1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2016-2017, Chris Fraire <cfraire@me.com>. 24 */ 25 26 #include <sys/types.h> 27 #include <stdlib.h> 28 #include <assert.h> 29 #include <errno.h> 30 #include <locale.h> 31 #include <string.h> 32 #include <unistd.h> 33 #include <signal.h> 34 #include <stdio.h> 35 #include <stdio_ext.h> 36 #include <dhcp_hostconf.h> 37 #include <dhcpagent_ipc.h> 38 #include <dhcpagent_util.h> 39 #include <dhcpmsg.h> 40 #include <dhcp_inittab.h> 41 #include <dhcp_symbol.h> 42 #include <netinet/dhcp.h> 43 #include <net/route.h> 44 #include <sys/sockio.h> 45 #include <sys/stat.h> 46 #include <stropts.h> 47 #include <fcntl.h> 48 #include <sys/scsi/adapters/iscsi_if.h> 49 50 #include "async.h" 51 #include "agent.h" 52 #include "script_handler.h" 53 #include "util.h" 54 #include "class_id.h" 55 #include "states.h" 56 #include "packet.h" 57 #include "interface.h" 58 #include "defaults.h" 59 60 #ifndef TEXT_DOMAIN 61 #define TEXT_DOMAIN "SYS_TEST" 62 #endif 63 64 iu_timer_id_t inactivity_id; 65 int class_id_len = 0; 66 char *class_id; 67 iu_eh_t *eh; 68 iu_tq_t *tq; 69 pid_t grandparent; 70 int rtsock_fd; 71 72 static boolean_t shutdown_started = B_FALSE; 73 static boolean_t do_adopt = B_FALSE; 74 static unsigned int debug_level = 0; 75 static iu_eh_callback_t accept_event, ipc_event, rtsock_event; 76 static void dhcp_smach_set_msg_reqhost(dhcp_smach_t *dsmp, 77 ipc_action_t *iap); 78 static DHCP_OPT * dhcp_get_ack_or_state(const dhcp_smach_t *dsmp, 79 const PKT_LIST *plp, uint_t codenum, boolean_t *did_alloc); 80 81 /* 82 * The ipc_cmd_allowed[] table indicates which IPC commands are allowed in 83 * which states; a non-zero value indicates the command is permitted. 84 * 85 * START is permitted if the state machine is fresh, or if we are in the 86 * process of trying to obtain a lease (as a convenience to save the 87 * administrator from having to do an explicit DROP). EXTEND, RELEASE, and 88 * GET_TAG require a lease to be obtained in order to make sense. INFORM is 89 * permitted if the interface is fresh or has an INFORM in progress or 90 * previously done on it -- otherwise a DROP or RELEASE is first required. 91 * PING and STATUS always make sense and thus are always permitted, as is DROP 92 * in order to permit the administrator to always bail out. 93 */ 94 static int ipc_cmd_allowed[DHCP_NSTATES][DHCP_NIPC] = { 95 /* D E P R S S I G */ 96 /* R X I E T T N E */ 97 /* O T N L A A F T */ 98 /* P E G E R T O _ */ 99 /* . N . A T U R T */ 100 /* . D . S . S M A */ 101 /* . . . E . . . G */ 102 /* INIT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 103 /* SELECTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 104 /* REQUESTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 105 /* PRE_BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 106 /* BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 107 /* RENEWING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 108 /* REBINDING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 109 /* INFORMATION */ { 1, 0, 1, 0, 1, 1, 1, 1 }, 110 /* INIT_REBOOT */ { 1, 0, 1, 1, 1, 1, 0, 0 }, 111 /* ADOPTING */ { 1, 0, 1, 1, 0, 1, 0, 0 }, 112 /* INFORM_SENT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 113 /* DECLINING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 114 /* RELEASING */ { 1, 0, 1, 0, 0, 1, 0, 1 }, 115 }; 116 117 #define CMD_ISPRIV 0x1 /* Command requires privileges */ 118 #define CMD_CREATE 0x2 /* Command creates an interface */ 119 #define CMD_BOOTP 0x4 /* Command is valid with BOOTP */ 120 #define CMD_IMMED 0x8 /* Reply is immediate (no BUSY state) */ 121 122 static uint_t ipc_cmd_flags[DHCP_NIPC] = { 123 /* DHCP_DROP */ CMD_ISPRIV|CMD_BOOTP, 124 /* DHCP_EXTEND */ CMD_ISPRIV, 125 /* DHCP_PING */ CMD_BOOTP|CMD_IMMED, 126 /* DHCP_RELEASE */ CMD_ISPRIV, 127 /* DHCP_START */ CMD_CREATE|CMD_ISPRIV|CMD_BOOTP, 128 /* DHCP_STATUS */ CMD_BOOTP|CMD_IMMED, 129 /* DHCP_INFORM */ CMD_CREATE|CMD_ISPRIV, 130 /* DHCP_GET_TAG */ CMD_BOOTP|CMD_IMMED 131 }; 132 133 static boolean_t is_iscsi_active(void); 134 135 int 136 main(int argc, char **argv) 137 { 138 boolean_t is_daemon = B_TRUE; 139 boolean_t is_verbose; 140 int ipc_fd; 141 int c; 142 int aware = RTAW_UNDER_IPMP; 143 struct rlimit rl; 144 145 debug_level = df_get_int("", B_FALSE, DF_DEBUG_LEVEL); 146 is_verbose = df_get_bool("", B_FALSE, DF_VERBOSE); 147 148 /* 149 * -l is ignored for compatibility with old agent. 150 */ 151 152 while ((c = getopt(argc, argv, "vd:l:fa")) != EOF) { 153 154 switch (c) { 155 156 case 'a': 157 do_adopt = B_TRUE; 158 grandparent = getpid(); 159 break; 160 161 case 'd': 162 debug_level = strtoul(optarg, NULL, 0); 163 break; 164 165 case 'f': 166 is_daemon = B_FALSE; 167 break; 168 169 case 'v': 170 is_verbose = B_TRUE; 171 break; 172 173 case '?': 174 (void) fprintf(stderr, "usage: %s [-a] [-d n] [-f] [-v]" 175 "\n", argv[0]); 176 return (EXIT_FAILURE); 177 178 default: 179 break; 180 } 181 } 182 183 (void) setlocale(LC_ALL, ""); 184 (void) textdomain(TEXT_DOMAIN); 185 186 if (geteuid() != 0) { 187 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 188 dhcpmsg(MSG_ERROR, "must be super-user"); 189 dhcpmsg_fini(); 190 return (EXIT_FAILURE); 191 } 192 193 if (is_daemon && daemonize() == 0) { 194 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 195 dhcpmsg(MSG_ERR, "cannot become daemon, exiting"); 196 dhcpmsg_fini(); 197 return (EXIT_FAILURE); 198 } 199 200 /* 201 * Seed the random number generator, since we're going to need it 202 * to set transaction id's and for exponential backoff. 203 */ 204 srand48(gethrtime() ^ gethostid() ^ getpid()); 205 206 dhcpmsg_init(argv[0], is_daemon, is_verbose, debug_level); 207 (void) atexit(dhcpmsg_fini); 208 209 tq = iu_tq_create(); 210 eh = iu_eh_create(); 211 212 if (eh == NULL || tq == NULL) { 213 errno = ENOMEM; 214 dhcpmsg(MSG_ERR, "cannot create timer queue or event handler"); 215 return (EXIT_FAILURE); 216 } 217 218 /* 219 * ignore most signals that could be reasonably generated. 