xref: /illumos-gate/usr/src/cmd/bhyve/common/pci_nvme.c (revision 3fe455549728ac525df3be56130ad8e075d645d7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2017 Shunsuke Mie
5  * Copyright (c) 2018 Leon Dang
6  * Copyright (c) 2020 Chuck Tuffli
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * bhyve PCIe-NVMe device emulation.
32  *
33  * options:
34  *  -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=#,dsm=<opt>
35  *
36  *  accepted devpath:
37  *    /dev/blockdev
38  *    /path/to/image
39  *    ram=size_in_MiB
40  *
41  *  maxq    = max number of queues
42  *  qsz     = max elements in each queue
43  *  ioslots = max number of concurrent io requests
44  *  sectsz  = sector size (defaults to blockif sector size)
45  *  ser     = serial number (20-chars max)
46  *  eui64   = IEEE Extended Unique Identifier (8 byte value)
47  *  dsm     = DataSet Management support. Option is one of auto, enable,disable
48  *
49  */
50 
51 /* TODO:
52     - create async event for smart and log
53     - intr coalesce
54  */
55 
56 
57 #include <sys/errno.h>
58 #include <sys/types.h>
59 #ifdef __FreeBSD__
60 #include <sys/crc16.h>
61 #else
62 #include "crc16.h"
63 #endif
64 #include <net/ieee_oui.h>
65 #ifndef __FreeBSD__
66 #include <endian.h>
67 #endif
68 
69 #include <assert.h>
70 #include <pthread.h>
71 #include <pthread_np.h>
72 #include <semaphore.h>
73 #include <stdbool.h>
74 #include <stddef.h>
75 #include <stdint.h>
76 #include <stdio.h>
77 #include <stdlib.h>
78 #include <string.h>
79 
80 #include <machine/atomic.h>
81 #include <machine/vmm.h>
82 #include <vmmapi.h>
83 
84 #include <dev/nvme/nvme.h>
85 
86 #include "bhyverun.h"
87 #include "block_if.h"
88 #include "config.h"
89 #include "debug.h"
90 #include "pci_emul.h"
91 
92 
93 static int nvme_debug = 0;
94 #define	DPRINTF(fmt, args...) if (nvme_debug) PRINTLN(fmt, ##args)
95 #define	WPRINTF(fmt, args...) PRINTLN(fmt, ##args)
96 
97 /* defaults; can be overridden */
98 #define	NVME_MSIX_BAR		4
99 
100 #define	NVME_IOSLOTS		8
101 
102 /* The NVMe spec defines bits 13:4 in BAR0 as reserved */
103 #define NVME_MMIO_SPACE_MIN	(1 << 14)
104 
105 #define	NVME_QUEUES		16
106 #define	NVME_MAX_QENTRIES	2048
107 /* Memory Page size Minimum reported in CAP register */
108 #define	NVME_MPSMIN		0
109 /* MPSMIN converted to bytes */
110 #define	NVME_MPSMIN_BYTES	(1 << (12 + NVME_MPSMIN))
111 
112 #define	NVME_PRP2_ITEMS		(PAGE_SIZE/sizeof(uint64_t))
113 #define	NVME_MDTS		9
114 /* Note the + 1 allows for the initial descriptor to not be page aligned */
115 #define	NVME_MAX_IOVEC		((1 << NVME_MDTS) + 1)
116 #define	NVME_MAX_DATA_SIZE	((1 << NVME_MDTS) * NVME_MPSMIN_BYTES)
117 
118 /* This is a synthetic status code to indicate there is no status */
119 #define NVME_NO_STATUS		0xffff
120 #define NVME_COMPLETION_VALID(c)	((c).status != NVME_NO_STATUS)
121 
122 /* Reported temperature in Kelvin (i.e. room temperature) */
123 #define NVME_TEMPERATURE 296
124 
125 /* helpers */
126 
127 /* Convert a zero-based value into a one-based value */
128 #define ONE_BASED(zero)		((zero) + 1)
129 /* Convert a one-based value into a zero-based value */
130 #define ZERO_BASED(one)		((one)  - 1)
131 
132 /* Encode number of SQ's and CQ's for Set/Get Features */
133 #define NVME_FEATURE_NUM_QUEUES(sc) \
134 	(ZERO_BASED((sc)->num_squeues) & 0xffff) | \
135 	(ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16
136 
137 #define	NVME_DOORBELL_OFFSET	offsetof(struct nvme_registers, doorbell)
138 
139 enum nvme_controller_register_offsets {
140 	NVME_CR_CAP_LOW = 0x00,
141 	NVME_CR_CAP_HI  = 0x04,
142 	NVME_CR_VS      = 0x08,
143 	NVME_CR_INTMS   = 0x0c,
144 	NVME_CR_INTMC   = 0x10,
145 	NVME_CR_CC      = 0x14,
146 	NVME_CR_CSTS    = 0x1c,
147 	NVME_CR_NSSR    = 0x20,
148 	NVME_CR_AQA     = 0x24,
149 	NVME_CR_ASQ_LOW = 0x28,
150 	NVME_CR_ASQ_HI  = 0x2c,
151 	NVME_CR_ACQ_LOW = 0x30,
152 	NVME_CR_ACQ_HI  = 0x34,
153 };
154 
155 enum nvme_cmd_cdw11 {
156 	NVME_CMD_CDW11_PC  = 0x0001,
157 	NVME_CMD_CDW11_IEN = 0x0002,
158 	NVME_CMD_CDW11_IV  = 0xFFFF0000,
159 };
160 
161 enum nvme_copy_dir {
162 	NVME_COPY_TO_PRP,
163 	NVME_COPY_FROM_PRP,
164 };
165 
166 #define	NVME_CQ_INTEN	0x01
167 #define	NVME_CQ_INTCOAL	0x02
168 
169 struct nvme_completion_queue {
170 	struct nvme_completion *qbase;
171 	pthread_mutex_t	mtx;
172 	uint32_t	size;
173 	uint16_t	tail; /* nvme progress */
174 	uint16_t	head; /* guest progress */
175 	uint16_t	intr_vec;
176 	uint32_t	intr_en;
177 };
178 
179 struct nvme_submission_queue {
180 	struct nvme_command *qbase;
181 	pthread_mutex_t	mtx;
182 	uint32_t	size;
183 	uint16_t	head; /* nvme progress */
184 	uint16_t	tail; /* guest progress */
185 	uint16_t	cqid; /* completion queue id */
186 	int		qpriority;
187 };
188 
189 enum nvme_storage_type {
190 	NVME_STOR_BLOCKIF = 0,
191 	NVME_STOR_RAM = 1,
192 };
193 
194 struct pci_nvme_blockstore {
195 	enum nvme_storage_type type;
196 	void		*ctx;
197 	uint64_t	size;
198 	uint32_t	sectsz;
199 	uint32_t	sectsz_bits;
200 	uint64_t	eui64;
201 	uint32_t	deallocate:1;
202 };
203 
204 /*
205  * Calculate the number of additional page descriptors for guest IO requests
206  * based on the advertised Max Data Transfer (MDTS) and given the number of
207  * default iovec's in a struct blockif_req.
