1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2016-2017, Chris Fraire <cfraire@me.com>. 24 */ 25 26 #include <sys/types.h> 27 #include <stdlib.h> 28 #include <assert.h> 29 #include <errno.h> 30 #include <locale.h> 31 #include <string.h> 32 #include <unistd.h> 33 #include <signal.h> 34 #include <stdio.h> 35 #include <stdio_ext.h> 36 #include <dhcp_hostconf.h> 37 #include <dhcpagent_ipc.h> 38 #include <dhcpagent_util.h> 39 #include <dhcpmsg.h> 40 #include <dhcp_inittab.h> 41 #include <dhcp_symbol.h> 42 #include <netinet/dhcp.h> 43 #include <net/route.h> 44 #include <sys/sockio.h> 45 #include <sys/stat.h> 46 #include <stropts.h> 47 #include <fcntl.h> 48 #include <sys/scsi/adapters/iscsi_if.h> 49 50 #include "async.h" 51 #include "agent.h" 52 #include "script_handler.h" 53 #include "util.h" 54 #include "class_id.h" 55 #include "states.h" 56 #include "packet.h" 57 #include "interface.h" 58 #include "defaults.h" 59 60 #ifndef TEXT_DOMAIN 61 #define TEXT_DOMAIN "SYS_TEST" 62 #endif 63 64 iu_timer_id_t inactivity_id; 65 int class_id_len = 0; 66 char *class_id; 67 iu_eh_t *eh; 68 iu_tq_t *tq; 69 pid_t grandparent; 70 int rtsock_fd; 71 72 static boolean_t shutdown_started = B_FALSE; 73 static boolean_t do_adopt = B_FALSE; 74 static unsigned int debug_level = 0; 75 static iu_eh_callback_t accept_event, ipc_event, rtsock_event; 76 static void dhcp_smach_set_msg_reqhost(dhcp_smach_t *dsmp, 77 ipc_action_t *iap); 78 static DHCP_OPT * dhcp_get_ack_or_state(const dhcp_smach_t *dsmp, 79 const PKT_LIST *plp, uint_t codenum, boolean_t *did_alloc); 80 81 /* 82 * The ipc_cmd_allowed[] table indicates which IPC commands are allowed in 83 * which states; a non-zero value indicates the command is permitted. 84 * 85 * START is permitted if the state machine is fresh, or if we are in the 86 * process of trying to obtain a lease (as a convenience to save the 87 * administrator from having to do an explicit DROP). EXTEND, RELEASE, and 88 * GET_TAG require a lease to be obtained in order to make sense. INFORM is 89 * permitted if the interface is fresh or has an INFORM in progress or 90 * previously done on it -- otherwise a DROP or RELEASE is first required. 91 * PING and STATUS always make sense and thus are always permitted, as is DROP 92 * in order to permit the administrator to always bail out. 93 */ 94 static int ipc_cmd_allowed[DHCP_NSTATES][DHCP_NIPC] = { 95 /* D E P R S S I G */ 96 /* R X I E T T N E */ 97 /* O T N L A A F T */ 98 /* P E G E R T O _ */ 99 /* . N . A T U R T */ 100 /* . D . S . S M A */ 101 /* . . . E . . . G */ 102 /* INIT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 103 /* SELECTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 104 /* REQUESTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 105 /* PRE_BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 106 /* BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 107 /* RENEWING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 108 /* REBINDING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 109 /* INFORMATION */ { 1, 0, 1, 0, 1, 1, 1, 1 }, 110 /* INIT_REBOOT */ { 1, 0, 1, 1, 1, 1, 0, 0 }, 111 /* ADOPTING */ { 1, 0, 1, 1, 0, 1, 0, 0 }, 112 /* INFORM_SENT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 113 /* DECLINING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 114 /* RELEASING */ { 1, 0, 1, 0, 0, 1, 0, 1 }, 115 }; 116 117 #define CMD_ISPRIV 0x1 /* Command requires privileges */ 118 #define CMD_CREATE 0x2 /* Command creates an interface */ 119 #define CMD_BOOTP 0x4 /* Command is valid with BOOTP */ 120 #define CMD_IMMED 0x8 /* Reply is immediate (no BUSY state) */ 121 122 static uint_t ipc_cmd_flags[DHCP_NIPC] = { 123 /* DHCP_DROP */ CMD_ISPRIV|CMD_BOOTP, 124 /* DHCP_EXTEND */ CMD_ISPRIV, 125 /* DHCP_PING */ CMD_BOOTP|CMD_IMMED, 126 /* DHCP_RELEASE */ CMD_ISPRIV, 127 /* DHCP_START */ CMD_CREATE|CMD_ISPRIV|CMD_BOOTP, 128 /* DHCP_STATUS */ CMD_BOOTP|CMD_IMMED, 129 /* DHCP_INFORM */ CMD_CREATE|CMD_ISPRIV, 130 /* DHCP_GET_TAG */ CMD_BOOTP|CMD_IMMED 131 }; 132 133 static boolean_t is_iscsi_active(void); 134 135 int 136 main(int argc, char **argv) 137 { 138 boolean_t is_daemon = B_TRUE; 139 boolean_t is_verbose; 140 int ipc_fd; 141 int c; 142 int aware = RTAW_UNDER_IPMP; 143 struct rlimit rl; 144 145 debug_level = df_get_int("", B_FALSE, DF_DEBUG_LEVEL); 146 is_verbose = df_get_bool("", B_FALSE, DF_VERBOSE); 147 148 /* 149 * -l is ignored for compatibility with old agent. 150 */ 151 152 while ((c = getopt(argc, argv, "vd:l:fa")) != EOF) { 153 154 switch (c) { 155 156 case 'a': 157 do_adopt = B_TRUE; 158 grandparent = getpid(); 159 break; 160 161 case 'd': 162 debug_level = strtoul(optarg, NULL, 0); 163 break; 164 165 case 'f': 166 is_daemon = B_FALSE; 167 break; 168 169 case 'v': 170 is_verbose = B_TRUE; 171 break; 172 173 case '?': 174 (void) fprintf(stderr, "usage: %s [-a] [-d n] [-f] [-v]" 175 "\n", argv[0]); 176 return (EXIT_FAILURE); 177 178 default: 179 break; 180 } 181 } 182 183 (void) setlocale(LC_ALL, ""); 184 (void) textdomain(TEXT_DOMAIN); 185 186 if (geteuid() != 0) { 187 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 188 dhcpmsg(MSG_ERROR, "must be super-user"); 189 dhcpmsg_fini(); 190 return (EXIT_FAILURE); 191 } 192 193 if (is_daemon && daemonize() == 0) { 194 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 195 dhcpmsg(MSG_ERR, "cannot become daemon, exiting"); 196 dhcpmsg_fini(); 197 return (EXIT_FAILURE); 198 } 199 200 /* 201 * Seed the random number generator, since we're going to need it 202 * to set transaction id's and for exponential backoff. 203 */ 204 srand48(gethrtime() ^ gethostid() ^ getpid()); 205 206 dhcpmsg_init(argv[0], is_daemon, is_verbose, debug_level); 207 (void) atexit(dhcpmsg_fini); 208 209 tq = iu_tq_create(); 210 eh = iu_eh_create(); 211 212 if (eh == NULL || tq == NULL) { 213 errno = ENOMEM; 214 dhcpmsg(MSG_ERR, "cannot create timer queue or event handler"); 215 return (EXIT_FAILURE); 216 } 217 218 /* 219 * ignore most signals that could be reasonably generated. 