220 */ 221 222 (void) signal(SIGTERM, graceful_shutdown); 223 (void) signal(SIGQUIT, graceful_shutdown); 224 (void) signal(SIGPIPE, SIG_IGN); 225 (void) signal(SIGUSR1, SIG_IGN); 226 (void) signal(SIGUSR2, SIG_IGN); 227 (void) signal(SIGINT, SIG_IGN); 228 (void) signal(SIGHUP, SIG_IGN); 229 (void) signal(SIGCHLD, SIG_IGN); 230 231 /* 232 * upon SIGTHAW we need to refresh any non-infinite leases. 233 */ 234 235 (void) iu_eh_register_signal(eh, SIGTHAW, refresh_smachs, NULL); 236 237 class_id = get_class_id(); 238 if (class_id != NULL) 239 class_id_len = strlen(class_id); 240 else 241 dhcpmsg(MSG_WARNING, "get_class_id failed, continuing " 242 "with no vendor class id"); 243 244 /* 245 * the inactivity timer is enabled any time there are no 246 * interfaces under DHCP control. if DHCP_INACTIVITY_WAIT 247 * seconds transpire without an interface under DHCP control, 248 * the agent shuts down. 249 */ 250 251 inactivity_id = iu_schedule_timer(tq, DHCP_INACTIVITY_WAIT, 252 inactivity_shutdown, NULL); 253 254 /* 255 * max out the number available descriptors, just in case.. 256 */ 257 258 rl.rlim_cur = RLIM_INFINITY; 259 rl.rlim_max = RLIM_INFINITY; 260 if (setrlimit(RLIMIT_NOFILE, &rl) == -1) 261 dhcpmsg(MSG_ERR, "setrlimit failed"); 262 263 (void) enable_extended_FILE_stdio(-1, -1); 264 265 /* 266 * Create and bind default IP sockets used to control interfaces and to 267 * catch stray packets. 268 */ 269 270 if (!dhcp_ip_default()) 271 return (EXIT_FAILURE); 272 273 /* 274 * create the ipc channel that the agent will listen for 275 * requests on, and register it with the event handler so that 276 * `accept_event' will be called back. 277 */ 278 279 switch (dhcp_ipc_init(&ipc_fd)) { 280 281 case 0: 282 break; 283 284 case DHCP_IPC_E_BIND: 285 dhcpmsg(MSG_ERROR, "dhcp_ipc_init: cannot bind to port " 286 "%i (agent already running?)", IPPORT_DHCPAGENT); 287 return (EXIT_FAILURE); 288 289 default: 290 dhcpmsg(MSG_ERROR, "dhcp_ipc_init failed"); 291 return (EXIT_FAILURE); 292 } 293 294 if (iu_register_event(eh, ipc_fd, POLLIN, accept_event, 0) == -1) { 295 dhcpmsg(MSG_ERR, "cannot register ipc fd for messages"); 296 return (EXIT_FAILURE); 297 } 298 299 /* 300 * Create the global routing socket. This is used for monitoring 301 * interface transitions, so that we learn about the kernel's Duplicate 302 * Address Detection status, and for inserting and removing default 303 * routes as learned from DHCP servers. Both v4 and v6 are handed 304 * with this one socket. 305 */ 306 rtsock_fd = socket(PF_ROUTE, SOCK_RAW, 0); 307 if (rtsock_fd == -1) { 308 dhcpmsg(MSG_ERR, "cannot open routing socket"); 309 return (EXIT_FAILURE); 310 } 311 312 /* 313 * We're IPMP-aware and can manage IPMP test addresses, so issue 314 * RT_AWARE to get routing socket messages for interfaces under IPMP. 315 */ 316 if (setsockopt(rtsock_fd, SOL_ROUTE, RT_AWARE, &aware, 317 sizeof (aware)) == -1) { 318 dhcpmsg(MSG_ERR, "cannot set RT_AWARE on routing socket"); 319 return (EXIT_FAILURE); 320 } 321 322 if (iu_register_event(eh, rtsock_fd, POLLIN, rtsock_event, 0) == -1) { 323 dhcpmsg(MSG_ERR, "cannot register routing socket for messages"); 324 return (EXIT_FAILURE); 325 } 326 327 /* 328 * if the -a (adopt) option was specified, try to adopt the 329 * kernel-managed interface before we start. 330 */ 331 332 if (do_adopt && !dhcp_adopt()) 333 return (EXIT_FAILURE); 334 335 /* 336 * For DHCPv6, we own all of the interfaces marked DHCPRUNNING. As 337 * we're starting operation here, if there are any of those interfaces 338 * lingering around, they're strays, and need to be removed. 339 * 340 * It might be nice to save these addresses off somewhere -- for both 341 * v4 and v6 -- and use them as hints for later negotiation. 342 */ 343 remove_v6_strays(); 344 345 /* 346 * enter the main event loop; this is where all the real work 347 * takes place (through registering events and scheduling timers). 348 * this function only returns when the agent is shutting down. 349 */ 350 351 switch (iu_handle_events(eh, tq)) { 352 353 case -1: 354 dhcpmsg(MSG_WARNING, "iu_handle_events exited abnormally"); 355 break; 356 357 case DHCP_REASON_INACTIVITY: 358 dhcpmsg(MSG_INFO, "no interfaces to manage, shutting down..."); 359 break; 360 361 case DHCP_REASON_TERMINATE: 362 dhcpmsg(MSG_INFO, "received SIGTERM, shutting down..."); 363 break; 364 365 case DHCP_REASON_SIGNAL: 366 dhcpmsg(MSG_WARNING, "received unexpected signal, shutting " 367 "down..."); 368 break; 369 } 370 371 (void) iu_eh_unregister_signal(eh, SIGTHAW, NULL); 372 373 iu_eh_destroy(eh); 374 iu_tq_destroy(tq); 375 376 return (EXIT_SUCCESS); 377 } 378 379 /* 380 * drain_script(): event loop callback during shutdown 381 * 382 * input: eh_t *: unused 383 * void *: unused 384 * output: boolean_t: B_TRUE if event loop should exit; B_FALSE otherwise 385 */ 386 387 /* ARGSUSED */ 388 boolean_t 389 drain_script(iu_eh_t *ehp, void *arg) 390 { 391 if (shutdown_started == B_FALSE) { 392 shutdown_started = B_TRUE; 393 /* 394 * Check if the system is diskless client and/or 395 * there are active iSCSI sessions 396 * 397 * Do not drop the lease, or the system will be 398 * unable to sync(dump) through nfs/iSCSI driver 399 */ 400 if (!do_adopt && !is_iscsi_active()) { 401 nuke_smach_list(); 402 } 403 } 404 return (script_count == 0); 405 } 406 407 /* 408 * accept_event(): accepts a new connection on the ipc socket and registers 409 * to receive its messages with the event handler 410 * 411 * input: iu_eh_t *: unused 412 * int: the file descriptor in the iu_eh_t * the connection came in on 413 * (other arguments unused) 414 * output: void 415 */ 416 417 /* ARGSUSED */ 418 static void 419 accept_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 420 { 421 int client_fd; 422 int is_priv; 423 424 if (dhcp_ipc_accept(fd, &client_fd, &is_priv) != 0) { 425 dhcpmsg(MSG_ERR, "accept_event: accept on ipc socket"); 426 return; 427 } 428 429 if (iu_register_event(eh, client_fd, POLLIN, ipc_event, 430 (void *)is_priv) == -1) { 431 dhcpmsg(MSG_ERROR, "accept_event: cannot register ipc socket " 432 "for callback"); 433 } 434 } 435 436 /* 437 * ipc_event(): processes incoming ipc requests 438 * 439 * input: iu_eh_t *: unused 440 * int: the file descriptor in the iu_eh_t * the request came in on 441 * short: unused 442 * iu_event_id_t: event ID 443 * void *: indicates whether the request