208  */
209 #define MDTS_PAD_SIZE \
210 	( NVME_MAX_IOVEC > BLOCKIF_IOV_MAX ? \
211 	  NVME_MAX_IOVEC - BLOCKIF_IOV_MAX : \
212 	  0 )
213 
214 struct pci_nvme_ioreq {
215 	struct pci_nvme_softc *sc;
216 	STAILQ_ENTRY(pci_nvme_ioreq) link;
217 	struct nvme_submission_queue *nvme_sq;
218 	uint16_t	sqid;
219 
220 	/* command information */
221 	uint16_t	opc;
222 	uint16_t	cid;
223 	uint32_t	nsid;
224 
225 	uint64_t	prev_gpaddr;
226 	size_t		prev_size;
227 	size_t		bytes;
228 
229 	struct blockif_req io_req;
230 
231 	struct iovec	iovpadding[MDTS_PAD_SIZE];
232 };
233 
234 enum nvme_dsm_type {
235 	/* Dataset Management bit in ONCS reflects backing storage capability */
236 	NVME_DATASET_MANAGEMENT_AUTO,
237 	/* Unconditionally set Dataset Management bit in ONCS */
238 	NVME_DATASET_MANAGEMENT_ENABLE,
239 	/* Unconditionally clear Dataset Management bit in ONCS */
240 	NVME_DATASET_MANAGEMENT_DISABLE,
241 };
242 
243 struct pci_nvme_softc;
244 struct nvme_feature_obj;
245 
246 typedef void (*nvme_feature_cb)(struct pci_nvme_softc *,
247     struct nvme_feature_obj *,
248     struct nvme_command *,
249     struct nvme_completion *);
250 
251 struct nvme_feature_obj {
252 	uint32_t	cdw11;
253 	nvme_feature_cb	set;
254 	nvme_feature_cb	get;
255 	bool namespace_specific;
256 };
257 
258 #define NVME_FID_MAX		(NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION + 1)
259 
260 typedef enum {
261 	PCI_NVME_AE_TYPE_ERROR = 0,
262 	PCI_NVME_AE_TYPE_SMART,
263 	PCI_NVME_AE_TYPE_NOTICE,
264 	PCI_NVME_AE_TYPE_IO_CMD = 6,
265 	PCI_NVME_AE_TYPE_VENDOR = 7,
266 	PCI_NVME_AE_TYPE_MAX		/* Must be last */
267 } pci_nvme_async_type;
268 
269 /* Asynchronous Event Requests */
270 struct pci_nvme_aer {
271 	STAILQ_ENTRY(pci_nvme_aer) link;
272 	uint16_t	cid;	/* Command ID of the submitted AER */
273 };
274 
275 /** Asynchronous Event Information - Notice */
276 typedef enum {
277 	PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED = 0,
278 	PCI_NVME_AEI_NOTICE_FW_ACTIVATION,
279 	PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE,
280 	PCI_NVME_AEI_NOTICE_ANA_CHANGE,
281 	PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE,
282 	PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT,
283 	PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE,
284 	PCI_NVME_AEI_NOTICE_MAX,
285 } pci_nvme_async_event_info_notice;
286 
287 #define PCI_NVME_AEI_NOTICE_SHIFT		8
288 #define PCI_NVME_AEI_NOTICE_MASK(event)	(1 << (event + PCI_NVME_AEI_NOTICE_SHIFT))
289 
290 /* Asynchronous Event Notifications */
291 struct pci_nvme_aen {
292 	pci_nvme_async_type atype;
293 	uint32_t	event_data;
294 	bool		posted;
295 };
296 
297 /*
298  * By default, enable all Asynchrnous Event Notifications:
299  *     SMART / Health Critical Warnings
300  *     Namespace Attribute Notices
301  */
302 #define PCI_NVME_AEN_DEFAULT_MASK	0x11f
303 
304 typedef enum {
305 	NVME_CNTRLTYPE_IO = 1,
306 	NVME_CNTRLTYPE_DISCOVERY = 2,
307 	NVME_CNTRLTYPE_ADMIN = 3,
308 } pci_nvme_cntrl_type;
309 
310 struct pci_nvme_softc {
311 	struct pci_devinst *nsc_pi;
312 
313 	pthread_mutex_t	mtx;
314 
315 	struct nvme_registers regs;
316 
317 	struct nvme_namespace_data  nsdata;
318 	struct nvme_controller_data ctrldata;
319 	struct nvme_error_information_entry err_log;
320 	struct nvme_health_information_page health_log;
321 	struct nvme_firmware_page fw_log;
322 	struct nvme_ns_list ns_log;
323 
324 	struct pci_nvme_blockstore nvstore;
325 
326 	uint16_t	max_qentries;	/* max entries per queue */
327 	uint32_t	max_queues;	/* max number of IO SQ's or CQ's */
328 	uint32_t	num_cqueues;
329 	uint32_t	num_squeues;
330 	bool		num_q_is_set; /* Has host set Number of Queues */
331 
332 	struct pci_nvme_ioreq *ioreqs;
333 	STAILQ_HEAD(, pci_nvme_ioreq) ioreqs_free; /* free list of ioreqs */
334 	uint32_t	pending_ios;
335 	uint32_t	ioslots;
336 	sem_t		iosemlock;
337 
338 	/*
339 	 * Memory mapped Submission and Completion queues
