1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <stdlib.h> 30 #include <errno.h> 31 #include <locale.h> 32 #include <string.h> 33 #include <unistd.h> 34 #include <signal.h> 35 #include <stdio.h> 36 #include <stdio_ext.h> 37 #include <dhcp_hostconf.h> 38 #include <dhcpagent_ipc.h> 39 #include <dhcpagent_util.h> 40 #include <dhcpmsg.h> 41 #include <netinet/dhcp.h> 42 #include <net/route.h> 43 #include <sys/sockio.h> 44 45 #include "async.h" 46 #include "agent.h" 47 #include "script_handler.h" 48 #include "util.h" 49 #include "class_id.h" 50 #include "states.h" 51 #include "packet.h" 52 #include "interface.h" 53 #include "defaults.h" 54 55 #ifndef TEXT_DOMAIN 56 #define TEXT_DOMAIN "SYS_TEST" 57 #endif 58 59 iu_timer_id_t inactivity_id; 60 int class_id_len = 0; 61 char *class_id; 62 iu_eh_t *eh; 63 iu_tq_t *tq; 64 pid_t grandparent; 65 int rtsock_fd; 66 67 static boolean_t shutdown_started = B_FALSE; 68 static boolean_t do_adopt = B_FALSE; 69 static unsigned int debug_level = 0; 70 static iu_eh_callback_t accept_event, ipc_event, rtsock_event; 71 72 /* 73 * The ipc_cmd_allowed[] table indicates which IPC commands are allowed in 74 * which states; a non-zero value indicates the command is permitted. 75 * 76 * START is permitted if the state machine is fresh, or if we are in the 77 * process of trying to obtain a lease (as a convenience to save the 78 * administrator from having to do an explicit DROP). EXTEND, RELEASE, and 79 * GET_TAG require a lease to be obtained in order to make sense. INFORM is 80 * permitted if the interface is fresh or has an INFORM in progress or 81 * previously done on it -- otherwise a DROP or RELEASE is first required. 82 * PING and STATUS always make sense and thus are always permitted, as is DROP 83 * in order to permit the administrator to always bail out. 84 */ 85 static int ipc_cmd_allowed[DHCP_NSTATES][DHCP_NIPC] = { 86 /* D E P R S S I G */ 87 /* R X I E T T N E */ 88 /* O T N L A A F T */ 89 /* P E G E R T O _ */ 90 /* . N . A T U R T */ 91 /* . D . S . S M A */ 92 /* . . . E . . . G */ 93 /* INIT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 94 /* SELECTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 95 /* REQUESTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 96 /* PRE_BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 97 /* BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 98 /* RENEWING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 99 /* REBINDING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 100 /* INFORMATION */ { 1, 0, 1, 0, 1, 1, 1, 1 }, 101 /* INIT_REBOOT */ { 1, 0, 1, 1, 1, 1, 0, 0 }, 102 /* ADOPTING */ { 1, 0, 1, 1, 0, 1, 0, 0 }, 103 /* INFORM_SENT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 104 /* DECLINING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 105 /* RELEASING */ { 1, 0, 1, 0, 0, 1, 0, 1 }, 106 }; 107 108 #define CMD_ISPRIV 0x1 /* Command requires privileges */ 109 #define CMD_CREATE 0x2 /* Command creates an interface */ 110 #define CMD_BOOTP 0x4 /* Command is valid with BOOTP */ 111 #define CMD_IMMED 0x8 /* Reply is immediate (no BUSY state) */ 112 113 static uint_t ipc_cmd_flags[DHCP_NIPC] = { 114 /* DHCP_DROP */ CMD_ISPRIV|CMD_BOOTP, 115 /* DHCP_EXTEND */ CMD_ISPRIV, 116 /* DHCP_PING */ CMD_BOOTP|CMD_IMMED, 117 /* DHCP_RELEASE */ CMD_ISPRIV, 118 /* DHCP_START */ CMD_CREATE|CMD_ISPRIV|CMD_BOOTP, 119 /* DHCP_STATUS */ CMD_BOOTP|CMD_IMMED, 120 /* DHCP_INFORM */ CMD_CREATE|CMD_ISPRIV, 121 /* DHCP_GET_TAG */ CMD_BOOTP|CMD_IMMED 122 }; 123 124 int 125 main(int argc, char **argv) 126 { 127 boolean_t is_daemon = B_TRUE; 128 boolean_t is_verbose; 129 int ipc_fd; 130 int c; 131 struct rlimit rl; 132 133 debug_level = df_get_int("", B_FALSE, DF_DEBUG_LEVEL); 134 is_verbose = df_get_bool("", B_FALSE, DF_VERBOSE); 135 136 /* 137 * -l is ignored for compatibility with old agent. 138 */ 139 140 while ((c = getopt(argc, argv, "vd:l:fa")) != EOF) { 141 142 switch (c) { 143 144 case 'a': 145 do_adopt = B_TRUE; 146 grandparent = getpid(); 147 break; 148 149 case 'd': 150 debug_level = strtoul(optarg, NULL, 0); 151 break; 152 153 case 'f': 154 is_daemon = B_FALSE; 155 break; 156 157 case 'v': 158 is_verbose = B_TRUE; 159 break; 160 161 case '?': 162 (void) fprintf(stderr, "usage: %s [-a] [-d n] [-f] [-v]" 163 "\n", argv[0]); 164 return (EXIT_FAILURE); 165 166 default: 167 break; 168 } 169 } 170 171 (void) setlocale(LC_ALL, ""); 172 (void) textdomain(TEXT_DOMAIN); 173 174 if (geteuid() != 0) { 175 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 176 dhcpmsg(MSG_ERROR, "must be super-user"); 177 dhcpmsg_fini(); 178 return (EXIT_FAILURE); 179 } 180 181 if (is_daemon && daemonize() == 0) { 182 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 183 dhcpmsg(MSG_ERR, "cannot become daemon, exiting"); 184 dhcpmsg_fini(); 185 return (EXIT_FAILURE); 186 } 187 188 /* 189 * Seed the random number generator, since we're going to need it 190 * to set transaction id's and for exponential backoff. 191 */ 192 srand48(gethrtime() ^ gethostid() ^ getpid()); 193 194 dhcpmsg_init(argv[0], is_daemon, is_verbose, debug_level); 195 (void) atexit(dhcpmsg_fini); 196 197 tq = iu_tq_create(); 198 eh = iu_eh_create(); 199 200 if (eh == NULL || tq == NULL) { 201 errno = ENOMEM; 202 dhcpmsg(MSG_ERR, "cannot create timer queue or event handler"); 203 return (EXIT_FAILURE); 204 } 205 206 /* 207 * ignore most signals that could be reasonably generated. 