is from a privileged client 444 * output: void 445 */ 446 447 /* ARGSUSED */ 448 static void 449 ipc_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 450 { 451 ipc_action_t ia, *iap; 452 dhcp_smach_t *dsmp; 453 int error, is_priv = (int)arg; 454 const char *ifname; 455 boolean_t isv6; 456 boolean_t dsm_created = B_FALSE; 457 458 ipc_action_init(&ia); 459 error = dhcp_ipc_recv_request(fd, &ia.ia_request, 460 DHCP_IPC_REQUEST_WAIT); 461 if (error != DHCP_IPC_SUCCESS) { 462 if (error != DHCP_IPC_E_EOF) { 463 dhcpmsg(MSG_ERROR, 464 "ipc_event: dhcp_ipc_recv_request failed: %s", 465 dhcp_ipc_strerror(error)); 466 } else { 467 dhcpmsg(MSG_DEBUG, "ipc_event: connection closed"); 468 } 469 if ((dsmp = lookup_smach_by_event(id)) != NULL) { 470 ipc_action_finish(dsmp, error); 471 } else { 472 (void) iu_unregister_event(eh, id, NULL); 473 (void) dhcp_ipc_close(fd); 474 } 475 return; 476 } 477 478 /* Fill in temporary ipc_action structure for utility functions */ 479 ia.ia_cmd = DHCP_IPC_CMD(ia.ia_request->message_type); 480 ia.ia_fd = fd; 481 ia.ia_eid = id; 482 483 if (ia.ia_cmd >= DHCP_NIPC) { 484 dhcpmsg(MSG_ERROR, 485 "ipc_event: invalid command (%s) attempted on %s", 486 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 487 send_error_reply(&ia, DHCP_IPC_E_CMD_UNKNOWN); 488 return; 489 } 490 491 /* return EPERM for any of the privileged actions */ 492 493 if (!is_priv && (ipc_cmd_flags[ia.ia_cmd] & CMD_ISPRIV)) { 494 dhcpmsg(MSG_WARNING, 495 "ipc_event: privileged ipc command (%s) attempted on %s", 496 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 497 send_error_reply(&ia, DHCP_IPC_E_PERM); 498 return; 499 } 500 501 /* 502 * Try to locate the state machine associated with this command. If 503 * the command is DHCP_START or DHCP_INFORM and there isn't a state 504 * machine already, make one (there may already be one from a previous 505 * failed attempt to START or INFORM). Otherwise, verify the reference 506 * is still valid. 507 * 508 * The interface name may be blank. In that case, we look up the 509 * primary interface, and the requested type (v4 or v6) doesn't matter. 510 */ 511 512 isv6 = (ia.ia_request->message_type & DHCP_V6) != 0; 513 ifname = ia.ia_request->ifname; 514 if (*ifname == '\0') 515 dsmp = primary_smach(isv6); 516 else 517 dsmp = lookup_smach(ifname, isv6); 518 519 if (dsmp != NULL) { 520 /* Note that verify_smach drops a reference */ 521 hold_smach(dsmp); 522 if (!verify_smach(dsmp)) 523 dsmp = NULL; 524 } 525 526 if (dsmp == NULL) { 527 /* 528 * If the user asked for the primary DHCP interface by giving 529 * an empty string and there is no primary, then check if we're 530 * handling dhcpinfo. If so, then simulate primary selection. 531 * Otherwise, report failure. 532 */ 533 if (ifname[0] == '\0') { 534 if (ia.ia_cmd == DHCP_GET_TAG) 535 dsmp = info_primary_smach(isv6); 536 if (dsmp == NULL) 537 error = DHCP_IPC_E_NOPRIMARY; 538 539 /* 540 * If there's no interface, and we're starting up, then create 541 * it now, along with a state machine for it. Note that if 542 * insert_smach fails, it discards the LIF reference. 543 */ 544 } else if (ipc_cmd_flags[ia.ia_cmd] & CMD_CREATE) { 545 dhcp_lif_t *lif; 546 547 lif = attach_lif(ifname, isv6, &error); 548 if (lif != NULL && 549 (dsmp = insert_smach(lif, &error)) != NULL) { 550 /* 551 * Get client ID for logical interface. (V4 552 * only, because V6 plumbs its own interfaces.) 553 */ 554 error = get_smach_cid(dsmp); 555 if (error != DHCP_IPC_SUCCESS) { 556 remove_smach(dsmp); 557 dsmp = NULL; 558 } 559 dsm_created = (dsmp != NULL); 560 } 561 562 /* 563 * Otherwise, this is an operation on an unknown interface. 564 */ 565 } else { 566 error = DHCP_IPC_E_UNKIF; 567 } 568 if (dsmp == NULL) { 569 send_error_reply(&ia, error); 570 return; 571 } 572 } 573 574 /* 575 * If this is a request for DHCP to manage a lease on an address, 576 * ensure that IFF_DHCPRUNNING is set (we don't set this when the lif 577 * is created because the lif may have been created for INFORM). 578 */ 579 if (ia.ia_cmd == DHCP_START && 580 (error = set_lif_dhcp(dsmp->dsm_lif)) != DHCP_IPC_SUCCESS) { 581 if (dsm_created) 582 remove_smach(dsmp); 583 send_error_reply(&ia, error); 584 return; 585 } 586 587 if ((dsmp->dsm_dflags & DHCP_IF_BOOTP) && 588 !(ipc_cmd_flags[ia.ia_cmd] & CMD_BOOTP)) { 589 dhcpmsg(MSG_ERROR, "command %s not valid for BOOTP on %s", 590 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 591 send_error_reply(&ia, DHCP_IPC_E_BOOTP); 592 return; 593 } 594 595 /* 596 * verify that the state machine is in a state which will allow the 597 * command. we do this up front so that we can return an error 598 * *before* needlessly cancelling an in-progress transaction. 599 */ 600 601 if (!check_cmd_allowed(dsmp->dsm_state, ia.ia_cmd)) { 602 dhcpmsg(MSG_DEBUG, 603 "in state %s; not allowing %s command on %s", 604 dhcp_state_to_string(dsmp->dsm_state), 605 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 606 send_error_reply(&ia, 607 ia.ia_cmd == DHCP_START && dsmp->dsm_state != INIT ? 608 DHCP_IPC_E_RUNNING : DHCP_IPC_E_OUTSTATE); 609 return; 610 } 611 612 dhcpmsg(MSG_DEBUG, "in state %s; allowing %s command on %s", 613 dhcp_state_to_string(dsmp->dsm_state), 614 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 615 616 if ((ia.ia_request->message_type & DHCP_PRIMARY) && is_priv) 617 make_primary(dsmp); 618 619 /* 620 * The current design dictates that there can be only one outstanding 621 * transaction per state machine -- this simplifies the code 622 * considerably and also fits well with RFCs 2131 and 3315. It is 623 * worth classifying the different DHCP commands into synchronous 624 * (those which we will handle now and reply to immediately) and 625 * asynchronous (those which require transactions and will be completed 626 * at an indeterminate time in the future): 627 * 628 * DROP: removes the agent's management of a state machine. 629 * asynchronous as the script program may be invoked. 630 * 631 * PING: checks to see if the agent has a named state machine. 632 * synchronous, since no packets need to be sent 633 * to the DHCP server. 634 * 635 * STATUS: returns information about a state machine. 