220 */ 221 222 (void) signal(SIGTERM, graceful_shutdown); 223 (void) signal(SIGQUIT, graceful_shutdown); 224 (void) signal(SIGPIPE, SIG_IGN); 225 (void) signal(SIGUSR1, SIG_IGN); 226 (void) signal(SIGUSR2, SIG_IGN); 227 (void) signal(SIGINT, SIG_IGN); 228 (void) signal(SIGHUP, SIG_IGN); 229 (void) signal(SIGCHLD, SIG_IGN); 230 231 /* 232 * upon SIGTHAW we need to refresh any non-infinite leases. 233 */ 234 235 (void) iu_eh_register_signal(eh, SIGTHAW, refresh_smachs, NULL); 236 237 class_id = get_class_id(); 238 if (class_id != NULL) 239 class_id_len = strlen(class_id); 240 else 241 dhcpmsg(MSG_WARNING, "get_class_id failed, continuing " 242 "with no vendor class id"); 243 244 /* 245 * the inactivity timer is enabled any time there are no 246 * interfaces under DHCP control. if DHCP_INACTIVITY_WAIT 247 * seconds transpire without an interface under DHCP control, 248 * the agent shuts down. 249 */ 250 251 inactivity_id = iu_schedule_timer(tq, DHCP_INACTIVITY_WAIT, 252 inactivity_shutdown, NULL); 253 254 /* 255 * max out the number available descriptors, just in case.. 256 */ 257 258 rl.rlim_cur = RLIM_INFINITY; 259 rl.rlim_max = RLIM_INFINITY; 260 if (setrlimit(RLIMIT_NOFILE, &rl) == -1) 261 dhcpmsg(MSG_ERR, "setrlimit failed"); 262 263 (void) enable_extended_FILE_stdio(-1, -1); 264 265 /* 266 * Create and bind default IP sockets used to control interfaces and to 267 * catch stray packets. 268 */ 269 270 if (!dhcp_ip_default()) 271 return (EXIT_FAILURE); 272 273 /* 274 * create the ipc channel that the agent will listen for 275 * requests on, and register it with the event handler so that 276 * `accept_event' will be called back. 277 */ 278 279 switch (dhcp_ipc_init(&ipc_fd)) { 280 281 case 0: 282 break; 283 284 case DHCP_IPC_E_BIND: 285 dhcpmsg(MSG_ERROR, "dhcp_ipc_init: cannot bind to port " 286 "%i (agent already running?)", IPPORT_DHCPAGENT); 287 return (EXIT_FAILURE); 288 289 default: 290 dhcpmsg(MSG_ERROR, "dhcp_ipc_init failed"); 291 return (EXIT_FAILURE); 292 } 293 294 if (iu_register_event(eh, ipc_fd, POLLIN, accept_event, 0) == -1) { 295 dhcpmsg(MSG_ERR, "cannot register ipc fd for messages"); 296 return (EXIT_FAILURE); 297 } 298 299 /* 300 * Create the global routing socket. This is used for monitoring 301 * interface transitions, so that we learn about the kernel's Duplicate 302 * Address Detection status, and for inserting and removing default 303 * routes as learned from DHCP servers. Both v4 and v6 are handed 304 * with this one socket. 305 */ 306 rtsock_fd = socket(PF_ROUTE, SOCK_RAW, 0); 307 if (rtsock_fd == -1) { 308 dhcpmsg(MSG_ERR, "cannot open routing socket"); 309 return (EXIT_FAILURE); 310 } 311 312 /* 313 * We're IPMP-aware and can manage IPMP test addresses, so issue 314 * RT_AWARE to get routing socket messages for interfaces under IPMP. 315 */ 316 if (setsockopt(rtsock_fd, SOL_ROUTE, RT_AWARE, &aware, 317 sizeof (aware)) == -1) { 318 dhcpmsg(MSG_ERR, "cannot set RT_AWARE on routing socket"); 319 return (EXIT_FAILURE); 320 } 321 322 if (iu_register_event(eh, rtsock_fd, POLLIN, rtsock_event, 0) == -1) { 323 dhcpmsg(MSG_ERR, "cannot register routing socket for messages"); 324 return (EXIT_FAILURE); 325 } 326 327 /* 328 * if the -a (adopt) option was specified, try to adopt the 329 * kernel-managed interface before we start. 330 */ 331 332 if (do_adopt && !dhcp_adopt()) 333 return (EXIT_FAILURE); 334 335 /* 336 * For DHCPv6, we own all of the interfaces marked DHCPRUNNING. As 337 * we're starting operation here, if there are any of those interfaces 338 * lingering around, they're strays, and need to be removed. 339 * 340 * It might be nice to save these addresses off somewhere -- for both 341 * v4 and v6 -- and use them as hints for later negotiation. 342 */ 343 remove_v6_strays(); 344 345 /* 346 * enter the main event loop; this is where all the real work 347 * takes place (through registering events and scheduling timers). 348 * this function only returns when the agent is shutting down. 349 */ 350 351 switch (iu_handle_events(eh, tq)) { 352 353 case -1: 354 dhcpmsg(MSG_WARNING, "iu_handle_events exited abnormally"); 355 break; 356 357 case DHCP_REASON_INACTIVITY: 358 dhcpmsg(MSG_INFO, "no interfaces to manage, shutting down..."); 359 break; 360 361 case DHCP_REASON_TERMINATE: 362 dhcpmsg(MSG_INFO, "received SIGTERM, shutting down..."); 363 break; 364 365 case DHCP_REASON_SIGNAL: 366 dhcpmsg(MSG_WARNING, "received unexpected signal, shutting " 367 "down..."); 368 break; 369 } 370 371 (void) iu_eh_unregister_signal(eh, SIGTHAW, NULL); 372 373 iu_eh_destroy(eh); 374 iu_tq_destroy(tq); 375 376 return (EXIT_SUCCESS); 377 } 378 379 /* 380 * drain_script(): event loop callback during shutdown 381 * 382 * input: eh_t *: unused 383 * void *: unused 384 * output: boolean_t: B_TRUE if event loop should exit; B_FALSE otherwise 385 */ 386 387 /* ARGSUSED */ 388 boolean_t 389 drain_script(iu_eh_t *ehp, void *arg) 390 { 391 if (shutdown_started == B_FALSE) { 392 shutdown_started = B_TRUE; 393 /* 394 * Check if the system is diskless client and/or 395 * there are active iSCSI sessions 396 * 397 * Do not drop the lease, or the system will be 398 * unable to sync(dump) through nfs/iSCSI driver 399 */ 400 if (!do_adopt && !is_iscsi_active()) { 401 nuke_smach_list(); 402 } 403 } 404 return (script_count == 0); 405 } 406 407 /* 408 * accept_event(): accepts a new connection on the ipc socket and registers 409 * to receive its messages with the event handler 410 * 411 * input: iu_eh_t *: unused 412 * int: the file descriptor in the iu_eh_t * the connection came in on 413 * (other arguments unused) 414 * output: void 415 */ 416 417 /* ARGSUSED */ 418 static void 419 accept_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 420 { 421 int client_fd; 422 int is_priv; 423 424 if (dhcp_ipc_accept(fd, &client_fd, &is_priv) != 0) { 425 dhcpmsg(MSG_ERR, "accept_event: accept on ipc socket"); 426 return; 427 } 428 429 if (iu_register_event(eh, client_fd, POLLIN, ipc_event, 430 (void *)is_priv) == -1) { 431 dhcpmsg(MSG_ERROR, "accept_event: cannot register ipc socket " 432 "for callback"); 433 } 434 } 435 436 /* 437 * ipc_event(): processes incoming ipc requests 438 * 439 * input: iu_eh_t *: unused 440 * int: the file descriptor in the iu_eh_t * the request came in on 441 * short: unused 442 * iu_event_id_t: event ID 443 * void *: indicates whether the request is from a privileged client 