208 */ 209 210 (void) signal(SIGTERM, graceful_shutdown); 211 (void) signal(SIGQUIT, graceful_shutdown); 212 (void) signal(SIGPIPE, SIG_IGN); 213 (void) signal(SIGUSR1, SIG_IGN); 214 (void) signal(SIGUSR2, SIG_IGN); 215 (void) signal(SIGINT, SIG_IGN); 216 (void) signal(SIGHUP, SIG_IGN); 217 (void) signal(SIGCHLD, SIG_IGN); 218 219 /* 220 * upon SIGTHAW we need to refresh any non-infinite leases. 221 */ 222 223 (void) iu_eh_register_signal(eh, SIGTHAW, refresh_smachs, NULL); 224 225 class_id = get_class_id(); 226 if (class_id != NULL) 227 class_id_len = strlen(class_id); 228 else 229 dhcpmsg(MSG_WARNING, "get_class_id failed, continuing " 230 "with no vendor class id"); 231 232 /* 233 * the inactivity timer is enabled any time there are no 234 * interfaces under DHCP control. if DHCP_INACTIVITY_WAIT 235 * seconds transpire without an interface under DHCP control, 236 * the agent shuts down. 237 */ 238 239 inactivity_id = iu_schedule_timer(tq, DHCP_INACTIVITY_WAIT, 240 inactivity_shutdown, NULL); 241 242 /* 243 * max out the number available descriptors, just in case.. 244 */ 245 246 rl.rlim_cur = RLIM_INFINITY; 247 rl.rlim_max = RLIM_INFINITY; 248 if (setrlimit(RLIMIT_NOFILE, &rl) == -1) 249 dhcpmsg(MSG_ERR, "setrlimit failed"); 250 251 (void) enable_extended_FILE_stdio(-1, -1); 252 253 /* 254 * Create and bind default IP sockets used to control interfaces and to 255 * catch stray packets. 256 */ 257 258 if (!dhcp_ip_default()) 259 return (EXIT_FAILURE); 260 261 /* 262 * create the ipc channel that the agent will listen for 263 * requests on, and register it with the event handler so that 264 * `accept_event' will be called back. 265 */ 266 267 switch (dhcp_ipc_init(&ipc_fd)) { 268 269 case 0: 270 break; 271 272 case DHCP_IPC_E_BIND: 273 dhcpmsg(MSG_ERROR, "dhcp_ipc_init: cannot bind to port " 274 "%i (agent already running?)", IPPORT_DHCPAGENT); 275 return (EXIT_FAILURE); 276 277 default: 278 dhcpmsg(MSG_ERROR, "dhcp_ipc_init failed"); 279 return (EXIT_FAILURE); 280 } 281 282 if (iu_register_event(eh, ipc_fd, POLLIN, accept_event, 0) == -1) { 283 dhcpmsg(MSG_ERR, "cannot register ipc fd for messages"); 284 return (EXIT_FAILURE); 285 } 286 287 /* 288 * Create the global routing socket. This is used for monitoring 289 * interface transitions, so that we learn about the kernel's Duplicate 290 * Address Detection status, and for inserting and removing default 291 * routes as learned from DHCP servers. Both v4 and v6 are handed 292 * with this one socket. 293 */ 294 rtsock_fd = socket(PF_ROUTE, SOCK_RAW, 0); 295 if (rtsock_fd == -1) { 296 dhcpmsg(MSG_ERR, "cannot open routing socket"); 297 return (EXIT_FAILURE); 298 } 299 if (iu_register_event(eh, rtsock_fd, POLLIN, rtsock_event, 0) == -1) { 300 dhcpmsg(MSG_ERR, "cannot register routing socket for messages"); 301 return (EXIT_FAILURE); 302 } 303 304 /* 305 * if the -a (adopt) option was specified, try to adopt the 306 * kernel-managed interface before we start. 307 */ 308 309 if (do_adopt && !dhcp_adopt()) 310 return (EXIT_FAILURE); 311 312 /* 313 * For DHCPv6, we own all of the interfaces marked DHCPRUNNING. As 314 * we're starting operation here, if there are any of those interfaces 315 * lingering around, they're strays, and need to be removed. 316 * 317 * It might be nice to save these addresses off somewhere -- for both 318 * v4 and v6 -- and use them as hints for later negotiation. 319 */ 320 remove_v6_strays(); 321 322 /* 323 * enter the main event loop; this is where all the real work 324 * takes place (through registering events and scheduling timers). 325 * this function only returns when the agent is shutting down. 326 */ 327 328 switch (iu_handle_events(eh, tq)) { 329 330 case -1: 331 dhcpmsg(MSG_WARNING, "iu_handle_events exited abnormally"); 332 break; 333 334 case DHCP_REASON_INACTIVITY: 335 dhcpmsg(MSG_INFO, "no interfaces to manage, shutting down..."); 336 break; 337 338 case DHCP_REASON_TERMINATE: 339 dhcpmsg(MSG_INFO, "received SIGTERM, shutting down..."); 340 break; 341 342 case DHCP_REASON_SIGNAL: 343 dhcpmsg(MSG_WARNING, "received unexpected signal, shutting " 344 "down..."); 345 break; 346 } 347 348 (void) iu_eh_unregister_signal(eh, SIGTHAW, NULL); 349 350 iu_eh_destroy(eh); 351 iu_tq_destroy(tq); 352 353 return (EXIT_SUCCESS); 354 } 355 356 /* 357 * drain_script(): event loop callback during shutdown 358 * 359 * input: eh_t *: unused 360 * void *: unused 361 * output: boolean_t: B_TRUE if event loop should exit; B_FALSE otherwise 362 */ 363 364 /* ARGSUSED */ 365 boolean_t 366 drain_script(iu_eh_t *ehp, void *arg) 367 { 368 if (shutdown_started == B_FALSE) { 369 shutdown_started = B_TRUE; 370 if (do_adopt == B_FALSE) /* see 4291141 */ 371 nuke_smach_list(); 372 } 373 return (script_count == 0); 374 } 375 376 /* 377 * accept_event(): accepts a new connection on the ipc socket and registers 378 * to receive its messages with the event handler 379 * 380 * input: iu_eh_t *: unused 381 * int: the file descriptor in the iu_eh_t * the connection came in on 382 * (other arguments unused) 383 * output: void 384 */ 385 386 /* ARGSUSED */ 387 static void 388 accept_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 389 { 390 int client_fd; 391 int is_priv; 392 393 if (dhcp_ipc_accept(fd, &client_fd, &is_priv) != 0) { 394 