636 * synchronous, since no packets need to be sent 637 * to the DHCP server. 638 * 639 * RELEASE: releases the agent's management of a state machine 640 * and brings the associated interfaces down. asynchronous 641 * as the script program may be invoked. 642 * 643 * EXTEND: renews a lease. asynchronous, since the agent 644 * needs to wait for an ACK, etc. 645 * 646 * START: starts DHCP on a named state machine. asynchronous since 647 * the agent needs to wait for OFFERs, ACKs, etc. 648 * 649 * INFORM: obtains configuration parameters for the system using 650 * externally configured interface. asynchronous, since the 651 * agent needs to wait for an ACK. 652 * 653 * Notice that EXTEND, INFORM, START, DROP and RELEASE are 654 * asynchronous. Notice also that asynchronous commands may occur from 655 * within the agent -- for instance, the agent will need to do implicit 656 * EXTENDs to extend the lease. In order to make the code simpler, the 657 * following rules apply for asynchronous commands: 658 * 659 * There can only be one asynchronous command at a time per state 660 * machine. The current asynchronous command is managed by the async_* 661 * api: async_start(), async_finish(), and async_cancel(). 662 * async_start() starts management of a new asynchronous command on an 663 * state machine, which should only be done after async_cancel() to 664 * terminate a previous command. When the command is completed, 665 * async_finish() should be called. 666 * 667 * Asynchronous commands started by a user command have an associated 668 * ipc_action which provides the agent with information for how to get 669 * in touch with the user command when the action completes. These 670 * ipc_action records also have an associated timeout which may be 671 * infinite. ipc_action_start() should be called when starting an 672 * asynchronous command requested by a user, which sets up the timer 673 * and keeps track of the ipc information (file descriptor, request 674 * type). When the asynchronous command completes, ipc_action_finish() 675 * should be called to return a command status code to the user and 676 * close the ipc connection). If the command does not complete before 677 * the timer fires, ipc_action_timeout() is called which closes the ipc 678 * connection and returns DHCP_IPC_E_TIMEOUT to the user. Note that 679 * independent of ipc_action_timeout(), ipc_action_finish() should be 680 * called. 681 * 682 * on a case-by-case basis, here is what happens (per state machine): 683 * 684 * o When an asynchronous command is requested, then 685 * async_cancel() is called to terminate any non-user 686 * action in progress. If there's a user action running, 687 * the user command is sent DHCP_IPC_E_PEND. 688 * 689 * o otherwise, the transaction is started with 690 * async_start(). if the transaction is on behalf 691 * of a user, ipc_action_start() is called to keep 692 * track of the ipc information and set up the 693 * ipc_action timer. 694 * 695 * o if the command completes normally and before a 696 * timeout fires, then async_finish() is called. 697 * if there was an associated ipc_action, 698 * ipc_action_finish() is called to complete it. 699 * 700 * o if the command fails before a timeout fires, then 701 * async_finish() is called, and the state machine is 702 * is returned to a known state based on the command. 703 * if there was an associated ipc_action, 704 * ipc_action_finish() is called to complete it. 705 * 706 * o if the ipc_action timer fires before command 707 * completion, then DHCP_IPC_E_TIMEOUT is returned to 708 * the user. however, the transaction continues to 709 * be carried out asynchronously. 710 */ 711 712 if (ipc_cmd_flags[ia.ia_cmd] & CMD_IMMED) { 713 /* 714 * Only immediate commands (ping, status, get_tag) need to 715 * worry about freeing ia through one of the reply functions 716 * before returning. 717 */ 718 iap = &ia; 719 } else { 720 /* 721 * if shutdown request has been received, send back an error. 722 */ 723 if (shutdown_started) { 724 send_error_reply(&ia, DHCP_IPC_E_OUTSTATE); 725 return; 726 } 727 728 if (dsmp->dsm_dflags & DHCP_IF_BUSY) { 729 send_error_reply(&ia, DHCP_IPC_E_PEND); 730 return; 731 } 732 733 if (!ipc_action_start(dsmp, &ia)) { 734 dhcpmsg(MSG_WARNING, "ipc_event: ipc_action_start " 735 "failed for %s", dsmp->dsm_name); 736 send_error_reply(&ia, DHCP_IPC_E_MEMORY); 737 return; 738 } 739 740 /* Action structure consumed by above function */ 741 iap = &dsmp->dsm_ia; 742 } 743 744 switch (iap->ia_cmd) { 745 746 case DHCP_DROP: 747 if (dsmp->dsm_droprelease) 748 break; 749 dsmp->dsm_droprelease = B_TRUE; 750 751 /* 752 * Ensure that a timer associated with the existing state 753 * doesn't pop while we're waiting for the script to complete. 754 * (If so, chaos can result -- e.g., a timer causes us to end 755 * up in dhcp_selecting() would start acquiring a new lease on 756 * dsmp while our DHCP_DROP dismantling is ongoing.) 757 */ 758 cancel_smach_timers(dsmp); 759 (void) script_start(dsmp, isv6 ? EVENT_DROP6 : EVENT_DROP, 760 dhcp_drop, NULL, NULL); 761 break; /* not an immediate function */ 762 763 case DHCP_EXTEND: 764 dhcp_smach_set_msg_reqhost(dsmp, iap); 765 (void) dhcp_extending(dsmp); 766 break; 767 768 case DHCP_GET_TAG: { 769 dhcp_optnum_t optnum; 770 void *opt = NULL; 771 uint_t optlen; 772 boolean_t did_alloc = B_FALSE; 773 PKT_LIST *ack = dsmp->dsm_ack; 774 int i; 775 776 /* 777 * verify the request makes sense. 778 */ 779 780 if (iap->ia_request->data_type != DHCP_TYPE_OPTNUM || 781 iap->ia_request->data_length != sizeof (dhcp_optnum_t)) { 782 send_error_reply(iap, DHCP_IPC_E_PROTO); 783 break; 784 } 785 786 (void) memcpy(&optnum, iap->ia_request->buffer, 787 sizeof (dhcp_optnum_t)); 788 789 load_option: 790 switch (optnum.category) { 791 792 case DSYM_SITE: /* FALLTHRU */ 793 case DSYM_STANDARD: 794 for (i = 0; i < dsmp->dsm_pillen; i++) { 795 if (dsmp->dsm_pil[i] == optnum.code) 796 break; 797 } 798 if (i < dsmp->dsm_pillen) 799 break; 800 if (isv6) { 801 opt = dhcpv6_pkt_option(ack, NULL, optnum.code, 802 NULL); 803 } else { 804 opt = dhcp_get_ack_or_state(dsmp, ack, 805 optnum.code, &did_alloc); 806 } 807 break; 808 809 case DSYM_VENDOR: 810 if (isv6) { 811 dhcpv6_option_t *d6o; 812 uint32_t ent; 813 814 /* 815 * Look through vendor options to find our 816 * enterprise number. 