444 * output: void 445 */ 446 447 /* ARGSUSED */ 448 static void 449 ipc_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 450 { 451 ipc_action_t ia, *iap; 452 dhcp_smach_t *dsmp; 453 int error, is_priv = (int)arg; 454 const char *ifname; 455 boolean_t isv6; 456 boolean_t dsm_created = B_FALSE; 457 458 ipc_action_init(&ia); 459 error = dhcp_ipc_recv_request(fd, &ia.ia_request, 460 DHCP_IPC_REQUEST_WAIT); 461 if (error != DHCP_IPC_SUCCESS) { 462 if (error != DHCP_IPC_E_EOF) { 463 dhcpmsg(MSG_ERROR, 464 "ipc_event: dhcp_ipc_recv_request failed: %s", 465 dhcp_ipc_strerror(error)); 466 } else { 467 dhcpmsg(MSG_DEBUG, "ipc_event: connection closed"); 468 } 469 if ((dsmp = lookup_smach_by_event(id)) != NULL) { 470 ipc_action_finish(dsmp, error); 471 } else { 472 (void) iu_unregister_event(eh, id, NULL); 473 (void) dhcp_ipc_close(fd); 474 } 475 return; 476 } 477 478 /* Fill in temporary ipc_action structure for utility functions */ 479 ia.ia_cmd = DHCP_IPC_CMD(ia.ia_request->message_type); 480 ia.ia_fd = fd; 481 ia.ia_eid = id; 482 483 if (ia.ia_cmd >= DHCP_NIPC) { 484 dhcpmsg(MSG_ERROR, 485 "ipc_event: invalid command (%s) attempted on %s", 486 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 487 send_error_reply(&ia, DHCP_IPC_E_CMD_UNKNOWN); 488 return; 489 } 490 491 /* return EPERM for any of the privileged actions */ 492 493 if (!is_priv && (ipc_cmd_flags[ia.ia_cmd] & CMD_ISPRIV)) { 494 dhcpmsg(MSG_WARNING, 495 "ipc_event: privileged ipc command (%s) attempted on %s", 496 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 497 send_error_reply(&ia, DHCP_IPC_E_PERM); 498 return; 499 } 500 501 /* 502 * Try to locate the state machine associated with this command. If 503 * the command is DHCP_START or DHCP_INFORM and there isn't a state 504 * machine already, make one (there may already be one from a previous 505 * failed attempt to START or INFORM). Otherwise, verify the reference 506 * is still valid. 507 * 508 * The interface name may be blank. In that case, we look up the 509 * primary interface, and the requested type (v4 or v6) doesn't matter. 510 */ 511 512 isv6 = (ia.ia_request->message_type & DHCP_V6) != 0; 513 ifname = ia.ia_request->ifname; 514 if (*ifname == '\0') 515 dsmp = primary_smach(isv6); 516 else 517 dsmp = lookup_smach(ifname, isv6); 518 519 if (dsmp != NULL) { 520 /* Note that verify_smach drops a reference */ 521 hold_smach(dsmp); 522 if (!verify_smach(dsmp)) 523 dsmp = NULL; 524 } 525 526 if (dsmp == NULL) { 527 /* 528 * If the user asked for the primary DHCP interface by giving 529 * an empty string and there is no primary, then check if we're 530 * handling dhcpinfo. If so, then simulate primary selection. 531 * Otherwise, report failure. 532 */ 533 if (ifname[0] == '\0') { 534 if (ia.ia_cmd == DHCP_GET_TAG) 535 dsmp = info_primary_smach(isv6); 536 if (dsmp == NULL) 537 error = DHCP_IPC_E_NOPRIMARY; 538 539 /* 540 * If there's no interface, and we're starting up, then create 541 * it now, along with a state machine for it. Note that if 542 * insert_smach fails, it discards the LIF reference. 543 */ 544 } else if (ipc_cmd_flags[ia.ia_cmd] & CMD_CREATE) { 545 dhcp_lif_t *lif; 546 547 lif = attach_lif(ifname, isv6, &error); 548 if (lif != NULL && 549 (dsmp = insert_smach(lif, &error)) != NULL) { 550 /* 551 * Get client ID for logical interface. (V4 552 * only, because V6 plumbs its own interfaces.) 553 */ 554 error = get_smach_cid(dsmp); 555 if (error != DHCP_IPC_SUCCESS) { 556 remove_smach(dsmp); 557 dsmp = NULL; 558 } 559 dsm_created = (dsmp != NULL); 560 } 561 562 /* 563 * Otherwise, this is an operation on an unknown interface. 564 */ 565 } else { 566 error = DHCP_IPC_E_UNKIF; 567 } 568 if (dsmp == NULL) { 569 send_error_reply(&ia, error); 570 return; 571 } 572 } 573 574 /* 575 * If this is a request for DHCP to manage a lease on an address, 576 * ensure that IFF_DHCPRUNNING is set (we don't set this when the lif 577 * is created because the lif may have been created for INFORM). 578 */ 579 if (ia.ia_cmd == DHCP_START && 580 (error = set_lif_dhcp(dsmp->dsm_lif)) != DHCP_IPC_SUCCESS) { 581 if (dsm_created) 582 remove_smach(dsmp); 583 send_error_reply(&ia, error); 584 return; 585 } 586 587 if ((dsmp->dsm_dflags & DHCP_IF_BOOTP) && 588 !(ipc_cmd_flags[ia.ia_cmd] & CMD_BOOTP)) { 589 dhcpmsg(MSG_ERROR, "command %s not valid for BOOTP on %s", 590 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 591 send_error_reply(&ia, DHCP_IPC_E_BOOTP); 592 return; 593 } 594 595 /* 596 * verify that the state machine is in a state which will allow the 597 * command. we do this up front so that we can return an error 598 * *before* needlessly cancelling an in-progress transaction. 599 */ 600 601 if (!check_cmd_allowed(dsmp->dsm_state, ia.ia_cmd)) { 602 dhcpmsg(MSG_DEBUG, 603 "in state %s; not allowing %s command on %s", 604 dhcp_state_to_string(dsmp->dsm_state), 605 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 606 send_error_reply(&ia, 607 ia.ia_cmd == DHCP_START && dsmp->dsm_state != INIT ? 608 DHCP_IPC_E_RUNNING : DHCP_IPC_E_OUTSTATE); 609 return; 610 } 611 612 dhcpmsg(MSG_DEBUG, "in state %s; allowing %s command on %s", 613 dhcp_state_to_string(dsmp->dsm_state), 614 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 615 616 if ((ia.ia_request->message_type & DHCP_PRIMARY) && is_priv) 617 make_primary(dsmp); 618 619 /* 620 * The current design dictates that there can be only one outstanding 621 * transaction per state machine -- this simplifies the code 622 * considerably and also fits well with RFCs 2131 and 3315. It is 623 * worth classifying the different DHCP commands into synchronous 624 * (those which we will handle now and reply to immediately) and 625 * asynchronous (those which require transactions and will be completed 626 * at an indeterminate time in the future): 627 * 628 * DROP: removes the agent's management of a state machine. 629 * asynchronous as the script program may be invoked. 630 * 631 * PING: checks to see if the agent has a named state machine. 632 * synchronous, since no packets need to be sent 633 * to the DHCP server. 634 * 635 * STATUS: returns information about a state machine. 636 * synchronous, since no packets need to be sent 637 * to the DHCP server. 