340 	 * Each array includes both Admin and IO queues
341 	 */
342 	struct nvme_completion_queue *compl_queues;
343 	struct nvme_submission_queue *submit_queues;
344 
345 	struct nvme_feature_obj feat[NVME_FID_MAX];
346 
347 	enum nvme_dsm_type dataset_management;
348 
349 	/* Accounting for SMART data */
350 	__uint128_t	read_data_units;
351 	__uint128_t	write_data_units;
352 	__uint128_t	read_commands;
353 	__uint128_t	write_commands;
354 	uint32_t	read_dunits_remainder;
355 	uint32_t	write_dunits_remainder;
356 
357 	STAILQ_HEAD(, pci_nvme_aer) aer_list;
358 	pthread_mutex_t	aer_mtx;
359 	uint32_t	aer_count;
360 	struct pci_nvme_aen aen[PCI_NVME_AE_TYPE_MAX];
361 	pthread_t	aen_tid;
362 	pthread_mutex_t	aen_mtx;
363 	pthread_cond_t	aen_cond;
364 };
365 
366 
367 static void pci_nvme_cq_update(struct pci_nvme_softc *sc,
368     struct nvme_completion_queue *cq,
369     uint32_t cdw0,
370     uint16_t cid,
371     uint16_t sqid,
372     uint16_t status);
373 static struct pci_nvme_ioreq *pci_nvme_get_ioreq(struct pci_nvme_softc *);
374 static void pci_nvme_release_ioreq(struct pci_nvme_softc *, struct pci_nvme_ioreq *);
375 static void pci_nvme_io_done(struct blockif_req *, int);
376 
377 /* Controller Configuration utils */
378 #define	NVME_CC_GET_EN(cc) \
379 	NVMEV(NVME_CC_REG_EN, cc)
380 #define	NVME_CC_GET_CSS(cc) \
381 	NVMEV(NVME_CC_REG_CSS, cc)
382 #define	NVME_CC_GET_SHN(cc) \
383 	NVMEV(NVME_CC_REG_SHN, cc)
384 #define	NVME_CC_GET_IOSQES(cc) \
385 	NVMEV(NVME_CC_REG_IOSQES, cc)
386 #define	NVME_CC_GET_IOCQES(cc) \
387 	NVMEV(NVME_CC_REG_IOCQES, cc)
388 
389 #define	NVME_CC_WRITE_MASK \
390 	(NVMEM(NVME_CC_REG_EN) | \
391 	 NVMEM(NVME_CC_REG_IOSQES) | \
392 	 NVMEM(NVME_CC_REG_IOCQES))
393 
394 #define	NVME_CC_NEN_WRITE_MASK \
395 	(NVMEM(NVME_CC_REG_CSS) | \
396 	 NVMEM(NVME_CC_REG_MPS) | \
397 	 NVMEM(NVME_CC_REG_AMS))
398 
399 /* Controller Status utils */
400 #define	NVME_CSTS_GET_RDY(sts) \
401 	NVMEV(NVME_CSTS_REG_RDY, sts)
402 
403 #define	NVME_CSTS_RDY	(NVMEF(NVME_CSTS_REG_RDY, 1))
404 #define	NVME_CSTS_CFS	(NVMEF(NVME_CSTS_REG_CFS, 1))
405 
406 /* Completion Queue status word utils */
407 #define	NVME_STATUS_P	(NVMEF(NVME_STATUS_P, 1))
408 #define	NVME_STATUS_MASK \
409 	(NVMEM(NVME_STATUS_SCT) | \
410 	 NVMEM(NVME_STATUS_SC))
411 
412 #define NVME_ONCS_DSM	NVMEM(NVME_CTRLR_DATA_ONCS_DSM)
413 
414 static void nvme_feature_invalid_cb(struct pci_nvme_softc *,
415     struct nvme_feature_obj *,
416     struct nvme_command *,
417     struct nvme_completion *);
418 static void nvme_feature_temperature(struct pci_nvme_softc *,
419     struct nvme_feature_obj *,
420     struct nvme_command *,
421     struct nvme_completion *);
422 static void nvme_feature_num_queues(struct pci_nvme_softc *,
423     struct nvme_feature_obj *,
424     struct nvme_command *,
425     struct nvme_completion *);
426 static void nvme_feature_iv_config(struct pci_nvme_softc *,
427     struct nvme_feature_obj *,
428     struct nvme_command *,
429     struct nvme_completion *);
430 static void nvme_feature_async_event(struct pci_nvme_softc *,
431     struct nvme_feature_obj *,
432     struct nvme_command *,
433     struct nvme_completion *);
434 
435 static void *aen_thr(void *arg);
436 
437 static __inline void
438 cpywithpad(char *dst, size_t dst_size, const char *src, char pad)
439 {
440 	size_t len;
441 
442 	len = strnlen(src, dst_size);
443 	memset(dst, pad, dst_size);
444 	memcpy(dst, src, len);
445 }
446 
447 static __inline void
448 pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code)
449 {
450 
451 	*status &= ~NVME_STATUS_MASK;
452 	*status |= NVMEF(NVME_STATUS_SCT, type) | NVMEF(NVME_STATUS_SC, code);
453 }
454 
455 static __inline void
456 pci_nvme_status_genc(uint16_t *status, uint16_t code)
457 {
458 
459 	pci_nvme_status_tc(status, NVME_SCT_GENERIC, code);
460 }
461 
462 /*
463  * Initialize the requested number or IO Submission and Completion Queues.
464  * Admin queues are allocated implicitly.