817 */ 818 d6o = NULL; 819 for (;;) { 820 d6o = dhcpv6_pkt_option(ack, d6o, 821 DHCPV6_OPT_VENDOR_OPT, &optlen); 822 if (d6o == NULL) 823 break; 824 optlen -= sizeof (*d6o); 825 if (optlen < sizeof (ent)) 826 continue; 827 (void) memcpy(&ent, d6o + 1, 828 sizeof (ent)); 829 if (ntohl(ent) != DHCPV6_SUN_ENT) 830 continue; 831 break; 832 } 833 if (d6o != NULL) { 834 /* 835 * Now find the requested vendor option 836 * within the vendor options block. 837 */ 838 opt = dhcpv6_find_option( 839 (char *)(d6o + 1) + sizeof (ent), 840 optlen - sizeof (ent), NULL, 841 optnum.code, NULL); 842 } 843 } else { 844 /* 845 * the test against VS_OPTION_START is broken 846 * up into two tests to avoid compiler warnings 847 * under intel. 848 */ 849 if ((optnum.code > VS_OPTION_START || 850 optnum.code == VS_OPTION_START) && 851 optnum.code <= VS_OPTION_END) 852 opt = ack->vs[optnum.code]; 853 } 854 break; 855 856 case DSYM_FIELD: 857 if (isv6) { 858 dhcpv6_message_t *d6m = 859 (dhcpv6_message_t *)ack->pkt; 860 dhcpv6_option_t *d6o; 861 862 /* Validate the packet field the user wants */ 863 optlen = optnum.code + optnum.size; 864 if (d6m->d6m_msg_type == 865 DHCPV6_MSG_RELAY_FORW || 866 d6m->d6m_msg_type == 867 DHCPV6_MSG_RELAY_REPL) { 868 if (optlen > sizeof (dhcpv6_relay_t)) 869 break; 870 } else { 871 if (optlen > sizeof (*d6m)) 872 break; 873 } 874 875 opt = malloc(sizeof (*d6o) + optnum.size); 876 if (opt != NULL) { 877 d6o = opt; 878 d6o->d6o_code = htons(optnum.code); 879 d6o->d6o_len = htons(optnum.size); 880 (void) memcpy(d6o + 1, (caddr_t)d6m + 881 optnum.code, optnum.size); 882 } 883 } else { 884 if (optnum.code + optnum.size > sizeof (PKT)) 885 break; 886 887 opt = malloc(optnum.size + DHCP_OPT_META_LEN); 888 if (opt != NULL) { 889 DHCP_OPT *v4opt = opt; 890 891 v4opt->len = optnum.size; 892 v4opt->code = optnum.code; 893 (void) memcpy(v4opt->value, 894 (caddr_t)ack->pkt + optnum.code, 895 optnum.size); 896 } 897 } 898 899 if (opt == NULL) { 900 send_error_reply(iap, DHCP_IPC_E_MEMORY); 901 return; 902 } 903 did_alloc = B_TRUE; 904 break; 905 906 default: 907 send_error_reply(iap, DHCP_IPC_E_PROTO); 908 return; 909 } 910 911 /* 912 * return the option payload, if there was one. 913 */ 914 915 if (opt != NULL) { 916 if (isv6) { 917 dhcpv6_option_t d6ov; 918 919 (void) memcpy(&d6ov, opt, sizeof (d6ov)); 920 optlen = ntohs(d6ov.d6o_len) + sizeof (d6ov); 921 } else { 922 optlen = ((DHCP_OPT *)opt)->len + 923 DHCP_OPT_META_LEN; 924 } 925 send_data_reply(iap, 0, DHCP_TYPE_OPTION, opt, optlen); 926 927 if (did_alloc) 928 free(opt); 929 break; 930 } else if (ack != dsmp->dsm_orig_ack) { 931 /* 932 * There wasn't any definition for the option in the 933 * current ack, so now retry with the original ack if 934 * the original ack is not the current ack. 935 */ 936 ack = dsmp->dsm_orig_ack; 937 goto load_option; 938 } 939 940 /* 941 * note that an "okay" response is returned either in 942 * the case of an unknown option or a known option 943 * with no payload. this is okay (for now) since 944 * dhcpinfo checks whether an option is valid before 945 * ever performing ipc with the agent. 946 */ 947 948 send_ok_reply(iap); 949 break; 950 } 951 952 case DHCP_INFORM: 953 dhcp_inform(dsmp); 954 /* next destination: dhcp_acknak() */ 955 break; /* not an immediate function */ 956 957 case DHCP_PING: 958 if (dsmp->dsm_dflags & DHCP_IF_FAILED) 959 send_error_reply(iap, DHCP_IPC_E_FAILEDIF); 960 else 961 send_ok_reply(iap); 962 break; 963 964 case DHCP_RELEASE: 965 if (dsmp->dsm_droprelease) 966 break; 967 dsmp->dsm_droprelease = B_TRUE; 968 cancel_smach_timers(dsmp); /* see comment in DHCP_DROP above */ 969 (void) script_start(dsmp, isv6 ? EVENT_RELEASE6 : 970 EVENT_RELEASE, dhcp_release, "Finished with lease.", NULL); 971 break; /* not an immediate function */ 972 973 case DHCP_START: { 974 PKT_LIST *ack, *oack; 975 PKT_LIST *plp[2]; 976 977 deprecate_leases(dsmp); 978 dhcp_smach_set_msg_reqhost(dsmp, iap); 979 980 /* 981 * if we have a valid hostconf lying around, then jump 982 * into INIT_REBOOT. if it fails, we'll end up going 983 * through the whole selecting() procedure again. 984 */ 985 986 error = read_hostconf(dsmp->dsm_name, plp, 2, dsmp->dsm_isv6); 987 ack = error > 0 ? plp[0] : NULL; 988 oack = error > 1 ? plp[1] : NULL; 989 990 /* 991 * If the allocation of the old ack fails, that's fine; 992 * continue without it. 993 */ 994 if (oack == NULL) 995 oack = ack; 996 997 /* 998 * As long as we've allocated something, start using it. 999 */ 1000 if (ack != NULL) { 1001 dsmp->dsm_orig_ack = oack; 1002 dsmp->dsm_ack = ack; 1003 dhcp_init_reboot(dsmp); 1004 /* next destination: dhcp_acknak() */ 1005 break; 1006 } 1007 1008 /* 1009 * if not debugging, wait for a few seconds before 1010 * going into SELECTING. 1011 */ 1012 1013 if (debug_level != 0 || !set_start_timer(dsmp)) { 1014 dhcp_selecting(dsmp); 1015 /* next destination: dhcp_requesting() */ 1016 } 1017 /* else next destination: dhcp_start() */ 1018 } 1019 break; 1020 1021 case DHCP_STATUS: { 1022 dhcp_status_t status; 1023 dhcp_lease_t *dlp; 1024 1025 status.if_began = monosec_to_time(dsmp->dsm_curstart_monosec); 1026 1027 /* 1028 * We return information on just the first lease as being 1029 * representative of the lot. A better status mechanism is 1030 * needed. 