dhcpmsg(MSG_ERR, "accept_event: accept on ipc socket"); 395 return; 396 } 397 398 if (iu_register_event(eh, client_fd, POLLIN, ipc_event, 399 (void *)is_priv) == -1) { 400 dhcpmsg(MSG_ERROR, "accept_event: cannot register ipc socket " 401 "for callback"); 402 } 403 } 404 405 /* 406 * ipc_event(): processes incoming ipc requests 407 * 408 * input: iu_eh_t *: unused 409 * int: the file descriptor in the iu_eh_t * the request came in on 410 * short: unused 411 * iu_event_id_t: event ID 412 * void *: indicates whether the request is from a privileged client 413 * output: void 414 */ 415 416 /* ARGSUSED */ 417 static void 418 ipc_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 419 { 420 ipc_action_t ia, *iap; 421 dhcp_smach_t *dsmp; 422 int error, is_priv = (int)arg; 423 const char *ifname; 424 boolean_t isv6; 425 426 ipc_action_init(&ia); 427 error = dhcp_ipc_recv_request(fd, &ia.ia_request, 428 DHCP_IPC_REQUEST_WAIT); 429 if (error != DHCP_IPC_SUCCESS) { 430 if (error != DHCP_IPC_E_EOF) { 431 dhcpmsg(MSG_ERROR, 432 "ipc_event: dhcp_ipc_recv_request failed: %s", 433 dhcp_ipc_strerror(error)); 434 } else { 435 dhcpmsg(MSG_DEBUG, "ipc_event: connection closed"); 436 } 437 if ((dsmp = lookup_smach_by_event(id)) != NULL) { 438 ipc_action_finish(dsmp, error); 439 } else { 440 (void) iu_unregister_event(eh, id, NULL); 441 (void) dhcp_ipc_close(fd); 442 } 443 return; 444 } 445 446 /* Fill in temporary ipc_action structure for utility functions */ 447 ia.ia_cmd = DHCP_IPC_CMD(ia.ia_request->message_type); 448 ia.ia_fd = fd; 449 ia.ia_eid = id; 450 451 if (ia.ia_cmd >= DHCP_NIPC) { 452 dhcpmsg(MSG_ERROR, 453 "ipc_event: invalid command (%s) attempted on %s", 454 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 455 send_error_reply(&ia, DHCP_IPC_E_CMD_UNKNOWN); 456 return; 457 } 458 459 /* return EPERM for any of the privileged actions */ 460 461 if (!is_priv && (ipc_cmd_flags[ia.ia_cmd] & CMD_ISPRIV)) { 462 dhcpmsg(MSG_WARNING, 463 "ipc_event: privileged ipc command (%s) attempted on %s", 464 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 465 send_error_reply(&ia, DHCP_IPC_E_PERM); 466 return; 467 } 468 469 /* 470 * Try to locate the state machine associated with this command. If 471 * the command is DHCP_START or DHCP_INFORM and there isn't a state 472 * machine already, make one (there may already be one from a previous 473 * failed attempt to START or INFORM). Otherwise, verify the reference 474 * is still valid. 475 * 476 * The interface name may be blank. In that case, we look up the 477 * primary interface, and the requested type (v4 or v6) doesn't matter. 478 */ 479 480 isv6 = (ia.ia_request->message_type & DHCP_V6) != 0; 481 ifname = ia.ia_request->ifname; 482 if (*ifname == '\0') 483 dsmp = primary_smach(isv6); 484 else 485 dsmp = lookup_smach(ifname, isv6); 486 487 if (dsmp != NULL) { 488 /* Note that verify_smach drops a reference */ 489 hold_smach(dsmp); 490 if (!verify_smach(dsmp)) 491 dsmp = NULL; 492 } 493 494 if (dsmp == NULL) { 495 /* 496 * If the user asked for the primary DHCP interface, but there 497 * is none, then report failure. 498 */ 499 if (ifname[0] == '\0') { 500 error = DHCP_IPC_E_NOPRIMARY; 501 502 /* 503 * If there's no interface, and we're starting up, then create 504 * it now, along with a state machine for it. Note that if 505 * insert_smach fails, it discards the LIF reference. 506 */ 507 } else if (ipc_cmd_flags[ia.ia_cmd] & CMD_CREATE) { 508 dhcp_lif_t *lif; 509 510 lif = attach_lif(ifname, isv6, &error); 511 if (lif != NULL && 512 (dsmp = insert_smach(lif, &error)) != NULL) { 513 /* 514 * Get client ID and set "DHCPRUNNING" flag on 515 * logical interface. (V4 only, because V6 516 * plumbs its own interfaces.) 517 */ 518 error = get_smach_cid(dsmp); 519 if (error == DHCP_IPC_SUCCESS) 520 error = set_lif_dhcp(lif, B_FALSE); 521 if (error != DHCP_IPC_SUCCESS) { 522 remove_smach(dsmp); 523 dsmp = NULL; 524 } 525 } 526 527 /* 528 * Otherwise, this is an operation on an unknown interface. 529 */ 530 } else { 531 error = DHCP_IPC_E_UNKIF; 532 } 533 if (dsmp == NULL) { 534 send_error_reply(&ia, error); 535 return; 536 } 537 } 538 539 if ((dsmp->dsm_dflags & DHCP_IF_BOOTP) && 540 !(ipc_cmd_flags[ia.ia_cmd] & CMD_BOOTP)) { 541 dhcpmsg(MSG_ERROR, "command %s not valid for BOOTP on %s", 542 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 543 send_error_reply(&ia, DHCP_IPC_E_BOOTP); 544 return; 545 } 546 547 /* 548 * verify that the state machine is in a state which will allow the 549 * command. we do this up front so that we can return an error 550 * *before* needlessly cancelling an in-progress transaction. 551 */ 552 553 if (!check_cmd_allowed(dsmp->dsm_state, ia.ia_cmd)) { 554 dhcpmsg(MSG_DEBUG, 555 "in state %s; not allowing %s command on %s", 556 dhcp_state_to_string(dsmp->dsm_state), 557 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 558 send_error_reply(&ia, 559 ia.ia_cmd == DHCP_START && dsmp->dsm_state != INIT ? 