465  */
466 static void
467 pci_nvme_init_queues(struct pci_nvme_softc *sc, uint32_t nsq, uint32_t ncq)
468 {
469 	uint32_t i;
470 
471 	/*
472 	 * Allocate and initialize the Submission Queues
473 	 */
474 	if (nsq > NVME_QUEUES) {
475 		WPRINTF("%s: clamping number of SQ from %u to %u",
476 					__func__, nsq, NVME_QUEUES);
477 		nsq = NVME_QUEUES;
478 	}
479 
480 	sc->num_squeues = nsq;
481 
482 	sc->submit_queues = calloc(sc->num_squeues + 1,
483 				sizeof(struct nvme_submission_queue));
484 	if (sc->submit_queues == NULL) {
485 		WPRINTF("%s: SQ allocation failed", __func__);
486 		sc->num_squeues = 0;
487 	} else {
488 		struct nvme_submission_queue *sq = sc->submit_queues;
489 
490 		for (i = 0; i < sc->num_squeues + 1; i++)
491 			pthread_mutex_init(&sq[i].mtx, NULL);
492 	}
493 
494 	/*
495 	 * Allocate and initialize the Completion Queues
496 	 */
497 	if (ncq > NVME_QUEUES) {
498 		WPRINTF("%s: clamping number of CQ from %u to %u",
499 					__func__, ncq, NVME_QUEUES);
500 		ncq = NVME_QUEUES;
501 	}
502 
503 	sc->num_cqueues = ncq;
504 
505 	sc->compl_queues = calloc(sc->num_cqueues + 1,
506 				sizeof(struct nvme_completion_queue));
507 	if (sc->compl_queues == NULL) {
508 		WPRINTF("%s: CQ allocation failed", __func__);
509 		sc->num_cqueues = 0;
510 	} else {
511 		struct nvme_completion_queue *cq = sc->compl_queues;
512 
513 		for (i = 0; i < sc->num_cqueues + 1; i++)
514 			pthread_mutex_init(&cq[i].mtx, NULL);
515 	}
516 }
517 
518 static void
519 pci_nvme_init_ctrldata(struct pci_nvme_softc *sc)
520 {
521 	struct nvme_controller_data *cd = &sc->ctrldata;
522 	int ret;
523 
524 	cd->vid = 0xFB5D;
525 	cd->ssvid = 0x0000;
526 
527 	cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' ');
528 	cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' ');
529 
530 	/* Num of submission commands that we can handle at a time (2^rab) */
531 	cd->rab   = 4;
532 
533 	/* FreeBSD OUI */
534 	cd->ieee[0] = 0xfc;
535 	cd->ieee[1] = 0x9c;
536 	cd->ieee[2] = 0x58;
537 
538 	cd->mic = 0;
539 
540 	cd->mdts = NVME_MDTS;	/* max data transfer size (2^mdts * CAP.MPSMIN) */
541 
542 	cd->ver = NVME_REV(1,4);
543 
544 	cd->cntrltype = NVME_CNTRLTYPE_IO;
545 	cd->oacs = NVMEF(NVME_CTRLR_DATA_OACS_FORMAT, 1);
546 	cd->oaes = NVMEM(NVME_CTRLR_DATA_OAES_NS_ATTR);
547 	cd->acl = 2;
548 	cd->aerl = 4;
549 
550 	/* Advertise 1, Read-only firmware slot */
551 	cd->frmw = NVMEM(NVME_CTRLR_DATA_FRMW_SLOT1_RO) |
552 	    NVMEF(NVME_CTRLR_DATA_FRMW_NUM_SLOTS, 1);
553 	cd->lpa = 0;	/* TODO: support some simple things like SMART */
554 	cd->elpe = 0;	/* max error log page entries */
555 	/*
556 	 * Report a single power state (zero-based value)
557 	 * power_state[] values are left as zero to indicate "Not reported"
558 	 */
559 	cd->npss = 0;
560 
561 	/* Warning Composite Temperature Threshold */
562 	cd->wctemp = 0x0157;
563 	cd->cctemp = 0x0157;
564 
565 	/* SANICAP must not be 0 for Revision 1.4 and later NVMe Controllers */
566 	cd->sanicap = NVMEF(NVME_CTRLR_DATA_SANICAP_NODMMAS,
567 	    NVME_CTRLR_DATA_SANICAP_NODMMAS_NO);
568 
569 	cd->sqes = NVMEF(NVME_CTRLR_DATA_SQES_MAX, 6) |
570 	    NVMEF(NVME_CTRLR_DATA_SQES_MIN, 6);
571 	cd->cqes = NVMEF(NVME_CTRLR_DATA_CQES_MAX, 4) |
572 	    NVMEF(NVME_CTRLR_DATA_CQES_MIN, 4);
573 	cd->nn = 1;	/* number of namespaces */
574 
575 	cd->oncs = 0;
576 	switch (sc->dataset_management) {
577 	case NVME_DATASET_MANAGEMENT_AUTO:
578 		if (sc->nvstore.deallocate)
579 			cd->oncs |= NVME_ONCS_DSM;
580 		break;
581 	case NVME_DATASET_MANAGEMENT_ENABLE:
582 		cd->oncs |= NVME_ONCS_DSM;
583 		break;
584 	default:
585 		break;
586 	}
587 
588 	cd->fna = NVMEM(NVME_CTRLR_DATA_FNA_FORMAT_ALL);
589 
590 	cd->vwc = NVMEF(NVME_CTRLR_DATA_VWC_ALL, NVME_CTRLR_DATA_VWC_ALL_NO);
591 
592 #ifdef	__FreeBSD__
593 	ret = snprintf(cd->subnqn, sizeof(cd->subnqn),
594 	    "nqn.2013-12.org.freebsd:bhyve-%s-%u-%u-%u",
595 	    get_config_value("name"), sc->nsc_pi->pi_bus,
596 	    sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
597 #else
598 	ret = snprintf((char *)cd->subnqn, sizeof (cd->subnqn),
599 	    "nqn.2013-12.org.illumos:bhyve-%s-%u-%u-%u",
600 	    get_config_value("name"), sc->nsc_pi->pi_bus,
601 	    sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
602 #endif
603 	if ((ret < 0) || ((unsigned)ret > sizeof(cd->subnqn)))
604 		EPRINTLN("%s: error setting subnqn (%d)", __func__, ret);
605 }
606 
607 static void
608 pci_nvme_init_nsdata_size(struct pci_nvme_blockstore *nvstore,
609     struct nvme_namespace_data *nd)
610 {
611 
612 	/* Get capacity and block size information from backing store */
613 	nd->nsze = nvstore->size / nvstore->sectsz;
614 	nd->ncap = nd->nsze;
615 	nd->nuse = nd->nsze;
616 }
617 
618 static void