1031 */ 1032 dlp = dsmp->dsm_leases; 1033 1034 if (dlp == NULL || 1035 dlp->dl_lifs->lif_expire.dt_start == DHCP_PERM) { 1036 status.if_t1 = DHCP_PERM; 1037 status.if_t2 = DHCP_PERM; 1038 status.if_lease = DHCP_PERM; 1039 } else { 1040 status.if_t1 = status.if_began + 1041 dlp->dl_t1.dt_start; 1042 status.if_t2 = status.if_began + 1043 dlp->dl_t2.dt_start; 1044 status.if_lease = status.if_began + 1045 dlp->dl_lifs->lif_expire.dt_start; 1046 } 1047 1048 status.version = DHCP_STATUS_VER; 1049 status.if_state = dsmp->dsm_state; 1050 status.if_dflags = dsmp->dsm_dflags; 1051 status.if_sent = dsmp->dsm_sent; 1052 status.if_recv = dsmp->dsm_received; 1053 status.if_bad_offers = dsmp->dsm_bad_offers; 1054 1055 (void) strlcpy(status.if_name, dsmp->dsm_name, LIFNAMSIZ); 1056 1057 send_data_reply(iap, 0, DHCP_TYPE_STATUS, &status, 1058 sizeof (dhcp_status_t)); 1059 break; 1060 } 1061 } 1062 } 1063 1064 /* 1065 * dhcp_smach_set_msg_reqhost(): set dsm_msg_reqhost based on the message 1066 * content of a DHCP IPC message 1067 * 1068 * input: dhcp_smach_t *: the state machine instance; 1069 * ipc_action_t *: the decoded DHCP IPC message; 1070 * output: void 1071 */ 1072 1073 static void 1074 dhcp_smach_set_msg_reqhost(dhcp_smach_t *dsmp, ipc_action_t *iap) 1075 { 1076 DHCP_OPT *d4o; 1077 dhcp_symbol_t *entry; 1078 char *value; 1079 1080 if (dsmp->dsm_msg_reqhost != NULL) { 1081 dhcpmsg(MSG_DEBUG, 1082 "dhcp_smach_set_msg_reqhost: nullify former value, %s", 1083 dsmp->dsm_msg_reqhost); 1084 free(dsmp->dsm_msg_reqhost); 1085 dsmp->dsm_msg_reqhost = NULL; 1086 } 1087 1088 /* 1089 * if a STANDARD/HOSTNAME was sent in the IPC request, then copy that 1090 * value into the state machine data if decoding succeeds. Otherwise, 1091 * log to indicate at what step the decoding stopped. 1092 */ 1093 1094 if (dsmp->dsm_isv6) { 1095 dhcpmsg(MSG_DEBUG, "dhcp_smach_set_msg_reqhost: ipv6 is not" 1096 " handled"); 1097 return; 1098 } else if (iap->ia_request->data_type != DHCP_TYPE_OPTION) { 1099 dhcpmsg(MSG_DEBUG, "dhcp_smach_set_msg_reqhost: request type" 1100 " %d is not DHCP_TYPE_OPTION", iap->ia_request->data_type); 1101 return; 1102 } 1103 1104 if (iap->ia_request->data_length <= DHCP_OPT_META_LEN) { 1105 dhcpmsg(MSG_WARNING, "dhcp_smach_set_msg_reqhost:" 1106 " DHCP_TYPE_OPTION ia_request buffer is short"); 1107 return; 1108 } 1109 1110 d4o = (DHCP_OPT *)iap->ia_request->buffer; 1111 if (d4o->code != CD_HOSTNAME) { 1112 dhcpmsg(MSG_DEBUG, 1113 "dhcp_smach_set_msg_reqhost: ignoring DHCPv4" 1114 " option %u", d4o->code); 1115 return; 1116 } else if (iap->ia_request->data_length - DHCP_OPT_META_LEN 1117 != d4o->len) { 1118 dhcpmsg(MSG_WARNING, "dhcp_smach_set_msg_reqhost:" 1119 " unexpected DHCP_OPT buffer length %u for CD_HOSTNAME" 1120 " option length %u", iap->ia_request->data_length, 1121 d4o->len); 1122 return; 1123 } 1124 1125 entry = inittab_getbycode(ITAB_CAT_STANDARD, ITAB_CONS_INFO, 1126 CD_HOSTNAME); 1127 if (entry == NULL) { 1128 dhcpmsg(MSG_WARNING, 1129 "dhcp_smach_set_msg_reqhost: error getting" 1130 " ITAB_CAT_STANDARD ITAB_CONS_INFO" 1131 " CD_HOSTNAME entry"); 1132 return; 1133 } 1134 1135 value = inittab_decode(entry, d4o->value, d4o->len, 1136 /* just_payload */ B_TRUE); 1137 if (value == NULL) { 1138 dhcpmsg(MSG_WARNING, 1139 "dhcp_smach_set_msg_reqhost: error decoding" 1140 " CD_HOSTNAME value from DHCP_OPT"); 1141 } else { 1142 dhcpmsg(MSG_DEBUG, 1143 "dhcp_smach_set_msg_reqhost: host %s", value); 1144 free(dsmp->dsm_msg_reqhost); 1145 dsmp->dsm_msg_reqhost = value; 1146 } 1147 free(entry); 1148 } 1149 1150 /* 1151 * dhcp_get_ack_or_state(): get a v4 option from the ACK or from the state 1152 * machine state for certain codes that are not ACKed (e.g., CD_CLIENT_ID) 1153 * 1154 * input: dhcp_smach_t *: the state machine instance; 1155 * PKT_LIST *: the decoded DHCP IPC message; 1156 * uint_t: the DHCP client option code; 1157 * boolean_t *: a pointer to a value that will be set to B_TRUE if 1158 * the return value must be freed (or else set to B_FALSE); 1159 * output: the option if found or else NULL. 1160 */ 1161 1162 static DHCP_OPT * 1163 dhcp_get_ack_or_state(const dhcp_smach_t *dsmp, const PKT_LIST *plp, 1164 uint_t codenum, boolean_t *did_alloc) 1165 { 1166 DHCP_OPT *opt; 1167 1168 *did_alloc = B_FALSE; 1169 1170 if (codenum > DHCP_LAST_OPT) 1171 return (NULL); 1172 1173 /* check the ACK first for all codes */ 1174 opt = plp->opts[codenum]; 1175 if (opt != NULL) 1176 return (opt); 1177 1178 /* check the machine state also for certain codes */ 1179 switch (codenum) { 1180 case CD_CLIENT_ID: 1181 /* 1182 * CD_CLIENT_ID is not sent in an ACK, but it's possibly 1183 * available from the state machine data 1184 */ 1185 1186 if (dsmp->dsm_cidlen > 0) { 1187 if ((opt = malloc(dsmp->dsm_cidlen + DHCP_OPT_META_LEN)) 1188 != NULL) { 1189 *did_alloc = B_TRUE; 1190 (void) encode_dhcp_opt(opt, 1191 B_FALSE /* is IPv6 */, CD_CLIENT_ID, 1192 dsmp->dsm_cid, dsmp->dsm_cidlen); 1193 } 1194 } 1195 break; 1196 default: 1197 break; 1198 } 1199 return (opt); 1200 } 1201 1202 /* 1203 * check_rtm_addr(): determine if routing socket message matches interface 1204 * address 1205 * 1206 * input: const struct if_msghdr *: pointer to routing socket message 1207 * int: routing socket message length 1208 * boolean_t: set to B_TRUE if IPv6 1209 * const in6_addr_t *: pointer to IP address 1210 * output: boolean_t: B_TRUE if address is a match 1211 */ 1212 1213 static boolean_t 1214 check_rtm_addr(const struct ifa_msghdr *ifam, int msglen, boolean_t isv6, 1215 const in6_addr_t *addr) 1216 { 1217 const char *cp, *lim; 1218 uint_t flag; 1219 const struct sockaddr *sa; 1220 1221 if (!(ifam->ifam_addrs & RTA_IFA)) 1222 return (B_FALSE); 1223 1224 cp = (const char *)(ifam + 1); 1225 lim = (const char *)ifam + msglen; 1226 for (flag = 1; flag < RTA_IFA; flag <<= 1) { 1227 if (ifam->ifam_addrs & flag) { 1228 /* LINTED: alignment */ 1229 sa = (const struct sockaddr *)cp; 1230 if ((const char *)(sa + 1) > lim) 1231 return (B_FALSE); 1232 switch (sa->sa_family) { 1233 case AF_INET: 1234 cp += sizeof (struct sockaddr_in); 1235 break; 1236 case AF_LINK: 1237 cp += sizeof (struct sockaddr_dl); 1238 break; 1239 case AF_INET6: 1240 cp += sizeof (struct sockaddr_in6); 1241 break; 1242 default: 1243 cp += sizeof (struct sockaddr); 1244 break; 1245 } 1246 } 1247 } 1248 if (isv6) { 1249 const struct sockaddr_in6 *sin6; 1250 1251 /* LINTED: alignment */ 1252 sin6 = (const struct sockaddr_in6 *)cp; 1253 if ((const char *)(sin6 + 1) > lim) 1254 return (B_FALSE); 1255 if (sin6->sin6_family != AF_INET6) 1256 return (B_FALSE); 1257 return (IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr, addr)); 1258 } else { 1259 const struct sockaddr_in *sinp; 1260 ipaddr_t v4addr; 1261 1262 /* LINTED: alignment */ 1263 sinp = (const struct sockaddr_in *)cp; 1264 if ((const char *)(sinp + 1) > lim) 1265 return (B_FALSE); 1266 if (sinp->sin_family != AF_INET) 1267 return (B_FALSE); 1268 