&
5537 		    item->mib_id == MIB2_TCP_CONN) ||
5538 		    (item->group == MIB2_TCP6 &&
5539 		    item->mib_id == MIB2_TCP6_CONN)))
5540 			continue;
5541 
5542 		if (item->group == MIB2_TCP && !family_selected(AF_INET))
5543 			continue;
5544 		if (item->group == MIB2_TCP6 && !family_selected(AF_INET6))
5545 			continue;
5546 
5547 		if (item->group == MIB2_TCP) {
5548 			for (tp = (mib2_tcpConnEntry_t *)item->valp;
5549 			    (char *)tp < (char *)item->valp + item->length;
5550 			    tp = (mib2_tcpConnEntry_t *)((char *)tp +
5551 			    tcpConnEntrySize)) {
5552 				aptr = v4a == NULL ? NULL : *v4a++;
5553 				iptr = v4i == NULL ? NULL : *v4i++;
5554 				print_hdr_once_v4 = tcp_report_item_v4(tp,
5555 				    print_hdr_once_v4, aptr, iptr);
5556 			}
5557 		} else {
5558 			for (tp6 = (mib2_tcp6ConnEntry_t *)item->valp;
5559 			    (char *)tp6 < (char *)item->valp + item->length;
5560 			    tp6 = (mib2_tcp6ConnEntry_t *)((char *)tp6 +
5561 			    tcp6ConnEntrySize)) {
5562 				aptr = v6a == NULL ? NULL : *v6a++;
5563 				iptr = v6i == NULL ? NULL : *v6i++;
5564 				print_hdr_once_v6 = tcp_report_item_v6(tp6,
5565 				    print_hdr_once_v6, aptr, iptr);
5566 			}
5567 		}
5568 	}
5569 	(void) fflush(stdout);
5570 
5571 	free(v4_attrs);
5572 	free(v6_attrs);
5573 	free(v4_info);
5574 	free(v6_info);
5575 }
5576 
5577 static boolean_t
5578 tcp_report_item_v4(const mib2_tcpConnEntry_t *tp, boolean_t first,
5579     const mib2_transportMLPEntry_t *attr, const mib2_socketInfoEntry_t *sie)
5580 {
5581 	/*
5582 	 * lname and fname below are for the hostname as well as the portname
5583 	 * There is no limit on portname length so we assume MAXHOSTNAMELEN
5584 	 * as the limit
5585 	 */
5586 	char	lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5587 	char	fname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5588 	proc_fdinfo_t	*ph;
5589 
5590 	if (!(Aflag || tp->tcpConnEntryInfo.ce_state >= TCPS_ESTABLISHED))
5591 		return (first); /* Nothing to print */
5592 
5593 	if (first) {
5594 		(void) printf(v4compat ? tcp_hdr_v4_compat : tcp_hdr_v4);
5595 		if (Vflag)
5596 			(void) printf(Uflag ? tcp_hdr_v4_verbose_pid :
5597 			    tcp_hdr_v4_verbose);
5598 		else
5599 			(void) printf(Uflag ? tcp_hdr_v4_normal_pid :
5600 			    tcp_hdr_v4_normal);
5601 	}
5602 
5603 	int64_t sq = (int64_t)tp->tcpConnEntryInfo.ce_snxt -
5604 	    (int64_t)tp->tcpConnEntryInfo.ce_suna - 1;
5605 	int64_t rq = (int64_t)tp->tcpConnEntryInfo.ce_rnxt -
5606 	    (int64_t)tp->tcpConnEntryInfo.ce_rack;
5607 
5608 	if (Xflag)
5609 		sie_report(sie);
5610 
5611 	if (Uflag) {
5612 		ph = process_hash_get(sie, SOCK_STREAM, AF_INET);
5613 		if (ph->ph_pid == 0 && sie != NULL &&
5614 		    (sie->sie_flags & MIB2_SOCKINFO_IPV6)) {
5615 			ph = process_hash_get(sie, SOCK_STREAM, AF_INET6);
5616 		}
5617 	}
5618 
5619 	if (!Uflag && Vflag) {
5620 		(void) printf(
5621 		    TCP_V4_LOCAL_F "\n" TCP_V4_REMOTE_F " "
5622 		    TCP_V4_SWIND_F " " TCP_V4_SNEXT_F " "
5623 		    TCP_V4_SUNA_F " " TCP_V4_RWIND_F " "
5624 		    TCP_V4_RNEXT_F " " TCP_V4_RACK_F " "
5625 		    TCP_V4_RTO_F " " TCP_V4_MSS_F " %s\n",
5626 		    pr_ap(tp->tcpConnLocalAddress,
5627 		    tp->tcpConnLocalPort, "tcp", lname, sizeof (lname)),
5628 		    pr_ap(tp->tcpConnRemAddress,
5629 		    tp->tcpConnRemPort, "tcp", fname, sizeof (fname)),
5630 		    tp->tcpConnEntryInfo.ce_swnd,
5631 		    tp->tcpConnEntryInfo.ce_snxt,
5632 		    tp->tcpConnEntryInfo.ce_suna,
5633 		    tp->tcpConnEntryInfo.ce_rwnd,
5634 		    tp->tcpConnEntryInfo.ce_rnxt,
5635 		    tp->tcpConnEntryInfo.ce_rack,
5636 		    tp->tcpConnEntryInfo.ce_rto,
5637 		    tp->tcpConnEntryInfo.ce_mss,
5638 		    mitcp_state(tp->tcpConnEntryInfo.ce_state, attr));
5639 	} else if (!Uflag) {
5640 		(void) printf(
5641 		    TCP_V4_LOCAL_F " " TCP_V4_REMOTE_F " "
5642 		    TCP_V4_SWIND_F " " TCP_V4_SENDQ_F " "
5643 		    TCP_V4_RWIND_F " " TCP_V4_RECVQ_F " %s\n",
5644 		    pr_ap(tp->tcpConnLocalAddress,
5645 		    tp->tcpConnLocalPort, "tcp", lname, sizeof (lname)),
5646 		    pr_ap(tp->tcpConnRemAddress,
5647 		    tp->tcpConnRemPort, "tcp", fname, sizeof (fname)),
5648 		    tp->tcpConnEntryInfo.ce_swnd,
5649 		    (sq >= 0) ? sq : 0,
5650 		    tp->tcpConnEntryInfo.ce_rwnd,
5651 		    (rq >= 0) ? rq : 0,
5652 		    mitcp_state(tp->tcpConnEntryInfo.ce_state, attr));
5653 	} else if (Uflag && Vflag) {
5654 		for (; ph != NULL; ph = ph->ph_next_proc) {
5655 			(void) printf(
5656 			    TCP_V4_LOCAL_F "\n" TCP_V4_REMOTE_F " "
5657 			    TCP_V4_SWIND_F " " TCP_V4_SNEXT_F " "
5658 			    TCP_V4_SUNA_F " " TCP_V4_RWIND_F " "
5659 			    TCP_V4_RNEXT_F " " TCP_V4_RACK_F " "
5660 			    TCP_V4_RTO_F " " TCP_V4_MSS_F " "
5661 			    TCP_V4_STATE_F " " TCP_V4_USER_F " "
5662 			    TCP_V4_PID_F " %s\n",
5663 			    pr_ap(tp->tcpConnLocalAddress,
5664 			    tp->tcpConnLocalPort, "tcp", lname, sizeof (lname)),
5665 			    pr_ap(tp->tcpConnRemAddress,
5666 			    tp->tcpConnRemPort, "tcp", fname, sizeof (fname)),
5667 			    tp->tcpConnEntryInfo.ce_swnd,
5668 			    tp->tcpConnEntryInfo.ce_snxt,
5669 			    tp->tcpConnEntryInfo.ce_suna,
5670 			    tp->tcpConnEntryInfo.ce_rwnd,
5671 			    tp->tcpConnEntryInfo.ce_rnxt,
5672 			    tp->tcpConnEntryInfo.ce_rack,
5673 			    tp->tcpConnEntryInfo.ce_rto,
5674 			    tp->tcpConnEntryInfo.ce_mss,
5675 			    mitcp_state(tp->tcpConnEntryInfo.ce_state, attr),
5676 			    ph->ph_username, ph->ph_pidstr, ph->ph_psargs);
5677 		}
5678 	} else if (Uflag) {
5679 		for (; ph != NULL; ph = ph->ph_next_proc) {
5680 			(void) printf(
5681 			    TCP_V4_LOCAL_F " " TCP_V4_REMOTE_F " "
5682 			    TCP_V4_USER_F " "TCP_V4_PID_F " "
5683 			    TCP_V4_COMMAND_F " "
5684 			    TCP_V4_SWIND_F " " TCP_V4_SENDQ_F " "
5685 			    TCP_V4_RWIND_F " " TCP_V4_RECVQ_F " %s\n",
5686 			    pr_ap(tp->tcpConnLocalAddress,
5687 			    tp->tcpConnLocalPort, "tcp", lname, sizeof (lname)),
5688 			    pr_ap(tp->tcpConnRemAddress,
5689 			    tp->tcpConnRemPort, "tcp", fname, sizeof (fname)),
5690 			    ph->ph_username, ph->ph_pidstr, ph->ph_fname,
5691 			    tp->tcpConnEntryInfo.ce_swnd,
5692 			    (sq >= 0) ? sq : 0,
5693 			    tp->tcpConnEntryInfo.ce_rwnd,
5694 			    (rq >= 0) ? rq : 0,
5695 			    mitcp_state(tp->tcpConnEntryInfo.ce_state, attr));
5696 		}
5697 	}
5698 
5699 	print_transport_label(attr);
5700 
5701 	return (B_FALSE);
5702 }
5703 
5704 static boolean_t
5705 tcp_report_item_v6(const mib2_tcp6ConnEntry_t *tp6, boolean_t first,
5706     const mib2_transportMLPEntry_t *attr, const mib2_socketInfoEntry_t *sie)
5707 {
5708 	/*
5709 	 * lname and fname below are for the hostname as well as the portname
5710 	 * There is no limit on portname length so we assume MAXHOSTNAMELEN
5711 	 * as the limit
5712 	 */
5713 	char	lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5714 	char	fname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
5715 	char	ifname[LIFNAMSIZ + 1];
5716 	char	*ifnamep;
5717 	proc_fdinfo_t	*ph;
5718 
5719 	if (!(Aflag || tp6->tcp6ConnEntryInfo.ce_state >= TCPS_ESTABLISHED))
5720 		return (first); /* Nothing to print */
5721 
5722 	if (first) {
5723 		(void) printf(tcp_hdr_v6);
5724 		if (Vflag)
5725 			(void) printf(Uflag ? tcp_hdr_v6_verbose_pid :
5726 			    tcp_hdr_v6_verbose);
5727 		else
5728 			(void) printf(Uflag ? tcp_hdr_v6_normal_pid :
5729 			    tcp_hdr_v6_normal);
5730 	}
5731 
5732 	ifnamep = (tp6->tcp6ConnIfIndex != 0) ?