619 pci_nvme_init_nsdata(struct pci_nvme_softc *sc,
620     struct nvme_namespace_data *nd, uint32_t nsid,
621     struct pci_nvme_blockstore *nvstore)
622 {
623 
624 	pci_nvme_init_nsdata_size(nvstore, nd);
625 
626 	if (nvstore->type == NVME_STOR_BLOCKIF)
627 		nvstore->deallocate = blockif_candelete(nvstore->ctx);
628 
629 	nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */
630 	nd->flbas = 0;
631 
632 	/* Create an EUI-64 if user did not provide one */
633 	if (nvstore->eui64 == 0) {
634 		char *data = NULL;
635 		uint64_t eui64 = nvstore->eui64;
636 
637 		asprintf(&data, "%s%u%u%u", get_config_value("name"),
638 		    sc->nsc_pi->pi_bus, sc->nsc_pi->pi_slot,
639 		    sc->nsc_pi->pi_func);
640 
641 		if (data != NULL) {
642 			eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data));
643 			free(data);
644 		}
645 		nvstore->eui64 = (eui64 << 16) | (nsid & 0xffff);
646 	}
647 	be64enc(nd->eui64, nvstore->eui64);
648 
649 	/* LBA data-sz = 2^lbads */
650 	nd->lbaf[0] = NVMEF(NVME_NS_DATA_LBAF_LBADS, nvstore->sectsz_bits);
651 }
652 
653 static void
654 pci_nvme_init_logpages(struct pci_nvme_softc *sc)
655 {
656 	__uint128_t power_cycles = 1;
657 
658 	memset(&sc->err_log, 0, sizeof(sc->err_log));
659 	memset(&sc->health_log, 0, sizeof(sc->health_log));
660 	memset(&sc->fw_log, 0, sizeof(sc->fw_log));
661 	memset(&sc->ns_log, 0, sizeof(sc->ns_log));
662 
663 	/* Set read/write remainder to round up according to spec */
664 	sc->read_dunits_remainder = 999;
665 	sc->write_dunits_remainder = 999;
666 
667 	/* Set nominal Health values checked by implementations */
668 	sc->health_log.temperature = NVME_TEMPERATURE;
669 	sc->health_log.available_spare = 100;
670 	sc->health_log.available_spare_threshold = 10;
671 
672 	/* Set Active Firmware Info to slot 1 */
673 	sc->fw_log.afi = NVMEF(NVME_FIRMWARE_PAGE_AFI_SLOT, 1);
674 	memcpy(&sc->fw_log.revision[0], sc->ctrldata.fr,
675 	    sizeof(sc->fw_log.revision[0]));
676 
677 	memcpy(&sc->health_log.power_cycles, &power_cycles,
678 	    sizeof(sc->health_log.power_cycles));
679 }
680 
681 static void
682 pci_nvme_init_features(struct pci_nvme_softc *sc)
683 {
684 	enum nvme_feature	fid;
685 
686 	for (fid = 0; fid < NVME_FID_MAX; fid++) {
687 		switch (fid) {
688 		case NVME_FEAT_ARBITRATION:
689 		case NVME_FEAT_POWER_MANAGEMENT:
690 		case NVME_FEAT_INTERRUPT_COALESCING: //XXX
691 		case NVME_FEAT_WRITE_ATOMICITY:
692 			/* Mandatory but no special handling required */
693 		//XXX hang - case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
694 		//XXX hang - case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
695 		//		  this returns a data buffer
696 			break;
697 		case NVME_FEAT_TEMPERATURE_THRESHOLD:
698 			sc->feat[fid].set = nvme_feature_temperature;
699 			break;
700 		case NVME_FEAT_ERROR_RECOVERY:
701 			sc->feat[fid].namespace_specific = true;
702 			break;
703 		case NVME_FEAT_NUMBER_OF_QUEUES:
704 			sc->feat[fid].set = nvme_feature_num_queues;
705 			break;
706 		case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
707 			sc->feat[fid].set = nvme_feature_iv_config;
708 			break;
709 		case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
710 			sc->feat[fid].set = nvme_feature_async_event;
711 			/* Enable all AENs by default */
712 			sc->feat[fid].cdw11 = PCI_NVME_AEN_DEFAULT_MASK;
713 			break;
714 		default:
715 			sc->feat[fid].set = nvme_feature_invalid_cb;
716 			sc->feat[fid].get = nvme_feature_invalid_cb;
717 		}
718 	}
719 }
720 
721 static void
722 pci_nvme_aer_reset(struct pci_nvme_softc *sc)
723 {
724 
725 	STAILQ_INIT(&sc->aer_list);
726 	sc->aer_count = 0;
727 }
728 
729 static void
730 pci_nvme_aer_init(struct pci_nvme_softc *sc)
731 {
732 
733 	pthread_mutex_init(&sc->aer_mtx, NULL);
734 	pci_nvme_aer_reset(sc);
735 }
736 
737 static void
738 pci_nvme_aer_destroy(struct pci_nvme_softc *sc)
739 {
740 	struct pci_nvme_aer *aer = NULL;
741 
742 	pthread_mutex_lock(&sc->aer_mtx);
743 	while (!STAILQ_EMPTY(&sc->aer_list)) {
744 		aer = STAILQ_FIRST(&sc->aer_list);
745 		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
746 		free(aer);
747 	}
748 	pthread_mutex_unlock(&sc->aer_mtx);
749 
750 	pci_nvme_aer_reset(sc);
751 }
752 
753 static bool
754 pci_nvme_aer_available(struct pci_nvme_softc *sc)
755 {
756 
757 	return (sc->aer_count != 0);
758 }
759 
760 static bool
761 pci_nvme_aer_limit_reached(struct pci_nvme_softc *sc)
762 {
763 	struct nvme_controller_data *cd = &sc->ctrldata;
764 
765 	/* AERL is a zero based value while aer_count is one's based */
766 	return (sc->aer_count == (cd->aerl + 1U));
767 }
768 
769 /*
770  * Add an Async Event Request
771  *
772  * Stores an AER to be returned later if the Controller needs to notify the
773  * host of an event.