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 1269 return (sinp->sin_addr.s_addr == v4addr); 1270 } 1271 } 1272 1273 /* 1274 * is_rtm_v6(): determine if routing socket message is IPv6 1275 * 1276 * input: struct ifa_msghdr *: pointer to routing socket message 1277 * int: message length 1278 * output: boolean_t 1279 */ 1280 1281 static boolean_t 1282 is_rtm_v6(const struct ifa_msghdr *ifam, int msglen) 1283 { 1284 const char *cp, *lim; 1285 uint_t flag; 1286 const struct sockaddr *sa; 1287 1288 cp = (const char *)(ifam + 1); 1289 lim = (const char *)ifam + msglen; 1290 for (flag = ifam->ifam_addrs; flag != 0; flag &= flag - 1) { 1291 /* LINTED: alignment */ 1292 sa = (const struct sockaddr *)cp; 1293 if ((const char *)(sa + 1) > lim) 1294 return (B_FALSE); 1295 switch (sa->sa_family) { 1296 case AF_INET: 1297 return (B_FALSE); 1298 case AF_LINK: 1299 cp += sizeof (struct sockaddr_dl); 1300 break; 1301 case AF_INET6: 1302 return (B_TRUE); 1303 default: 1304 cp += sizeof (struct sockaddr); 1305 break; 1306 } 1307 } 1308 return (B_FALSE); 1309 } 1310 1311 /* 1312 * check_lif(): check the state of a given logical interface and its DHCP 1313 * lease. We've been told by the routing socket that the 1314 * corresponding ifIndex has changed. This may mean that DAD has 1315 * completed or failed. 1316 * 1317 * input: dhcp_lif_t *: pointer to the LIF 1318 * const struct ifa_msghdr *: routing socket message 1319 * int: size of routing socket message 1320 * output: boolean_t: B_TRUE if DAD has completed on this interface 1321 */ 1322 1323 static boolean_t 1324 check_lif(dhcp_lif_t *lif, const struct ifa_msghdr *ifam, int msglen) 1325 { 1326 boolean_t isv6, dad_wait, unplumb; 1327 int fd; 1328 struct lifreq lifr; 1329 1330 isv6 = lif->lif_pif->pif_isv6; 1331 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1332 1333 /* 1334 * Get the real (64 bit) logical interface flags. Note that the 1335 * routing socket message has flags, but these are just the lower 32 1336 * bits. 1337 */ 1338 unplumb = B_FALSE; 1339 (void) memset(&lifr, 0, sizeof (lifr)); 1340 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1341 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1) { 1342 /* 1343 * Failing to retrieve flags means that the interface is gone. 1344 * It hasn't failed to verify with DAD, but we still have to 1345 * give up on it. 1346 */ 1347 lifr.lifr_flags = 0; 1348 if (errno == ENXIO) { 1349 lif->lif_plumbed = B_FALSE; 1350 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1351 lif->lif_name); 1352 if (!isv6) 1353 discard_default_routes(lif->lif_smachs); 1354 } else { 1355 dhcpmsg(MSG_ERR, 1356 "unable to retrieve interface flags on %s", 1357 lif->lif_name); 1358 } 1359 unplumb = B_TRUE; 1360 } else if (!check_rtm_addr(ifam, msglen, isv6, &lif->lif_v6addr)) { 1361 /* 1362 * If the message is not about this logical interface, 1363 * then just ignore it. 1364 */ 1365 return (B_FALSE); 1366 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1367 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1368 lif->lif_name); 1369 lif_mark_decline(lif, "duplicate address"); 1370 close_ip_lif(lif); 1371 (void) open_ip_lif(lif, INADDR_ANY, B_TRUE); 1372 } 1373 1374 dad_wait = lif->lif_dad_wait; 1375 if (dad_wait) { 1376 dhcpmsg(MSG_VERBOSE, "check_lif: %s has finished DAD", 1377 lif->lif_name); 1378 lif->lif_dad_wait = B_FALSE; 1379 } 1380 1381 if (unplumb) 1382 unplumb_lif(lif); 1383 1384 return (dad_wait); 1385 } 1386 1387 /* 1388 * check_main_lif(): check the state of a main logical interface for a state 1389 * machine. This is used only for DHCPv6. 1390 * 1391 * input: dhcp_smach_t *: pointer to the state machine 1392 * const struct ifa_msghdr *: routing socket message 1393 * int: size of routing socket message 1394 * output: boolean_t: B_TRUE if LIF is ok. 1395 */ 1396 1397 static boolean_t 1398 check_main_lif(dhcp_smach_t *dsmp, const struct ifa_msghdr *ifam, int msglen) 1399 { 1400 dhcp_lif_t *lif = dsmp->dsm_lif; 1401 struct lifreq lifr; 1402 1403 /* 1404 * Get the real (64 bit) logical interface flags. Note that the 1405 * routing socket message has flags, but these are just the lower 32 1406 * bits. 1407 */ 1408 (void) memset(&lifr, 0, sizeof (lifr)); 1409 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1410 if (ioctl(v6_sock_fd, SIOCGLIFFLAGS, &lifr) == -1) { 1411 /* 1412 * Failing to retrieve flags means that the interface is gone. 1413 * Our state machine is now trash. 1414 */ 1415 if (errno == ENXIO) { 1416 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1417 lif->lif_name); 1418 } else { 1419 dhcpmsg(MSG_ERR, 1420 "unable to retrieve interface flags on %s", 1421 lif->lif_name); 1422 } 1423 return (B_FALSE); 1424 } else if (!check_rtm_addr(ifam, msglen, B_TRUE, &lif->lif_v6addr)) { 1425 /* 1426 * If the message is not about this logical interface, 1427 * then just ignore it. 1428 */ 1429 return (B_TRUE); 1430 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1431 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1432 lif->lif_name); 1433 return (B_FALSE); 1434 } else { 1435 return (B_TRUE); 1436 } 1437 } 1438 1439 /* 1440 * process_link_up_down(): check the state of a physical interface for up/down 1441 * transitions; must go through INIT_REBOOT state if 1442 * the link flaps. 1443 * 1444 * input: dhcp_pif_t *: pointer to the physical interface to check 1445 * const struct if_msghdr *: routing socket message 1446 * output: none 1447 */ 1448 1449 static void 1450 process_link_up_down(dhcp_pif_t *pif, const struct if_msghdr *ifm) 1451 { 1452 struct lifreq lifr; 1453 boolean_t isv6; 1454 int fd; 1455 1456 /* 1457 * If the message implies no change of flags, then we're done; no need 1458 * to check further. Note that if we have multiple state machines on a 1459 * single physical interface, this test keeps us from issuing an ioctl 1460 * for each one. 1461 */ 1462 if ((ifm->ifm_flags & IFF_RUNNING) && pif->pif_running || 1463 !(ifm->ifm_flags & IFF_RUNNING) && !pif->pif_running) 1464 return; 1465 1466 /* 1467 * We don't know what the real interface flags are, because the 1468 * if_index number is only 16 bits; we must go ask. 1469 */ 1470 isv6 = pif->pif_isv6; 1471 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1472 (void) memset(&lifr, 0, sizeof (lifr)); 1473 (void) strlcpy(lifr.lifr_name, pif->pif_name, sizeof (lifr.lifr_name)); 1474 1475 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1 || 1476 !