xref: /illumos-gate/usr/src/cmd/cmd-inet/sbin/dhcpagent/agent.c (revision 17f1e64a433a4ca00ffed7539e10c297580a7002)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <stdlib.h>
28 #include <assert.h>
29 #include <errno.h>
30 #include <locale.h>
31 #include <string.h>
32 #include <unistd.h>
33 #include <signal.h>
34 #include <stdio.h>
35 #include <stdio_ext.h>
36 #include <dhcp_hostconf.h>
37 #include <dhcpagent_ipc.h>
38 #include <dhcpagent_util.h>
39 #include <dhcpmsg.h>
40 #include <netinet/dhcp.h>
41 #include <net/route.h>
42 #include <sys/sockio.h>
43 #include <sys/stat.h>
44 #include <stropts.h>
45 #include <fcntl.h>
46 #include <sys/scsi/adapters/iscsi_if.h>
47 
48 #include "async.h"
49 #include "agent.h"
50 #include "script_handler.h"
51 #include "util.h"
52 #include "class_id.h"
53 #include "states.h"
54 #include "packet.h"
55 #include "interface.h"
56 #include "defaults.h"
57 
58 #ifndef	TEXT_DOMAIN
59 #define	TEXT_DOMAIN	"SYS_TEST"
60 #endif
61 
62 iu_timer_id_t		inactivity_id;
63 int			class_id_len = 0;
64 char			*class_id;
65 iu_eh_t			*eh;
66 iu_tq_t			*tq;
67 pid_t			grandparent;
68 int			rtsock_fd;
69 
70 static boolean_t	shutdown_started = B_FALSE;
71 static boolean_t	do_adopt = B_FALSE;
72 static unsigned int	debug_level = 0;
73 static iu_eh_callback_t	accept_event, ipc_event, rtsock_event;
74 
75 /*
76  * The ipc_cmd_allowed[] table indicates which IPC commands are allowed in
77  * which states; a non-zero value indicates the command is permitted.
78  *
79  * START is permitted if the state machine is fresh, or if we are in the
80  * process of trying to obtain a lease (as a convenience to save the
81  * administrator from having to do an explicit DROP).  EXTEND, RELEASE, and
82  * GET_TAG require a lease to be obtained in order to make sense.  INFORM is
83  * permitted if the interface is fresh or has an INFORM in progress or
84  * previously done on it -- otherwise a DROP or RELEASE is first required.
85  * PING and STATUS always make sense and thus are always permitted, as is DROP
86  * in order to permit the administrator to always bail out.
87  */
88 static int ipc_cmd_allowed[DHCP_NSTATES][DHCP_NIPC] = {
89 	/*			  D  E	P  R  S	 S  I  G */
90 	/*			  R  X	I  E  T	 T  N  E */
91 	/*			  O  T	N  L  A	 A  F  T */
92 	/*			  P  E	G  E  R	 T  O  _ */
93 	/*			  .  N  .  A  T  U  R  T */
94 	/*			  .  D	.  S  .  S  M  A */
95 	/*			  .  .  .  E  .  .  .  G */
96 	/* INIT		*/	{ 1, 0, 1, 0, 1, 1, 1, 0 },
97 	/* SELECTING	*/	{ 1, 0, 1, 0, 1, 1, 0, 0 },
98 	/* REQUESTING	*/	{ 1, 0, 1, 0, 1, 1, 0, 0 },
99 	/* PRE_BOUND	*/	{ 1, 1, 1, 1, 0, 1, 0, 1 },
100 	/* BOUND	*/	{ 1, 1, 1, 1, 0, 1, 0, 1 },
101 	/* RENEWING	*/	{ 1, 1, 1, 1, 0, 1, 0, 1 },
102 	/* REBINDING	*/	{ 1, 1, 1, 1, 0, 1, 0, 1 },
103 	/* INFORMATION  */	{ 1, 0, 1, 0, 1, 1, 1, 1 },
104 	/* INIT_REBOOT  */	{ 1, 0, 1, 1, 1, 1, 0, 0 },
105 	/* ADOPTING	*/	{ 1, 0, 1, 1, 0, 1, 0, 0 },
106 	/* INFORM_SENT  */	{ 1, 0, 1, 0, 1, 1, 1, 0 },
107 	/* DECLINING	*/	{ 1, 1, 1, 1, 0, 1, 0, 1 },
108 	/* RELEASING	*/	{ 1, 0, 1, 0, 0, 1, 0, 1 },
109 };
110 
111 #define	CMD_ISPRIV	0x1	/* Command requires privileges */
112 #define	CMD_CREATE	0x2	/* Command creates an interface */
113 #define	CMD_BOOTP	0x4	/* Command is valid with BOOTP */
114 #define	CMD_IMMED	0x8	/* Reply is immediate (no BUSY state) */
115 
116 static uint_t ipc_cmd_flags[DHCP_NIPC] = {
117 	/* DHCP_DROP */		CMD_ISPRIV|CMD_BOOTP,
118 	/* DHCP_EXTEND */	CMD_ISPRIV,
119 	/* DHCP_PING */		CMD_BOOTP|CMD_IMMED,
120 	/* DHCP_RELEASE */	CMD_ISPRIV,
121 	/* DHCP_START */	CMD_CREATE|CMD_ISPRIV|CMD_BOOTP,
122 	/* DHCP_STATUS */	CMD_BOOTP|CMD_IMMED,
123 	/* DHCP_INFORM */	CMD_CREATE|CMD_ISPRIV,
124 	/* DHCP_GET_TAG */	CMD_BOOTP|CMD_IMMED
125 };
126 
127 static boolean_t is_iscsi_active(void);
128 
129 int
130 main(int argc, char **argv)
131 {
132 	boolean_t	is_daemon  = B_TRUE;
133 	boolean_t	is_verbose;
134 	int		ipc_fd;
135 	int		c;
136 	int		aware = RTAW_UNDER_IPMP;
137 	struct rlimit	rl;
138 
139 	debug_level = df_get_int("", B_FALSE, DF_DEBUG_LEVEL);
140 	is_verbose = df_get_bool("", B_FALSE, DF_VERBOSE);
141 
142 	/*
143 	 * -l is ignored for compatibility with old agent.
144 	 */
145 
146 	while ((c = getopt(argc, argv, "vd:l:fa")) != EOF) {
147 
148 		switch (c) {
149 
150 		case 'a':
151 			do_adopt = B_TRUE;
152 			grandparent = getpid();
153 			break;
154 
155 		case 'd':
156 			debug_level = strtoul(optarg, NULL, 0);
157 			break;
158 
159 		case 'f':
160 			is_daemon = B_FALSE;
161 			break;
162 
163 		case 'v':
164 			is_verbose = B_TRUE;
165 			break;
166 
167 		case '?':
168 			(void) fprintf(stderr, "usage: %s [-a] [-d n] [-f] [-v]"
169 			    "\n", argv[0]);
170 			return (EXIT_FAILURE);
171 
172 		default:
173 			break;
174 		}
175 	}
176 
177 	(void) setlocale(LC_ALL, "");
178 	(void) textdomain(TEXT_DOMAIN);
179 
180 	if (geteuid() != 0) {
181 		dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level);
182 		dhcpmsg(MSG_ERROR, "must be super-user");
183 		dhcpmsg_fini();
184 		return (EXIT_FAILURE);
185 	}
186 
187 	if (is_daemon && daemonize() == 0) {
188 		dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level);
189 		dhcpmsg(MSG_ERR, "cannot become daemon, exiting");
190 		dhcpmsg_fini();
191 		return (EXIT_FAILURE);
192 	}
193 
194 	/*
195 	 * Seed the random number generator, since we're going to need it
196 	 * to set transaction id's and for exponential backoff.