638 * 639 * RELEASE: releases the agent's management of a state machine 640 * and brings the associated interfaces down. asynchronous 641 * as the script program may be invoked. 642 * 643 * EXTEND: renews a lease. asynchronous, since the agent 644 * needs to wait for an ACK, etc. 645 * 646 * START: starts DHCP on a named state machine. asynchronous since 647 * the agent needs to wait for OFFERs, ACKs, etc. 648 * 649 * INFORM: obtains configuration parameters for the system using 650 * externally configured interface. asynchronous, since the 651 * agent needs to wait for an ACK. 652 * 653 * Notice that EXTEND, INFORM, START, DROP and RELEASE are 654 * asynchronous. Notice also that asynchronous commands may occur from 655 * within the agent -- for instance, the agent will need to do implicit 656 * EXTENDs to extend the lease. In order to make the code simpler, the 657 * following rules apply for asynchronous commands: 658 * 659 * There can only be one asynchronous command at a time per state 660 * machine. The current asynchronous command is managed by the async_* 661 * api: async_start(), async_finish(), and async_cancel(). 662 * async_start() starts management of a new asynchronous command on an 663 * state machine, which should only be done after async_cancel() to 664 * terminate a previous command. When the command is completed, 665 * async_finish() should be called. 666 * 667 * Asynchronous commands started by a user command have an associated 668 * ipc_action which provides the agent with information for how to get 669 * in touch with the user command when the action completes. These 670 * ipc_action records also have an associated timeout which may be 671 * infinite. ipc_action_start() should be called when starting an 672 * asynchronous command requested by a user, which sets up the timer 673 * and keeps track of the ipc information (file descriptor, request 674 * type). When the asynchronous command completes, ipc_action_finish() 675 * should be called to return a command status code to the user and 676 * close the ipc connection). If the command does not complete before 677 * the timer fires, ipc_action_timeout() is called which closes the ipc 678 * connection and returns DHCP_IPC_E_TIMEOUT to the user. Note that 679 * independent of ipc_action_timeout(), ipc_action_finish() should be 680 * called. 681 * 682 * on a case-by-case basis, here is what happens (per state machine): 683 * 684 * o When an asynchronous command is requested, then 685 * async_cancel() is called to terminate any non-user 686 * action in progress. If there's a user action running, 687 * the user command is sent DHCP_IPC_E_PEND. 688 * 689 * o otherwise, the the transaction is started with 690 * async_start(). if the transaction is on behalf 691 * of a user, ipc_action_start() is called to keep 692 * track of the ipc information and set up the 693 * ipc_action timer. 694 * 695 * o if the command completes normally and before a 696 * timeout fires, then async_finish() is called. 697 * if there was an associated ipc_action, 698 * ipc_action_finish() is called to complete it. 699 * 700 * o if the command fails before a timeout fires, then 701 * async_finish() is called, and the state machine is 702 * is returned to a known state based on the command. 703 * if there was an associated ipc_action, 704 * ipc_action_finish() is called to complete it. 705 * 706 * o if the ipc_action timer fires before command 707 * completion, then DHCP_IPC_E_TIMEOUT is returned to 708 * the user. however, the transaction continues to 709 * be carried out asynchronously. 710 */ 711 712 if (ipc_cmd_flags[ia.ia_cmd] & CMD_IMMED) { 713 /* 714 * Only immediate commands (ping, status, get_tag) need to 715 * worry about freeing ia through one of the reply functions 716 * before returning. 717 */ 718 iap = &ia; 719 } else { 720 /* 721 * if shutdown request has been received, send back an error. 722 */ 723 if (shutdown_started) { 724 send_error_reply(&ia, DHCP_IPC_E_OUTSTATE); 725 return; 726 } 727 728 if (dsmp->dsm_dflags & DHCP_IF_BUSY) { 729 send_error_reply(&ia, DHCP_IPC_E_PEND); 730 return; 731 } 732 733 if (!ipc_action_start(dsmp, &ia)) { 734 dhcpmsg(MSG_WARNING, "ipc_event: ipc_action_start " 735 "failed for %s", dsmp->dsm_name); 736 send_error_reply(&ia, DHCP_IPC_E_MEMORY); 737 return; 738 } 739 740 /* Action structure consumed by above function */ 741 iap = &dsmp->dsm_ia; 742 } 743 744 switch (iap->ia_cmd) { 745 746 case DHCP_DROP: 747 if (dsmp->dsm_droprelease) 748 break; 749 dsmp->dsm_droprelease = B_TRUE; 750 751 /* 752 * Ensure that a timer associated with the existing state 753 * doesn't pop while we're waiting for the script to complete. 754 * (If so, chaos can result -- e.g., a timer causes us to end 755 * up in dhcp_selecting() would start acquiring a new lease on 756 * dsmp while our DHCP_DROP dismantling is ongoing.) 757 */ 758 cancel_smach_timers(dsmp); 759 (void) script_start(dsmp, isv6 ? EVENT_DROP6 : EVENT_DROP, 760 dhcp_drop, NULL, NULL); 761 break; /* not an immediate function */ 762 763 case DHCP_EXTEND: 764 dhcp_smach_set_msg_reqhost(dsmp, iap); 765 (void) dhcp_extending(dsmp); 766 break; 767 768 case DHCP_GET_TAG: { 769 dhcp_optnum_t optnum; 770 void *opt = NULL; 771 uint_t optlen; 772 boolean_t did_alloc = B_FALSE; 773 PKT_LIST *ack = dsmp->dsm_ack; 774 int i; 775 776 /* 777 * verify the request makes sense. 778 */ 779 780 if (iap->ia_request->data_type != DHCP_TYPE_OPTNUM || 781 iap->ia_request->data_length != sizeof (dhcp_optnum_t)) { 782 send_error_reply(iap, DHCP_IPC_E_PROTO); 783 break; 784 } 785 786 (void) memcpy(&optnum, iap->ia_request->buffer, 787 sizeof (dhcp_optnum_t)); 788 789 load_option: 790 switch (optnum.category) { 791 792 case DSYM_SITE: /* FALLTHRU */ 793 case DSYM_STANDARD: 794 for (i = 0; i < dsmp->dsm_pillen; i++) { 795 if (dsmp->dsm_pil[i] == optnum.code) 796 break; 797 } 798 if (i < dsmp->dsm_pillen) 799 break; 800 if (isv6) { 801 opt = dhcpv6_pkt_option(ack, NULL, optnum.code, 802 NULL); 803 } else { 804 opt = dhcp_get_ack_or_state(dsmp, ack, 805 optnum.code, &did_alloc); 806 } 807 break; 808 809 case DSYM_VENDOR: 810 if (isv6) { 811 dhcpv6_option_t *d6o; 812 uint32_t ent; 813 814 /* 815 * Look through vendor options to find our 816 * enterprise number. 