560 DHCP_IPC_E_RUNNING : DHCP_IPC_E_OUTSTATE); 561 return; 562 } 563 564 dhcpmsg(MSG_DEBUG, "in state %s; allowing %s command on %s", 565 dhcp_state_to_string(dsmp->dsm_state), 566 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 567 568 if ((ia.ia_request->message_type & DHCP_PRIMARY) && is_priv) 569 make_primary(dsmp); 570 571 /* 572 * The current design dictates that there can be only one outstanding 573 * transaction per state machine -- this simplifies the code 574 * considerably and also fits well with RFCs 2131 and 3315. It is 575 * worth classifying the different DHCP commands into synchronous 576 * (those which we will handle now and reply to immediately) and 577 * asynchronous (those which require transactions and will be completed 578 * at an indeterminate time in the future): 579 * 580 * DROP: removes the agent's management of a state machine. 581 * asynchronous as the script program may be invoked. 582 * 583 * PING: checks to see if the agent has a named state machine. 584 * synchronous, since no packets need to be sent 585 * to the DHCP server. 586 * 587 * STATUS: returns information about a state machine. 588 * synchronous, since no packets need to be sent 589 * to the DHCP server. 590 * 591 * RELEASE: releases the agent's management of a state machine 592 * and brings the associated interfaces down. asynchronous 593 * as the script program may be invoked. 594 * 595 * EXTEND: renews a lease. asynchronous, since the agent 596 * needs to wait for an ACK, etc. 597 * 598 * START: starts DHCP on a named state machine. asynchronous since 599 * the agent needs to wait for OFFERs, ACKs, etc. 600 * 601 * INFORM: obtains configuration parameters for the system using 602 * externally configured interface. asynchronous, since the 603 * agent needs to wait for an ACK. 604 * 605 * Notice that EXTEND, INFORM, START, DROP and RELEASE are 606 * asynchronous. Notice also that asynchronous commands may occur from 607 * within the agent -- for instance, the agent will need to do implicit 608 * EXTENDs to extend the lease. In order to make the code simpler, the 609 * following rules apply for asynchronous commands: 610 * 611 * There can only be one asynchronous command at a time per state 612 * machine. The current asynchronous command is managed by the async_* 613 * api: async_start(), async_finish(), and async_cancel(). 614 * async_start() starts management of a new asynchronous command on an 615 * state machine, which should only be done after async_cancel() to 616 * terminate a previous command. When the command is completed, 617 * async_finish() should be called. 618 * 619 * Asynchronous commands started by a user command have an associated 620 * ipc_action which provides the agent with information for how to get 621 * in touch with the user command when the action completes. These 622 * ipc_action records also have an associated timeout which may be 623 * infinite. ipc_action_start() should be called when starting an 624 * asynchronous command requested by a user, which sets up the timer 625 * and keeps track of the ipc information (file descriptor, request 626 * type). When the asynchronous command completes, ipc_action_finish() 627 * should be called to return a command status code to the user and 628 * close the ipc connection). If the command does not complete before 629 * the timer fires, ipc_action_timeout() is called which closes the ipc 630 * connection and returns DHCP_IPC_E_TIMEOUT to the user. Note that 631 * independent of ipc_action_timeout(), ipc_action_finish() should be 632 * called. 633 * 634 * on a case-by-case basis, here is what happens (per state machine): 635 * 636 * o When an asynchronous command is requested, then 637 * async_cancel() is called to terminate any non-user 638 * action in progress. If there's a user action running, 639 * the user command is sent DHCP_IPC_E_PEND. 640 * 641 * o otherwise, the the transaction is started with 642 * async_start(). if the transaction is on behalf 643 * of a user, ipc_action_start() is called to keep 644 * track of the ipc information and set up the 645 * ipc_action timer. 646 * 647 * o if the command completes normally and before a 648 * timeout fires, then async_finish() is called. 649 * if there was an associated ipc_action, 650 * ipc_action_finish() is called to complete it. 651 * 652 * o if the command fails before a timeout fires, then 653 * async_finish() is called, and the state machine is 654 * is returned to a known state based on the command. 655 * if there was an associated ipc_action, 656 * ipc_action_finish() is called to complete it. 657 * 658 * o if the ipc_action timer fires before command 659 * completion, then DHCP_IPC_E_TIMEOUT is returned to 660 * the user. however, the transaction continues to 661 * be carried out asynchronously. 662 */ 663 664 if (ipc_cmd_flags[ia.ia_cmd] & CMD_IMMED) { 665 /* 666 * Only immediate commands (ping, status, get_tag) need to 667 * worry about freeing ia through one of the reply functions 668 * before returning. 669 */ 670 iap = &ia; 671 } else { 672 /* 673 * if shutdown request has been received, send back an error. 674 */ 675 if (shutdown_started) { 676 send_error_reply(&ia, DHCP_IPC_E_OUTSTATE); 677 return; 678 } 679 680 if (dsmp->dsm_dflags & DHCP_IF_BUSY) { 681 send_error_reply(&ia, DHCP_IPC_E_PEND); 682 return; 683 } 684 685 if (!ipc_action_start(dsmp, &ia)) { 686 dhcpmsg(MSG_WARNING, "ipc_event: ipc_action_start " 687 "failed for %s", dsmp->dsm_name); 688 send_error_reply(&ia, DHCP_IPC_E_MEMORY); 689 return; 690 } 691 692 /* Action structure consumed by above function */ 693 iap = &dsmp->dsm_ia; 694 } 695 696 switch (iap->ia_cmd) { 697 698 case DHCP_DROP: 699 (void) script_start(dsmp, isv6 ? EVENT_DROP6 : EVENT_DROP, 700 dhcp_drop, NULL, NULL); 701 break; /* not an immediate function */ 702 703 case DHCP_EXTEND: 704 (void) dhcp_extending(dsmp); 705 break; 706 707 case DHCP_GET_TAG: { 708 dhcp_optnum_t optnum; 709 void *opt = NULL; 710 uint_t optlen; 711 boolean_t did_alloc = B_FALSE; 712 PKT_LIST *ack = dsmp->dsm_ack; 713 714 /* 715 * verify the request makes sense. 