(lifr.lifr_flags & IFF_RUNNING)) { 1477 /* 1478 * If we've lost the interface or it has gone down, then 1479 * nothing special to do; just turn off the running flag. 1480 */ 1481 pif_status(pif, B_FALSE); 1482 } else { 1483 /* 1484 * Interface has come back up: go through verification process. 1485 */ 1486 pif_status(pif, B_TRUE); 1487 } 1488 } 1489 1490 /* 1491 * rtsock_event(): fetches routing socket messages and updates internal 1492 * interface state based on those messages. 1493 * 1494 * input: iu_eh_t *: unused 1495 * int: the routing socket file descriptor 1496 * (other arguments unused) 1497 * output: void 1498 */ 1499 1500 /* ARGSUSED */ 1501 static void 1502 rtsock_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 1503 { 1504 dhcp_smach_t *dsmp, *dsmnext; 1505 union { 1506 struct ifa_msghdr ifam; 1507 struct if_msghdr ifm; 1508 char buf[1024]; 1509 } msg; 1510 uint16_t ifindex; 1511 int msglen; 1512 boolean_t isv6; 1513 1514 if ((msglen = read(fd, &msg, sizeof (msg))) <= 0) 1515 return; 1516 1517 /* Note that the routing socket interface index is just 16 bits */ 1518 if (msg.ifm.ifm_type == RTM_IFINFO) { 1519 ifindex = msg.ifm.ifm_index; 1520 isv6 = (msg.ifm.ifm_flags & IFF_IPV6) ? B_TRUE : B_FALSE; 1521 } else if (msg.ifam.ifam_type == RTM_DELADDR || 1522 msg.ifam.ifam_type == RTM_NEWADDR) { 1523 ifindex = msg.ifam.ifam_index; 1524 isv6 = is_rtm_v6(&msg.ifam, msglen); 1525 } else { 1526 return; 1527 } 1528 1529 for (dsmp = lookup_smach_by_uindex(ifindex, NULL, isv6); 1530 dsmp != NULL; dsmp = dsmnext) { 1531 DHCPSTATE oldstate; 1532 boolean_t lif_finished; 1533 boolean_t lease_removed; 1534 dhcp_lease_t *dlp, *dlnext; 1535 1536 /* 1537 * Note that script_start can call dhcp_drop directly, and 1538 * that will do release_smach. 1539 */ 1540 dsmnext = lookup_smach_by_uindex(ifindex, dsmp, isv6); 1541 oldstate = dsmp->dsm_state; 1542 1543 /* 1544 * Ignore state machines that are currently processing drop or 1545 * release; there is nothing more we can do for them. 1546 */ 1547 if (dsmp->dsm_droprelease) 1548 continue; 1549 1550 /* 1551 * Look for link up/down notifications. These occur on a 1552 * physical interface basis. 1553 */ 1554 if (msg.ifm.ifm_type == RTM_IFINFO) { 1555 process_link_up_down(dsmp->dsm_lif->lif_pif, &msg.ifm); 1556 continue; 1557 } 1558 1559 /* 1560 * Since we cannot trust the flags reported by the routing 1561 * socket (they're just 32 bits -- and thus never include 1562 * IFF_DUPLICATE), and we can't trust the ifindex (it's only 16 1563 * bits and also doesn't reflect the alias in use), we get 1564 * flags on all matching interfaces, and go by that. 1565 */ 1566 lif_finished = B_FALSE; 1567 lease_removed = B_FALSE; 1568 for (dlp = dsmp->dsm_leases; dlp != NULL; dlp = dlnext) { 1569 dhcp_lif_t *lif, *lifnext; 1570 uint_t nlifs = dlp->dl_nlifs; 1571 1572 dlnext = dlp->dl_next; 1573 for (lif = dlp->dl_lifs; lif != NULL && nlifs > 0; 1574 lif = lifnext, nlifs--) { 1575 lifnext = lif->lif_next; 1576 if (check_lif(lif, &msg.ifam, msglen)) { 1577 dsmp->dsm_lif_wait--; 1578 lif_finished = B_TRUE; 1579 } 1580 } 1581 if (dlp->dl_nlifs == 0) { 1582 remove_lease(dlp); 1583 lease_removed = B_TRUE; 1584 } 1585 } 1586 1587 if ((isv6 && !check_main_lif(dsmp, &msg.ifam, msglen)) || 1588 (!isv6 && !verify_lif(dsmp->dsm_lif))) { 1589 finished_smach(dsmp, DHCP_IPC_E_INVIF); 1590 continue; 1591 } 1592 1593 /* 1594 * Ignore this state machine if nothing interesting has 1595 * happened. 1596 */ 1597 if (!lif_finished && dsmp->dsm_lif_down == 0 && 1598 (dsmp->dsm_leases != NULL || !lease_removed)) 1599 continue; 1600 1601 /* 1602 * If we're still waiting for DAD to complete on some of the 1603 * configured LIFs, then don't send a response. 1604 */ 1605 if (dsmp->dsm_lif_wait != 0) { 1606 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s still has %d " 1607 "LIFs waiting on DAD", dsmp->dsm_name, 1608 dsmp->dsm_lif_wait); 1609 continue; 1610 } 1611 1612 /* 1613 * If we have some failed LIFs, then handle them now. We'll 1614 * remove them from the list. Any leases that become empty are 1615 * also removed as part of the decline-generation process. 1616 */ 1617 if (dsmp->dsm_lif_down != 0) 1618 send_declines(dsmp); 1619 1620 if (dsmp->dsm_leases == NULL) { 1621 dsmp->dsm_bad_offers++; 1622 /* 1623 * For DHCPv6, we'll process the restart once we're 1624 * done sending Decline messages, because these are 1625 * supposed to be acknowledged. With DHCPv4, there's 1626 * no acknowledgment for a DECLINE, so after sending 1627 * it, we just restart right away. 1628 */ 1629 if (!dsmp->dsm_isv6) { 1630 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s has no " 1631 "LIFs left", dsmp->dsm_name); 1632 dhcp_restart(dsmp); 1633 } 1634 } else { 1635 /* 1636 * If we're now up on at least some of the leases and 1637 * we were waiting for that, then kick off the rest of 1638 * configuration. Lease validation and DAD are done. 1639 */ 1640 dhcpmsg(MSG_VERBOSE, "rtsock_event: all LIFs verified " 1641 "on %s in %s state", dsmp->dsm_name, 1642 dhcp_state_to_string(oldstate)); 1643 if (oldstate == PRE_BOUND || 1644 oldstate == ADOPTING) 1645 dhcp_bound_complete(dsmp); 1646 if (oldstate == ADOPTING) 1647 dhcp_adopt_complete(dsmp); 1648 } 1649 } 1650 } 1651 1652 /* 1653 * check_cmd_allowed(): check whether the requested command is allowed in the 1654 * state specified. 1655 * 1656 * input: DHCPSTATE: current state 1657 * dhcp_ipc_type_t: requested command 1658 * output: boolean_t: B_TRUE if command is allowed in this state 1659 */ 1660 1661 boolean_t 1662 check_cmd_allowed(DHCPSTATE state, dhcp_ipc_type_t cmd) 1663 { 1664 return (ipc_cmd_allowed[state][cmd] != 0); 1665 } 1666 1667 static boolean_t 1668 is_iscsi_active(void) 1669 { 1670 int fd; 1671 int active = 0; 1672 1673 if ((fd = open(ISCSI_DRIVER_DEVCTL, O_RDONLY)) != -1) { 1674 if (ioctl(fd, ISCSI_IS_ACTIVE, &active) != 0) 1675 active = 0; 1676 (void) close(fd); 1677 } 1678 1679 return (active != 0); 1680 } 1681