817 */ 818 d6o = NULL; 819 for (;;) { 820 d6o = dhcpv6_pkt_option(ack, d6o, 821 DHCPV6_OPT_VENDOR_OPT, &optlen); 822 if (d6o == NULL) 823 break; 824 optlen -= sizeof (*d6o); 825 if (optlen < sizeof (ent)) 826 continue; 827 (void) memcpy(&ent, d6o + 1, 828 sizeof (ent)); 829 if (ntohl(ent) != DHCPV6_SUN_ENT) 830 continue; 831 break; 832 } 833 if (d6o != NULL) { 834 /* 835 * Now find the requested vendor option 836 * within the vendor options block. 837 */ 838 opt = dhcpv6_find_option( 839 (char *)(d6o + 1) + sizeof (ent), 840 optlen - sizeof (ent), NULL, 841 optnum.code, NULL); 842 } 843 } else { 844 /* 845 * the test against VS_OPTION_START is broken 846 * up into two tests to avoid compiler warnings 847 * under intel. 848 */ 849 if ((optnum.code > VS_OPTION_START || 850 optnum.code == VS_OPTION_START) && 851 optnum.code <= VS_OPTION_END) 852 opt = ack->vs[optnum.code]; 853 } 854 break; 855 856 case DSYM_FIELD: 857 if (isv6) { 858 dhcpv6_message_t *d6m = 859 (dhcpv6_message_t *)ack->pkt; 860 dhcpv6_option_t *d6o; 861 862 /* Validate the packet field the user wants */ 863 optlen = optnum.code + optnum.size; 864 if (d6m->d6m_msg_type == 865 DHCPV6_MSG_RELAY_FORW || 866 d6m->d6m_msg_type == 867 DHCPV6_MSG_RELAY_REPL) { 868 if (optlen > sizeof (dhcpv6_relay_t)) 869 break; 870 } else { 871 if (optlen > sizeof (*d6m)) 872 break; 873 } 874 875 opt = malloc(sizeof (*d6o) + optnum.size); 876 if (opt != NULL) { 877 d6o = opt; 878 d6o->d6o_code = htons(optnum.code); 879 d6o->d6o_len = htons(optnum.size); 880 (void) memcpy(d6o + 1, (caddr_t)d6m + 881 optnum.code, optnum.size); 882 } 883 } else { 884 if (optnum.code + optnum.size > sizeof (PKT)) 885 break; 886 887 opt = malloc(optnum.size + DHCP_OPT_META_LEN); 888 if (opt != NULL) { 889 DHCP_OPT *v4opt = opt; 890 891 v4opt->len = optnum.size; 892 v4opt->code = optnum.code; 893 (void) memcpy(v4opt->value, 894 (caddr_t)ack->pkt + optnum.code, 895 optnum.size); 896 } 897 } 898 899 if (opt == NULL) { 900 send_error_reply(iap, DHCP_IPC_E_MEMORY); 901 return; 902 } 903 did_alloc = B_TRUE; 904 break; 905 906 default: 907 send_error_reply(iap, DHCP_IPC_E_PROTO); 908 return; 909 } 910 911 /* 912 * return the option payload, if there was one. 913 */ 914 915 if (opt != NULL) { 916 if (isv6) { 917 dhcpv6_option_t d6ov; 918 919 (void) memcpy(&d6ov, opt, sizeof (d6ov)); 920 optlen = ntohs(d6ov.d6o_len) + sizeof (d6ov); 921 } else { 922 optlen = ((DHCP_OPT *)opt)->len + 923 DHCP_OPT_META_LEN; 924 } 925 send_data_reply(iap, 0, DHCP_TYPE_OPTION, opt, optlen); 926 927 if (did_alloc) 928 free(opt); 929 break; 930 } else if (ack != dsmp->dsm_orig_ack) { 931 /* 932 * There wasn't any definition for the option in the 933 * current ack, so now retry with the original ack if 934 * the original ack is not the current ack. 935 */ 936 ack = dsmp->dsm_orig_ack; 937 goto load_option; 938 } 939 940 /* 941 * note that an "okay" response is returned either in 942 * the case of an unknown option or a known option 943 * with no payload. this is okay (for now) since 944 * dhcpinfo checks whether an option is valid before 945 * ever performing ipc with the agent. 946 */ 947 948 send_ok_reply(iap); 949 break; 950 } 951 952 case DHCP_INFORM: 953 dhcp_inform(dsmp); 954 /* next destination: dhcp_acknak() */ 955 break; /* not an immediate function */ 956 957 case DHCP_PING: 958 if (dsmp->dsm_dflags & DHCP_IF_FAILED) 959 send_error_reply(iap, DHCP_IPC_E_FAILEDIF); 960 else 961 send_ok_reply(iap); 962 break; 963 964 case DHCP_RELEASE: 965 if (dsmp->dsm_droprelease) 966 break; 967 dsmp->dsm_droprelease = B_TRUE; 968 cancel_smach_timers(dsmp); /* see comment in DHCP_DROP above */ 969 (void) script_start(dsmp, isv6 ? EVENT_RELEASE6 : 970 EVENT_RELEASE, dhcp_release, "Finished with lease.", NULL); 971 break; /* not an immediate function */ 972 973 case DHCP_START: { 974 PKT_LIST *ack, *oack; 975 PKT_LIST *plp[2]; 976 977 deprecate_leases(dsmp); 978 dhcp_smach_set_msg_reqhost(dsmp, iap); 979 980 /* 981 * if we have a valid hostconf lying around, then jump 982 * into INIT_REBOOT. if it fails, we'll end up going 983 * through the whole selecting() procedure again. 984 */ 985 986 error = read_hostconf(dsmp->dsm_name, plp, 2, dsmp->dsm_isv6); 987 ack = error > 0 ? plp[0] : NULL; 988 oack = error > 1 ? plp[1] : NULL; 989 990 /* 991 * If the allocation of the old ack fails, that's fine; 992 * continue without it. 993 */ 994 if (oack == NULL) 995 oack = ack; 996 997 /* 998 * As long as we've allocated something, start using it. 999 */ 1000 if (ack != NULL) { 1001 dsmp->dsm_orig_ack = oack; 1002 dsmp->dsm_ack = ack; 1003 dhcp_init_reboot(dsmp); 1004 /* next destination: dhcp_acknak() */ 1005 break; 1006 } 1007 1008 /* 1009 * if not debugging, wait for a few seconds before 1010 * going into SELECTING. 1011 */ 1012 1013 if (debug_level != 0 || !set_start_timer(dsmp)) { 1014 dhcp_selecting(dsmp); 1015 /* next destination: dhcp_requesting() */ 1016 } 1017 /* else next destination: dhcp_start() */ 1018 } 1019 break; 1020 1021 case DHCP_STATUS: { 1022 dhcp_status_t status; 1023 dhcp_lease_t *dlp; 1024 1025 status.if_began = monosec_to_time(dsmp->dsm_curstart_monosec); 1026 1027 /* 1028 * We return information on just the first lease as being 1029 * representative of the lot. A better status mechanism is 1030 * needed. 