197 	 */
198 	srand48(gethrtime() ^ gethostid() ^ getpid());
199 
200 	dhcpmsg_init(argv[0], is_daemon, is_verbose, debug_level);
201 	(void) atexit(dhcpmsg_fini);
202 
203 	tq = iu_tq_create();
204 	eh = iu_eh_create();
205 
206 	if (eh == NULL || tq == NULL) {
207 		errno = ENOMEM;
208 		dhcpmsg(MSG_ERR, "cannot create timer queue or event handler");
209 		return (EXIT_FAILURE);
210 	}
211 
212 	/*
213 	 * ignore most signals that could be reasonably generated.
214 	 */
215 
216 	(void) signal(SIGTERM, graceful_shutdown);
217 	(void) signal(SIGQUIT, graceful_shutdown);
218 	(void) signal(SIGPIPE, SIG_IGN);
219 	(void) signal(SIGUSR1, SIG_IGN);
220 	(void) signal(SIGUSR2, SIG_IGN);
221 	(void) signal(SIGINT,  SIG_IGN);
222 	(void) signal(SIGHUP,  SIG_IGN);
223 	(void) signal(SIGCHLD, SIG_IGN);
224 
225 	/*
226 	 * upon SIGTHAW we need to refresh any non-infinite leases.
227 	 */
228 
229 	(void) iu_eh_register_signal(eh, SIGTHAW, refresh_smachs, NULL);
230 
231 	class_id = get_class_id();
232 	if (class_id != NULL)
233 		class_id_len = strlen(class_id);
234 	else
235 		dhcpmsg(MSG_WARNING, "get_class_id failed, continuing "
236 		    "with no vendor class id");
237 
238 	/*
239 	 * the inactivity timer is enabled any time there are no
240 	 * interfaces under DHCP control.  if DHCP_INACTIVITY_WAIT
241 	 * seconds transpire without an interface under DHCP control,
242 	 * the agent shuts down.
243 	 */
244 
245 	inactivity_id = iu_schedule_timer(tq, DHCP_INACTIVITY_WAIT,
246 	    inactivity_shutdown, NULL);
247 
248 	/*
249 	 * max out the number available descriptors, just in case..
250 	 */
251 
252 	rl.rlim_cur = RLIM_INFINITY;
253 	rl.rlim_max = RLIM_INFINITY;
254 	if (setrlimit(RLIMIT_NOFILE, &rl) == -1)
255 		dhcpmsg(MSG_ERR, "setrlimit failed");
256 
257 	(void) enable_extended_FILE_stdio(-1, -1);
258 
259 	/*
260 	 * Create and bind default IP sockets used to control interfaces and to
261 	 * catch stray packets.
262 	 */
263 
264 	if (!dhcp_ip_default())
265 		return (EXIT_FAILURE);
266 
267 	/*
268 	 * create the ipc channel that the agent will listen for
269 	 * requests on, and register it with the event handler so that
270 	 * `accept_event' will be called back.
271 	 */
272 
273 	switch (dhcp_ipc_init(&ipc_fd)) {
274 
275 	case 0:
276 		break;
277 
278 	case DHCP_IPC_E_BIND:
279 		dhcpmsg(MSG_ERROR, "dhcp_ipc_init: cannot bind to port "
280 		    "%i (agent already running?)", IPPORT_DHCPAGENT);
281 		return (EXIT_FAILURE);
282 
283 	default:
284 		dhcpmsg(MSG_ERROR, "dhcp_ipc_init failed");
285 		return (EXIT_FAILURE);
286 	}
287 
288 	if (iu_register_event(eh, ipc_fd, POLLIN, accept_event, 0) == -1) {
289 		dhcpmsg(MSG_ERR, "cannot register ipc fd for messages");
290 		return (EXIT_FAILURE);
291 	}
292 
293 	/*
294 	 * Create the global routing socket.  This is used for monitoring
295 	 * interface transitions, so that we learn about the kernel's Duplicate
296 	 * Address Detection status, and for inserting and removing default
297 	 * routes as learned from DHCP servers.  Both v4 and v6 are handed
298 	 * with this one socket.
299 	 */
300 	rtsock_fd = socket(PF_ROUTE, SOCK_RAW, 0);
301 	if (rtsock_fd == -1) {
302 		dhcpmsg(MSG_ERR, "cannot open routing socket");
303 		return (EXIT_FAILURE);
304 	}
305 
306 	/*
307 	 * We're IPMP-aware and can manage IPMP test addresses, so issue
308 	 * RT_AWARE to get routing socket messages for interfaces under IPMP.
309 	 */
310 	if (setsockopt(rtsock_fd, SOL_ROUTE, RT_AWARE, &aware,
311 	    sizeof (aware)) == -1) {
312 		dhcpmsg(MSG_ERR, "cannot set RT_AWARE on routing socket");
313 		return (EXIT_FAILURE);
314 	}
315 
316 	if (iu_register_event(eh, rtsock_fd, POLLIN, rtsock_event, 0) == -1) {
317 		dhcpmsg(MSG_ERR, "cannot register routing socket for messages");
318 		return (EXIT_FAILURE);
319 	}
320 
321 	/*
322 	 * if the -a (adopt) option was specified, try to adopt the
323 	 * kernel-managed interface before we start.
324 	 */
325 
326 	if (do_adopt && !dhcp_adopt())
327 		return (EXIT_FAILURE);
328 
329 	/*
330 	 * For DHCPv6, we own all of the interfaces marked DHCPRUNNING.  As
331 	 * we're starting operation here, if there are any of those interfaces
332 	 * lingering around, they're strays, and need to be removed.
333 	 *
334 	 * It might be nice to save these addresses off somewhere -- for both
335 	 * v4 and v6 -- and use them as hints for later negotiation.
336 	 */
337 	remove_v6_strays();
338 
339 	/*
340 	 * enter the main event loop; this is where all the real work
341 	 * takes place (through registering events and scheduling timers).
342 	 * this function only returns when the agent is shutting down.