5733 	    if_indextoname(tp6->tcp6ConnIfIndex, ifname) : NULL;
5734 	if (ifnamep == NULL)
5735 		ifnamep = "";
5736 
5737 	int64_t sq = (int64_t)tp6->tcp6ConnEntryInfo.ce_snxt -
5738 	    (int64_t)tp6->tcp6ConnEntryInfo.ce_suna - 1;
5739 	int64_t rq = (int64_t)tp6->tcp6ConnEntryInfo.ce_rnxt -
5740 	    (int64_t)tp6->tcp6ConnEntryInfo.ce_rack;
5741 
5742 	if (Xflag)
5743 		sie_report(sie);
5744 
5745 	if (!Uflag && Vflag) {
5746 		(void) printf(
5747 		    TCP_V6_LOCAL_F "\n" TCP_V6_REMOTE_F " "
5748 		    TCP_V6_SWIND_F " " TCP_V6_SNEXT_F " "
5749 		    TCP_V6_SUNA_F " " TCP_V6_RWIND_F " "
5750 		    TCP_V6_RNEXT_F " " TCP_V6_RACK_F " "
5751 		    TCP_V6_RTO_F " " TCP_V6_MSS_F " "
5752 		    TCP_V6_STATE_F " %s\n",
5753 		    pr_ap6(&tp6->tcp6ConnLocalAddress,
5754 		    tp6->tcp6ConnLocalPort, "tcp", lname, sizeof (lname)),
5755 		    pr_ap6(&tp6->tcp6ConnRemAddress,
5756 		    tp6->tcp6ConnRemPort, "tcp", fname, sizeof (fname)),
5757 		    tp6->tcp6ConnEntryInfo.ce_swnd,
5758 		    tp6->tcp6ConnEntryInfo.ce_snxt,
5759 		    tp6->tcp6ConnEntryInfo.ce_suna,
5760 		    tp6->tcp6ConnEntryInfo.ce_rwnd,
5761 		    tp6->tcp6ConnEntryInfo.ce_rnxt,
5762 		    tp6->tcp6ConnEntryInfo.ce_rack,
5763 		    tp6->tcp6ConnEntryInfo.ce_rto,
5764 		    tp6->tcp6ConnEntryInfo.ce_mss,
5765 		    mitcp_state(tp6->tcp6ConnEntryInfo.ce_state, attr),
5766 		    ifnamep);
5767 	} else if (!Uflag) {
5768 		(void) printf(
5769 		    TCP_V6_LOCAL_F " " TCP_V6_REMOTE_F " "
5770 		    TCP_V6_SWIND_F " " TCP_V6_SENDQ_F " "
5771 		    TCP_V6_RWIND_F " " TCP_V6_RECVQ_F " "
5772 		    TCP_V6_STATE_F " %s\n",
5773 		    pr_ap6(&tp6->tcp6ConnLocalAddress,
5774 		    tp6->tcp6ConnLocalPort, "tcp", lname, sizeof (lname)),
5775 		    pr_ap6(&tp6->tcp6ConnRemAddress,
5776 		    tp6->tcp6ConnRemPort, "tcp", fname, sizeof (fname)),
5777 		    tp6->tcp6ConnEntryInfo.ce_swnd,
5778 		    (sq >= 0) ? sq : 0,
5779 		    tp6->tcp6ConnEntryInfo.ce_rwnd,
5780 		    (rq >= 0) ? rq : 0,
5781 		    mitcp_state(tp6->tcp6ConnEntryInfo.ce_state, attr),
5782 		    ifnamep);
5783 	} else if (Uflag && Vflag) {
5784 		for (ph = process_hash_get(sie, SOCK_STREAM, AF_INET6);
5785 		    ph != NULL; ph = ph->ph_next_proc) {
5786 			(void) printf(
5787 			    TCP_V6_LOCAL_F "\n" TCP_V6_REMOTE_F " "
5788 			    TCP_V6_SWIND_F " " TCP_V6_SNEXT_F " "
5789 			    TCP_V6_SUNA_F " " TCP_V6_RWIND_F " "
5790 			    TCP_V6_RNEXT_F " " TCP_V6_RACK_F " "
5791 			    TCP_V6_RTO_F " " TCP_V6_MSS_F " "
5792 			    TCP_V6_STATE_F " " TCP_V6_IF_F " "
5793 			    TCP_V6_USER_F " " TCP_V6_PID_F " %s\n",
5794 			    pr_ap6(&tp6->tcp6ConnLocalAddress,
5795 			    tp6->tcp6ConnLocalPort, "tcp", lname,
5796 			    sizeof (lname)),
5797 			    pr_ap6(&tp6->tcp6ConnRemAddress,
5798 			    tp6->tcp6ConnRemPort, "tcp", fname,
5799 			    sizeof (fname)),
5800 			    tp6->tcp6ConnEntryInfo.ce_swnd,
5801 			    tp6->tcp6ConnEntryInfo.ce_snxt,
5802 			    tp6->tcp6ConnEntryInfo.ce_suna,
5803 			    tp6->tcp6ConnEntryInfo.ce_rwnd,
5804 			    tp6->tcp6ConnEntryInfo.ce_rnxt,
5805 			    tp6->tcp6ConnEntryInfo.ce_rack,
5806 			    tp6->tcp6ConnEntryInfo.ce_rto,
5807 			    tp6->tcp6ConnEntryInfo.ce_mss,
5808 			    mitcp_state(tp6->tcp6ConnEntryInfo.ce_state, attr),
5809 			    ifnamep,
5810 			    ph->ph_username, ph->ph_pidstr, ph->ph_psargs);
5811 		}
5812 	} else if (Uflag) {
5813 		for (ph = process_hash_get(sie, SOCK_STREAM, AF_INET6);
5814 		    ph != NULL; ph = ph->ph_next_proc) {
5815 			(void) printf(
5816 			    TCP_V6_LOCAL_F " " TCP_V6_REMOTE_F " "
5817 			    TCP_V6_USER_F " " TCP_V6_PID_F " "
5818 			    TCP_V6_COMMAND_F " "
5819 			    TCP_V6_SWIND_F " " TCP_V6_SENDQ_F " "
5820 			    TCP_V6_RWIND_F " " TCP_V6_RECVQ_F " "
5821 			    TCP_V6_STATE_F " %s\n",
5822 			    pr_ap6(&tp6->tcp6ConnLocalAddress,
5823 			    tp6->tcp6ConnLocalPort, "tcp", lname,
5824 			    sizeof (lname)),
5825 			    pr_ap6(&tp6->tcp6ConnRemAddress,
5826 			    tp6->tcp6ConnRemPort, "tcp", fname, sizeof (fname)),
5827 			    ph->ph_username, ph->ph_pidstr, ph->ph_fname,
5828 			    tp6->tcp6ConnEntryInfo.ce_swnd,
5829 			    (sq >= 0) ? sq : 0,
5830 			    tp6->tcp6ConnEntryInfo.ce_rwnd,
5831 			    (rq >= 0) ? rq : 0,
5832 			    mitcp_state(tp6->tcp6ConnEntryInfo.ce_state, attr),
5833 			    ifnamep);
5834 		}
5835 	}
5836 
5837 	print_transport_label(attr);
5838 
5839 	return (B_FALSE);
5840 }
5841 
5842 /* ------------------------------- UDP_REPORT------------------------------- */
5843 
5844 static boolean_t udp_report_item_v4(const mib2_udpEntry_t *, boolean_t,
5845     const mib2_transportMLPEntry_t *, const mib2_socketInfoEntry_t *);
5846 static boolean_t udp_report_item_v6(const mib2_udp6Entry_t *, boolean_t,
5847     const mib2_transportMLPEntry_t *, const mib2_socketInfoEntry_t *);
5848 
5849 /*
5850  * Central definitions for the columns used in the reports.
5851  * For each column, there's a definition for the heading, the underline and
5852  * the formatted value.
5853  * Since most reports select different columns depending on command line
5854  * options, defining everything here avoids duplication in the report
5855  * format strings and makes it easy to make changes as necessary.
5856  */
5857 #define	UDP_V4_LOCAL		"   Local Address    "
5858 #define	UDP_V4_LOCAL_		"--------------------"
5859 #define	UDP_V4_LOCAL_F		"%-20s"
5860 #define	UDP_V4_REMOTE		"   Remote Address   "
5861 #define	UDP_V4_REMOTE_		"--------------------"
5862 #define	UDP_V4_REMOTE_F		"%-20s"
5863 #define	UDP_V4_STATE		"  State   "
5864 #define	UDP_V4_STATE_		"----------"
5865 #define	UDP_V4_STATE_F		"%-10.10s"
5866 #define	UDP_V4_USER		"  User  "
5867 #define	UDP_V4_USER_		"--------"
5868 #define	UDP_V4_USER_F		"%-8.8s"
5869 #define	UDP_V4_PID		" Pid  "
5870 #define	UDP_V4_PID_		"------"
5871 #define	UDP_V4_PID_F		"%6s"
5872 #define	UDP_V4_COMMAND		"   Command    "
5873 #define	UDP_V4_COMMAND_		"--------------"
5874 #define	UDP_V4_COMMAND_F	"%-14.14s"
5875 
5876 static const char udp_hdr_v4[] =
5877     UDP_V4_LOCAL " " UDP_V4_REMOTE " " UDP_V4_STATE "\n"
5878     UDP_V4_LOCAL_" " UDP_V4_REMOTE_" " UDP_V4_STATE_"\n";
5879 
5880 static const char udp_hdr_v4_pid[] =
5881     UDP_V4_LOCAL " " UDP_V4_REMOTE " "
5882     UDP_V4_USER " " UDP_V4_PID " " UDP_V4_COMMAND " " UDP_V4_STATE "\n"
5883     UDP_V4_LOCAL_" " UDP_V4_REMOTE_" "
5884     UDP_V4_USER_" " UDP_V4_PID_" " UDP_V4_COMMAND_" " UDP_V4_STATE_"\n";
5885 static const char udp_hdr_v4_pid_verbose[] =
5886     UDP_V4_LOCAL " " UDP_V4_REMOTE " "
5887     UDP_V4_USER " " UDP_V4_PID " " UDP_V4_STATE " " UDP_V4_COMMAND "\n"
5888     UDP_V4_LOCAL_" " UDP_V4_REMOTE_" "
5889     UDP_V4_USER_" " UDP_V4_PID_" " UDP_V4_STATE_" " UDP_V4_COMMAND_"\n";
5890 
5891 #define	UDP_V6_LOCAL		"   Local Address                 "
5892 #define	UDP_V6_LOCAL_		"---------------------------------"
5893 #define	UDP_V6_LOCAL_F		"%-33s"
5894 #define	UDP_V6_REMOTE		"   Remote Address                "
5895 #define	UDP_V6_REMOTE_		"---------------------------------"
5896 #define	UDP_V6_REMOTE_F		"%-33s"
5897 #define	UDP_V6_STATE		UDP_V4_STATE
5898 #define	UDP_V6_STATE_		UDP_V4_STATE_
5899 #define	UDP_V6_STATE_F		UDP_V4_STATE_F
5900 #define	UDP_V6_USER		UDP_V4_USER
5901 #define	UDP_V6_USER_		UDP_V4_USER_
5902 #define	UDP_V6_USER_F		UDP_V4_USER_F
5903 #define	UDP_V6_PID		UDP_V4_PID
5904 #define	UDP_V6_PID_		UDP_V4_PID_
5905 #define	UDP_V6_PID_F		UDP_V4_PID_F
5906 #define	UDP_V6_COMMAND		UDP_V4_COMMAND
5907 #define	UDP_V6_COMMAND_		UDP_V4_COMMAND_
5908 #define	UDP_V6_COMMAND_F	UDP_V4_COMMAND_F
5909 #define	UDP_V6_IF		"  If "
5910 #define	UDP_V6_IF_		"-----"
5911 #define	UDP_V6_IF_F		"%-5.5s"
5912 
5913 static const char udp_hdr_v6[] =
5914     UDP_V6_LOCAL " " UDP_V6_REMOTE " " UDP_V6_STATE " "
5915     UDP_V6_IF "\n"
5916     UDP_V6_LOCAL_" " UDP_V6_REMOTE_" " UDP_V6_STATE_" "
5917     UDP_V6_IF_"\n";
5918 
5919 static const char udp_hdr_v6_pid[] =
5920     UDP_V6_LOCAL " " UDP_V6_REMOTE " "
5921     UDP_V6_USER " " UDP_V6_PID " " UDP_V6_COMMAND " "
5922     UDP_V6_STATE " " UDP_V6_IF "\n"
5923     UDP_V6_LOCAL_" " UDP_V6_REMOTE_" "
5924     UDP_V6_USER_" " UDP_V6_PID_" " UDP_V6_COMMAND_" "
5925     UDP_V6_STATE_" " UDP_V6_IF_"\n";
5926 
5927 static const char udp_hdr_v6_pid_verbose[] =
5928     UDP_V6_LOCAL " " UDP_V6_REMOTE " "
5929     UDP_V6_USER " " UDP_V6_PID " " UDP_V6_STATE " "
5930     UDP_V6_IF " " UDP_V6_COMMAND "\n"
5931     UDP_V6_LOCAL_" " UDP_V6_REMOTE_" "
5932     UDP_V6_USER_" " UDP_V6_PID_" " UDP_V6_STATE_" "
5933     UDP_V6_IF_" " UDP_V6_COMMAND_ "\n";
5934 
5935 static void
5936 udp_report(const mib_item_t *item)
5937 {
5938 	int				jtemp = 0;
5939 	boolean_t			print_hdr_once_v4 = B_TRUE;
5940 	boolean_t			print_hdr_once_v6 = B_TRUE;
5941 	mib2_udpEntry_t			*ude;
5942 	mib2_udp6Entry_t		*ude6;
5943 	mib2_transportMLPEntry_t	**v4_attrs, **v6_attrs, **v4a, **v6a;
5944 	mib2_transportMLPEntry_t	*aptr;
5945 	mib2_socketInfoEntry_t		**v4_info, **v6_info, **v4i, **v6i;
5946 	mib2_socketInfoEntry_t		*iptr;
5947 
5948 	if (!protocol_selected(IPPROTO_UDP))
5949 		return;
5950 
5951 	/*
5952 	 * Preparation pass: the kernel returns separate entries for UDP
5953 	 * connection table entries and Multilevel Port attributes.  We loop
5954 	 * through the attributes first and set up an array for each address
5955 	 * family.
5956 	 */
5957 	v4_attrs = family_selected(AF_INET) && RSECflag ?
5958 	    gather_attrs(item, MIB2_UDP, MIB2_UDP_ENTRY, udpEntrySize) : NULL;
5959 	v6_attrs = family_selected(AF_INET6) && RSECflag ?
5960 	    gather_attrs(item, MIB2_UDP6, MIB2_UDP6_ENTRY, udp6EntrySize) :
5961 	    NULL;
5962 
5963 	v4_info = Uflag && family_selected(AF_INET) ?
5964 	    gather_info(item, MIB2_UDP, MIB2_UDP_ENTRY, udpEntrySize) :
5965 	    NULL;
5966 	v6_info = Uflag && family_selected(AF_INET6) ?