774  * Note that while the NVMe spec doesn't require Controllers to return AER's
775  * in order, this implementation does preserve the order.
776  */
777 static int
778 pci_nvme_aer_add(struct pci_nvme_softc *sc, uint16_t cid)
779 {
780 	struct pci_nvme_aer *aer = NULL;
781 
782 	aer = calloc(1, sizeof(struct pci_nvme_aer));
783 	if (aer == NULL)
784 		return (-1);
785 
786 	/* Save the Command ID for use in the completion message */
787 	aer->cid = cid;
788 
789 	pthread_mutex_lock(&sc->aer_mtx);
790 	sc->aer_count++;
791 	STAILQ_INSERT_TAIL(&sc->aer_list, aer, link);
792 	pthread_mutex_unlock(&sc->aer_mtx);
793 
794 	return (0);
795 }
796 
797 /*
798  * Get an Async Event Request structure
799  *
800  * Returns a pointer to an AER previously submitted by the host or NULL if
801  * no AER's exist. Caller is responsible for freeing the returned struct.
802  */
803 static struct pci_nvme_aer *
804 pci_nvme_aer_get(struct pci_nvme_softc *sc)
805 {
806 	struct pci_nvme_aer *aer = NULL;
807 
808 	pthread_mutex_lock(&sc->aer_mtx);
809 	aer = STAILQ_FIRST(&sc->aer_list);
810 	if (aer != NULL) {
811 		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
812 		sc->aer_count--;
813 	}
814 	pthread_mutex_unlock(&sc->aer_mtx);
815 
816 	return (aer);
817 }
818 
819 static void
820 pci_nvme_aen_reset(struct pci_nvme_softc *sc)
821 {
822 	uint32_t	atype;
823 
824 	memset(sc->aen, 0, PCI_NVME_AE_TYPE_MAX * sizeof(struct pci_nvme_aen));
825 
826 	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
827 		sc->aen[atype].atype = atype;
828 	}
829 }
830 
831 static void
832 pci_nvme_aen_init(struct pci_nvme_softc *sc)
833 {
834 	char nstr[80];
835 
836 	pci_nvme_aen_reset(sc);
837 
838 	pthread_mutex_init(&sc->aen_mtx, NULL);
839 	pthread_create(&sc->aen_tid, NULL, aen_thr, sc);
840 	snprintf(nstr, sizeof(nstr), "nvme-aen-%d:%d", sc->nsc_pi->pi_slot,
841 	    sc->nsc_pi->pi_func);
842 	pthread_set_name_np(sc->aen_tid, nstr);
843 }
844 
845 static void
846 pci_nvme_aen_destroy(struct pci_nvme_softc *sc)
847 {
848 
849 	pci_nvme_aen_reset(sc);
850 }
851 
852 /* Notify the AEN thread of pending work */
853 static void
854 pci_nvme_aen_notify(struct pci_nvme_softc *sc)
855 {
856 
857 	pthread_cond_signal(&sc->aen_cond);
858 }
859 
860 /*
861  * Post an Asynchronous Event Notification
862  */
863 static int32_t
864 pci_nvme_aen_post(struct pci_nvme_softc *sc, pci_nvme_async_type atype,
865 		uint32_t event_data)
866 {
867 	struct pci_nvme_aen *aen;
868 
869 	if (atype >= PCI_NVME_AE_TYPE_MAX) {
870 		return(EINVAL);
871 	}
872 
873 	pthread_mutex_lock(&sc->aen_mtx);
874 	aen = &sc->aen[atype];
875 
876 	/* Has the controller already posted an event of this type? */
877 	if (aen->posted) {
878 		pthread_mutex_unlock(&sc->aen_mtx);
879 		return(EALREADY);
880 	}
881 
882 	aen->event_data = event_data;
883 	aen->posted = true;
884 	pthread_mutex_unlock(&sc->aen_mtx);
885 
886 	pci_nvme_aen_notify(sc);
887 
888 	return(0);
889 }
890 
891 static void
892 pci_nvme_aen_process(struct pci_nvme_softc *sc)
893 {
894 	struct pci_nvme_aer *aer;
895 	struct pci_nvme_aen *aen;
896 	pci_nvme_async_type atype;
897 	uint32_t mask;
898 	uint16_t status;
899 	uint8_t lid;
900 
901 #ifndef __FreeBSD__
902 	lid = 0;
903 #endif
904 
905 	assert(pthread_mutex_isowned_np(&sc->aen_mtx));
906 	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
907 		aen = &sc->aen[atype];
908 		/* Previous iterations may have depleted the available AER's */
909 		if (!pci_nvme_aer_available(sc)) {
910 			DPRINTF("%s: no AER", __func__);
911 			break;
912 		}
913 
914 		if (!aen->posted) {
915 			DPRINTF("%s: no AEN posted for atype=%#x", __func__, atype);
916 			continue;
917 		}
918 
919 		status = NVME_SC_SUCCESS;
920 
921 		/* Is the event masked? */
922 		mask =
923 		    sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11;
924 
925 		DPRINTF("%s: atype=%#x mask=%#x event_data=%#x", __func__, atype, mask, aen->event_data);
926 		switch (atype) {
927 		case PCI_NVME_AE_TYPE_ERROR:
928 			lid = NVME_LOG_ERROR;
929 			break;
930 		case PCI_NVME_AE_TYPE_SMART:
931 			mask &= 0xff;
932 			if ((mask & aen->event_data) == 0)
933 				continue;
934 			lid = NVME_LOG_HEALTH_INFORMATION;
935 			break;
936 		case PCI_NVME_AE_TYPE_NOTICE:
937 			if (aen->event_data >= PCI_NVME_AEI_NOTICE_MAX) {
938 				EPRINTLN("%s unknown AEN notice type %u",
939 				    __func__, aen->event_data);
940 				status = NVME_SC_INTERNAL_DEVICE_ERROR;
941 				lid = 0;
942 				break;
943 			}
944 			if ((PCI_NVME_AEI_NOTICE_MASK(aen->event_data) & mask) == 0)
945 				continue;
946 			switch (aen->event_data) {
947 			case PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED:
948 				lid = NVME_LOG_CHANGED_NAMESPACE;
949 				break;
950 			case PCI_NVME_AEI_NOTICE_FW_ACTIVATION:
951 				lid = NVME_LOG_FIRMWARE_SLOT;
952 				break;
953 			case PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE:
954 				lid = NVME_LOG_TELEMETRY_CONTROLLER_INITIATED;
955 				break;
956 			case PCI_NVME_AEI_NOTICE_ANA_CHANGE:
957 				lid = NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS;
958 				break;
959 			case PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE:
960 				lid = NVME_LOG_PREDICTABLE_LATENCY_EVENT_AGGREGATE;
961 				break;
962 			case PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT:
963 				lid = NVME_LOG_LBA_STATUS_INFORMATION;
964 				break;
965 			case PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE:
966 				lid = NVME_LOG_ENDURANCE_GROUP_EVENT_AGGREGATE;
967 				break;
968 			default:
969 				lid = 0;
970 			}
971 			break;
972 		default:
973 			/* bad type?!? */
974 			EPRINTLN("%s unknown AEN type %u", __func__, atype);
975 			status = NVME_SC_INTERNAL_DEVICE_ERROR;
976 			lid = 0;
977 			break;
978 		}
979 
980 		aer = pci_nvme_aer_get(sc);
981 		assert(aer != NULL);
982 
983 		DPRINTF("%s: CID=%#x CDW0=%#x", __func__, aer->cid, (lid << 16) | (aen->event_data << 8) | atype);
984 		pci_nvme_cq_update(sc, &sc->compl_queues[0],
985 		    (lid << 16) | (aen->event_data << 8) | atype, /* cdw0 */
986 		    aer->cid,
987 		    0,		/* SQID */
988 		    status);
989 
990 		aen->event_data = 0;
991 		aen->posted = false;
992 
993 		pci_generate_msix(sc->nsc_pi, 0);
994 	}
995 }
996 
997 static void *
998 aen_thr(void *arg)
999 {
1000 	struct pci_nvme_softc *sc;
1001 
1002 	sc = arg;
1003 
1004 	pthread_mutex_lock(&sc->aen_mtx);
1005 	for (;;) {
1006 		pci_nvme_aen_process(sc);
1007 		pthread_cond_wait(&sc->aen_cond, &sc->aen_mtx);
1008 	}
1009 #ifdef __FreeBSD__	/* Smatch spots unreachable code */
1010 	pthread_mutex_unlock(&sc->aen_mtx);
1011 
1012 	pthread_exit(NULL);
1013 #endif
1014 	return (NULL);
1015 }
1016 
1017 static void
1018 pci_nvme_reset_locked(struct pci_nvme_softc *sc)
1019 {
1020 	uint32_t i;
1021 
1022 	DPRINTF("%s", __func__);
1023 
1024 	sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) |
1025 	    NVMEF(NVME_CAP_LO_REG_CQR, 1) |
1026 	    NVMEF(NVME_CAP_LO_REG_TO, 60);
1027 
1028 	sc->regs.cap_hi = NVMEF(NVME_CAP_HI_REG_CSS_NVM, 1);
1029 
1030 	sc->regs.vs = NVME_REV(1,4);	/* NVMe v1.4 */
1031 
1032 	sc->regs.cc = 0;
1033 
1034 	assert(sc->submit_queues != NULL);
1035 
1036 	for (i = 0; i < sc->num_squeues + 1; i++) {
1037 		sc->submit_queues[i].qbase = NULL;
1038 		sc->submit_queues[i].size = 0;
1039 		sc->submit_queues[i].cqid = 0;
1040 		sc->submit_queues[i].tail = 0;
1041 		sc->submit_queues[i].head = 0;
1042 	}
1043 
1044 	assert(sc->compl_queues != NULL);
1045 
1046 	for (i = 0; i < sc->num_cqueues + 1; i++) {
1047 		sc->compl_queues[i].qbase = NULL;
1048 		sc->compl_queues[i].size = 0;
1049 		sc->compl_queues[i].tail = 0;
1050 		sc->compl_queues[i].head = 0;
1051 	}
1052 
1053 	sc->num_q_is_set = false;
1054 
1055 	pci_nvme_aer_destroy(sc);
1056 	pci_nvme_aen_destroy(sc);
1057 
1058 	/*
1059 	 * Clear CSTS.RDY last to prevent the host from enabling Controller
1060 	 * before cleanup completes
1061 	 */
1062 	sc->regs.csts = 0;
1063 }
1064 
1065 static void
1066 pci_nvme_reset(struct pci_nvme_softc *sc)
1067 {
1068 	pthread_mutex_lock(&sc->mtx);
1069 	pci_nvme_reset_locked(sc);
1070 	pthread_mutex_unlock(&sc->mtx);
1071 }
1072 
1073 static int
1074 pci_nvme_init_controller(struct pci_nvme_softc *sc)
1075 {
1076 	uint16_t acqs, asqs;
1077 
1078 	DPRINTF("%s", __func__);
1079 
1080 	/*
1081 	 * NVMe 2.0 states that "enabling a controller while this field is
1082 	 * cleared to 0h produces undefined results" for both ACQS and
1083 	 * ASQS. If zero, set CFS and do not become ready.