343 	 */
344 
345 	switch (iu_handle_events(eh, tq)) {
346 
347 	case -1:
348 		dhcpmsg(MSG_WARNING, "iu_handle_events exited abnormally");
349 		break;
350 
351 	case DHCP_REASON_INACTIVITY:
352 		dhcpmsg(MSG_INFO, "no interfaces to manage, shutting down...");
353 		break;
354 
355 	case DHCP_REASON_TERMINATE:
356 		dhcpmsg(MSG_INFO, "received SIGTERM, shutting down...");
357 		break;
358 
359 	case DHCP_REASON_SIGNAL:
360 		dhcpmsg(MSG_WARNING, "received unexpected signal, shutting "
361 		    "down...");
362 		break;
363 	}
364 
365 	(void) iu_eh_unregister_signal(eh, SIGTHAW, NULL);
366 
367 	iu_eh_destroy(eh);
368 	iu_tq_destroy(tq);
369 
370 	return (EXIT_SUCCESS);
371 }
372 
373 /*
374  * drain_script(): event loop callback during shutdown
375  *
376  *   input: eh_t *: unused
377  *	    void *: unused
378  *  output: boolean_t: B_TRUE if event loop should exit; B_FALSE otherwise
379  */
380 
381 /* ARGSUSED */
382 boolean_t
383 drain_script(iu_eh_t *ehp, void *arg)
384 {
385 	if (shutdown_started == B_FALSE) {
386 		shutdown_started = B_TRUE;
387 		/*
388 		 * Check if the system is diskless client and/or
389 		 * there are active iSCSI sessions
390 		 *
391 		 * Do not drop the lease, or the system will be
392 		 * unable to sync(dump) through nfs/iSCSI driver
393 		 */
394 		if (!do_adopt && !is_iscsi_active()) {
395 			nuke_smach_list();
396 		}
397 	}
398 	return (script_count == 0);
399 }
400 
401 /*
402  * accept_event(): accepts a new connection on the ipc socket and registers
403  *		   to receive its messages with the event handler
404  *
405  *   input: iu_eh_t *: unused
406  *	    int: the file descriptor in the iu_eh_t * the connection came in on
407  *	    (other arguments unused)
408  *  output: void
409  */
410 
411 /* ARGSUSED */
412 static void
413 accept_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg)
414 {
415 	int	client_fd;
416 	int	is_priv;
417 
418 	if (dhcp_ipc_accept(fd, &client_fd, &is_priv) != 0) {
419 		dhcpmsg(MSG_ERR, "accept_event: accept on ipc socket");
420 		return;
421 	}
422 
423 	if (iu_register_event(eh, client_fd, POLLIN, ipc_event,
424 	    (void *)is_priv) == -1) {
425 		dhcpmsg(MSG_ERROR, "accept_event: cannot register ipc socket "
426 		    "for callback");
427 	}
428 }
429 
430 /*
431  * ipc_event(): processes incoming ipc requests
432  *
433  *   input: iu_eh_t *: unused
434  *	    int: the file descriptor in the iu_eh_t * the request came in on
435  *	    short: unused
436  *	    iu_event_id_t: event ID
437  *	    void *: indicates whether the request is from a privileged client
438  *  output: void
439  */
440 
441 /* ARGSUSED */
442 static void
443 ipc_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg)
444 {
445 	ipc_action_t		ia, *iap;
446 	dhcp_smach_t		*dsmp;
447 	int			error, is_priv = (int)arg;
448 	const char		*ifname;
449 	boolean_t		isv6;
450 
451 	ipc_action_init(&ia);
452 	error = dhcp_ipc_recv_request(fd, &ia.ia_request,
453 	    DHCP_IPC_REQUEST_WAIT);
454 	if (error != DHCP_IPC_SUCCESS) {
455 		if (error != DHCP_IPC_E_EOF) {
456 			dhcpmsg(MSG_ERROR,
457 			    "ipc_event: dhcp_ipc_recv_request failed: %s",
458 			    dhcp_ipc_strerror(error));
459 		} else {
460 			dhcpmsg(MSG_DEBUG, "ipc_event: connection closed");
461 		}
462 		if ((dsmp = lookup_smach_by_event(id)) != NULL) {
463 			ipc_action_finish(dsmp, error);
464 		} else {
465 			(void) iu_unregister_event(eh, id, NULL);
466 			(void) dhcp_ipc_close(fd);
467 		}
468 		return;
469 	}
470 
471 	/* Fill in temporary ipc_action structure for utility functions */
472 	ia.ia_cmd = DHCP_IPC_CMD(ia.ia_request->message_type);
473 	ia.ia_fd = fd;
474 	ia.ia_eid = id;
475 
476 	if (ia.ia_cmd >= DHCP_NIPC) {
477 		dhcpmsg(MSG_ERROR,
478 		    "ipc_event: invalid command (%s) attempted on %s",
479 		    dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname);
480 		send_error_reply(&ia, DHCP_IPC_E_CMD_UNKNOWN);
481 		return;
482 	}
483 
484 	/* return EPERM for any of the privileged actions */
485 
486 	if (!is_priv && (ipc_cmd_flags[ia.ia_cmd] & CMD_ISPRIV)) {
487 		dhcpmsg(MSG_WARNING,
488 		    "ipc_event: privileged ipc command (%s) attempted on %s",
489 		    dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname);
490 		send_error_reply(&ia, DHCP_IPC_E_PERM);
491 		return;
492 	}
493 
494 	/*
495 	 * Try to locate the state machine associated with this command.  If
496 	 * the command is DHCP_START or DHCP_INFORM and there isn't a state
497 	 * machine already, make one (there may already be one from a previous
498 	 * failed attempt to START or INFORM).  Otherwise, verify the reference
499 	 * is still valid.
500 	 *
501 	 * The interface name may be blank.  In that case, we look up the
502 	 * primary interface, and the requested type (v4 or v6) doesn't matter.
503 	 */
504 
505 	isv6 = (ia.ia_request->message_type & DHCP_V6) != 0;
506 	ifname = ia.ia_request->ifname;
507 	if (*ifname == '\0')
508 		dsmp = primary_smach(isv6);
509 	else
510 		dsmp = lookup_smach(ifname, isv6);
511 
512 	if (dsmp != NULL) {
513 		/* Note that verify_smach drops a reference */
514 		hold_smach(dsmp);
515 		if (!verify_smach(dsmp))
516 			dsmp = NULL;
517 	}
518 
519 	if (dsmp == NULL) {
520 		/*
521 		 * If the user asked for the primary DHCP interface, but there
522 		 * is none, then report failure.
523 		 */
524 		if (ifname[0] == '\0') {
525 			error = DHCP_IPC_E_NOPRIMARY;
526 
527 		/*
528 		 * If there's no interface, and we're starting up, then create
529 		 * it now, along with a state machine for it.  Note that if
530 		 * insert_smach fails, it discards the LIF reference.
531 		 */
532 		} else if (ipc_cmd_flags[ia.ia_cmd] & CMD_CREATE) {
533 			dhcp_lif_t *lif;
534 
535 			lif = attach_lif(ifname, isv6, &error);
536 			if (lif != NULL &&
537 			    (dsmp = insert_smach(lif, &error)) != NULL) {
538 				/*
539 				 * Get client ID and set "DHCPRUNNING" flag on
540 				 * logical interface.  (V4 only, because V6
541 				 * plumbs its own interfaces.)
542 				 */
543 				error = get_smach_cid(dsmp);
544 				if (error == DHCP_IPC_SUCCESS)
545 					error = set_lif_dhcp(lif, B_FALSE);
546 				if (error != DHCP_IPC_SUCCESS) {
547 					remove_smach(dsmp);
548 					dsmp = NULL;
549 				}
550 			}
551 
552 		/*
553 		 * Otherwise, this is an operation on an unknown interface.
554 		 */
555 		} else {
556 			error = DHCP_IPC_E_UNKIF;
557 		}
558 		if (dsmp == NULL) {
559 			send_error_reply(&ia, error);
560 			return;
561 		}
562 	}
563 
564 	if ((dsmp->dsm_dflags & DHCP_IF_BOOTP) &&
565 	    !(ipc_cmd_flags[ia.ia_cmd] & CMD_BOOTP)) {
566 		dhcpmsg(MSG_ERROR, "command %s not valid for BOOTP on %s",
567 		    dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name);
568 		send_error_reply(&ia, DHCP_IPC_E_BOOTP);
569 		return;
570 	}
571 
572 	/*
573 	 * verify that the state machine is in a state which will allow the
574 	 * command.  we do this up front so that we can return an error
575 	 * *before* needlessly cancelling an in-progress transaction.
576 	 */
577 
578 	if (!check_cmd_allowed(dsmp->dsm_state, ia.ia_cmd)) {
579 		dhcpmsg(MSG_DEBUG,
580 		    "in state %s; not allowing %s command on %s",
581 		    dhcp_state_to_string(dsmp->dsm_state),
582 		    dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name);
583 		send_error_reply(&ia,
584 		    ia.ia_cmd == DHCP_START && dsmp->dsm_state != INIT ?