5967 	    gather_info(item, MIB2_UDP6, MIB2_UDP6_ENTRY, udp6EntrySize) :
5968 	    NULL;
5969 
5970 	v4a = v4_attrs;
5971 	v6a = v6_attrs;
5972 	v4i = v4_info;
5973 	v6i = v6_info;
5974 	for (; item; item = item->next_item) {
5975 		if (Xflag) {
5976 			(void) printf("[%4d] Group = %d, mib_id = %d, "
5977 			    "length = %d, valp = 0x%p\n", jtemp++,
5978 			    item->group, item->mib_id,
5979 			    item->length, item->valp);
5980 		}
5981 		if (!((item->group == MIB2_UDP &&
5982 		    item->mib_id == MIB2_UDP_ENTRY) ||
5983 		    (item->group == MIB2_UDP6 &&
5984 		    item->mib_id == MIB2_UDP6_ENTRY)))
5985 			continue;
5986 
5987 		if (item->group == MIB2_UDP && !family_selected(AF_INET))
5988 			continue;
5989 		else if (item->group == MIB2_UDP6 && !family_selected(AF_INET6))
5990 			continue;
5991 
5992 		if (item->group == MIB2_UDP) {
5993 			for (ude = (mib2_udpEntry_t *)item->valp;
5994 			    (char *)ude < (char *)item->valp + item->length;
5995 			    ude = (mib2_udpEntry_t *)((char *)ude +
5996 			    udpEntrySize)) {
5997 				aptr = v4a == NULL ? NULL : *v4a++;
5998 				iptr = v4i == NULL ? NULL : *v4i++;
5999 				print_hdr_once_v4 = udp_report_item_v4(ude,
6000 				    print_hdr_once_v4, aptr, iptr);
6001 			}
6002 		} else {
6003 			for (ude6 = (mib2_udp6Entry_t *)item->valp;
6004 			    (char *)ude6 < (char *)item->valp + item->length;
6005 			    ude6 = (mib2_udp6Entry_t *)((char *)ude6 +
6006 			    udp6EntrySize)) {
6007 				aptr = v6a == NULL ? NULL : *v6a++;
6008 				iptr = v6i == NULL ? NULL : *v6i++;
6009 				print_hdr_once_v6 = udp_report_item_v6(ude6,
6010 				    print_hdr_once_v6, aptr, iptr);
6011 			}
6012 		}
6013 
6014 	}
6015 	(void) fflush(stdout);
6016 
6017 	free(v4_attrs);
6018 	free(v6_attrs);
6019 	free(v4_info);
6020 	free(v6_info);
6021 }
6022 
6023 static boolean_t
6024 udp_report_item_v4(const mib2_udpEntry_t *ude, boolean_t first,
6025     const mib2_transportMLPEntry_t *attr, const mib2_socketInfoEntry_t *sie)
6026 {
6027 	char	*leadin;
6028 	char	lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
6029 	char	fname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
6030 			/* hostname + portname */
6031 	proc_fdinfo_t	*ph;
6032 
6033 	if (!(Aflag || ude->udpEntryInfo.ue_state >= MIB2_UDP_connected))
6034 		return (first); /* Nothing to print */
6035 
6036 	if (first) {
6037 		(void) printf(v4compat ? "\nUDP\n" : "\nUDP: IPv4\n");
6038 
6039 		if (Uflag)
6040 			(void) printf(Vflag ? udp_hdr_v4_pid_verbose :
6041 			    udp_hdr_v4_pid);
6042 		else
6043 			(void) printf(udp_hdr_v4);
6044 
6045 		first = B_FALSE;
6046 	}
6047 
6048 	if (Xflag)
6049 		sie_report(sie);
6050 
6051 	if (asprintf(&leadin,
6052 	    UDP_V4_LOCAL_F " " UDP_V4_REMOTE_F " ",
6053 	    pr_ap(ude->udpLocalAddress, ude->udpLocalPort, "udp",
6054 	    lname, sizeof (lname)),
6055 	    ude->udpEntryInfo.ue_state == MIB2_UDP_connected ?
6056 	    pr_ap(ude->udpEntryInfo.ue_RemoteAddress,
6057 	    ude->udpEntryInfo.ue_RemotePort, "udp", fname, sizeof (fname)) :
6058 	    "") == -1) {
6059 		fatal(1, "Out of memory");
6060 	}
6061 	if (!Uflag) {
6062 		(void) printf("%s%s\n",
6063 		    leadin, miudp_state(ude->udpEntryInfo.ue_state, attr));
6064 	} else {
6065 		ph = process_hash_get(sie, SOCK_DGRAM, AF_INET);
6066 		if (ph->ph_pid == 0 && sie != NULL &&
6067 		    (sie->sie_flags & MIB2_SOCKINFO_IPV6))
6068 			ph = process_hash_get(sie, SOCK_DGRAM, AF_INET6);
6069 		for (; ph != NULL; ph = ph->ph_next_proc) {
6070 			(void) printf("%s" UDP_V4_USER_F " " UDP_V4_PID_F " ",
6071 			    leadin, ph->ph_username, ph->ph_pidstr);
6072 			if (Vflag) {
6073 				(void) printf(UDP_V4_STATE_F " %s\n",
6074 				    miudp_state(ude->udpEntryInfo.ue_state,
6075 				    attr),
6076 				    ph->ph_psargs);
6077 			} else {
6078 				(void) printf(UDP_V4_COMMAND_F " %s\n",
6079 				    ph->ph_fname,
6080 				    miudp_state(ude->udpEntryInfo.ue_state,
6081 				    attr));
6082 			}
6083 		}
6084 	}
6085 
6086 	print_transport_label(attr);
6087 
6088 	free(leadin);
6089 
6090 	return (first);
6091 }
6092 
6093 static boolean_t
6094 udp_report_item_v6(const mib2_udp6Entry_t *ude6, boolean_t first,
6095     const mib2_transportMLPEntry_t *attr, const mib2_socketInfoEntry_t *sie)
6096 {
6097 	char		*leadin;
6098 	char		lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
6099 	char		fname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
6100 			/* hostname + portname */
6101 	char		ifname[LIFNAMSIZ + 1];
6102 	const char	*ifnamep;
6103 	proc_fdinfo_t	*ph;
6104 
6105 	if (!(Aflag || ude6->udp6EntryInfo.ue_state >= MIB2_UDP_connected))
6106 		return (first); /* Nothing to print */
6107 
6108 	if (first) {
6109 		(void) printf("\nUDP: IPv6\n");
6110 
6111 		if (Uflag)
6112 			(void) printf(Vflag ? udp_hdr_v6_pid_verbose :
6113 			    udp_hdr_v6_pid);
6114 		else
6115 			(void) printf(udp_hdr_v6);
6116 
6117 		first = B_FALSE;
6118 	}
6119 
6120 	ifnamep = (ude6->udp6IfIndex != 0) ?
6121 	    if_indextoname(ude6->udp6IfIndex, ifname) : NULL;
6122 
6123 	if (Xflag)
6124 		sie_report(sie);
6125 
6126 	if (asprintf(&leadin,
6127 	    UDP_V6_LOCAL_F " " UDP_V6_REMOTE_F " ",
6128 	    pr_ap6(&ude6->udp6LocalAddress,
6129 	    ude6->udp6LocalPort, "udp", lname, sizeof (lname)),
6130 	    ude6->udp6EntryInfo.ue_state == MIB2_UDP_connected ?
6131 	    pr_ap6(&ude6->udp6EntryInfo.ue_RemoteAddress,
6132 	    ude6->udp6EntryInfo.ue_RemotePort, "udp", fname, sizeof (fname)) :
6133 	    "") == -1) {
6134 		fatal(1, "Out of memory");
6135 	}
6136 	if (!Uflag) {
6137 		(void) printf("%s" UDP_V6_STATE_F " %s\n", leadin,
6138 		    miudp_state(ude6->udp6EntryInfo.ue_state, attr),
6139 		    ifnamep == NULL ? "" : ifnamep);
6140 	} else {
6141 		for (ph = process_hash_get(sie, SOCK_DGRAM, AF_INET6);
6142 		    ph != NULL; ph = ph->ph_next_proc) {
6143 			(void) printf("%s" UDP_V6_USER_F " " UDP_V6_PID_F " ",
6144 			    leadin, ph->ph_username, ph->ph_pidstr);
6145 			if (Vflag) {
6146 				(void) printf(
6147 				    UDP_V6_STATE_F " " UDP_V6_IF_F " %s\n",
6148 				    miudp_state(ude6->udp6EntryInfo.ue_state,
6149 				    attr),
6150 				    ifnamep == NULL ? "" : ifnamep,
6151 				    ph->ph_psargs);
6152 			} else {
6153 				(void) printf(
6154 				    UDP_V6_COMMAND_F " " UDP_V6_STATE_F " %s\n",
6155 				    ph->ph_fname,
6156 				    miudp_state(ude6->udp6EntryInfo.ue_state,
6157 				    attr),
6158 				    ifnamep == NULL ? "" : ifnamep);
6159 			}
6160 		}
6161 	}
6162 
6163 	print_transport_label(attr);
6164 
6165 	free(leadin);
6166 
6167 	return (first);
6168 }
6169 
6170 /* ------------------------------ SCTP_REPORT------------------------------- */
6171 
6172 /*
6173  * Central definitions for the columns used in the reports.
6174  * For each column, there's a definition for the heading, the underline and
6175  * the formatted value.
6176  * Since most reports select different columns depending on command line
6177  * options, defining everything here avoids duplication in the report
6178  * format strings and makes it easy to make changes as necessary.
6179  */
6180 #define	SCTP_LOCAL		"        Local Address          "
6181 #define	SCTP_LOCAL_		"-------------------------------"
6182 #define	SCTP_LOCAL_F		"%-31s"
6183 #define	SCTP_REMOTE		"        Remote Address         "
6184 #define	SCTP_REMOTE_		"-------------------------------"
6185 #define	SCTP_REMOTE_F		"%-31s"
6186 #define	SCTP_SWIND		"Swind "
6187 #define	SCTP_SWIND_		"------"
6188 #define	SCTP_SWIND_F		"%6u"
6189 #define	SCTP_SENDQ		"Send-Q"
6190 #define	SCTP_SENDQ_		"------"
6191 #define	SCTP_SENDQ_F		"%6d"
6192 #define	SCTP_RWIND		"Rwind "
6193 #define	SCTP_RWIND_		"------"
6194 #define	SCTP_RWIND_F		"%6d"
6195 #define	SCTP_RECVQ		"Recv-Q"
6196 #define	SCTP_RECVQ_		"------"
6197 #define	SCTP_RECVQ_F		"%6u"
6198 #define	SCTP_STRS		"StrsI/O"
6199 #define	SCTP_STRS_		"-------"
6200 #define	SCTP_STRS_FI		"%3d"
6201 #define	SCTP_STRS_FO		"%-3d"
6202 #define	SCTP_STATE		" State     "
6203 #define	SCTP_STATE_		"-----------"
6204 #define	SCTP_STATE_F		"%-11.11s"
6205 #define	SCTP_USER		"  User  "
6206 #define	SCTP_USER_		"--------"
6207 #define	SCTP_USER_F		"%-8.8s"
6208 #define	SCTP_PID		" Pid  "
6209 #define	SCTP_PID_		"------"
6210 #define	SCTP_PID_F		"%6s"
6211 #define	SCTP_COMMAND		"   Command    "
6212 #define	SCTP_COMMAND_		"--------------"
6213 #define	SCTP_COMMAND_F		"%-14.14s"
6214 
6215 static const char sctp_hdr[] =
6216 "\nSCTP:";
6217 static const char sctp_hdr_normal[] =
6218     SCTP_LOCAL " " SCTP_REMOTE " "
6219     SCTP_SWIND " " SCTP_SENDQ " " SCTP_RWIND " " SCTP_RECVQ " "
6220     SCTP_STRS " " SCTP_STATE "\n"
6221     SCTP_LOCAL_" " SCTP_REMOTE_" "
6222     SCTP_SWIND_" " SCTP_SENDQ_" " SCTP_RWIND_" " SCTP_RECVQ_" "
6223     SCTP_STRS_" " SCTP_STATE_"\n";
6224 
6225 static const char sctp_hdr_pid[] =
6226     SCTP_LOCAL " " SCTP_REMOTE " "
6227     SCTP_SWIND " " SCTP_SENDQ " " SCTP_RWIND " " SCTP_RECVQ " "
6228     SCTP_STRS " "
6229     SCTP_USER " " SCTP_PID " " SCTP_COMMAND " " SCTP_STATE "\n"
6230     SCTP_LOCAL_" " SCTP_REMOTE_" "
6231     SCTP_SWIND_" " SCTP_SENDQ_" " SCTP_RWIND_" " SCTP_RECVQ_" "
6232     SCTP_STRS_" "
6233     SCTP_USER_" " SCTP_PID_" " SCTP_COMMAND_" " SCTP_STATE_"\n";
6234 
6235 static const char sctp_hdr_pid_verbose[] =
6236     SCTP_LOCAL " " SCTP_REMOTE " "
6237     SCTP_SWIND " " SCTP_SENDQ " " SCTP_RWIND " " SCTP_RECVQ " "
6238     SCTP_STRS_" "
6239     SCTP_USER " " SCTP_PID " " SCTP_STATE " " SCTP_COMMAND "\n"