716 */ 717 718 if (iap->ia_request->data_type != DHCP_TYPE_OPTNUM || 719 iap->ia_request->data_length != sizeof (dhcp_optnum_t)) { 720 send_error_reply(iap, DHCP_IPC_E_PROTO); 721 break; 722 } 723 724 (void) memcpy(&optnum, iap->ia_request->buffer, 725 sizeof (dhcp_optnum_t)); 726 727 load_option: 728 switch (optnum.category) { 729 730 case DSYM_SITE: /* FALLTHRU */ 731 case DSYM_STANDARD: 732 if (isv6) { 733 opt = dhcpv6_pkt_option(ack, NULL, optnum.code, 734 NULL); 735 } else { 736 if (optnum.code <= DHCP_LAST_OPT) 737 opt = ack->opts[optnum.code]; 738 } 739 break; 740 741 case DSYM_VENDOR: 742 if (isv6) { 743 dhcpv6_option_t *d6o; 744 uint32_t ent; 745 746 /* 747 * Look through vendor options to find our 748 * enterprise number. 749 */ 750 d6o = NULL; 751 for (;;) { 752 d6o = dhcpv6_pkt_option(ack, d6o, 753 DHCPV6_OPT_VENDOR_OPT, &optlen); 754 if (d6o == NULL) 755 break; 756 optlen -= sizeof (*d6o); 757 if (optlen < sizeof (ent)) 758 continue; 759 (void) memcpy(&ent, d6o + 1, 760 sizeof (ent)); 761 if (ntohl(ent) != DHCPV6_SUN_ENT) 762 continue; 763 break; 764 } 765 if (d6o != NULL) { 766 /* 767 * Now find the requested vendor option 768 * within the vendor options block. 769 */ 770 opt = dhcpv6_find_option( 771 (char *)(d6o + 1) + sizeof (ent), 772 optlen - sizeof (ent), NULL, 773 optnum.code, NULL); 774 } 775 } else { 776 /* 777 * the test against VS_OPTION_START is broken 778 * up into two tests to avoid compiler warnings 779 * under intel. 780 */ 781 if ((optnum.code > VS_OPTION_START || 782 optnum.code == VS_OPTION_START) && 783 optnum.code <= VS_OPTION_END) 784 opt = ack->vs[optnum.code]; 785 } 786 break; 787 788 case DSYM_FIELD: 789 if (isv6) { 790 dhcpv6_message_t *d6m = 791 (dhcpv6_message_t *)ack->pkt; 792 dhcpv6_option_t *d6o; 793 794 /* Validate the packet field the user wants */ 795 optlen = optnum.code + optnum.size; 796 if (d6m->d6m_msg_type == 797 DHCPV6_MSG_RELAY_FORW || 798 d6m->d6m_msg_type == 799 DHCPV6_MSG_RELAY_REPL) { 800 if (optlen > sizeof (dhcpv6_relay_t)) 801 break; 802 } else { 803 if (optlen > sizeof (*d6m)) 804 break; 805 } 806 807 opt = malloc(sizeof (*d6o) + optnum.size); 808 if (opt != NULL) { 809 d6o = opt; 810 d6o->d6o_code = htons(optnum.code); 811 d6o->d6o_len = htons(optnum.size); 812 (void) memcpy(d6o + 1, (caddr_t)d6m + 813 optnum.code, optnum.size); 814 } 815 } else { 816 if (optnum.code + optnum.size > sizeof (PKT)) 817 break; 818 819 /* 820 * + 2 to account for option code and length 821 * byte 822 */ 823 opt = malloc(optnum.size + 2); 824 if (opt != NULL) { 825 DHCP_OPT *v4opt = opt; 826 827 v4opt->len = optnum.size; 828 v4opt->code = optnum.code; 829 (void) memcpy(v4opt->value, 830 (caddr_t)ack->pkt + optnum.code, 831 optnum.size); 832 } 833 } 834 835 if (opt == NULL) { 836 send_error_reply(iap, DHCP_IPC_E_MEMORY); 837 return; 838 } 839 did_alloc = B_TRUE; 840 break; 841 842 default: 843 send_error_reply(iap, DHCP_IPC_E_PROTO); 844 return; 845 } 846 847 /* 848 * return the option payload, if there was one. the "+ 2" 849 * accounts for the option code number and length byte. 850 */ 851 852 if (opt != NULL) { 853 if (isv6) { 854 dhcpv6_option_t d6ov; 855 856 (void) memcpy(&d6ov, opt, sizeof (d6ov)); 857 optlen = ntohs(d6ov.d6o_len) + sizeof (d6ov); 858 } else { 859 optlen = ((DHCP_OPT *)opt)->len + 2; 860 } 861 send_data_reply(iap, 0, DHCP_TYPE_OPTION, opt, optlen); 862 863 if (did_alloc) 864 free(opt); 865 break; 866 } else if (ack != dsmp->dsm_orig_ack) { 867 /* 868 * There wasn't any definition for the option in the 869 * current ack, so now retry with the original ack if 870 * the original ack is not the current ack. 871 */ 872 ack = dsmp->dsm_orig_ack; 873 goto load_option; 874 } 875 876 /* 877 * note that an "okay" response is returned either in 878 * the case of an unknown option or a known option 879 * with no payload. this is okay (for now) since 880 * dhcpinfo checks whether an option is valid before 881 * ever performing ipc with the agent. 882 */ 883 884 send_ok_reply(iap); 885 break; 886 } 887 888 case DHCP_INFORM: 889 dhcp_inform(dsmp); 890 /* next destination: dhcp_acknak() */ 891 break; /* not an immediate function */ 892 893 case DHCP_PING: 894 if (dsmp->dsm_dflags & DHCP_IF_FAILED) 895 send_error_reply(iap, DHCP_IPC_E_FAILEDIF); 896 else 897 send_ok_reply(iap); 898 break; 899 900 case DHCP_RELEASE: 901 (void) script_start(dsmp, isv6 ? EVENT_RELEASE6 : 902 EVENT_RELEASE, dhcp_release, "Finished with lease.", NULL); 903 break; /* not an immediate function */ 904 905 case DHCP_START: { 906 PKT_LIST *ack, *oack; 907 PKT_LIST *plp[2]; 908 909 deprecate_leases(dsmp); 910 911 /* 912 * if we have a valid hostconf lying around, then jump 913 * into INIT_REBOOT. if it fails, we'll end up going 914 * through the whole selecting() procedure again. 