585 		    DHCP_IPC_E_RUNNING : DHCP_IPC_E_OUTSTATE);
586 		return;
587 	}
588 
589 	dhcpmsg(MSG_DEBUG, "in state %s; allowing %s command on %s",
590 	    dhcp_state_to_string(dsmp->dsm_state),
591 	    dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name);
592 
593 	if ((ia.ia_request->message_type & DHCP_PRIMARY) && is_priv)
594 		make_primary(dsmp);
595 
596 	/*
597 	 * The current design dictates that there can be only one outstanding
598 	 * transaction per state machine -- this simplifies the code
599 	 * considerably and also fits well with RFCs 2131 and 3315.  It is
600 	 * worth classifying the different DHCP commands into synchronous
601 	 * (those which we will handle now and reply to immediately) and
602 	 * asynchronous (those which require transactions and will be completed
603 	 * at an indeterminate time in the future):
604 	 *
605 	 *    DROP: removes the agent's management of a state machine.
606 	 *	    asynchronous as the script program may be invoked.
607 	 *
608 	 *    PING: checks to see if the agent has a named state machine.
609 	 *	    synchronous, since no packets need to be sent
610 	 *	    to the DHCP server.
611 	 *
612 	 *  STATUS: returns information about a state machine.
613 	 *	    synchronous, since no packets need to be sent
614 	 *	    to the DHCP server.
615 	 *
616 	 * RELEASE: releases the agent's management of a state machine
617 	 *	    and brings the associated interfaces down.  asynchronous
618 	 *	    as the script program may be invoked.
619 	 *
620 	 *  EXTEND: renews a lease.  asynchronous, since the agent
621 	 *	    needs to wait for an ACK, etc.
622 	 *
623 	 *   START: starts DHCP on a named state machine.  asynchronous since
624 	 *	    the agent needs to wait for OFFERs, ACKs, etc.
625 	 *
626 	 *  INFORM: obtains configuration parameters for the system using
627 	 *	    externally configured interface.  asynchronous, since the
628 	 *	    agent needs to wait for an ACK.
629 	 *
630 	 * Notice that EXTEND, INFORM, START, DROP and RELEASE are
631 	 * asynchronous.  Notice also that asynchronous commands may occur from
632 	 * within the agent -- for instance, the agent will need to do implicit
633 	 * EXTENDs to extend the lease. In order to make the code simpler, the
634 	 * following rules apply for asynchronous commands:
635 	 *
636 	 * There can only be one asynchronous command at a time per state
637 	 * machine.  The current asynchronous command is managed by the async_*
638 	 * api: async_start(), async_finish(), and async_cancel().
639 	 * async_start() starts management of a new asynchronous command on an
640 	 * state machine, which should only be done after async_cancel() to
641 	 * terminate a previous command.  When the command is completed,
642 	 * async_finish() should be called.
643 	 *
644 	 * Asynchronous commands started by a user command have an associated
645 	 * ipc_action which provides the agent with information for how to get
646 	 * in touch with the user command when the action completes.  These
647 	 * ipc_action records also have an associated timeout which may be
648 	 * infinite.  ipc_action_start() should be called when starting an
649 	 * asynchronous command requested by a user, which sets up the timer
650 	 * and keeps track of the ipc information (file descriptor, request
651 	 * type).  When the asynchronous command completes, ipc_action_finish()
652 	 * should be called to return a command status code to the user and
653 	 * close the ipc connection).  If the command does not complete before
654 	 * the timer fires, ipc_action_timeout() is called which closes the ipc
655 	 * connection and returns DHCP_IPC_E_TIMEOUT to the user.  Note that
656 	 * independent of ipc_action_timeout(), ipc_action_finish() should be
657 	 * called.
658 	 *
659 	 * on a case-by-case basis, here is what happens (per state machine):
660 	 *
661 	 *    o When an asynchronous command is requested, then
662 	 *	async_cancel() is called to terminate any non-user
663 	 *	action in progress.  If there's a user action running,
664 	 *	the user command is sent DHCP_IPC_E_PEND.
665 	 *
666 	 *    o otherwise, the the transaction is started with
667 	 *	async_start().  if the transaction is on behalf
668 	 *	of a user, ipc_action_start() is called to keep
669 	 *	track of the ipc information and set up the
670 	 *	ipc_action timer.
671 	 *
672 	 *    o if the command completes normally and before a
673 	 *	timeout fires, then async_finish() is called.
674 	 *	if there was an associated ipc_action,
675 	 *	ipc_action_finish() is called to complete it.
676 	 *
677 	 *    o if the command fails before a timeout fires, then
678 	 *	async_finish() is called, and the state machine is
679 	 *	is returned to a known state based on the command.
680 	 *	if there was an associated ipc_action,
681 	 *	ipc_action_finish() is called to complete it.
682 	 *
683 	 *    o if the ipc_action timer fires before command
684 	 *	completion, then DHCP_IPC_E_TIMEOUT is returned to
685 	 *	the user.  however, the transaction continues to
686 	 *	be carried out asynchronously.
687 	 */
688 
689 	if (ipc_cmd_flags[ia.ia_cmd] & CMD_IMMED) {
690 		/*
691 		 * Only immediate commands (ping, status, get_tag) need to
692 		 * worry about freeing ia through one of the reply functions
693 		 * before returning.
694 		 */
695 		iap = &ia;
696 	} else {
697 		/*
698 		 * if shutdown request has been received, send back an error.
699 		 */
700 		if (shutdown_started) {
701 			send_error_reply(&ia, DHCP_IPC_E_OUTSTATE);
702 			return;
703 		}
704 
705 		if (dsmp->dsm_dflags & DHCP_IF_BUSY) {
706 			send_error_reply(&ia, DHCP_IPC_E_PEND);
707 			return;
708 		}
709 
710 		if (!ipc_action_start(dsmp, &ia)) {
711 			dhcpmsg(MSG_WARNING, "ipc_event: ipc_action_start "
712 			    "failed for %s", dsmp->dsm_name);
713 			send_error_reply(&ia, DHCP_IPC_E_MEMORY);
714 			return;
715 		}
716 
717 		/* Action structure consumed by above function */
718 		iap = &dsmp->dsm_ia;
719 	}
720 
721 	switch (iap->ia_cmd) {
722 
723 	case DHCP_DROP:
724 		if (dsmp->dsm_droprelease)
725 			break;
726 		dsmp->dsm_droprelease = B_TRUE;
727 
728 		/*
729 		 * Ensure that a timer associated with the existing state
730 		 * doesn't pop while we're waiting for the script to complete.
731 		 * (If so, chaos can result -- e.g., a timer causes us to end
732 		 * up in dhcp_selecting() would start acquiring a new lease on
733 		 * dsmp while our DHCP_DROP dismantling is ongoing.)
734 		 */
735 		cancel_smach_timers(dsmp);
736 		(void) script_start(dsmp, isv6 ? EVENT_DROP6 : EVENT_DROP,
737 		    dhcp_drop, NULL, NULL);
738 		break;		/* not an immediate function */
739 
740 	case DHCP_EXTEND:
741 		(void) dhcp_extending(dsmp);
742 		break;
743 
744 	case DHCP_GET_TAG: {
745 		dhcp_optnum_t	optnum;
746 		void		*opt = NULL;
747 		uint_t		optlen;
748 		boolean_t	did_alloc = B_FALSE;
749 		PKT_LIST	*ack = dsmp->dsm_ack;
750 
751 		/*
752 		 * verify the request makes sense.