6240     SCTP_LOCAL_" " SCTP_REMOTE_" "
6241     SCTP_SWIND_" " SCTP_SENDQ_" " SCTP_RWIND_" " SCTP_RECVQ_" "
6242     SCTP_STRS_" "
6243     SCTP_USER_" " SCTP_PID_" " SCTP_STATE_" " SCTP_COMMAND_"\n";
6244 
6245 static const char *
6246 nssctp_state(int state, const mib2_transportMLPEntry_t *attr)
6247 {
6248 	static char sctpsbuf[50];
6249 	const char *cp;
6250 
6251 	switch (state) {
6252 	case MIB2_SCTP_closed:
6253 		cp = "CLOSED";
6254 		break;
6255 	case MIB2_SCTP_cookieWait:
6256 		cp = "COOKIE_WAIT";
6257 		break;
6258 	case MIB2_SCTP_cookieEchoed:
6259 		cp = "COOKIE_ECHOED";
6260 		break;
6261 	case MIB2_SCTP_established:
6262 		cp = "ESTABLISHED";
6263 		break;
6264 	case MIB2_SCTP_shutdownPending:
6265 		cp = "SHUTDOWN_PENDING";
6266 		break;
6267 	case MIB2_SCTP_shutdownSent:
6268 		cp = "SHUTDOWN_SENT";
6269 		break;
6270 	case MIB2_SCTP_shutdownReceived:
6271 		cp = "SHUTDOWN_RECEIVED";
6272 		break;
6273 	case MIB2_SCTP_shutdownAckSent:
6274 		cp = "SHUTDOWN_ACK_SENT";
6275 		break;
6276 	case MIB2_SCTP_listen:
6277 		cp = "LISTEN";
6278 		break;
6279 	default:
6280 		(void) snprintf(sctpsbuf, sizeof (sctpsbuf),
6281 		    "UNKNOWN STATE(%d)", state);
6282 		cp = sctpsbuf;
6283 		break;
6284 	}
6285 
6286 	if (RSECflag && attr != NULL && attr->tme_flags != 0) {
6287 		if (cp != sctpsbuf) {
6288 			(void) strlcpy(sctpsbuf, cp, sizeof (sctpsbuf));
6289 			cp = sctpsbuf;
6290 		}
6291 		if (attr->tme_flags & MIB2_TMEF_PRIVATE)
6292 			(void) strlcat(sctpsbuf, " P", sizeof (sctpsbuf));
6293 		if (attr->tme_flags & MIB2_TMEF_SHARED)
6294 			(void) strlcat(sctpsbuf, " S", sizeof (sctpsbuf));
6295 	}
6296 
6297 	return (cp);
6298 }
6299 
6300 static const mib2_sctpConnRemoteEntry_t *
6301 sctp_getnext_rem(const mib_item_t **itemp,
6302     const mib2_sctpConnRemoteEntry_t *current, uint32_t associd)
6303 {
6304 	const mib_item_t *item = *itemp;
6305 	const mib2_sctpConnRemoteEntry_t	*sre;
6306 
6307 	for (; item != NULL; item = item->next_item, current = NULL) {
6308 		if (!(item->group == MIB2_SCTP &&
6309 		    item->mib_id == MIB2_SCTP_CONN_REMOTE)) {
6310 			continue;
6311 		}
6312 
6313 		if (current != NULL) {
6314 			sre = (const mib2_sctpConnRemoteEntry_t *)
6315 			    ((const char *)current + sctpRemoteEntrySize);
6316 		} else {
6317 			sre = item->valp;
6318 		}
6319 		for (; (char *)sre < (char *)item->valp + item->length;
6320 		    sre = (const mib2_sctpConnRemoteEntry_t *)
6321 		    ((const char *)sre + sctpRemoteEntrySize)) {
6322 			if (sre->sctpAssocId != associd) {
6323 				continue;
6324 			}
6325 			*itemp = item;
6326 			return (sre);
6327 		}
6328 	}
6329 	*itemp = NULL;
6330 	return (NULL);
6331 }
6332 
6333 static const mib2_sctpConnLocalEntry_t *
6334 sctp_getnext_local(const mib_item_t **itemp,
6335     const mib2_sctpConnLocalEntry_t *current, uint32_t associd)
6336 {
6337 	const mib_item_t *item = *itemp;
6338 	const mib2_sctpConnLocalEntry_t	*sle;
6339 
6340 	for (; item != NULL; item = item->next_item, current = NULL) {
6341 		if (!(item->group == MIB2_SCTP &&
6342 		    item->mib_id == MIB2_SCTP_CONN_LOCAL)) {
6343 			continue;
6344 		}
6345 
6346 		if (current != NULL) {
6347 			sle = (const mib2_sctpConnLocalEntry_t *)
6348 			    ((const char *)current + sctpLocalEntrySize);
6349 		} else {
6350 			sle = item->valp;
6351 		}
6352 		for (; (char *)sle < (char *)item->valp + item->length;
6353 		    sle = (const mib2_sctpConnLocalEntry_t *)
6354 		    ((const char *)sle + sctpLocalEntrySize)) {
6355 			if (sle->sctpAssocId != associd) {
6356 				continue;
6357 			}
6358 			*itemp = item;
6359 			return (sle);
6360 		}
6361 	}
6362 	*itemp = NULL;
6363 	return (NULL);
6364 }
6365 
6366 static void
6367 sctp_pr_addr(int type, char *name, int namelen, const in6_addr_t *addr,
6368     int port)
6369 {
6370 	ipaddr_t	v4addr;
6371 	in6_addr_t	v6addr;
6372 
6373 	/*
6374 	 * Address is either a v4 mapped or v6 addr. If
6375 	 * it's a v4 mapped, convert to v4 before
6376 	 * displaying.
6377 	 */
6378 	switch (type) {
6379 	case MIB2_SCTP_ADDR_V4:
6380 		/* v4 */
6381 		v6addr = *addr;
6382 
6383 		IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr);
6384 		if (port > 0) {
6385 			(void) pr_ap(v4addr, port, "sctp", name, namelen);
6386 		} else {
6387 			(void) pr_addr(v4addr, name, namelen);
6388 		}
6389 		break;
6390 
6391 	case MIB2_SCTP_ADDR_V6:
6392 		/* v6 */
6393 		if (port > 0) {
6394 			(void) pr_ap6(addr, port, "sctp", name, namelen);
6395 		} else {
6396 			(void) pr_addr6(addr, name, namelen);
6397 		}
6398 		break;
6399 
6400 	default:
6401 		(void) snprintf(name, namelen, "<unknown addr type>");
6402 		break;
6403 	}
6404 }
6405 
6406 static boolean_t
6407 sctp_conn_report_item(const mib_item_t *head, boolean_t print_sctp_hdr,
6408     const mib2_sctpConnEntry_t *sp, const mib2_transportMLPEntry_t *attr,
6409     const mib2_socketInfoEntry_t *sie)
6410 {
6411 	char		lname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
6412 	char		fname[MAXHOSTNAMELEN + MAXHOSTNAMELEN + 1];
6413 	const mib2_sctpConnRemoteEntry_t	*sre = NULL;
6414 	const mib2_sctpConnLocalEntry_t	*sle = NULL;
6415 	const mib_item_t *local = head;
6416 	const mib_item_t *remote = head;
6417 	uint32_t	id = sp->sctpAssocId;
6418 	boolean_t	printfirst = B_TRUE;
6419 	proc_fdinfo_t	*ph;
6420 
6421 	if (print_sctp_hdr == B_TRUE) {
6422 		(void) puts(sctp_hdr);
6423 		if (Uflag)
6424 			(void) puts(Vflag ? sctp_hdr_pid_verbose: sctp_hdr_pid);
6425 		else
6426 			(void) puts(sctp_hdr_normal);
6427 
6428 		print_sctp_hdr = B_FALSE;
6429 	}
6430 
6431 	sctp_pr_addr(sp->sctpAssocRemPrimAddrType, fname, sizeof (fname),
6432 	    &sp->sctpAssocRemPrimAddr, sp->sctpAssocRemPort);
6433 	sctp_pr_addr(sp->sctpAssocRemPrimAddrType, lname, sizeof (lname),
6434 	    &sp->sctpAssocLocPrimAddr, sp->sctpAssocLocalPort);
6435 
6436 	if (Xflag)
6437 		sie_report(sie);
6438 
6439 	if (Uflag) {
6440 		for (ph = process_hash_get(sie, SOCK_STREAM, AF_INET);
6441 		    ph != NULL; ph = ph->ph_next_proc) {
6442 			(void) printf(
6443 			    SCTP_LOCAL_F " " SCTP_REMOTE_F " "
6444 			    SCTP_SWIND_F " " SCTP_SENDQ_F " "
6445 			    SCTP_RWIND_F " " SCTP_RECVQ_F " "
6446 			    SCTP_STRS_FI "/" SCTP_STRS_FO " "
6447 			    SCTP_USER_F " " SCTP_PID_F " ",
6448 			    lname, fname,
6449 			    sp->sctpConnEntryInfo.ce_swnd,
6450 			    sp->sctpConnEntryInfo.ce_sendq,
6451 			    sp->sctpConnEntryInfo.ce_rwnd,
6452 			    sp->sctpConnEntryInfo.ce_recvq,
6453 			    sp->sctpAssocInStreams,
6454 			    sp->sctpAssocOutStreams,
6455 			    ph->ph_username, ph->ph_pidstr);
6456 			if (Vflag) {
6457 				(void) printf(SCTP_STATE_F " %s\n",
6458 				    nssctp_state(sp->sctpAssocState, attr),
6459 				    ph->ph_psargs);
6460 			} else {
6461 				(void) printf(SCTP_COMMAND_F " %s\n",
6462 				    ph->ph_fname,
6463 				    nssctp_state(sp->sctpAssocState, attr));
6464 			}
6465 		}
6466 	} else {
6467 		(void) printf(
6468 		    SCTP_LOCAL_F " " SCTP_REMOTE_F " "
6469 		    SCTP_SWIND_F " " SCTP_SENDQ_F " "
6470 		    SCTP_RWIND_F " " SCTP_RECVQ_F " "
6471 		    SCTP_STRS_FI "/" SCTP_STRS_FO " %s\n",
6472 		    lname, fname,
6473 		    sp->sctpConnEntryInfo.ce_swnd,
6474 		    sp->sctpConnEntryInfo.ce_sendq,
6475 		    sp->sctpConnEntryInfo.ce_rwnd,
6476 		    sp->sctpConnEntryInfo.ce_recvq,
6477 		    sp->sctpAssocInStreams, sp->sctpAssocOutStreams,
6478 		    nssctp_state(sp->sctpAssocState, attr));
6479 	}
6480 
6481 	print_transport_label(attr);
6482 
6483 	if (!Vflag)
6484 		return (print_sctp_hdr);
6485 
6486 	/* Print remote addresses/local addresses on following lines */
6487 	while ((sre = sctp_getnext_rem(&remote, sre, id)) != NULL) {
6488 		if (!IN6_ARE_ADDR_EQUAL(&sre->sctpAssocRemAddr,
6489 		    &sp->sctpAssocRemPrimAddr)) {
6490 			if (printfirst == B_TRUE) {
6491 				(void) fputs("\t<Remote: ", stdout);
6492 				printfirst = B_FALSE;
6493 			} else {
6494 				(void) fputs(", ", stdout);
6495 			}
6496 			sctp_pr_addr(sre->sctpAssocRemAddrType, fname,
6497 			    sizeof (fname), &sre->sctpAssocRemAddr, -1);
6498 			if (sre->sctpAssocRemAddrActive == MIB2_SCTP_ACTIVE) {
6499 				(void) fputs(fname, stdout);
6500 			} else {
6501 				(void) printf("(%s)", fname);
6502 			}
6503 		}
6504 	}
6505 	if (printfirst == B_FALSE) {
6506 		(void) puts(">");
6507 		printfirst = B_TRUE;
6508 	}
6509 	while ((sle = sctp_getnext_local(&local, sle, id)) != NULL) {
6510 		if (!IN6_ARE_ADDR_EQUAL(&sle->sctpAssocLocalAddr,
6511 		    &sp->sctpAssocLocPrimAddr)) {
6512 			if (printfirst == B_TRUE) {
6513 				(void) fputs("\t<Local: ", stdout);
6514 				printfirst = B_FALSE;
6515 			} else {
6516 				(void) fputs(", ", stdout);
6517 			}
6518 			sctp_pr_addr(sle->sctpAssocLocalAddrType, lname,
6519 			    sizeof (lname), &sle->sctpAssocLocalAddr, -1);
6520 			(void) fputs(lname, stdout);
6521 		}
6522 	}
6523 	if (printfirst == B_FALSE) {
6524 		(void) puts(">");
6525 	}
6526 
6527 	return (print_sctp_hdr);
6528 }
6529 
6530 static void
6531 sctp_report(const mib_item_t *item)
6532 {
6533 	const mib2_sctpConnEntry_t	*sp;
6534 	boolean_t			print_sctp_hdr_once = B_TRUE;
6535 	mib2_transportMLPEntry_t	**attrs, **a, *aptr;
6536 	mib2_socketInfoEntry_t		**info, **i, *iptr;
6537 
6538 	/*
6539 	 * Preparation pass: the kernel returns separate entries for SCTP
6540 	 * connection table entries and Multilevel Port attributes.  We loop
6541 	 * through the attributes first and set up an array for each address
6542 	 * family.
6543 	 */
6544 	attrs = RSECflag ?