1031 */ 1032 dlp = dsmp->dsm_leases; 1033 1034 if (dlp == NULL || 1035 dlp->dl_lifs->lif_expire.dt_start == DHCP_PERM) { 1036 status.if_t1 = DHCP_PERM; 1037 status.if_t2 = DHCP_PERM; 1038 status.if_lease = DHCP_PERM; 1039 } else { 1040 status.if_t1 = status.if_began + 1041 dlp->dl_t1.dt_start; 1042 status.if_t2 = status.if_began + 1043 dlp->dl_t2.dt_start; 1044 status.if_lease = status.if_began + 1045 dlp->dl_lifs->lif_expire.dt_start; 1046 } 1047 1048 status.version = DHCP_STATUS_VER; 1049 status.if_state = dsmp->dsm_state; 1050 status.if_dflags = dsmp->dsm_dflags; 1051 status.if_sent = dsmp->dsm_sent; 1052 status.if_recv = dsmp->dsm_received; 1053 status.if_bad_offers = dsmp->dsm_bad_offers; 1054 1055 (void) strlcpy(status.if_name, dsmp->dsm_name, LIFNAMSIZ); 1056 1057 send_data_reply(iap, 0, DHCP_TYPE_STATUS, &status, 1058 sizeof (dhcp_status_t)); 1059 break; 1060 } 1061 } 1062 } 1063 1064 /* 1065 * dhcp_smach_set_msg_reqhost(): set dsm_msg_reqhost based on the message 1066 * content of a DHCP IPC message 1067 * 1068 * input: dhcp_smach_t *: the state machine instance; 1069 * ipc_action_t *: the decoded DHCP IPC message; 1070 * output: void 1071 */ 1072 1073 static void 1074 dhcp_smach_set_msg_reqhost(dhcp_smach_t *dsmp, ipc_action_t *iap) 1075 { 1076 DHCP_OPT *d4o; 1077 dhcp_symbol_t *entry; 1078 char *value; 1079 1080 if (dsmp->dsm_msg_reqhost != NULL) { 1081 dhcpmsg(MSG_DEBUG, 1082 "dhcp_smach_set_msg_reqhost: nullify former value, %s", 1083 dsmp->dsm_msg_reqhost); 1084 free(dsmp->dsm_msg_reqhost); 1085 dsmp->dsm_msg_reqhost = NULL; 1086 } 1087 1088 /* 1089 * if a STANDARD/HOSTNAME was sent in the IPC request, then copy that 1090 * value into the state machine data if decoding succeeds. Otherwise, 1091 * log to indicate at what step the decoding stopped. 1092 */ 1093 1094 if (dsmp->dsm_isv6) { 1095 dhcpmsg(MSG_DEBUG, "dhcp_smach_set_msg_reqhost: ipv6 is not" 1096 " handled"); 1097 return; 1098 } else if (iap->ia_request->data_type != DHCP_TYPE_OPTION) { 1099 dhcpmsg(MSG_DEBUG, "dhcp_smach_set_msg_reqhost: request type" 1100 " %d is not DHCP_TYPE_OPTION", iap->ia_request->data_type); 1101 return; 1102 } 1103 1104 if (iap->ia_request->buffer == NULL || 1105 iap->ia_request->data_length <= DHCP_OPT_META_LEN) { 1106 dhcpmsg(MSG_WARNING, "dhcp_smach_set_msg_reqhost:" 1107 " DHCP_TYPE_OPTION ia_request buffer is NULL (0) or" 1108 " short (1): %d", 1109 iap->ia_request->buffer == NULL ? 0 : 1); 1110 return; 1111 } 1112 1113 d4o = (DHCP_OPT *)iap->ia_request->buffer; 1114 if (d4o->code != CD_HOSTNAME) { 1115 dhcpmsg(MSG_DEBUG, 1116 "dhcp_smach_set_msg_reqhost: ignoring DHCPv4" 1117 " option %u", d4o->code); 1118 return; 1119 } else if (iap->ia_request->data_length - DHCP_OPT_META_LEN 1120 != d4o->len) { 1121 dhcpmsg(MSG_WARNING, "dhcp_smach_set_msg_reqhost:" 1122 " unexpected DHCP_OPT buffer length %u for CD_HOSTNAME" 1123 " option length %u", iap->ia_request->data_length, 1124 d4o->len); 1125 return; 1126 } 1127 1128 entry = inittab_getbycode(ITAB_CAT_STANDARD, ITAB_CONS_INFO, 1129 CD_HOSTNAME); 1130 if (entry == NULL) { 1131 dhcpmsg(MSG_WARNING, 1132 "dhcp_smach_set_msg_reqhost: error getting" 1133 " ITAB_CAT_STANDARD ITAB_CONS_INFO" 1134 " CD_HOSTNAME entry"); 1135 return; 1136 } 1137 1138 value = inittab_decode(entry, d4o->value, d4o->len, 1139 /* just_payload */ B_TRUE); 1140 if (value == NULL) { 1141 dhcpmsg(MSG_WARNING, 1142 "dhcp_smach_set_msg_reqhost: error decoding" 1143 " CD_HOSTNAME value from DHCP_OPT"); 1144 } else { 1145 dhcpmsg(MSG_DEBUG, 1146 "dhcp_smach_set_msg_reqhost: host %s", value); 1147 free(dsmp->dsm_msg_reqhost); 1148 dsmp->dsm_msg_reqhost = value; 1149 } 1150 free(entry); 1151 } 1152 1153 /* 1154 * dhcp_get_ack_or_state(): get a v4 option from the ACK or from the state 1155 * machine state for certain codes that are not ACKed (e.g., CD_CLIENT_ID) 1156 * 1157 * input: dhcp_smach_t *: the state machine instance; 1158 * PKT_LIST *: the decoded DHCP IPC message; 1159 * uint_t: the DHCP client option code; 1160 * boolean_t *: a pointer to a value that will be set to B_TRUE if 1161 * the return value must be freed (or else set to B_FALSE); 1162 * output: the option if found or else NULL. 1163 */ 1164 1165 static DHCP_OPT * 1166 dhcp_get_ack_or_state(const dhcp_smach_t *dsmp, const PKT_LIST *plp, 1167 uint_t codenum, boolean_t *did_alloc) 1168 { 1169 DHCP_OPT *opt; 1170 1171 *did_alloc = B_FALSE; 1172 1173 if (codenum > DHCP_LAST_OPT) 1174 return (NULL); 1175 1176 /* check the ACK first for all codes */ 1177 opt = plp->opts[codenum]; 1178 if (opt != NULL) 1179 return (opt); 1180 1181 /* check the machine state also for certain codes */ 1182 switch (codenum) { 1183 case CD_CLIENT_ID: 1184 /* 1185 * CD_CLIENT_ID is not sent in an ACK, but it's possibly 1186 * available from the state machine data 1187 */ 1188 1189 if (dsmp->dsm_cidlen > 0) { 1190 if ((opt = malloc(dsmp->dsm_cidlen + DHCP_OPT_META_LEN)) 1191 != NULL) { 1192 *did_alloc = B_TRUE; 1193 (void) encode_dhcp_opt(opt, 1194 B_FALSE /* is IPv6 */, CD_CLIENT_ID, 1195 dsmp->dsm_cid, dsmp->dsm_cidlen); 1196 } 1197 } 1198 break; 1199 default: 1200 break; 1201 } 1202 return (opt); 1203 } 1204 1205 /* 1206 * check_rtm_addr(): determine if routing socket message matches interface 1207 * address 1208 * 1209 * input: const struct if_msghdr *: pointer to routing socket message 1210 * int: routing socket message length 1211 * boolean_t: set to B_TRUE if IPv6 1212 * const in6_addr_t *: pointer to IP address 1213 * output: boolean_t: B_TRUE if address is a match 1214 */ 1215 1216 static boolean_t 1217 check_rtm_addr(const struct ifa_msghdr *ifam, int msglen, boolean_t isv6, 1218 const in6_addr_t *addr) 1219 { 1220 const char *cp, *lim; 1221 uint_t flag; 1222 const struct sockaddr *sa; 1223 1224 if (!(ifam->ifam_addrs & RTA_IFA)) 1225 return (B_FALSE); 1226 1227 cp = (const char *)(ifam + 1); 1228 lim = (const char *)ifam + msglen; 1229 for (flag = 1; flag < RTA_IFA; flag <<= 1) { 1230 if (ifam->ifam_addrs & flag) { 1231 /* LINTED: alignment */ 1232 sa = (const struct sockaddr *)cp; 1233 if ((const char *)(sa + 1) > lim) 1234 return (B_FALSE); 1235 switch (sa->sa_family) { 1236 case AF_INET: 1237 cp += sizeof (struct sockaddr_in); 1238 break; 1239 case AF_LINK: 1240 cp += sizeof (struct sockaddr_dl); 1241 break; 1242 case AF_INET6: 1243 cp += sizeof (struct sockaddr_in6); 1244 break; 1245 default: 1246 cp += sizeof (struct sockaddr); 1247 break; 1248 } 1249 } 1250 } 1251 if (isv6) { 1252 const struct sockaddr_in6 *sin6; 1253 1254 /* LINTED: alignment */ 1255 sin6 = (const struct sockaddr_in6 *)cp; 1256 if ((const char *)(sin6 + 1) > lim) 1257 return (B_FALSE); 1258 if (sin6->sin6_family != AF_INET6) 1259 return (B_FALSE); 1260 return (IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr, addr)); 1261 } else { 1262 const struct sockaddr_in *sinp; 1263 ipaddr_t v4addr; 1264 1265 /* LINTED: alignment */ 1266 sinp = (const struct sockaddr_in *)cp; 1267 if ((const char *)(sinp + 1) > lim) 1268 return (B_FALSE); 1269 if (sinp->sin_family != AF_INET) 1270 return (B_FALSE); 