753 		 */
754 
755 		if (iap->ia_request->data_type   != DHCP_TYPE_OPTNUM ||
756 		    iap->ia_request->data_length != sizeof (dhcp_optnum_t)) {
757 			send_error_reply(iap, DHCP_IPC_E_PROTO);
758 			break;
759 		}
760 
761 		(void) memcpy(&optnum, iap->ia_request->buffer,
762 		    sizeof (dhcp_optnum_t));
763 
764 load_option:
765 		switch (optnum.category) {
766 
767 		case DSYM_SITE:			/* FALLTHRU */
768 		case DSYM_STANDARD:
769 			if (isv6) {
770 				opt = dhcpv6_pkt_option(ack, NULL, optnum.code,
771 				    NULL);
772 			} else {
773 				if (optnum.code <= DHCP_LAST_OPT)
774 					opt = ack->opts[optnum.code];
775 			}
776 			break;
777 
778 		case DSYM_VENDOR:
779 			if (isv6) {
780 				dhcpv6_option_t *d6o;
781 				uint32_t ent;
782 
783 				/*
784 				 * Look through vendor options to find our
785 				 * enterprise number.
786 				 */
787 				d6o = NULL;
788 				for (;;) {
789 					d6o = dhcpv6_pkt_option(ack, d6o,
790 					    DHCPV6_OPT_VENDOR_OPT, &optlen);
791 					if (d6o == NULL)
792 						break;
793 					optlen -= sizeof (*d6o);
794 					if (optlen < sizeof (ent))
795 						continue;
796 					(void) memcpy(&ent, d6o + 1,
797 					    sizeof (ent));
798 					if (ntohl(ent) != DHCPV6_SUN_ENT)
799 						continue;
800 					break;
801 				}
802 				if (d6o != NULL) {
803 					/*
804 					 * Now find the requested vendor option
805 					 * within the vendor options block.
806 					 */
807 					opt = dhcpv6_find_option(
808 					    (char *)(d6o + 1) + sizeof (ent),
809 					    optlen - sizeof (ent), NULL,
810 					    optnum.code, NULL);
811 				}
812 			} else {
813 				/*
814 				 * the test against VS_OPTION_START is broken
815 				 * up into two tests to avoid compiler warnings
816 				 * under intel.
817 				 */
818 				if ((optnum.code > VS_OPTION_START ||
819 				    optnum.code == VS_OPTION_START) &&
820 				    optnum.code <= VS_OPTION_END)
821 					opt = ack->vs[optnum.code];
822 			}
823 			break;
824 
825 		case DSYM_FIELD:
826 			if (isv6) {
827 				dhcpv6_message_t *d6m =
828 				    (dhcpv6_message_t *)ack->pkt;
829 				dhcpv6_option_t *d6o;
830 
831 				/* Validate the packet field the user wants */
832 				optlen = optnum.code + optnum.size;
833 				if (d6m->d6m_msg_type ==
834 				    DHCPV6_MSG_RELAY_FORW ||
835 				    d6m->d6m_msg_type ==
836 				    DHCPV6_MSG_RELAY_REPL) {
837 					if (optlen > sizeof (dhcpv6_relay_t))
838 						break;
839 				} else {
840 					if (optlen > sizeof (*d6m))
841 						break;
842 				}
843 
844 				opt = malloc(sizeof (*d6o) + optnum.size);
845 				if (opt != NULL) {
846 					d6o = opt;
847 					d6o->d6o_code = htons(optnum.code);
848 					d6o->d6o_len = htons(optnum.size);
849 					(void) memcpy(d6o + 1, (caddr_t)d6m +
850 					    optnum.code, optnum.size);
851 				}
852 			} else {
853 				if (optnum.code + optnum.size > sizeof (PKT))
854 					break;
855 
856 				/*
857 				 * + 2 to account for option code and length
858 				 * byte
859 				 */
860 				opt = malloc(optnum.size + 2);
861 				if (opt != NULL) {
862 					DHCP_OPT *v4opt = opt;
863 
864 					v4opt->len  = optnum.size;
865 					v4opt->code = optnum.code;
866 					(void) memcpy(v4opt->value,
867 					    (caddr_t)ack->pkt + optnum.code,
868 					    optnum.size);
869 				}
870 			}
871 
872 			if (opt == NULL) {
873 				send_error_reply(iap, DHCP_IPC_E_MEMORY);
874 				return;
875 			}
876 			did_alloc = B_TRUE;
877 			break;
878 
879 		default:
880 			send_error_reply(iap, DHCP_IPC_E_PROTO);
881 			return;
882 		}
883 
884 		/*
885 		 * return the option payload, if there was one.  the "+ 2"
886 		 * accounts for the option code number and length byte.
887 		 */
888 
889 		if (opt != NULL) {
890 			if (isv6) {
891 				dhcpv6_option_t d6ov;
892 
893 				(void) memcpy(&d6ov, opt, sizeof (d6ov));
894 				optlen = ntohs(d6ov.d6o_len) + sizeof (d6ov);
895 			} else {
896 				optlen = ((DHCP_OPT *)opt)->len + 2;
897 			}
898 			send_data_reply(iap, 0, DHCP_TYPE_OPTION, opt, optlen);
899 
900 			if (did_alloc)
901 				free(opt);
902 			break;
903 		} else if (ack != dsmp->dsm_orig_ack) {
904 			/*
905 			 * There wasn't any definition for the option in the
906 			 * current ack, so now retry with the original ack if
907 			 * the original ack is not the current ack.
908 			 */
909 			ack = dsmp->dsm_orig_ack;
910 			goto load_option;
911 		}
912 
913 		/*
914 		 * note that an "okay" response is returned either in
915 		 * the case of an unknown option or a known option
916 		 * with no payload.  this is okay (for now) since
917 		 * dhcpinfo checks whether an option is valid before
918 		 * ever performing ipc with the agent.
919 		 */
920 
921 		send_ok_reply(iap);
922 		break;
923 	}
924 
925 	case DHCP_INFORM:
926 		dhcp_inform(dsmp);
927 		/* next destination: dhcp_acknak() */
928 		break;		/* not an immediate function */
929 
930 	case DHCP_PING:
931 		if (dsmp->dsm_dflags & DHCP_IF_FAILED)
932 			send_error_reply(iap, DHCP_IPC_E_FAILEDIF);
933 		else
934 			send_ok_reply(iap);
935 		break;
936 
937 	case DHCP_RELEASE:
938 		if (dsmp->dsm_droprelease)
939 			break;
940 		dsmp->dsm_droprelease = B_TRUE;
941 		cancel_smach_timers(dsmp); /* see comment in DHCP_DROP above */
942 		(void) script_start(dsmp, isv6 ? EVENT_RELEASE6 :
943 		    EVENT_RELEASE, dhcp_release, "Finished with lease.", NULL);
944 		break;		/* not an immediate function */
945 
946 	case DHCP_START: {
947 		PKT_LIST *ack, *oack;
948 		PKT_LIST *plp[2];
949 
950 		deprecate_leases(dsmp);
951 
952 		/*
953 		 * if we have a valid hostconf lying around, then jump
954 		 * into INIT_REBOOT.  if it fails, we'll end up going
955 		 * through the whole selecting() procedure again.