6545 	    gather_attrs(item, MIB2_SCTP, MIB2_SCTP_CONN, sctpEntrySize) :
6546 	    NULL;
6547 	info = Uflag ?
6548 	    gather_info(item, MIB2_SCTP, MIB2_SCTP_CONN, sctpEntrySize) :
6549 	    NULL;
6550 
6551 	a = attrs;
6552 	i = info;
6553 	for (; item != NULL; item = item->next_item) {
6554 
6555 		if (!(item->group == MIB2_SCTP &&
6556 		    item->mib_id == MIB2_SCTP_CONN))
6557 			continue;
6558 
6559 		for (sp = item->valp;
6560 		    (char *)sp < (char *)item->valp + item->length;
6561 		    sp = (mib2_sctpConnEntry_t *)((char *)sp + sctpEntrySize)) {
6562 			if (!(Aflag ||
6563 			    sp->sctpAssocState >= MIB2_SCTP_established))
6564 				continue;
6565 			aptr = a == NULL ? NULL : *a++;
6566 			iptr = i == NULL ? NULL : *i++;
6567 			print_sctp_hdr_once = sctp_conn_report_item(
6568 			    item, print_sctp_hdr_once, sp, aptr, iptr);
6569 		}
6570 	}
6571 	free(attrs);
6572 	free(info);
6573 }
6574 
6575 static char *
6576 plural(int n)
6577 {
6578 	return (n != 1 ? "s" : "");
6579 }
6580 
6581 static char *
6582 pluraly(int n)
6583 {
6584 	return (n != 1 ? "ies" : "y");
6585 }
6586 
6587 static char *
6588 plurales(int n)
6589 {
6590 	return (n != 1 ? "es" : "");
6591 }
6592 
6593 static char *
6594 pktscale(int n)
6595 {
6596 	static char buf[6];
6597 	char t;
6598 
6599 	if (n < 1024) {
6600 		t = ' ';
6601 	} else if (n < 1024 * 1024) {
6602 		t = 'k';
6603 		n /= 1024;
6604 	} else if (n < 1024 * 1024 * 1024) {
6605 		t = 'm';
6606 		n /= 1024 * 1024;
6607 	} else {
6608 		t = 'g';
6609 		n /= 1024 * 1024 * 1024;
6610 	}
6611 
6612 	(void) snprintf(buf, sizeof (buf), "%4u%c", n, t);
6613 	return (buf);
6614 }
6615 
6616 /* --------------------- mrt_report (netstat -m) -------------------------- */
6617 
6618 static void
6619 mrt_report(mib_item_t *item)
6620 {
6621 	int		jtemp = 0;
6622 	struct vifctl	*vip;
6623 	vifi_t		vifi;
6624 	struct mfcctl	*mfccp;
6625 	int		numvifs = 0;
6626 	int		nmfc = 0;
6627 	char		abuf[MAXHOSTNAMELEN + 4]; /* Include CIDR /<num>. */
6628 
6629 	if (!(family_selected(AF_INET)))
6630 		return;
6631 
6632 	for (; item; item = item->next_item) {
6633 		if (Xflag) {
6634 			(void) printf("[%4d] Group = %d, mib_id = %d, "
6635 			    "length = %d, valp = 0x%p\n", jtemp++,
6636 			    item->group, item->mib_id, item->length,
6637 			    item->valp);
6638 		}
6639 		if (item->group != EXPER_DVMRP)
6640 			continue;
6641 
6642 		switch (item->mib_id) {
6643 
6644 		case EXPER_DVMRP_VIF:
6645 			if (Xflag)
6646 				(void) printf("%u records for ipVifTable:\n",
6647 				    item->length/sizeof (struct vifctl));
6648 			if (item->length/sizeof (struct vifctl) == 0) {
6649 				(void) puts("\nVirtual Interface Table is "
6650 				    "empty");
6651 				break;
6652 			}
6653 
6654 			(void) puts("\nVirtual Interface Table\n"
6655 			    " Vif Threshold Rate_Limit Local-Address"
6656 			    "   Remote-Address     Pkt_in   Pkt_out");
6657 
6658 			for (vip = (struct vifctl *)item->valp;
6659 			    (char *)vip < (char *)item->valp + item->length;
6660 			    vip = (struct vifctl *)((char *)vip +
6661 			    vifctlSize)) {
6662 				if (vip->vifc_lcl_addr.s_addr == 0)
6663 					continue;
6664 				/* numvifs = vip->vifc_vifi; */
6665 
6666 				numvifs++;
6667 				(void) printf("  %2u       %3u       "
6668 				    "%4u %-15.15s",
6669 				    vip->vifc_vifi,
6670 				    vip->vifc_threshold,
6671 				    vip->vifc_rate_limit,
6672 				    pr_addr(vip->vifc_lcl_addr.s_addr,
6673 				    abuf, sizeof (abuf)));
6674 				(void) printf(" %-15.15s  %8u  %8u\n",
6675 				    (vip->vifc_flags & VIFF_TUNNEL) ?
6676 				    pr_addr(vip->vifc_rmt_addr.s_addr,
6677 				    abuf, sizeof (abuf)) : "",
6678 				    vip->vifc_pkt_in,
6679 				    vip->vifc_pkt_out);
6680 			}
6681 
6682 			(void) printf("Numvifs: %d\n", numvifs);
6683 			break;
6684 
6685 		case EXPER_DVMRP_MRT:
6686 			if (Xflag)
6687 				(void) printf("%u records for ipMfcTable:\n",
6688 				    item->length/sizeof (struct vifctl));
6689 			if (item->length/sizeof (struct vifctl) == 0) {
6690 				(void) puts("\nMulticast Forwarding Cache is "
6691 				    "empty");
6692 				break;
6693 			}
6694 
6695 			(void) puts("\nMulticast Forwarding Cache\n"
6696 			    "  Origin-Subnet                 Mcastgroup      "
6697 			    "# Pkts  In-Vif  Out-vifs/Forw-ttl");
6698 
6699 			for (mfccp = (struct mfcctl *)item->valp;
6700 			    (char *)mfccp < (char *)item->valp + item->length;
6701 			    mfccp = (struct mfcctl *)((char *)mfccp +
6702 			    mfcctlSize)) {
6703 
6704 				nmfc++;
6705 				(void) printf("  %-30.15s",
6706 				    pr_addr(mfccp->mfcc_origin.s_addr,
6707 				    abuf, sizeof (abuf)));
6708 				(void) printf("%-15.15s  %6s  %3u    ",
6709 				    pr_net(mfccp->mfcc_mcastgrp.s_addr,
6710 				    mfccp->mfcc_mcastgrp.s_addr,
6711 				    abuf, sizeof (abuf)),
6712 				    pktscale((int)mfccp->mfcc_pkt_cnt),
6713 				    mfccp->mfcc_parent);
6714 
6715 				for (vifi = 0; vifi < MAXVIFS; ++vifi) {
6716 					if (mfccp->mfcc_ttls[vifi]) {
6717 						(void) printf("      %u (%u)",
6718 						    vifi,
6719 						    mfccp->mfcc_ttls[vifi]);
6720 					}
6721 
6722 				}
6723 				(void) putchar('\n');
6724 			}
6725 			(void) printf("\nTotal no. of entries in cache: %d\n",
6726 			    nmfc);
6727 			break;
6728 		}
6729 	}
6730 	(void) putchar('\n');
6731 	(void) fflush(stdout);
6732 }
6733 
6734 /*
6735  * Get the stats for the cache named 'name'.  If prefix != 0, then
6736  * interpret the name as a prefix, and sum up stats for all caches
6737  * named 'name*'.
6738  */
6739 static void
6740 kmem_cache_stats(char *title, char *name, int prefix, int64_t *total_bytes)
6741 {
6742 	int len;
6743 	int alloc;
6744 	int64_t total_alloc = 0;
6745 	int alloc_fail, total_alloc_fail = 0;
6746 	int buf_size = 0;
6747 	int buf_avail;
6748 	int buf_total;
6749 	int buf_max, total_buf_max = 0;
6750 	int buf_inuse, total_buf_inuse = 0;
6751 	kstat_t *ksp;
6752 	char buf[256];
6753 
6754 	len = prefix ? strlen(name) : 256;
6755 
6756 	for (ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {
6757 
6758 		if (strcmp(ksp->ks_class, "kmem_cache") != 0)
6759 			continue;
6760 
6761 		/*
6762 		 * Hack alert: because of the way streams messages are
6763 		 * allocated, every constructed free dblk has an associated
6764 		 * mblk.  From the allocator's viewpoint those mblks are
6765 		 * allocated (because they haven't been freed), but from
6766 		 * our viewpoint they're actually free (because they're
6767 		 * not currently in use).  To account for this caching
6768 		 * effect we subtract the total constructed free dblks
6769 		 * from the total allocated mblks to derive mblks in use.
6770 		 */
6771 		if (strcmp(name, "streams_mblk") == 0 &&
6772 		    strncmp(ksp->ks_name, "streams_dblk", 12) == 0) {
6773 			(void) safe_kstat_read(kc, ksp, NULL);
6774 			total_buf_inuse -=
6775 			    kstat_named_value(ksp, "buf_constructed");
6776 			continue;
6777 		}
6778 
6779 		if (strncmp(ksp->ks_name, name, len) != 0)
6780 			continue;
6781 
6782 		(void) safe_kstat_read(kc, ksp, NULL);
6783 
6784 		alloc		= kstat_named_value(ksp, "alloc");
6785 		alloc_fail	= kstat_named_value(ksp, "alloc_fail");
6786 		buf_size	= kstat_named_value(ksp, "buf_size");
6787 		buf_avail	= kstat_named_value(ksp, "buf_avail");
6788 		buf_total	= kstat_named_value(ksp, "buf_total");
6789 		buf_max		= kstat_named_value(ksp, "buf_max");
6790 		buf_inuse	= buf_total - buf_avail;
6791 
6792 		if (Vflag && prefix) {
6793 			(void) snprintf(buf, sizeof (buf), "%s%s", title,
6794 			    ksp->ks_name + len);
6795 			(void) printf("    %-18s %6u %9u %11u %11u\n",
6796 			    buf, buf_inuse, buf_max, alloc, alloc_fail);
6797 		}
6798 
6799 		total_alloc		+= alloc;
6800 		total_alloc_fail	+= alloc_fail;
6801 		total_buf_max		+= buf_max;
6802 		total_buf_inuse		+= buf_inuse;
6803 		*total_bytes		+= (int64_t)buf_inuse * buf_size;
6804 	}
6805 
6806 	if (buf_size == 0) {
6807 		(void) printf("%-22s [couldn't find statistics for %s]\n",
6808 		    title, name);
6809 		return;
6810 	}
6811 
6812 	if (Vflag && prefix)
6813 		(void) snprintf(buf, sizeof (buf), "%s_total", title);
6814 	else
6815 		(void) snprintf(buf, sizeof (buf), "%s", title);
6816 
6817 	(void) printf("%-22s %6d %9d %11lld %11d\n", buf,
6818 	    total_buf_inuse, total_buf_max, total_alloc, total_alloc_fail);
6819 }
6820 
6821 static void
6822 m_report(void)
6823 {
6824 	int64_t total_bytes = 0;
6825 
6826 	(void) puts("streams allocation:");
6827 	(void) printf("%63s\n", "cumulative  allocation");
6828 	(void) printf("%63s\n",
6829 	    "current   maximum       total    failures");
6830 
6831 	kmem_cache_stats("streams",
6832 	    "stream_head_cache", 0, &total_bytes);
6833 	kmem_cache_stats("queues", "queue_cache", 0, &total_bytes);
6834 	kmem_cache_stats("mblk", "streams_mblk", 0, &total_bytes);
6835 	kmem_cache_stats("dblk", "streams_dblk", 1, &total_bytes);
6836 	kmem_cache_stats("linkblk", "linkinfo_cache", 0, &total_bytes);
6837 	kmem_cache_stats("syncq", "syncq_cache", 0, &total_bytes);
6838 	kmem_cache_stats("qband", "qband_cache", 0, &total_bytes);
6839 
6840 	(void) printf("\n%lld Kbytes allocated for streams data\n",
6841 	    total_bytes / 1024);
6842 
6843 	(void) putchar('\n');
6844 	(void) fflush(stdout);
6845 }
6846 
6847 /* --------------------------------- */
6848 
6849 /*
6850  * Print an IPv4 address. Remove the matching part of the domain name
6851  * from the returned name.
6852  */
6853 static char *
6854 pr_addr(uint_t addr, char *dst, uint_t dstlen)
6855 {
6856 	char			*cp;
6857 	struct hostent		*hp = NULL;
6858 	static char		domain[MAXHOSTNAMELEN + 1];
6859 	static boolean_t	first = B_TRUE;
6860 	int			error_num;
6861 
6862 	if (first) {
6863 		first = B_FALSE;
6864 		if (sysinfo(SI_HOSTNAME, domain, MAXHOSTNAMELEN) != -1 &&
6865 		    (cp = strchr(domain, '.'))) {
6866 			(void) strncpy(domain, cp + 1, sizeof (domain));
6867 		} else
6868 			domain[0] = 0;
6869 	}
6870 	cp = NULL;
6871 	if (!Nflag) {
6872 		ns_lookup_start();
6873 		hp = getipnodebyaddr((char *)&addr, sizeof (uint_t), AF_INET,
6874 		    &error_num);
6875 		ns_lookup_end();
6876 		if (hp) {
6877 			if ((cp = strchr(hp->h_name, '.')) != NULL &&
6878 			    strcasecmp(cp + 1, domain) == 0)
6879 				*cp = 0;
6880 			cp = hp->h_name;
6881 		}
6882 	}
6883 	if (cp != NULL) {
6884 		(void) strncpy(dst, cp, dstlen);
6885 		dst[dstlen - 1] = 0;
6886 	} else {
6887 		(void) inet_ntop(AF_INET, (char *)&addr, dst, dstlen);
6888 	}
6889 	if (hp != NULL)
6890 		freehostent(hp);
6891 	return (dst);
6892 }
6893 
6894 /*
6895  * Print a non-zero IPv4 address.  Print "    --" if the address is zero.