915 */ 916 917 error = read_hostconf(dsmp->dsm_name, plp, 2, dsmp->dsm_isv6); 918 ack = error > 0 ? plp[0] : NULL; 919 oack = error > 1 ? plp[1] : NULL; 920 921 /* 922 * If the allocation of the old ack fails, that's fine; 923 * continue without it. 924 */ 925 if (oack == NULL) 926 oack = ack; 927 928 /* 929 * As long as we've allocated something, start using it. 930 */ 931 if (ack != NULL) { 932 dsmp->dsm_orig_ack = oack; 933 dsmp->dsm_ack = ack; 934 dhcp_init_reboot(dsmp); 935 /* next destination: dhcp_acknak() */ 936 break; 937 } 938 939 /* 940 * if not debugging, wait for a few seconds before 941 * going into SELECTING. 942 */ 943 944 if (debug_level == 0 && set_start_timer(dsmp)) { 945 /* next destination: dhcp_start() */ 946 break; 947 } else { 948 dhcp_selecting(dsmp); 949 /* next destination: dhcp_requesting() */ 950 break; 951 } 952 } 953 954 case DHCP_STATUS: { 955 dhcp_status_t status; 956 dhcp_lease_t *dlp; 957 958 status.if_began = monosec_to_time(dsmp->dsm_curstart_monosec); 959 960 /* 961 * We return information on just the first lease as being 962 * representative of the lot. A better status mechanism is 963 * needed. 964 */ 965 dlp = dsmp->dsm_leases; 966 967 if (dlp == NULL || 968 dlp->dl_lifs->lif_expire.dt_start == DHCP_PERM) { 969 status.if_t1 = DHCP_PERM; 970 status.if_t2 = DHCP_PERM; 971 status.if_lease = DHCP_PERM; 972 } else { 973 status.if_t1 = status.if_began + 974 dlp->dl_t1.dt_start; 975 status.if_t2 = status.if_began + 976 dlp->dl_t2.dt_start; 977 status.if_lease = status.if_began + 978 dlp->dl_lifs->lif_expire.dt_start; 979 } 980 981 status.version = DHCP_STATUS_VER; 982 status.if_state = dsmp->dsm_state; 983 status.if_dflags = dsmp->dsm_dflags; 984 status.if_sent = dsmp->dsm_sent; 985 status.if_recv = dsmp->dsm_received; 986 status.if_bad_offers = dsmp->dsm_bad_offers; 987 988 (void) strlcpy(status.if_name, dsmp->dsm_name, IFNAMSIZ); 989 990 send_data_reply(iap, 0, DHCP_TYPE_STATUS, &status, 991 sizeof (dhcp_status_t)); 992 break; 993 } 994 } 995 } 996 997 /* 998 * check_rtm_addr(): determine if routing socket message matches interface 999 * address 1000 * 1001 * input: const struct if_msghdr *: pointer to routing socket message 1002 * int: routing socket message length 1003 * boolean_t: set to B_TRUE if IPv6 1004 * const in6_addr_t *: pointer to IP address 1005 * output: boolean_t: B_TRUE if address is a match 1006 */ 1007 1008 static boolean_t 1009 check_rtm_addr(const struct ifa_msghdr *ifam, int msglen, boolean_t isv6, 1010 const in6_addr_t *addr) 1011 { 1012 const char *cp, *lim; 1013 uint_t flag; 1014 const struct sockaddr *sa; 1015 1016 if (!(ifam->ifam_addrs & RTA_IFA)) 1017 return (B_FALSE); 1018 1019 cp = (const char *)(ifam + 1); 1020 lim = (const char *)ifam + msglen; 1021 for (flag = 1; flag < RTA_IFA; flag <<= 1) { 1022 if (ifam->ifam_addrs & flag) { 1023 /* LINTED: alignment */ 1024 sa = (const struct sockaddr *)cp; 1025 if ((const char *)(sa + 1) > lim) 1026 return (B_FALSE); 1027 switch (sa->sa_family) { 1028 case AF_INET: 1029 cp += sizeof (struct sockaddr_in); 1030 break; 1031 case AF_LINK: 1032 cp += sizeof (struct sockaddr_dl); 1033 break; 1034 case AF_INET6: 1035 cp += sizeof (struct sockaddr_in6); 1036 break; 1037 default: 1038 cp += sizeof (struct sockaddr); 1039 break; 1040 } 1041 } 1042 } 1043 if (isv6) { 1044 const struct sockaddr_in6 *sin6; 1045 1046 /* LINTED: alignment */ 1047 sin6 = (const struct sockaddr_in6 *)cp; 1048 if ((const char *)(sin6 + 1) > lim) 1049 return (B_FALSE); 1050 if (sin6->sin6_family != AF_INET6) 1051 return (B_FALSE); 1052 return (IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr, addr)); 1053 } else { 1054 const struct sockaddr_in *sinp; 1055 ipaddr_t v4addr; 1056 1057 /* LINTED: alignment */ 1058 sinp = (const struct sockaddr_in *)cp; 1059 if ((const char *)(sinp + 1) > lim) 1060 return (B_FALSE); 1061 if (sinp->sin_family != AF_INET) 1062 return (B_FALSE); 1063 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 1064 return (sinp->sin_addr.s_addr == v4addr); 1065 } 1066 } 1067 1068 /* 1069 * is_rtm_v6(): determine if routing socket message is IPv6 1070 * 1071 * input: struct ifa_msghdr *: pointer to routing socket message 1072 * int: message length 1073 * output: boolean_t 1074 */ 1075 1076 static boolean_t 1077 is_rtm_v6(const struct ifa_msghdr *ifam, int msglen) 1078 { 1079 const char *cp, *lim; 1080 uint_t flag; 1081 const struct sockaddr *sa; 1082 1083 cp = (const char *)(ifam + 1); 1084 lim = (const char *)ifam + msglen; 1085 for (flag = ifam->ifam_addrs; flag != 0; flag &= flag - 1) { 1086 /* LINTED: alignment */ 1087 sa = (const struct sockaddr *)cp; 1088 if ((const char *)(sa + 1) > lim) 1089 return (B_FALSE); 1090 switch (sa->sa_family) { 1091 case AF_INET: 1092 return (B_FALSE); 1093 case AF_LINK: 1094 cp += sizeof (struct sockaddr_dl); 1095 break; 1096 case AF_INET6: 1097 return (B_TRUE); 1098 default: 1099 cp += sizeof (struct sockaddr); 1100 break; 1101 } 1102 } 1103 return (B_FALSE); 1104 } 1105 1106 /* 1107 * check_lif(): check the state of a given logical interface and its DHCP 1108 * lease. We've been told by the routing socket that the 1109 * corresponding ifIndex has changed. This may mean that DAD has 1110 * completed or failed. 