956 		 */
957 
958 		error = read_hostconf(dsmp->dsm_name, plp, 2, dsmp->dsm_isv6);
959 		ack = error > 0 ? plp[0] : NULL;
960 		oack = error > 1 ? plp[1] : NULL;
961 
962 		/*
963 		 * If the allocation of the old ack fails, that's fine;
964 		 * continue without it.
965 		 */
966 		if (oack == NULL)
967 			oack = ack;
968 
969 		/*
970 		 * As long as we've allocated something, start using it.
971 		 */
972 		if (ack != NULL) {
973 			dsmp->dsm_orig_ack = oack;
974 			dsmp->dsm_ack = ack;
975 			dhcp_init_reboot(dsmp);
976 			/* next destination: dhcp_acknak() */
977 			break;
978 		}
979 
980 		/*
981 		 * if not debugging, wait for a few seconds before
982 		 * going into SELECTING.
983 		 */
984 
985 		if (debug_level == 0 && set_start_timer(dsmp)) {
986 			/* next destination: dhcp_start() */
987 			break;
988 		} else {
989 			dhcp_selecting(dsmp);
990 			/* next destination: dhcp_requesting() */
991 			break;
992 		}
993 	}
994 
995 	case DHCP_STATUS: {
996 		dhcp_status_t	status;
997 		dhcp_lease_t	*dlp;
998 
999 		status.if_began = monosec_to_time(dsmp->dsm_curstart_monosec);
1000 
1001 		/*
1002 		 * We return information on just the first lease as being
1003 		 * representative of the lot.  A better status mechanism is
1004 		 * needed.
1005 		 */
1006 		dlp = dsmp->dsm_leases;
1007 
1008 		if (dlp == NULL ||
1009 		    dlp->dl_lifs->lif_expire.dt_start == DHCP_PERM) {
1010 			status.if_t1	= DHCP_PERM;
1011 			status.if_t2	= DHCP_PERM;
1012 			status.if_lease	= DHCP_PERM;
1013 		} else {
1014 			status.if_t1	= status.if_began +
1015 			    dlp->dl_t1.dt_start;
1016 			status.if_t2	= status.if_began +
1017 			    dlp->dl_t2.dt_start;
1018 			status.if_lease	= status.if_began +
1019 			    dlp->dl_lifs->lif_expire.dt_start;
1020 		}
1021 
1022 		status.version		= DHCP_STATUS_VER;
1023 		status.if_state		= dsmp->dsm_state;
1024 		status.if_dflags	= dsmp->dsm_dflags;
1025 		status.if_sent		= dsmp->dsm_sent;
1026 		status.if_recv		= dsmp->dsm_received;
1027 		status.if_bad_offers	= dsmp->dsm_bad_offers;
1028 
1029 		(void) strlcpy(status.if_name, dsmp->dsm_name, LIFNAMSIZ);
1030 
1031 		send_data_reply(iap, 0, DHCP_TYPE_STATUS, &status,
1032 		    sizeof (dhcp_status_t));
1033 		break;
1034 	}
1035 	}
1036 }
1037 
1038 /*
1039  * check_rtm_addr(): determine if routing socket message matches interface
1040  *		     address
1041  *
1042  *   input: const struct if_msghdr *: pointer to routing socket message
1043  *	    int: routing socket message length
1044  *	    boolean_t: set to B_TRUE if IPv6
1045  *	    const in6_addr_t *: pointer to IP address
1046  *  output: boolean_t: B_TRUE if address is a match
1047  */
1048 
1049 static boolean_t
1050 check_rtm_addr(const struct ifa_msghdr *ifam, int msglen, boolean_t isv6,
1051     const in6_addr_t *addr)
1052 {
1053 	const char *cp, *lim;
1054 	uint_t flag;
1055 	const struct sockaddr *sa;
1056 
1057 	if (!(ifam->ifam_addrs & RTA_IFA))
1058 		return (B_FALSE);
1059 
1060 	cp = (const char *)(ifam + 1);
1061 	lim = (const char *)ifam + msglen;
1062 	for (flag = 1; flag < RTA_IFA; flag <<= 1) {
1063 		if (ifam->ifam_addrs & flag) {
1064 			/* LINTED: alignment */
1065 			sa = (const struct sockaddr *)cp;
1066 			if ((const char *)(sa + 1) > lim)
1067 				return (B_FALSE);
1068 			switch (sa->sa_family) {
1069 			case AF_INET:
1070 				cp += sizeof (struct sockaddr_in);
1071 				break;
1072 			case AF_LINK:
1073 				cp += sizeof (struct sockaddr_dl);
1074 				break;
1075 			case AF_INET6:
1076 				cp += sizeof (struct sockaddr_in6);
1077 				break;
1078 			default:
1079 				cp += sizeof (struct sockaddr);
1080 				break;
1081 			}
1082 		}
1083 	}
1084 	if (isv6) {
1085 		const struct sockaddr_in6 *sin6;
1086 
1087 		/* LINTED: alignment */
1088 		sin6 = (const struct sockaddr_in6 *)cp;
1089 		if ((const char *)(sin6 + 1) > lim)
1090 			return (B_FALSE);
1091 		if (sin6->sin6_family != AF_INET6)
1092 			return (B_FALSE);
1093 		return (IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr, addr));
1094 	} else {
1095 		const struct sockaddr_in *sinp;
1096 		ipaddr_t v4addr;
1097 
1098 		/* LINTED: alignment */
1099 		sinp = (const struct sockaddr_in *)cp;
1100 		if ((const char *)(sinp + 1) > lim)
1101 			return (B_FALSE);
1102 		if (sinp->sin_family != AF_INET)
1103 			return (B_FALSE);
1104 		IN6_V4MAPPED_TO_IPADDR(addr, v4addr);
1105 		return (sinp->sin_addr.s_addr == v4addr);
1106 	}
1107 }
1108 
1109 /*
1110  * is_rtm_v6(): determine if routing socket message is IPv6
1111  *
1112  *   input: struct ifa_msghdr *: pointer to routing socket message
1113  *	    int: message length
1114  *  output: boolean_t
1115  */
1116 
1117 static boolean_t
1118 is_rtm_v6(const struct ifa_msghdr *ifam, int msglen)
1119 {
1120 	const char *cp, *lim;
1121 	uint_t flag;
1122 	const struct sockaddr *sa;
1123 
1124 	cp = (const char *)(ifam + 1);
1125 	lim = (const char *)ifam + msglen;
1126 	for (flag = ifam->ifam_addrs; flag != 0; flag &= flag - 1) {
1127 		/* LINTED: alignment */
1128 		sa = (const struct sockaddr *)cp;
1129 		if ((const char *)(sa + 1) > lim)
1130 			return (B_FALSE);
1131 		switch (sa->sa_family) {
1132 		case AF_INET:
1133 			return (B_FALSE);
1134 		case AF_LINK:
1135 			cp += sizeof (struct sockaddr_dl);
1136 			break;
1137 		case AF_INET6:
1138 			return (B_TRUE);
1139 		default:
1140 			cp += sizeof (struct sockaddr);
1141 			break;
1142 		}
1143 	}
1144 	return (B_FALSE);
1145 }
1146 
1147 /*
1148  * check_lif(): check the state of a given logical interface and its DHCP
1149  *		lease.  We've been told by the routing socket that the
1150  *		corresponding ifIndex has changed.  This may mean that DAD has
1151  *		completed or failed.