6896  */
6897 static char *
6898 pr_addrnz(ipaddr_t addr, char *dst, uint_t dstlen)
6899 {
6900 	if (addr == INADDR_ANY) {
6901 		(void) strlcpy(dst, "    --", dstlen);
6902 		return (dst);
6903 	}
6904 	return (pr_addr(addr, dst, dstlen));
6905 }
6906 
6907 /*
6908  * Print an IPv6 address. Remove the matching part of the domain name
6909  * from the returned name.
6910  */
6911 static char *
6912 pr_addr6(const struct in6_addr *addr, char *dst, uint_t dstlen)
6913 {
6914 	char			*cp;
6915 	struct hostent		*hp = NULL;
6916 	static char		domain[MAXHOSTNAMELEN + 1];
6917 	static boolean_t	first = B_TRUE;
6918 	int			error_num;
6919 
6920 	if (first) {
6921 		first = B_FALSE;
6922 		if (sysinfo(SI_HOSTNAME, domain, MAXHOSTNAMELEN) != -1 &&
6923 		    (cp = strchr(domain, '.'))) {
6924 			(void) strncpy(domain, cp + 1, sizeof (domain));
6925 		} else
6926 			domain[0] = 0;
6927 	}
6928 	cp = NULL;
6929 	if (!Nflag) {
6930 		ns_lookup_start();
6931 		hp = getipnodebyaddr((char *)addr,
6932 		    sizeof (struct in6_addr), AF_INET6, &error_num);
6933 		ns_lookup_end();
6934 		if (hp) {
6935 			if ((cp = strchr(hp->h_name, '.')) != NULL &&
6936 			    strcasecmp(cp + 1, domain) == 0)
6937 				*cp = 0;
6938 			cp = hp->h_name;
6939 		}
6940 	}
6941 	if (cp != NULL) {
6942 		(void) strncpy(dst, cp, dstlen);
6943 		dst[dstlen - 1] = 0;
6944 	} else {
6945 		(void) inet_ntop(AF_INET6, (void *)addr, dst, dstlen);
6946 	}
6947 	if (hp != NULL)
6948 		freehostent(hp);
6949 	return (dst);
6950 }
6951 
6952 /* For IPv4 masks */
6953 static char *
6954 pr_mask(uint_t addr, char *dst, uint_t dstlen)
6955 {
6956 	uint8_t	*ip_addr = (uint8_t *)&addr;
6957 
6958 	(void) snprintf(dst, dstlen, "%d.%d.%d.%d",
6959 	    ip_addr[0], ip_addr[1], ip_addr[2], ip_addr[3]);
6960 	return (dst);
6961 }
6962 
6963 /*
6964  * For ipv6 masks format is : dest/mask
6965  * Does not print /128 to save space in printout. H flag carries this notion.
6966  */
6967 static char *
6968 pr_prefix6(const struct in6_addr *addr, uint_t prefixlen, char *dst,
6969     uint_t dstlen)
6970 {
6971 	char *cp;
6972 
6973 	if (IN6_IS_ADDR_UNSPECIFIED(addr) && prefixlen == 0) {
6974 		(void) strncpy(dst, "default", dstlen);
6975 		dst[dstlen - 1] = 0;
6976 		return (dst);
6977 	}
6978 
6979 	(void) pr_addr6(addr, dst, dstlen);
6980 	if (prefixlen != IPV6_ABITS) {
6981 		/* How much room is left? */
6982 		cp = strchr(dst, '\0');
6983 		if (dst + dstlen > cp) {
6984 			dstlen -= (cp - dst);
6985 			(void) snprintf(cp, dstlen, "/%d", prefixlen);
6986 		}
6987 	}
6988 	return (dst);
6989 }
6990 
6991 /* Print IPv4 address and port */
6992 static char *
6993 pr_ap(uint_t addr, uint_t port, char *proto,
6994     char *dst, uint_t dstlen)
6995 {
6996 	char *cp;
6997 
6998 	if (addr == INADDR_ANY) {
6999 		(void) strncpy(dst, "      *", dstlen);
7000 		dst[dstlen - 1] = 0;
7001 	} else {
7002 		(void) pr_addr(addr, dst, dstlen);
7003 	}
7004 	/* How much room is left? */
7005 	cp = strchr(dst, '\0');
7006 	if (dst + dstlen > cp + 1) {
7007 		*cp++ = '.';
7008 		dstlen -= (cp - dst);
7009 		dstlen--;
7010 		(void) portname(port, proto, cp, dstlen);
7011 	}
7012 	return (dst);
7013 }
7014 
7015 /* Print IPv6 address and port */
7016 static char *
7017 pr_ap6(const in6_addr_t *addr, uint_t port, char *proto,
7018     char *dst, uint_t dstlen)
7019 {
7020 	char *cp;
7021 
7022 	if (IN6_IS_ADDR_UNSPECIFIED(addr)) {
7023 		(void) strncpy(dst, "      *", dstlen);
7024 		dst[dstlen - 1] = 0;
7025 	} else {
7026 		(void) pr_addr6(addr, dst, dstlen);
7027 	}
7028 	/* How much room is left? */
7029 	cp = strchr(dst, '\0');
7030 	if (dst + dstlen + 1 > cp) {
7031 		*cp++ = '.';
7032 		dstlen -= (cp - dst);
7033 		dstlen--;
7034 		(void) portname(port, proto, cp, dstlen);
7035 	}
7036 	return (dst);
7037 }
7038 
7039 /*
7040  * Returns -2 to indicate a discontiguous mask.  Otherwise returns between
7041  * 0 and 32.
7042  */
7043 static int
7044 v4_cidr_len(uint_t mask)
7045 {
7046 	int rc = 0;
7047 	int i;
7048 
7049 	for (i = 0; i < 32; i++) {
7050 		if (mask & 0x1)
7051 			rc++;
7052 		else if (rc > 0)
7053 			return (-2);	/* Discontiguous IPv4 netmask. */
7054 
7055 		mask >>= 1;
7056 	}
7057 
7058 	return (rc);
7059 }
7060 
7061 static void
7062 append_v4_cidr_len(char *dst, uint_t dstlen, int prefixlen)
7063 {
7064 	char *prefixptr;
7065 
7066 	/* 4 bytes leaves room for '/' 'N' 'N' '\0' */
7067 	if (strlen(dst) <= dstlen - 4) {
7068 		prefixptr = dst + strlen(dst);
7069 	} else {
7070 		/*
7071 		 * Cut off last 3 chars of very-long DNS name.  All callers
7072 		 * should give us enough room, but name services COULD give us
7073 		 * a way-too-big name (see above).
7074 		 */
7075 		prefixptr = dst + strlen(dst) - 3;
7076 	}
7077 	/* At this point "prefixptr" is guaranteed to point to 4 bytes. */
7078 
7079 	if (prefixlen >= 0) {
7080 		if (prefixlen > 32)	/* Shouldn't happen, but... */
7081 			prefixlen = 32;
7082 		(void) snprintf(prefixptr, 4, "/%d", prefixlen);
7083 	} else if (prefixlen == -2) {
7084 		/* "/NM" == Noncontiguous Mask. */
7085 		(void) strcat(prefixptr, "/NM");
7086 	}
7087 	/* Else print nothing extra. */
7088 }
7089 
7090 /*
7091  * Return the name of the network whose address is given. The address is
7092  * assumed to be that of a net or subnet, not a host.
7093  */
7094 static char *
7095 pr_net(uint_t addr, uint_t mask, char *dst, uint_t dstlen)
7096 {
7097 	char		*cp = NULL;
7098 	struct netent	*np = NULL;
7099 	struct hostent	*hp = NULL;
7100 	uint_t		net;
7101 	int		subnetshift;
7102 	int		error_num;
7103 	int		prefixlen = -1;	/* -1 == Don't print prefix! */
7104 					/* -2 == Noncontiguous mask... */
7105 
7106 	if (addr == INADDR_ANY && mask == INADDR_ANY) {
7107 		(void) strlcpy(dst, "default", dstlen);
7108 		return (dst);
7109 	}
7110 
7111 	if (CIDRflag)
7112 		prefixlen = v4_cidr_len(ntohl(mask));
7113 
7114 	if (!Nflag && addr) {
7115 		if (mask == 0) {
7116 			if (IN_CLASSA(addr)) {
7117 				mask = (uint_t)IN_CLASSA_NET;
7118 				subnetshift = 8;
7119 			} else if (IN_CLASSB(addr)) {
7120 				mask = (uint_t)IN_CLASSB_NET;
7121 				subnetshift = 8;
7122 			} else {
7123 				mask = (uint_t)IN_CLASSC_NET;
7124 				subnetshift = 4;
7125 			}
7126 			/*
7127 			 * If there are more bits than the standard mask
7128 			 * would suggest, subnets must be in use. Guess at
7129 			 * the subnet mask, assuming reasonable width subnet
7130 			 * fields.
7131 			 */
7132 			while (addr & ~mask)
7133 				/* compiler doesn't sign extend! */
7134 				mask = (mask | ((int)mask >> subnetshift));
7135 			if (CIDRflag)
7136 				prefixlen = v4_cidr_len(mask);
7137 		}
7138 		net = addr & mask;
7139 		while ((mask & 1) == 0)
7140 			mask >>= 1, net >>= 1;
7141 		ns_lookup_start();
7142 		np = getnetbyaddr(net, AF_INET);
7143 		ns_lookup_end();
7144 		if (np && np->n_net == net)
7145 			cp = np->n_name;
7146 		else {
7147 			/*
7148 			 * Look for subnets in hosts map.
7149 			 */
7150 			ns_lookup_start();
7151 			hp = getipnodebyaddr((char *)&addr, sizeof (uint_t),
7152 			    AF_INET, &error_num);
7153 			ns_lookup_end();
7154 			if (hp)
7155 				cp = hp->h_name;
7156 		}
7157 	}
7158 	if (cp != NULL) {
7159 		(void) strlcpy(dst, cp, dstlen);
7160 	} else {
7161 		(void) inet_ntop(AF_INET, (char *)&addr, dst, dstlen);
7162 	}
7163 
7164 	append_v4_cidr_len(dst, dstlen, prefixlen);
7165 
7166 	if (hp != NULL)
7167 		freehostent(hp);
7168 	return (dst);
7169 }
7170 
7171 /*
7172  * Return the name of the network whose address is given.
7173  * The address is assumed to be a host address.
7174  */
7175 static char *
7176 pr_netaddr(uint_t addr, uint_t mask, char *dst, uint_t dstlen)
7177 {
7178 	char		*cp = NULL;
7179 	struct netent	*np = NULL;
7180 	struct hostent	*hp = NULL;
7181 	uint_t		net;
7182 	uint_t		netshifted;
7183 	int		subnetshift;
7184 	struct in_addr in;
7185 	int		error_num;
7186 	uint_t		nbo_addr = addr;	/* network byte order */
7187 	int		prefixlen = -1;	/* -1 == Don't print prefix! */
7188 					/* -2 == Noncontiguous mask... */
7189 
7190 	addr = ntohl(addr);
7191 	mask = ntohl(mask);
7192 	if (addr == INADDR_ANY && mask == INADDR_ANY) {
7193 		(void) strlcpy(dst, "default", dstlen);
7194 		return (dst);
7195 	}
7196 
7197 	if (CIDRflag)
7198 		prefixlen = v4_cidr_len(mask);
7199 
7200 	/* Figure out network portion of address (with host portion = 0) */
7201 	if (addr) {
7202 		/* Try figuring out mask if unknown (all 0s). */
7203 		if (mask == 0) {
7204 			if (IN_CLASSA(addr)) {
7205 				mask = (uint_t)IN_CLASSA_NET;
7206 				subnetshift = 8;
7207 			} else if (IN_CLASSB(addr)) {
7208 				mask = (uint_t)IN_CLASSB_NET;
7209 				subnetshift = 8;
7210 			} else {
7211 				mask = (uint_t)IN_CLASSC_NET;
7212 				subnetshift = 4;
7213 			}
7214 			/*
7215 			 * If there are more bits than the standard mask
7216 			 * would suggest, subnets must be in use. Guess at
7217 			 * the subnet mask, assuming reasonable width subnet
7218 			 * fields.