1111 * 1112 * input: dhcp_lif_t *: pointer to the LIF 1113 * const struct ifa_msghdr *: routing socket message 1114 * int: size of routing socket message 1115 * output: boolean_t: B_TRUE if DAD has completed on this interface 1116 */ 1117 1118 static boolean_t 1119 check_lif(dhcp_lif_t *lif, const struct ifa_msghdr *ifam, int msglen) 1120 { 1121 boolean_t isv6, dad_wait, unplumb; 1122 int fd; 1123 struct lifreq lifr; 1124 1125 isv6 = lif->lif_pif->pif_isv6; 1126 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1127 1128 /* 1129 * Get the real (64 bit) logical interface flags. Note that the 1130 * routing socket message has flags, but these are just the lower 32 1131 * bits. 1132 */ 1133 unplumb = B_FALSE; 1134 (void) memset(&lifr, 0, sizeof (lifr)); 1135 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1136 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1) { 1137 /* 1138 * Failing to retrieve flags means that the interface is gone. 1139 * It hasn't failed to verify with DAD, but we still have to 1140 * give up on it. 1141 */ 1142 lifr.lifr_flags = 0; 1143 if (errno == ENXIO) { 1144 lif->lif_plumbed = B_FALSE; 1145 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1146 lif->lif_name); 1147 if (!isv6) 1148 discard_default_routes(lif->lif_smachs); 1149 } else { 1150 dhcpmsg(MSG_ERR, 1151 "unable to retrieve interface flags on %s", 1152 lif->lif_name); 1153 } 1154 unplumb = B_TRUE; 1155 } else if (!check_rtm_addr(ifam, msglen, isv6, &lif->lif_v6addr)) { 1156 /* 1157 * If the message is not about this logical interface, 1158 * then just ignore it. 1159 */ 1160 return (B_FALSE); 1161 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1162 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1163 lif->lif_name); 1164 lif_mark_decline(lif, "duplicate address"); 1165 close_ip_lif(lif); 1166 } 1167 1168 dad_wait = lif->lif_dad_wait; 1169 if (dad_wait) { 1170 dhcpmsg(MSG_VERBOSE, "check_lif: %s has finished DAD", 1171 lif->lif_name); 1172 lif->lif_dad_wait = B_FALSE; 1173 } 1174 1175 if (unplumb) 1176 unplumb_lif(lif); 1177 1178 return (dad_wait); 1179 } 1180 1181 /* 1182 * check_main_lif(): check the state of a main logical interface for a state 1183 * machine. This is used only for DHCPv6. 1184 * 1185 * input: dhcp_smach_t *: pointer to the state machine 1186 * const struct ifa_msghdr *: routing socket message 1187 * int: size of routing socket message 1188 * output: boolean_t: B_TRUE if LIF is ok. 1189 */ 1190 1191 static boolean_t 1192 check_main_lif(dhcp_smach_t *dsmp, const struct ifa_msghdr *ifam, int msglen) 1193 { 1194 dhcp_lif_t *lif = dsmp->dsm_lif; 1195 struct lifreq lifr; 1196 1197 /* 1198 * Get the real (64 bit) logical interface flags. Note that the 1199 * routing socket message has flags, but these are just the lower 32 1200 * bits. 1201 */ 1202 (void) memset(&lifr, 0, sizeof (lifr)); 1203 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1204 if (ioctl(v6_sock_fd, SIOCGLIFFLAGS, &lifr) == -1) { 1205 /* 1206 * Failing to retrieve flags means that the interface is gone. 1207 * Our state machine is now trash. 1208 */ 1209 if (errno == ENXIO) { 1210 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1211 lif->lif_name); 1212 } else { 1213 dhcpmsg(MSG_ERR, 1214 "unable to retrieve interface flags on %s", 1215 lif->lif_name); 1216 } 1217 return (B_FALSE); 1218 } else if (!check_rtm_addr(ifam, msglen, B_TRUE, &lif->lif_v6addr)) { 1219 /* 1220 * If the message is not about this logical interface, 1221 * then just ignore it. 1222 */ 1223 return (B_TRUE); 1224 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1225 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1226 lif->lif_name); 1227 return (B_FALSE); 1228 } else { 1229 return (B_TRUE); 1230 } 1231 } 1232 1233 /* 1234 * process_link_up_down(): check the state of a physical interface for up/down 1235 * transitions; must go through INIT_REBOOT state if 1236 * the link flaps. 1237 * 1238 * input: dhcp_pif_t *: pointer to the physical interface to check 1239 * const struct if_msghdr *: routing socket message 1240 * output: none 1241 */ 1242 1243 static void 1244 process_link_up_down(dhcp_pif_t *pif, const struct if_msghdr *ifm) 1245 { 1246 struct lifreq lifr; 1247 boolean_t isv6; 1248 int fd; 1249 1250 /* 1251 * If the message implies no change of flags, then we're done; no need 1252 * to check further. Note that if we have multiple state machines on a 1253 * single physical interface, this test keeps us from issuing an ioctl 1254 * for each one. 1255 */ 1256 if ((ifm->ifm_flags & IFF_RUNNING) && pif->pif_running || 1257 !(ifm->ifm_flags & IFF_RUNNING) && !pif->pif_running) 1258 return; 1259 1260 /* 1261 * We don't know what the real interface flags are, because the 1262 * if_index number is only 16 bits; we must go ask. 1263 */ 1264 isv6 = pif->pif_isv6; 1265 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1266 (void) memset(&lifr, 0, sizeof (lifr)); 1267 (void) strlcpy(lifr.lifr_name, pif->pif_name, sizeof (lifr.lifr_name)); 1268 1269 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1 || 1270 !(lifr.lifr_flags & IFF_RUNNING)) { 1271 /* 1272 * If we've lost the interface or it has gone down, then 1273 * nothing special to do; just turn off the running flag. 1274 */ 1275 pif_status(pif, B_FALSE); 1276 } else { 1277 /* 1278 * Interface has come back up: go through verification process. 1279 */ 1280 pif_status(pif, B_TRUE); 1281 } 1282 } 1283 1284 /* 1285 * rtsock_event(): fetches routing socket messages and updates internal 1286 * interface state based on those messages. 