1152  *
1153  *   input: dhcp_lif_t *: pointer to the LIF
1154  *	    const struct ifa_msghdr *: routing socket message
1155  *	    int: size of routing socket message
1156  *  output: boolean_t: B_TRUE if DAD has completed on this interface
1157  */
1158 
1159 static boolean_t
1160 check_lif(dhcp_lif_t *lif, const struct ifa_msghdr *ifam, int msglen)
1161 {
1162 	boolean_t isv6, dad_wait, unplumb;
1163 	int fd;
1164 	struct lifreq lifr;
1165 
1166 	isv6 = lif->lif_pif->pif_isv6;
1167 	fd = isv6 ? v6_sock_fd : v4_sock_fd;
1168 
1169 	/*
1170 	 * Get the real (64 bit) logical interface flags.  Note that the
1171 	 * routing socket message has flags, but these are just the lower 32
1172 	 * bits.
1173 	 */
1174 	unplumb = B_FALSE;
1175 	(void) memset(&lifr, 0, sizeof (lifr));
1176 	(void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name));
1177 	if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1) {
1178 		/*
1179 		 * Failing to retrieve flags means that the interface is gone.
1180 		 * It hasn't failed to verify with DAD, but we still have to
1181 		 * give up on it.
1182 		 */
1183 		lifr.lifr_flags = 0;
1184 		if (errno == ENXIO) {
1185 			lif->lif_plumbed = B_FALSE;
1186 			dhcpmsg(MSG_INFO, "%s has been removed; abandoning",
1187 			    lif->lif_name);
1188 			if (!isv6)
1189 				discard_default_routes(lif->lif_smachs);
1190 		} else {
1191 			dhcpmsg(MSG_ERR,
1192 			    "unable to retrieve interface flags on %s",
1193 			    lif->lif_name);
1194 		}
1195 		unplumb = B_TRUE;
1196 	} else if (!check_rtm_addr(ifam, msglen, isv6, &lif->lif_v6addr)) {
1197 		/*
1198 		 * If the message is not about this logical interface,
1199 		 * then just ignore it.
1200 		 */
1201 		return (B_FALSE);
1202 	} else if (lifr.lifr_flags & IFF_DUPLICATE) {
1203 		dhcpmsg(MSG_ERROR, "interface %s has duplicate address",
1204 		    lif->lif_name);
1205 		lif_mark_decline(lif, "duplicate address");
1206 		close_ip_lif(lif);
1207 		(void) open_ip_lif(lif, INADDR_ANY, B_TRUE);
1208 	}
1209 
1210 	dad_wait = lif->lif_dad_wait;
1211 	if (dad_wait) {
1212 		dhcpmsg(MSG_VERBOSE, "check_lif: %s has finished DAD",
1213 		    lif->lif_name);
1214 		lif->lif_dad_wait = B_FALSE;
1215 	}
1216 
1217 	if (unplumb)
1218 		unplumb_lif(lif);
1219 
1220 	return (dad_wait);
1221 }
1222 
1223 /*
1224  * check_main_lif(): check the state of a main logical interface for a state
1225  *		     machine.  This is used only for DHCPv6.
1226  *
1227  *   input: dhcp_smach_t *: pointer to the state machine
1228  *	    const struct ifa_msghdr *: routing socket message
1229  *	    int: size of routing socket message
1230  *  output: boolean_t: B_TRUE if LIF is ok.
1231  */
1232 
1233 static boolean_t
1234 check_main_lif(dhcp_smach_t *dsmp, const struct ifa_msghdr *ifam, int msglen)
1235 {
1236 	dhcp_lif_t *lif = dsmp->dsm_lif;
1237 	struct lifreq lifr;
1238 
1239 	/*
1240 	 * Get the real (64 bit) logical interface flags.  Note that the
1241 	 * routing socket message has flags, but these are just the lower 32
1242 	 * bits.
1243 	 */
1244 	(void) memset(&lifr, 0, sizeof (lifr));
1245 	(void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name));
1246 	if (ioctl(v6_sock_fd, SIOCGLIFFLAGS, &lifr) == -1) {
1247 		/*
1248 		 * Failing to retrieve flags means that the interface is gone.
1249 		 * Our state machine is now trash.
1250 		 */
1251 		if (errno == ENXIO) {
1252 			dhcpmsg(MSG_INFO, "%s has been removed; abandoning",
1253 			    lif->lif_name);
1254 		} else {
1255 			dhcpmsg(MSG_ERR,
1256 			    "unable to retrieve interface flags on %s",
1257 			    lif->lif_name);
1258 		}
1259 		return (B_FALSE);
1260 	} else if (!check_rtm_addr(ifam, msglen, B_TRUE, &lif->lif_v6addr)) {
1261 		/*
1262 		 * If the message is not about this logical interface,
1263 		 * then just ignore it.
1264 		 */
1265 		return (B_TRUE);
1266 	} else if (lifr.lifr_flags & IFF_DUPLICATE) {
1267 		dhcpmsg(MSG_ERROR, "interface %s has duplicate address",
1268 		    lif->lif_name);
1269 		return (B_FALSE);
1270 	} else {
1271 		return (B_TRUE);
1272 	}
1273 }
1274 
1275 /*
1276  * process_link_up_down(): check the state of a physical interface for up/down
1277  *			   transitions; must go through INIT_REBOOT state if
1278  *			   the link flaps.
1279  *
1280  *   input: dhcp_pif_t *: pointer to the physical interface to check
1281  *	    const struct if_msghdr *: routing socket message
1282  *  output: none
1283  */
1284 
1285 static void
1286 process_link_up_down(dhcp_pif_t *pif, const struct if_msghdr *ifm)
1287 {
1288 	struct lifreq lifr;
1289 	boolean_t isv6;
1290 	int fd;
1291 
1292 	/*
1293 	 * If the message implies no change of flags, then we're done; no need
1294 	 * to check further.  Note that if we have multiple state machines on a
1295 	 * single physical interface, this test keeps us from issuing an ioctl
1296 	 * for each one.
1297 	 */
1298 	if ((ifm->ifm_flags & IFF_RUNNING) && pif->pif_running ||
1299 	    !(ifm->ifm_flags & IFF_RUNNING) && !pif->pif_running)
1300 		return;
1301 
1302 	/*
1303 	 * We don't know what the real interface flags are, because the
1304 	 * if_index number is only 16 bits; we must go ask.
1305 	 */
1306 	isv6 = pif->pif_isv6;
1307 	fd = isv6 ? v6_sock_fd : v4_sock_fd;
1308 	(void) memset(&lifr, 0, sizeof (lifr));
1309 	(void) strlcpy(lifr.lifr_name, pif->pif_name, sizeof (lifr.lifr_name));
1310 
1311 	if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1 ||
1312 	    !(lifr.lifr_flags & IFF_RUNNING)) {
1313 		/*
1314 		 * If we've lost the interface or it has gone down, then
1315 		 * nothing special to do; just turn off the running flag.
1316 		 */
1317 		pif_status(pif, B_FALSE);
1318 	} else {
1319 		/*
1320 		 * Interface has come back up: go through verification process.
1321 		 */
1322 		pif_status(pif, B_TRUE);
1323 	}
1324 }
1325 
1326 /*
1327  * rtsock_event(): fetches routing socket messages and updates internal
1328  *		   interface state based on those messages.