1271 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 1272 return (sinp->sin_addr.s_addr == v4addr); 1273 } 1274 } 1275 1276 /* 1277 * is_rtm_v6(): determine if routing socket message is IPv6 1278 * 1279 * input: struct ifa_msghdr *: pointer to routing socket message 1280 * int: message length 1281 * output: boolean_t 1282 */ 1283 1284 static boolean_t 1285 is_rtm_v6(const struct ifa_msghdr *ifam, int msglen) 1286 { 1287 const char *cp, *lim; 1288 uint_t flag; 1289 const struct sockaddr *sa; 1290 1291 cp = (const char *)(ifam + 1); 1292 lim = (const char *)ifam + msglen; 1293 for (flag = ifam->ifam_addrs; flag != 0; flag &= flag - 1) { 1294 /* LINTED: alignment */ 1295 sa = (const struct sockaddr *)cp; 1296 if ((const char *)(sa + 1) > lim) 1297 return (B_FALSE); 1298 switch (sa->sa_family) { 1299 case AF_INET: 1300 return (B_FALSE); 1301 case AF_LINK: 1302 cp += sizeof (struct sockaddr_dl); 1303 break; 1304 case AF_INET6: 1305 return (B_TRUE); 1306 default: 1307 cp += sizeof (struct sockaddr); 1308 break; 1309 } 1310 } 1311 return (B_FALSE); 1312 } 1313 1314 /* 1315 * check_lif(): check the state of a given logical interface and its DHCP 1316 * lease. We've been told by the routing socket that the 1317 * corresponding ifIndex has changed. This may mean that DAD has 1318 * completed or failed. 1319 * 1320 * input: dhcp_lif_t *: pointer to the LIF 1321 * const struct ifa_msghdr *: routing socket message 1322 * int: size of routing socket message 1323 * output: boolean_t: B_TRUE if DAD has completed on this interface 1324 */ 1325 1326 static boolean_t 1327 check_lif(dhcp_lif_t *lif, const struct ifa_msghdr *ifam, int msglen) 1328 { 1329 boolean_t isv6, dad_wait, unplumb; 1330 int fd; 1331 struct lifreq lifr; 1332 1333 isv6 = lif->lif_pif->pif_isv6; 1334 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1335 1336 /* 1337 * Get the real (64 bit) logical interface flags. Note that the 1338 * routing socket message has flags, but these are just the lower 32 1339 * bits. 1340 */ 1341 unplumb = B_FALSE; 1342 (void) memset(&lifr, 0, sizeof (lifr)); 1343 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1344 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1) { 1345 /* 1346 * Failing to retrieve flags means that the interface is gone. 1347 * It hasn't failed to verify with DAD, but we still have to 1348 * give up on it. 1349 */ 1350 lifr.lifr_flags = 0; 1351 if (errno == ENXIO) { 1352 lif->lif_plumbed = B_FALSE; 1353 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1354 lif->lif_name); 1355 if (!isv6) 1356 discard_default_routes(lif->lif_smachs); 1357 } else { 1358 dhcpmsg(MSG_ERR, 1359 "unable to retrieve interface flags on %s", 1360 lif->lif_name); 1361 } 1362 unplumb = B_TRUE; 1363 } else if (!check_rtm_addr(ifam, msglen, isv6, &lif->lif_v6addr)) { 1364 /* 1365 * If the message is not about this logical interface, 1366 * then just ignore it. 1367 */ 1368 return (B_FALSE); 1369 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1370 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1371 lif->lif_name); 1372 lif_mark_decline(lif, "duplicate address"); 1373 close_ip_lif(lif); 1374 (void) open_ip_lif(lif, INADDR_ANY, B_TRUE); 1375 } 1376 1377 dad_wait = lif->lif_dad_wait; 1378 if (dad_wait) { 1379 dhcpmsg(MSG_VERBOSE, "check_lif: %s has finished DAD", 1380 lif->lif_name); 1381 lif->lif_dad_wait = B_FALSE; 1382 } 1383 1384 if (unplumb) 1385 unplumb_lif(lif); 1386 1387 return (dad_wait); 1388 } 1389 1390 /* 1391 * check_main_lif(): check the state of a main logical interface for a state 1392 * machine. This is used only for DHCPv6. 1393 * 1394 * input: dhcp_smach_t *: pointer to the state machine 1395 * const struct ifa_msghdr *: routing socket message 1396 * int: size of routing socket message 1397 * output: boolean_t: B_TRUE if LIF is ok. 1398 */ 1399 1400 static boolean_t 1401 check_main_lif(dhcp_smach_t *dsmp, const struct ifa_msghdr *ifam, int msglen) 1402 { 1403 dhcp_lif_t *lif = dsmp->dsm_lif; 1404 struct lifreq lifr; 1405 1406 /* 1407 * Get the real (64 bit) logical interface flags. Note that the 1408 * routing socket message has flags, but these are just the lower 32 1409 * bits. 1410 */ 1411 (void) memset(&lifr, 0, sizeof (lifr)); 1412 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1413 if (ioctl(v6_sock_fd, SIOCGLIFFLAGS, &lifr) == -1) { 1414 /* 1415 * Failing to retrieve flags means that the interface is gone. 1416 * Our state machine is now trash. 1417 */ 1418 if (errno == ENXIO) { 1419 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1420 lif->lif_name); 1421 } else { 1422 dhcpmsg(MSG_ERR, 1423 "unable to retrieve interface flags on %s", 1424 lif->lif_name); 1425 } 1426 return (B_FALSE); 1427 } else if (!check_rtm_addr(ifam, msglen, B_TRUE, &lif->lif_v6addr)) { 1428 /* 1429 * If the message is not about this logical interface, 1430 * then just ignore it. 1431 */ 1432 return (B_TRUE); 1433 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1434 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1435 lif->lif_name); 1436 return (B_FALSE); 1437 } else { 1438 return (B_TRUE); 1439 } 1440 } 1441 1442 /* 1443 * process_link_up_down(): check the state of a physical interface for up/down 1444 * transitions; must go through INIT_REBOOT state if 1445 * the link flaps. 1446 * 1447 * input: dhcp_pif_t *: pointer to the physical interface to check 1448 * const struct if_msghdr *: routing socket message 1449 * output: none 1450 */ 1451 1452 static void 1453 process_link_up_down(dhcp_pif_t *pif, const struct if_msghdr *ifm) 1454 { 1455 struct lifreq lifr; 1456 boolean_t isv6; 1457 int fd; 1458 1459 /* 1460 * If the message implies no change of flags, then we're done; no need 1461 * to check further. Note that if we have multiple state machines on a 1462 * single physical interface, this test keeps us from issuing an ioctl 1463 * for each one. 1464 */ 1465 if ((ifm->ifm_flags & IFF_RUNNING) && pif->pif_running || 1466 !(ifm->ifm_flags & IFF_RUNNING) && !pif->pif_running) 1467 return; 1468 1469 /* 1470 * We don't know what the real interface flags are, because the 1471 * if_index number is only 16 bits; we must go ask. 1472 */ 1473 isv6 = pif->pif_isv6; 1474 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1475 (void) memset(&lifr, 0, sizeof (lifr)); 1476 (void) strlcpy(lifr.lifr_name, pif->pif_name, sizeof (lifr.lifr_name)); 1477 1478 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1 || 1479 !