7219 			 */
7220 			while (addr & ~mask)
7221 				/* compiler doesn't sign extend! */
7222 				mask = (mask | ((int)mask >> subnetshift));
7223 			if (CIDRflag)
7224 				prefixlen = v4_cidr_len(mask);
7225 		}
7226 		net = netshifted = addr & mask;
7227 		while ((mask & 1) == 0)
7228 			mask >>= 1, netshifted >>= 1;
7229 	}
7230 	else
7231 		net = netshifted = 0;
7232 
7233 	/* Try looking up name unless -n was specified. */
7234 	if (!Nflag) {
7235 		ns_lookup_start();
7236 		np = getnetbyaddr(netshifted, AF_INET);
7237 		ns_lookup_end();
7238 		if (np && np->n_net == netshifted)
7239 			cp = np->n_name;
7240 		else {
7241 			/*
7242 			 * Look for subnets in hosts map.
7243 			 */
7244 			ns_lookup_start();
7245 			hp = getipnodebyaddr((char *)&nbo_addr, sizeof (uint_t),
7246 			    AF_INET, &error_num);
7247 			ns_lookup_end();
7248 			if (hp)
7249 				cp = hp->h_name;
7250 		}
7251 
7252 		if (cp != NULL) {
7253 			(void) strlcpy(dst, cp, dstlen);
7254 			append_v4_cidr_len(dst, dstlen, prefixlen);
7255 			if (hp != NULL)
7256 				freehostent(hp);
7257 			return (dst);
7258 		}
7259 		/*
7260 		 * No name found for net: fallthru and return in decimal
7261 		 * dot notation.
7262 		 */
7263 	}
7264 
7265 	in.s_addr = htonl(net);
7266 	(void) inet_ntop(AF_INET, (char *)&in, dst, dstlen);
7267 	append_v4_cidr_len(dst, dstlen, prefixlen);
7268 	if (hp != NULL)
7269 		freehostent(hp);
7270 	return (dst);
7271 }
7272 
7273 /*
7274  * Return the filter mode as a string:
7275  *	1 => "INCLUDE"
7276  *	2 => "EXCLUDE"
7277  *	otherwise "<unknown>"
7278  */
7279 static char *
7280 fmodestr(uint_t fmode)
7281 {
7282 	switch (fmode) {
7283 	case 1:
7284 		return ("INCLUDE");
7285 	case 2:
7286 		return ("EXCLUDE");
7287 	default:
7288 		return ("<unknown>");
7289 	}
7290 }
7291 
7292 #define	MAX_STRING_SIZE	256
7293 
7294 static const char *
7295 pr_secattr(const sec_attr_list_t *attrs)
7296 {
7297 	int i;
7298 	char buf[MAX_STRING_SIZE + 1], *cp;
7299 	static char *sbuf;
7300 	static size_t sbuf_len;
7301 	struct rtsa_s rtsa;
7302 	const sec_attr_list_t *aptr;
7303 
7304 	if (!RSECflag || attrs == NULL)
7305 		return ("");
7306 
7307 	for (aptr = attrs, i = 1; aptr != NULL; aptr = aptr->sal_next)
7308 		i += MAX_STRING_SIZE;
7309 	if (i > sbuf_len) {
7310 		cp = realloc(sbuf, i);
7311 		if (cp == NULL) {
7312 			perror("realloc security attribute buffer");
7313 			return ("");
7314 		}
7315 		sbuf_len = i;
7316 		sbuf = cp;
7317 	}
7318 
7319 	cp = sbuf;
7320 	while (attrs != NULL) {
7321 		const mib2_ipAttributeEntry_t *iae = attrs->sal_attr;
7322 
7323 		/* note: effectively hard-coded in rtsa_keyword */
7324 		rtsa.rtsa_mask = RTSA_CIPSO | RTSA_SLRANGE | RTSA_DOI;
7325 		rtsa.rtsa_slrange = iae->iae_slrange;
7326 		rtsa.rtsa_doi = iae->iae_doi;
7327 
7328 		(void) snprintf(cp, MAX_STRING_SIZE,
7329 		    "<%s>%s ", rtsa_to_str(&rtsa, buf, sizeof (buf)),
7330 		    attrs->sal_next == NULL ? "" : ",");
7331 		cp += strlen(cp);
7332 		attrs = attrs->sal_next;
7333 	}
7334 	*cp = '\0';
7335 
7336 	return (sbuf);
7337 }
7338 
7339 /*
7340  * Pretty print a port number. If the Nflag was
7341  * specified, use numbers instead of names.
7342  */
7343 static char *
7344 portname(uint_t port, char *proto, char *dst, uint_t dstlen)
7345 {
7346 	struct servent *sp = NULL;
7347 
7348 	if (!Nflag && port) {
7349 		ns_lookup_start();
7350 		sp = getservbyport(htons(port), proto);
7351 		ns_lookup_end();
7352 	}
7353 	if (sp || port == 0)
7354 		(void) snprintf(dst, dstlen, "%.*s", MAXHOSTNAMELEN,
7355 		    sp ? sp->s_name : "*");
7356 	else
7357 		(void) snprintf(dst, dstlen, "%d", port);
7358 	dst[dstlen - 1] = 0;
7359 	return (dst);
7360 }
7361 
7362 void
7363 fail(int do_perror, char *message, ...)
7364 {
7365 	va_list args;
7366 
7367 	va_start(args, message);
7368 	(void) fputs("netstat: ", stderr);
7369 	(void) vfprintf(stderr, message, args);
7370 	va_end(args);
7371 	if (do_perror)
7372 		(void) fprintf(stderr, ": %s", strerror(errno));
7373 	(void) fputc('\n', stderr);
7374 	exit(2);
7375 }
7376 
7377 /*
7378  * fatal: print error message to stderr and
7379  * call exit(errcode)
7380  */
7381 static void
7382 fatal(int errcode, char *format, ...)
7383 {
7384 	if (format != NULL) {
7385 		va_list argp;
7386 
7387 		va_start(argp, format);
7388 		(void) vfprintf(stderr, format, argp);
7389 		va_end(argp);
7390 	}
7391 
7392 	exit(errcode);
7393 }
7394 
7395 
7396 /*
7397  * Return value of named statistic for given kstat_named kstat;
7398  * return 0LL if named statistic is not in list (use "ll" as a
7399  * type qualifier when printing 64-bit int's with printf() )
7400  */
7401 static uint64_t
7402 kstat_named_value(kstat_t *ksp, char *name)
7403 {
7404 	kstat_named_t *knp;
7405 	uint64_t value;
7406 
7407 	if (ksp == NULL)
7408 		return (0LL);
7409 
7410 	knp = kstat_data_lookup(ksp, name);
7411 	if (knp == NULL)
7412 		return (0LL);
7413 
7414 	switch (knp->data_type) {
7415 	case KSTAT_DATA_INT32:
7416 	case KSTAT_DATA_UINT32:
7417 		value = (uint64_t)(knp->value.ui32);
7418 		break;
7419 	case KSTAT_DATA_INT64:
7420 	case KSTAT_DATA_UINT64:
7421 		value = knp->value.ui64;
7422 		break;
7423 	default:
7424 		value = 0LL;
7425 		break;
7426 	}
7427 
7428 	return (value);
7429 }
7430 
7431 kid_t
7432 safe_kstat_read(kstat_ctl_t *kc, kstat_t *ksp, void *data)
7433 {
7434 	kid_t kstat_chain_id = kstat_read(kc, ksp, data);
7435 
7436 	if (kstat_chain_id == -1)
7437 		fail(1, "kstat_read(%p, '%s') failed", (void *)kc,
7438 		    ksp->ks_name);
7439 	return (kstat_chain_id);
7440 }
7441 
7442 /*
7443  * Parse a list of IRE flag characters into a bit field.
7444  */
7445 static uint_t
7446 flag_bits(const char *arg)
7447 {
7448 	const char *cp;
7449 	uint_t val;
7450 
7451 	if (*arg == '\0')
7452 		fatal(1, "missing flag list\n");
7453 
7454 	val = 0;
7455 	while (*arg != '\0') {
7456 		if ((cp = strchr(flag_list, *arg)) == NULL)
7457 			fatal(1, "%c: illegal flag\n", *arg);
7458 		val |= 1 << (cp - flag_list);
7459 		arg++;
7460 	}
7461 	return (val);
7462 }
7463 
7464 /*
7465  * Handle -f argument.  Validate input format, sort by keyword, and
7466  * save off digested results.
7467  */
7468 static void
7469 process_filter(char *arg)
7470 {
7471 	int idx;
7472 	int klen = 0;
7473 	char *cp, *cp2;
7474 	int val;
7475 	filter_t *newf;
7476 	struct hostent *hp;
7477 	int error_num;
7478 	uint8_t *ucp;
7479 	int maxv;
7480 
7481 	/* Look up the keyword first */
7482 	if (strchr(arg, ':') == NULL) {
7483 		idx = FK_AF;
7484 	} else {
7485 		for (idx = 0; idx < NFILTERKEYS; idx++) {
7486 			klen = strlen(filter_keys[idx]);
7487 			if (strncmp(filter_keys[idx], arg, klen) == 0 &&
7488 			    arg[klen] == ':')
7489 				break;
7490 		}
7491 		if (idx >= NFILTERKEYS)
7492 			fatal(1, "%s: unknown filter keyword\n", arg);
7493 
7494 		/* Advance past keyword and separator. */
7495 		arg += klen + 1;
7496 	}
7497 
7498 	if ((newf = malloc(sizeof (*newf))) == NULL) {
7499 		perror("filter");
7500 		exit(1);
7501 	}
7502 	switch (idx) {
7503 	case FK_AF:
7504 		if (strcmp(arg, "inet") == 0) {
7505 			newf->u.f_family = AF_INET;
7506 		} else if (strcmp(arg, "inet6") == 0) {
7507 			newf->u.f_family = AF_INET6;
7508 		} else if (strcmp(arg, "unix") == 0) {
7509 			newf->u.f_family = AF_UNIX;
7510 		} else {
7511 			newf->u.f_family = strtol(arg, &cp, 0);
7512 			if (arg == cp || *cp != '\0')
7513 				fatal(1, "%s: unknown address family.\n", arg);
7514 		}
7515 		break;
7516 
7517 	case FK_OUTIF:
7518 		if (strcmp(arg, "none") == 0) {
7519 			newf->u.f_ifname = NULL;
7520 			break;
7521 		}
7522 		if (strcmp(arg, "any") == 0) {
7523 			newf->u.f_ifname = "";
7524 			break;
7525 		}
7526 		val = strtol(arg, &cp, 0);
7527 		if (val <= 0 || arg == cp || cp[0] != '\0') {
7528 			if ((val = if_nametoindex(arg)) == 0) {
7529 				perror(arg);
7530 				exit(1);
7531 			}
7532 		}
7533 		newf->u.f_ifname = arg;
7534 		break;
7535 
7536 	case FK_DST:
7537 		V4MASK_TO_V6(IP_HOST_MASK, newf->u.a.f_mask);
7538 		if (strcmp(arg, "any") == 0) {
7539 			/* Special semantics; any address *but* zero */
7540 			newf->u.a.f_address = NULL;
7541 			(void) memset(&newf->u.a.f_mask, 0,
7542 			    sizeof (newf->u.a.f_mask));
7543 			break;
7544 		}
7545 		if (strcmp(arg, "none") == 0) {
7546 			newf->u.a.f_address = NULL;
7547 			break;
7548 		}
7549 		if ((cp = strrchr(arg, '/')) != NULL)
7550 			*cp++ = '\0';
7551 		hp = getipnodebyname(arg, AF_INET6, AI_V4MAPPED|AI_ALL,
7552 		    &error_num);
7553 		if (hp == NULL)
7554 			fatal(1, "%s: invalid or unknown host address\n", arg);
7555 		newf->u.a.f_address = hp;
7556 		if (cp == NULL) {
7557 			V4MASK_TO_V6(IP_HOST_MASK, newf->u.a.f_mask);
7558 		} else {
7559 			val = strtol(cp, &cp2, 0);
7560 			if (cp != cp2 && cp2[0] == '\0') {
7561 				/*
7562 				 * If decode as "/n" works, then translate
7563 				 * into a mask.