1329  *
1330  *   input: iu_eh_t *: unused
1331  *	    int: the routing socket file descriptor
1332  *	    (other arguments unused)
1333  *  output: void
1334  */
1335 
1336 /* ARGSUSED */
1337 static void
1338 rtsock_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg)
1339 {
1340 	dhcp_smach_t *dsmp, *dsmnext;
1341 	union {
1342 		struct ifa_msghdr ifam;
1343 		struct if_msghdr ifm;
1344 		char buf[1024];
1345 	} msg;
1346 	uint16_t ifindex;
1347 	int msglen;
1348 	boolean_t isv6;
1349 
1350 	if ((msglen = read(fd, &msg, sizeof (msg))) <= 0)
1351 		return;
1352 
1353 	/* Note that the routing socket interface index is just 16 bits */
1354 	if (msg.ifm.ifm_type == RTM_IFINFO) {
1355 		ifindex = msg.ifm.ifm_index;
1356 		isv6 = (msg.ifm.ifm_flags & IFF_IPV6) ? B_TRUE : B_FALSE;
1357 	} else if (msg.ifam.ifam_type == RTM_DELADDR ||
1358 	    msg.ifam.ifam_type == RTM_NEWADDR) {
1359 		ifindex = msg.ifam.ifam_index;
1360 		isv6 = is_rtm_v6(&msg.ifam, msglen);
1361 	} else {
1362 		return;
1363 	}
1364 
1365 	for (dsmp = lookup_smach_by_uindex(ifindex, NULL, isv6);
1366 	    dsmp != NULL; dsmp = dsmnext) {
1367 		DHCPSTATE oldstate;
1368 		boolean_t lif_finished;
1369 		boolean_t lease_removed;
1370 		dhcp_lease_t *dlp, *dlnext;
1371 
1372 		/*
1373 		 * Note that script_start can call dhcp_drop directly, and
1374 		 * that will do release_smach.
1375 		 */
1376 		dsmnext = lookup_smach_by_uindex(ifindex, dsmp, isv6);
1377 		oldstate = dsmp->dsm_state;
1378 
1379 		/*
1380 		 * Ignore state machines that are currently processing drop or
1381 		 * release; there is nothing more we can do for them.
1382 		 */
1383 		if (dsmp->dsm_droprelease)
1384 			continue;
1385 
1386 		/*
1387 		 * Look for link up/down notifications.  These occur on a
1388 		 * physical interface basis.
1389 		 */
1390 		if (msg.ifm.ifm_type == RTM_IFINFO) {
1391 			process_link_up_down(dsmp->dsm_lif->lif_pif, &msg.ifm);
1392 			continue;
1393 		}
1394 
1395 		/*
1396 		 * Since we cannot trust the flags reported by the routing
1397 		 * socket (they're just 32 bits -- and thus never include
1398 		 * IFF_DUPLICATE), and we can't trust the ifindex (it's only 16
1399 		 * bits and also doesn't reflect the alias in use), we get
1400 		 * flags on all matching interfaces, and go by that.
1401 		 */
1402 		lif_finished = B_FALSE;
1403 		lease_removed = B_FALSE;
1404 		for (dlp = dsmp->dsm_leases; dlp != NULL; dlp = dlnext) {
1405 			dhcp_lif_t *lif, *lifnext;
1406 			uint_t nlifs = dlp->dl_nlifs;
1407 
1408 			dlnext = dlp->dl_next;
1409 			for (lif = dlp->dl_lifs; lif != NULL && nlifs > 0;
1410 			    lif = lifnext, nlifs--) {
1411 				lifnext = lif->lif_next;
1412 				if (check_lif(lif, &msg.ifam, msglen)) {
1413 					dsmp->dsm_lif_wait--;
1414 					lif_finished = B_TRUE;
1415 				}
1416 			}
1417 			if (dlp->dl_nlifs == 0) {
1418 				remove_lease(dlp);
1419 				lease_removed = B_TRUE;
1420 			}
1421 		}
1422 
1423 		if ((isv6 && !check_main_lif(dsmp, &msg.ifam, msglen)) ||
1424 		    (!isv6 && !verify_lif(dsmp->dsm_lif))) {
1425 			dsmp->dsm_droprelease = B_TRUE;
1426 			(void) script_start(dsmp, isv6 ? EVENT_DROP6 :
1427 			    EVENT_DROP, dhcp_drop, NULL, NULL);
1428 			continue;
1429 		}
1430 
1431 		/*
1432 		 * Ignore this state machine if nothing interesting has
1433 		 * happened.
1434 		 */
1435 		if (!lif_finished && dsmp->dsm_lif_down == 0 &&
1436 		    (dsmp->dsm_leases != NULL || !lease_removed))
1437 			continue;
1438 
1439 		/*
1440 		 * If we're still waiting for DAD to complete on some of the
1441 		 * configured LIFs, then don't send a response.
1442 		 */
1443 		if (dsmp->dsm_lif_wait != 0) {
1444 			dhcpmsg(MSG_VERBOSE, "rtsock_event: %s still has %d "
1445 			    "LIFs waiting on DAD", dsmp->dsm_name,
1446 			    dsmp->dsm_lif_wait);
1447 			continue;
1448 		}
1449 
1450 		/*
1451 		 * If we have some failed LIFs, then handle them now.  We'll
1452 		 * remove them from the list.  Any leases that become empty are
1453 		 * also removed as part of the decline-generation process.
1454 		 */
1455 		if (dsmp->dsm_lif_down != 0)
1456 			send_declines(dsmp);
1457 
1458 		if (dsmp->dsm_leases == NULL) {
1459 			dsmp->dsm_bad_offers++;
1460 			/*
1461 			 * For DHCPv6, we'll process the restart once we're
1462 			 * done sending Decline messages, because these are
1463 			 * supposed to be acknowledged.  With DHCPv4, there's
1464 			 * no acknowledgment for a DECLINE, so after sending
1465 			 * it, we just restart right away.
1466 			 */
1467 			if (!dsmp->dsm_isv6) {
1468 				dhcpmsg(MSG_VERBOSE, "rtsock_event: %s has no "
1469 				    "LIFs left", dsmp->dsm_name);
1470 				dhcp_restart(dsmp);
1471 			}
1472 		} else {
1473 			/*
1474 			 * If we're now up on at least some of the leases and
1475 			 * we were waiting for that, then kick off the rest of
1476 			 * configuration.  Lease validation and DAD are done.
1477 			 */
1478 			dhcpmsg(MSG_VERBOSE, "rtsock_event: all LIFs verified "
1479 			    "on %s in %s state", dsmp->dsm_name,
1480 			    dhcp_state_to_string(oldstate));
1481 			if (oldstate == PRE_BOUND ||
1482 			    oldstate == ADOPTING)
1483 				dhcp_bound_complete(dsmp);
1484 			if (oldstate == ADOPTING)
1485 				dhcp_adopt_complete(dsmp);
1486 		}
1487 	}
1488 }
1489 
1490 /*
1491  * check_cmd_allowed(): check whether the requested command is allowed in the
1492  *			state specified.
1493  *
1494  *   input: DHCPSTATE: current state
1495  *	    dhcp_ipc_type_t: requested command
1496  *  output: boolean_t: B_TRUE if command is allowed in this state
1497  */
1498 
1499 boolean_t
1500 check_cmd_allowed(DHCPSTATE state, dhcp_ipc_type_t cmd)
1501 {
1502 	return (ipc_cmd_allowed[state][cmd] != 0);
1503 }
1504 
1505 static boolean_t
1506 is_iscsi_active(void)
1507 {
1508 	int fd;
1509 	int active = 0;
1510 
1511 	if ((fd = open(ISCSI_DRIVER_DEVCTL, O_RDONLY)) != -1) {
1512 		if (ioctl(fd, ISCSI_IS_ACTIVE, &active) != 0)
1513 			active = 0;
1514 		(void) close(fd);
1515 	}
1516 
1517 	return (active != 0);
1518 }
1519