1287 * 1288 * input: iu_eh_t *: unused 1289 * int: the routing socket file descriptor 1290 * (other arguments unused) 1291 * output: void 1292 */ 1293 1294 /* ARGSUSED */ 1295 static void 1296 rtsock_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 1297 { 1298 dhcp_smach_t *dsmp, *dsmnext; 1299 union { 1300 struct ifa_msghdr ifam; 1301 struct if_msghdr ifm; 1302 char buf[1024]; 1303 } msg; 1304 uint16_t ifindex; 1305 int msglen; 1306 boolean_t isv6; 1307 1308 if ((msglen = read(fd, &msg, sizeof (msg))) <= 0) 1309 return; 1310 1311 /* Note that the routing socket interface index is just 16 bits */ 1312 if (msg.ifm.ifm_type == RTM_IFINFO) { 1313 ifindex = msg.ifm.ifm_index; 1314 isv6 = (msg.ifm.ifm_flags & IFF_IPV6) ? B_TRUE : B_FALSE; 1315 } else if (msg.ifam.ifam_type == RTM_DELADDR || 1316 msg.ifam.ifam_type == RTM_NEWADDR) { 1317 ifindex = msg.ifam.ifam_index; 1318 isv6 = is_rtm_v6(&msg.ifam, msglen); 1319 } else { 1320 return; 1321 } 1322 1323 for (dsmp = lookup_smach_by_uindex(ifindex, NULL, isv6); 1324 dsmp != NULL; dsmp = dsmnext) { 1325 DHCPSTATE oldstate; 1326 boolean_t lif_finished; 1327 boolean_t lease_removed; 1328 dhcp_lease_t *dlp, *dlnext; 1329 1330 /* 1331 * Note that script_start can call dhcp_drop directly, and 1332 * that will do release_smach. 1333 */ 1334 dsmnext = lookup_smach_by_uindex(ifindex, dsmp, isv6); 1335 oldstate = dsmp->dsm_state; 1336 1337 /* 1338 * Look for link up/down notifications. These occur on a 1339 * physical interface basis. 1340 */ 1341 if (msg.ifm.ifm_type == RTM_IFINFO) { 1342 process_link_up_down(dsmp->dsm_lif->lif_pif, &msg.ifm); 1343 continue; 1344 } 1345 1346 /* 1347 * Since we cannot trust the flags reported by the routing 1348 * socket (they're just 32 bits -- and thus never include 1349 * IFF_DUPLICATE), and we can't trust the ifindex (it's only 16 1350 * bits and also doesn't reflect the alias in use), we get 1351 * flags on all matching interfaces, and go by that. 1352 */ 1353 lif_finished = B_FALSE; 1354 lease_removed = B_FALSE; 1355 for (dlp = dsmp->dsm_leases; dlp != NULL; dlp = dlnext) { 1356 dhcp_lif_t *lif, *lifnext; 1357 uint_t nlifs = dlp->dl_nlifs; 1358 1359 dlnext = dlp->dl_next; 1360 for (lif = dlp->dl_lifs; lif != NULL && nlifs > 0; 1361 lif = lifnext, nlifs--) { 1362 lifnext = lif->lif_next; 1363 if (check_lif(lif, &msg.ifam, msglen)) { 1364 dsmp->dsm_lif_wait--; 1365 lif_finished = B_TRUE; 1366 } 1367 } 1368 if (dlp->dl_nlifs == 0) { 1369 remove_lease(dlp); 1370 lease_removed = B_TRUE; 1371 } 1372 } 1373 1374 if ((isv6 && !check_main_lif(dsmp, &msg.ifam, msglen)) || 1375 (!isv6 && !verify_lif(dsmp->dsm_lif))) { 1376 if (dsmp->dsm_script_pid != -1) 1377 script_stop(dsmp); 1378 (void) script_start(dsmp, EVENT_DROP6, dhcp_drop, NULL, 1379 NULL); 1380 continue; 1381 } 1382 1383 /* 1384 * Ignore this state machine if nothing interesting has 1385 * happened. 1386 */ 1387 if (!lif_finished && dsmp->dsm_lif_down == 0 && 1388 (dsmp->dsm_leases != NULL || !lease_removed)) 1389 continue; 1390 1391 /* 1392 * If we're still waiting for DAD to complete on some of the 1393 * configured LIFs, then don't send a response. 1394 */ 1395 if (dsmp->dsm_lif_wait != 0) { 1396 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s still has %d " 1397 "LIFs waiting on DAD", dsmp->dsm_name, 1398 dsmp->dsm_lif_wait); 1399 continue; 1400 } 1401 1402 /* 1403 * If we have some failed LIFs, then handle them now. We'll 1404 * remove them from the list. Any leases that become empty are 1405 * also removed as part of the decline-generation process. 1406 */ 1407 if (dsmp->dsm_lif_down != 0) { 1408 /* 1409 * We need to switch back to PRE_BOUND state so that 1410 * send_pkt_internal() uses DLPI instead of sockets. 1411 * Our logical interface has already been torn down by 1412 * the kernel, and thus we can't send DHCPDECLINE by 1413 * way of regular IP. (Unless we're adopting -- allow 1414 * the grandparent to be handled as expected.) 1415 */ 1416 if (oldstate != ADOPTING) { 1417 (void) set_smach_state(dsmp, PRE_BOUND); 1418 } 1419 send_declines(dsmp); 1420 } 1421 1422 if (dsmp->dsm_leases == NULL) { 1423 dsmp->dsm_bad_offers++; 1424 /* 1425 * For DHCPv6, we'll process the restart once we're 1426 * done sending Decline messages, because these are 1427 * supposed to be acknowledged. With DHCPv4, there's 1428 * no acknowledgment for a DECLINE, so after sending 1429 * it, we just restart right away. 1430 */ 1431 if (!dsmp->dsm_isv6) { 1432 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s has no " 1433 "LIFs left", dsmp->dsm_name); 1434 dhcp_restart(dsmp); 1435 } 1436 } else { 1437 /* 1438 * If we're now up on at least some of the leases and 1439 * we were waiting for that, then kick off the rest of 1440 * configuration. Lease validation and DAD are done. 1441 */ 1442 dhcpmsg(MSG_VERBOSE, "rtsock_event: all LIFs verified " 1443 "on %s in %s state", dsmp->dsm_name, 1444 dhcp_state_to_string(oldstate)); 1445 if (oldstate == PRE_BOUND || 1446 oldstate == ADOPTING) 1447 dhcp_bound_complete(dsmp); 1448 if (oldstate == ADOPTING) 1449 dhcp_adopt_complete(dsmp); 1450 } 1451 } 1452 } 1453 1454 /* 1455 * check_cmd_allowed(): check whether the requested command is allowed in the 1456 * state specified. 1457 * 1458 * input: DHCPSTATE: current state 1459 * dhcp_ipc_type_t: requested command 1460 * output: boolean_t: B_TRUE if command is allowed in this state 1461 */ 1462 1463 boolean_t 1464 check_cmd_allowed(DHCPSTATE state, dhcp_ipc_type_t cmd) 1465 { 1466 return (ipc_cmd_allowed[state][cmd] != 0); 1467 } 1468