7564 				 */
7565 				if (hp->h_addr_list[0] != NULL &&
7566 				    IN6_IS_ADDR_V4MAPPED((in6_addr_t *)
7567 				    hp->h_addr_list[0])) {
7568 					maxv = IP_ABITS;
7569 				} else {
7570 					maxv = IPV6_ABITS;
7571 				}
7572 				if (val < 0 || val >= maxv)
7573 					fatal(1, "%d: not in range 0 to %d\n",
7574 					    val, maxv - 1);
7575 				if (maxv == IP_ABITS)
7576 					val += IPV6_ABITS - IP_ABITS;
7577 				ucp = newf->u.a.f_mask.s6_addr;
7578 				while (val >= 8)
7579 					*ucp++ = 0xff, val -= 8;
7580 				*ucp++ = (0xff << (8 - val)) & 0xff;
7581 				while (ucp < newf->u.a.f_mask.s6_addr +
7582 				    sizeof (newf->u.a.f_mask.s6_addr))
7583 					*ucp++ = 0;
7584 				/* Otherwise, try as numeric address */
7585 			} else if (inet_pton(AF_INET6,
7586 			    cp, &newf->u.a.f_mask) <= 0) {
7587 				fatal(1, "%s: illegal mask format\n", cp);
7588 			}
7589 		}
7590 		break;
7591 
7592 	case FK_FLAGS:
7593 		if (*arg == '+') {
7594 			newf->u.f.f_flagset = flag_bits(arg + 1);
7595 			newf->u.f.f_flagclear = 0;
7596 		} else if (*arg == '-') {
7597 			newf->u.f.f_flagset = 0;
7598 			newf->u.f.f_flagclear = flag_bits(arg + 1);
7599 		} else {
7600 			newf->u.f.f_flagset = flag_bits(arg);
7601 			newf->u.f.f_flagclear = ~newf->u.f.f_flagset;
7602 		}
7603 		break;
7604 
7605 	default:
7606 		assert(0);
7607 	}
7608 	newf->f_next = filters[idx];
7609 	filters[idx] = newf;
7610 }
7611 
7612 /* Determine if user wants this address family printed. */
7613 static boolean_t
7614 family_selected(int family)
7615 {
7616 	const filter_t *fp;
7617 
7618 	if (v4compat && family == AF_INET6)
7619 		return (B_FALSE);
7620 	if ((fp = filters[FK_AF]) == NULL)
7621 		return (B_TRUE);
7622 	while (fp != NULL) {
7623 		if (fp->u.f_family == family)
7624 			return (B_TRUE);
7625 		fp = fp->f_next;
7626 	}
7627 	return (B_FALSE);
7628 }
7629 
7630 /*
7631  * Convert the interface index to a string using the buffer `ifname', which
7632  * must be at least LIFNAMSIZ bytes.  We first try to map it to name.  If that
7633  * fails (e.g., because we're inside a zone and it does not have access to
7634  * interface for the index in question), just return "if#<num>".
7635  */
7636 static char *
7637 ifindex2str(uint_t ifindex, char *ifname)
7638 {
7639 	if (if_indextoname(ifindex, ifname) == NULL)
7640 		(void) snprintf(ifname, LIFNAMSIZ, "if#%d", ifindex);
7641 
7642 	return (ifname);
7643 }
7644 
7645 /*
7646  * print the usage line
7647  */
7648 static void
7649 usage(char *cmdname)
7650 {
7651 	(void) fprintf(stderr, "usage: %s [-anuv] [-f address_family] "
7652 	    "[-T d|u]\n", cmdname);
7653 	(void) fprintf(stderr, "       %s [-n] [-f address_family] "
7654 	    "[-P protocol] [-T d|u] [-g | -p | -s [interval [count]]]\n",
7655 	    cmdname);
7656 	(void) fprintf(stderr, "       %s -m [-v] [-T d|u] "
7657 	    "[interval [count]]\n", cmdname);
7658 	(void) fprintf(stderr, "       %s -i [-I interface] [-an] "
7659 	    "[-f address_family] [-T d|u] [interval [count]]\n", cmdname);
7660 	(void) fprintf(stderr, "       %s -r [-anv] "
7661 	    "[-f address_family|filter] [-T d|u]\n", cmdname);
7662 	(void) fprintf(stderr, "       %s -M [-ns] [-f address_family] "
7663 	    "[-T d|u]\n", cmdname);
7664 	(void) fprintf(stderr, "       %s -D [-I interface] "
7665 	    "[-f address_family] [-T d|u]\n", cmdname);
7666 	exit(EXIT_FAILURE);
7667 }
7668 
7669 /* -------------------UNIX Domain Sockets Report---------------------------- */
7670 
7671 #define	UDS_SO_PAIR	"(socketpair)"
7672 
7673 static char		*typetoname(t_scalar_t);
7674 static boolean_t	uds_report_item(struct sockinfo *, boolean_t);
7675 
7676 /*
7677  * Central definitions for the columns used in the reports.
7678  * For each column, there's a definition for the heading, the underline and
7679  * the formatted value.
7680  * Since most reports select different columns depending on command line
7681  * options, defining everything here avoids duplication in the report
7682  * format strings and makes it easy to make changes as necessary.
7683  */
7684 #define	UDS_ADDRESS		"Address         "
7685 #define	UDS_ADDRESS_		"----------------"
7686 #define	UDS_ADDRESS_F		"%-16.16s"
7687 #define	UDS_TYPE		"Type      "
7688 #define	UDS_TYPE_		"----------"
7689 #define	UDS_TYPE_F		"%-10.10s"
7690 #define	UDS_VNODE		"Vnode           "
7691 #define	UDS_VNODE_		"----------------"
7692 #define	UDS_VNODE_F		"%-16.16s"
7693 #define	UDS_CONN		"Conn            "
7694 #define	UDS_CONN_		"----------------"
7695 #define	UDS_CONN_F		"%-16.16s"
7696 #define	UDS_LOCAL		"Local Address                          "
7697 #define	UDS_LOCAL_		"---------------------------------------"
7698 #define	UDS_LOCAL_F		"%-39.39s"
7699 #define	UDS_REMOTE		"Remote Address                         "
7700 #define	UDS_REMOTE_		"---------------------------------------"
7701 #define	UDS_REMOTE_F		"%-39.39s"
7702 #define	UDS_USER		"User    "
7703 #define	UDS_USER_		"--------"
7704 #define	UDS_USER_F		"%-8.8s"
7705 #define	UDS_PID			"Pid   "
7706 #define	UDS_PID_		"------"
7707 #define	UDS_PID_F		"%6s"
7708 #define	UDS_COMMAND		"Command       "
7709 #define	UDS_COMMAND_		"--------------"
7710 #define	UDS_COMMAND_F		"%-14.14s"
7711 
7712 static const char uds_hdr[] = "\nActive UNIX domain sockets\n";
7713 
7714 static const char uds_hdr_normal[] =
7715     UDS_ADDRESS " " UDS_TYPE " " UDS_VNODE " " UDS_CONN " "
7716     UDS_LOCAL " " UDS_REMOTE "\n"
7717     UDS_ADDRESS_" " UDS_TYPE_" " UDS_VNODE_" " UDS_CONN_" "
7718     UDS_LOCAL_" " UDS_REMOTE_"\n";
7719 
7720 static const char uds_hdr_pid[] =
7721     UDS_ADDRESS " " UDS_TYPE " " UDS_USER " " UDS_PID " " UDS_COMMAND " "
7722     UDS_LOCAL " " UDS_REMOTE "\n"
7723     UDS_ADDRESS_ " " UDS_TYPE_" " UDS_USER_" " UDS_PID_" " UDS_COMMAND_" "
7724     UDS_LOCAL_" " UDS_REMOTE_"\n";
7725 
7726 static const char uds_hdr_pid_verbose[] =
7727     UDS_ADDRESS " " UDS_TYPE " " UDS_USER " " UDS_PID " "
7728     UDS_LOCAL " " UDS_REMOTE " " UDS_COMMAND "\n"
7729     UDS_ADDRESS_ " " UDS_TYPE_" " UDS_USER_" " UDS_PID_" "
7730     UDS_LOCAL_" " UDS_REMOTE_" " UDS_COMMAND_"\n";
7731 
7732 /*
7733  * Print a summary of connections related to unix protocols.
7734  */
7735 static void
7736 uds_report(kstat_ctl_t *kc)
7737 {
7738 	uint32_t	i;
7739 	kstat_t		*ksp;
7740 	struct sockinfo	*psi;
7741 	boolean_t	print_uds_hdr_once = B_TRUE;
7742 
7743 	if (kc == NULL) {
7744 		fail(0, "uds_report: No kstat");
7745 		exit(3);
7746 	}
7747 
7748 	if ((ksp = kstat_lookup(kc, "sockfs", 0, "sock_unix_list")) == NULL)
7749 		fail(0, "kstat_data_lookup failed\n");
7750 
7751 	if (kstat_read(kc, ksp, NULL) == -1)
7752 		fail(0, "kstat_read failed for sock_unix_list\n");
7753 
7754 	if (ksp->ks_ndata == 0)
7755 		return;			/* no AF_UNIX sockets found	*/
7756 
7757 	/*
7758 	 * Having ks_data set with ks_data == NULL shouldn't happen;
7759 	 * If it does, the sockfs kstat is seriously broken.
7760 	 */
7761 	if ((psi = ksp->ks_data) == NULL)
7762 		fail(0, "uds_report: no kstat data\n");
7763 
7764 	for (i = 0; i < ksp->ks_ndata; i++) {
7765 
7766 		print_uds_hdr_once = uds_report_item(psi, print_uds_hdr_once);
7767 
7768 		/* If si_size didn't get filled in, then we're done */
7769 		if (psi->si_size == 0 ||
7770 		    !IS_P2ALIGNED(psi->si_size, sizeof (psi)))
7771 			break;
7772 
7773 		/* Point to the next sockinfo in the array */
7774 		psi = (struct sockinfo *)(((char *)psi) + psi->si_size);
7775 	}
7776 }
7777 
7778 static boolean_t
7779 uds_report_item(struct sockinfo *psi, boolean_t first)
7780 {
7781 	char *laddr, *raddr;
7782 	proc_fdinfo_t *ph;
7783 
7784 	if (first) {
7785 		(void) printf("%s", uds_hdr);
7786 		if (Uflag)
7787 			(void) printf("%s",
7788 			    Vflag ? uds_hdr_pid_verbose : uds_hdr_pid);
7789 		else
7790 			(void) printf("%s", uds_hdr_normal);
7791 
7792 		first = B_FALSE;
7793 	}
7794 
7795 	raddr = laddr = "";
7796 
7797 	if ((psi->si_state & SS_ISBOUND) &&
7798 	    strlen(psi->si_laddr_sun_path) != 0 &&
7799 	    psi->si_laddr_soa_len != 0) {
7800 		if (psi->si_faddr_noxlate) {
7801 			laddr = UDS_SO_PAIR;
7802 		} else {
7803 			if (psi->si_laddr_soa_len >
7804 			    sizeof (psi->si_laddr_family))
7805 				laddr = psi->si_laddr_sun_path;
7806 		}
7807 	}
7808 
7809 	if ((psi->si_state & SS_ISCONNECTED) &&
7810 	    strlen(psi->si_faddr_sun_path) != 0 &&
7811 	    psi->si_faddr_soa_len != 0) {
7812 		if (psi->si_faddr_noxlate) {
7813 			raddr = UDS_SO_PAIR;
7814 		} else {
7815 			if (psi->si_faddr_soa_len >
7816 			    sizeof (psi->si_faddr_family))
7817 				raddr = psi->si_faddr_sun_path;
7818 		}
7819 	}
7820 
7821 	/* Traditional output */
7822 	if (!Uflag) {
7823 		(void) printf(
7824 		    UDS_ADDRESS_F " " UDS_TYPE_F " " UDS_VNODE_F " "
7825 		    UDS_CONN_F " " UDS_LOCAL_F " " UDS_REMOTE_F "\n",
7826 		    psi->si_son_straddr,
7827 		    typetoname(psi->si_serv_type),
7828 		    (psi->si_state & SS_ISBOUND) &&
7829 		    psi->si_ux_laddr_sou_magic == SOU_MAGIC_EXPLICIT ?
7830 		    psi->si_lvn_straddr : "0000000",
7831 		    (psi->si_state & SS_ISCONNECTED) &&
7832 		    psi->si_ux_faddr_sou_magic == SOU_MAGIC_EXPLICIT ?
7833 		    psi->si_fvn_straddr : "0000000",
7834 		    laddr, raddr);
7835 		return (first);
7836 	}
7837 
7838 	mib2_socketInfoEntry_t sie = {
7839 		.sie_inode = psi->si_inode,
7840 		.sie_flags = 0
7841 	};
7842 
7843 	if (Xflag)
7844 		sie_report(&sie);
7845 
7846 	for (ph = process_hash_get(&sie,
7847 	    psi->si_serv_type == T_CLTS ?  SOCK_DGRAM : SOCK_STREAM, AF_UNIX);
7848 	    ph != NULL; ph = ph->ph_next_proc) {
7849 		if (Vflag) {
7850 			(void) printf(
7851 			    UDS_ADDRESS_F " " UDS_TYPE_F " "
7852 			    UDS_USER_F " " UDS_PID_F " "
7853 			    UDS_LOCAL_F " " UDS_REMOTE_F " %s\n",
7854 			    psi->si_son_straddr,
7855 			    typetoname(psi->si_serv_type),
7856 			    ph->ph_username, ph->ph_pidstr,
7857 			    laddr, raddr, ph->ph_psargs);
7858 		} else {
7859 			(void) printf(
7860 			    UDS_ADDRESS_F " " UDS_TYPE_F " "
7861 			    UDS_USER_F " " UDS_PID_F " " UDS_COMMAND_F " "
7862 			    UDS_LOCAL_F " " UDS_REMOTE_F "\n",
7863 			    psi->si_son_straddr,
7864 			    typetoname(psi->si_serv_type),
7865 			    ph->ph_username, ph->ph_pidstr, ph->ph_fname,
7866 			    laddr, raddr);
7867 		}
7868 
7869 	}
7870 
7871 	return (first);
7872 }
7873 
7874 static char *
7875 typetoname(t_scalar_t type)
7876 {
7877 	switch (type) {
7878 	case T_CLTS:
7879 		return ("dgram");
7880 
7881 	case T_COTS:
7882 		return ("stream");
7883 
7884 	case T_COTS_ORD:
7885 		return ("stream-ord");
7886 
7887 	default:
7888 		return ("");
7889 	}
7890 }
7891