(lifr.lifr_flags & IFF_RUNNING)) { 1480 /* 1481 * If we've lost the interface or it has gone down, then 1482 * nothing special to do; just turn off the running flag. 1483 */ 1484 pif_status(pif, B_FALSE); 1485 } else { 1486 /* 1487 * Interface has come back up: go through verification process. 1488 */ 1489 pif_status(pif, B_TRUE); 1490 } 1491 } 1492 1493 /* 1494 * rtsock_event(): fetches routing socket messages and updates internal 1495 * interface state based on those messages. 1496 * 1497 * input: iu_eh_t *: unused 1498 * int: the routing socket file descriptor 1499 * (other arguments unused) 1500 * output: void 1501 */ 1502 1503 /* ARGSUSED */ 1504 static void 1505 rtsock_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 1506 { 1507 dhcp_smach_t *dsmp, *dsmnext; 1508 union { 1509 struct ifa_msghdr ifam; 1510 struct if_msghdr ifm; 1511 char buf[1024]; 1512 } msg; 1513 uint16_t ifindex; 1514 int msglen; 1515 boolean_t isv6; 1516 1517 if ((msglen = read(fd, &msg, sizeof (msg))) <= 0) 1518 return; 1519 1520 /* Note that the routing socket interface index is just 16 bits */ 1521 if (msg.ifm.ifm_type == RTM_IFINFO) { 1522 ifindex = msg.ifm.ifm_index; 1523 isv6 = (msg.ifm.ifm_flags & IFF_IPV6) ? B_TRUE : B_FALSE; 1524 } else if (msg.ifam.ifam_type == RTM_DELADDR || 1525 msg.ifam.ifam_type == RTM_NEWADDR) { 1526 ifindex = msg.ifam.ifam_index; 1527 isv6 = is_rtm_v6(&msg.ifam, msglen); 1528 } else { 1529 return; 1530 } 1531 1532 for (dsmp = lookup_smach_by_uindex(ifindex, NULL, isv6); 1533 dsmp != NULL; dsmp = dsmnext) { 1534 DHCPSTATE oldstate; 1535 boolean_t lif_finished; 1536 boolean_t lease_removed; 1537 dhcp_lease_t *dlp, *dlnext; 1538 1539 /* 1540 * Note that script_start can call dhcp_drop directly, and 1541 * that will do release_smach. 1542 */ 1543 dsmnext = lookup_smach_by_uindex(ifindex, dsmp, isv6); 1544 oldstate = dsmp->dsm_state; 1545 1546 /* 1547 * Ignore state machines that are currently processing drop or 1548 * release; there is nothing more we can do for them. 1549 */ 1550 if (dsmp->dsm_droprelease) 1551 continue; 1552 1553 /* 1554 * Look for link up/down notifications. These occur on a 1555 * physical interface basis. 1556 */ 1557 if (msg.ifm.ifm_type == RTM_IFINFO) { 1558 process_link_up_down(dsmp->dsm_lif->lif_pif, &msg.ifm); 1559 continue; 1560 } 1561 1562 /* 1563 * Since we cannot trust the flags reported by the routing 1564 * socket (they're just 32 bits -- and thus never include 1565 * IFF_DUPLICATE), and we can't trust the ifindex (it's only 16 1566 * bits and also doesn't reflect the alias in use), we get 1567 * flags on all matching interfaces, and go by that. 1568 */ 1569 lif_finished = B_FALSE; 1570 lease_removed = B_FALSE; 1571 for (dlp = dsmp->dsm_leases; dlp != NULL; dlp = dlnext) { 1572 dhcp_lif_t *lif, *lifnext; 1573 uint_t nlifs = dlp->dl_nlifs; 1574 1575 dlnext = dlp->dl_next; 1576 for (lif = dlp->dl_lifs; lif != NULL && nlifs > 0; 1577 lif = lifnext, nlifs--) { 1578 lifnext = lif->lif_next; 1579 if (check_lif(lif, &msg.ifam, msglen)) { 1580 dsmp->dsm_lif_wait--; 1581 lif_finished = B_TRUE; 1582 } 1583 } 1584 if (dlp->dl_nlifs == 0) { 1585 remove_lease(dlp); 1586 lease_removed = B_TRUE; 1587 } 1588 } 1589 1590 if ((isv6 && !check_main_lif(dsmp, &msg.ifam, msglen)) || 1591 (!isv6 && !verify_lif(dsmp->dsm_lif))) { 1592 finished_smach(dsmp, DHCP_IPC_E_INVIF); 1593 continue; 1594 } 1595 1596 /* 1597 * Ignore this state machine if nothing interesting has 1598 * happened. 1599 */ 1600 if (!lif_finished && dsmp->dsm_lif_down == 0 && 1601 (dsmp->dsm_leases != NULL || !lease_removed)) 1602 continue; 1603 1604 /* 1605 * If we're still waiting for DAD to complete on some of the 1606 * configured LIFs, then don't send a response. 1607 */ 1608 if (dsmp->dsm_lif_wait != 0) { 1609 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s still has %d " 1610 "LIFs waiting on DAD", dsmp->dsm_name, 1611 dsmp->dsm_lif_wait); 1612 continue; 1613 } 1614 1615 /* 1616 * If we have some failed LIFs, then handle them now. We'll 1617 * remove them from the list. Any leases that become empty are 1618 * also removed as part of the decline-generation process. 1619 */ 1620 if (dsmp->dsm_lif_down != 0) 1621 send_declines(dsmp); 1622 1623 if (dsmp->dsm_leases == NULL) { 1624 dsmp->dsm_bad_offers++; 1625 /* 1626 * For DHCPv6, we'll process the restart once we're 1627 * done sending Decline messages, because these are 1628 * supposed to be acknowledged. With DHCPv4, there's 1629 * no acknowledgment for a DECLINE, so after sending 1630 * it, we just restart right away. 1631 */ 1632 if (!dsmp->dsm_isv6) { 1633 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s has no " 1634 "LIFs left", dsmp->dsm_name); 1635 dhcp_restart(dsmp); 1636 } 1637 } else { 1638 /* 1639 * If we're now up on at least some of the leases and 1640 * we were waiting for that, then kick off the rest of 1641 * configuration. Lease validation and DAD are done. 1642 */ 1643 dhcpmsg(MSG_VERBOSE, "rtsock_event: all LIFs verified " 1644 "on %s in %s state", dsmp->dsm_name, 1645 dhcp_state_to_string(oldstate)); 1646 if (oldstate == PRE_BOUND || 1647 oldstate == ADOPTING) 1648 dhcp_bound_complete(dsmp); 1649 if (oldstate == ADOPTING) 1650 dhcp_adopt_complete(dsmp); 1651 } 1652 } 1653 } 1654 1655 /* 1656 * check_cmd_allowed(): check whether the requested command is allowed in the 1657 * state specified. 1658 * 1659 * input: DHCPSTATE: current state 1660 * dhcp_ipc_type_t: requested command 1661 * output: boolean_t: B_TRUE if command is allowed in this state 1662 */ 1663 1664 boolean_t 1665 check_cmd_allowed(DHCPSTATE state, dhcp_ipc_type_t cmd) 1666 { 1667 return (ipc_cmd_allowed[state][cmd] != 0); 1668 } 1669 1670 static boolean_t 1671 is_iscsi_active(void) 1672 { 1673 int fd; 1674 int active = 0; 1675 1676 if ((fd = open(ISCSI_DRIVER_DEVCTL, O_RDONLY)) != -1) { 1677 if (ioctl(fd, ISCSI_IS_ACTIVE, &active) != 0) 1678 active = 0; 1679 (void) close(fd); 1680 } 1681 1682 return (active != 0); 1683 } 1684