1084 	 */
1085 	asqs = ONE_BASED(NVMEV(NVME_AQA_REG_ASQS, sc->regs.aqa));
1086 	if (asqs < 2) {
1087 		EPRINTLN("%s: illegal ASQS value %#x (aqa=%#x)", __func__,
1088 		    asqs - 1, sc->regs.aqa);
1089 		sc->regs.csts |= NVME_CSTS_CFS;
1090 		return (-1);
1091 	}
1092 	sc->submit_queues[0].size = asqs;
1093 	sc->submit_queues[0].qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1094 	    sc->regs.asq, sizeof(struct nvme_command) * asqs);
1095 	if (sc->submit_queues[0].qbase == NULL) {
1096 		EPRINTLN("%s: ASQ vm_map_gpa(%lx) failed", __func__,
1097 		    sc->regs.asq);
1098 		sc->regs.csts |= NVME_CSTS_CFS;
1099 		return (-1);
1100 	}
1101 
1102 	DPRINTF("%s mapping Admin-SQ guest 0x%lx, host: %p",
1103 	        __func__, sc->regs.asq, sc->submit_queues[0].qbase);
1104 
1105 	acqs = ONE_BASED(NVMEV(NVME_AQA_REG_ACQS, sc->regs.aqa));
1106 	if (acqs < 2) {
1107 		EPRINTLN("%s: illegal ACQS value %#x (aqa=%#x)", __func__,
1108 		    acqs - 1, sc->regs.aqa);
1109 		sc->regs.csts |= NVME_CSTS_CFS;
1110 		return (-1);
1111 	}
1112 	sc->compl_queues[0].size = acqs;
1113 	sc->compl_queues[0].qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1114 	    sc->regs.acq, sizeof(struct nvme_completion) * acqs);
1115 	if (sc->compl_queues[0].qbase == NULL) {
1116 		EPRINTLN("%s: ACQ vm_map_gpa(%lx) failed", __func__,
1117 		    sc->regs.acq);
1118 		sc->regs.csts |= NVME_CSTS_CFS;
1119 		return (-1);
1120 	}
1121 	sc->compl_queues[0].intr_en = NVME_CQ_INTEN;
1122 
1123 	DPRINTF("%s mapping Admin-CQ guest 0x%lx, host: %p",
1124 	        __func__, sc->regs.acq, sc->compl_queues[0].qbase);
1125 
1126 	return (0);
1127 }
1128 
1129 static int
1130 nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b,
1131 	size_t len, enum nvme_copy_dir dir)
1132 {
1133 	uint8_t *p;
1134 	size_t bytes;
1135 
1136 	if (len > (8 * 1024)) {
1137 		return (-1);
1138 	}
1139 
1140 	/* Copy from the start of prp1 to the end of the physical page */
1141 	bytes = PAGE_SIZE - (prp1 & PAGE_MASK);
1142 	bytes = MIN(bytes, len);
1143 
1144 	p = vm_map_gpa(ctx, prp1, bytes);
1145 	if (p == NULL) {
1146 		return (-1);
1147 	}
1148 
1149 	if (dir == NVME_COPY_TO_PRP)
1150 		memcpy(p, b, bytes);
1151 	else
1152 		memcpy(b, p, bytes);
1153 
1154 	b += bytes;
1155 
1156 	len -= bytes;
1157 	if (len == 0) {
1158 		return (0);
1159 	}
1160 
1161 	len = MIN(len, PAGE_SIZE);
1162 
1163 	p = vm_map_gpa(ctx, prp2, len);
1164 	if (p == NULL) {
1165 		return (-1);
1166 	}
1167 
1168 	if (dir == NVME_COPY_TO_PRP)
1169 		memcpy(p, b, len);
1170 	else
1171 		memcpy(b, p, len);
1172 
1173 	return (0);
1174 }
1175 
1176 /*
1177  * Write a Completion Queue Entry update
1178  *
1179  * Write the completion and update the doorbell value
1180  */
1181 static void
1182 pci_nvme_cq_update(struct pci_nvme_softc *sc,
1183 		struct nvme_completion_queue *cq,
1184 		uint32_t cdw0,
1185 		uint16_t cid,
1186 		uint16_t sqid,
1187 		uint16_t status)
1188 {
1189 	struct nvme_submission_queue *sq = &sc->submit_queues[sqid];
1190 	struct nvme_completion *cqe;
1191 
1192 	assert(cq->qbase != NULL);
1193 
1194 	pthread_mutex_lock(&cq->mtx);
1195 
1196 	cqe = &cq->qbase[cq->tail];
1197 
1198 	/* Flip the phase bit */
1199 	status |= (cqe->status ^ NVME_STATUS_P) & NVME_STATUS_P_MASK;
1200 
1201 	cqe->cdw0 = cdw0;
1202 	cqe->sqhd = sq->head;
1203 	cqe->sqid = sqid;
1204 	cqe->cid = cid;
1205 	cqe->status = status;
1206 
1207 	cq->tail++;
1208 	if (cq->tail >= cq->size) {
1209 		cq->tail = 0;
1210 	}
1211 
1212 	pthread_mutex_unlock(&cq->mtx);
1213 }
1214 
1215 static int
1216 nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1217 	struct nvme_completion* compl)
1218 {
1219 	uint16_t qid = command->cdw10 & 0xffff;
1220 
1221 	DPRINTF("%s DELETE_IO_SQ %u", __func__, qid);
1222 	if (qid == 0 || qid > sc->num_squeues ||
1223 	    (sc->submit_queues[qid].qbase == NULL)) {
1224 		WPRINTF("%s NOT PERMITTED queue id %u / num_squeues %u",
1225 		        __func__, qid, sc->num_squeues);
1226 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1227 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1228 		return (1);
1229 	}
1230 
1231 	sc->submit_queues[qid].qbase = NULL;
1232 	sc->submit_queues[qid].cqid = 0;
1233 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1234 	return (1);
1235 }
1236 
1237 static int
1238 nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
1239 	struct nvme_completion* compl)
1240 {
1241 	if (command->cdw11 & NVME_CMD_CDW11_PC) {
1242 		uint16_t qid = command->cdw10 & 0xffff;
1243 		struct nvme_submission_queue *nsq;
1244 
1245 		if ((qid == 0) || (qid > sc->num_squeues) ||
1246 		    (sc->submit_queues[qid].qbase != NULL)) {
1247 			WPRINTF("%s queue index %u > num_squeues %u",
1248 			        __func__, qid, sc->num_squeues);
1249 			pci_nvme_status_tc(&compl->status,
1250 			    NVME_SCT_COMMAND_SPECIFIC,
1251 			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1252 			return (1);
1253 		}
1254 
1255 		nsq = &sc->submit_queues[qid];
1256 		nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1257 		DPRINTF("%s size=%u (max=%u)", __func__, nsq->size, sc->max_qentries);
1258 		if ((nsq->size < 2) || (nsq->size > sc->max_qentries)) {
1259 			/*
1260 			 * Queues must specify at least two entries
1261 			 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1262 			 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1263 			 */
1264 			pci_nvme_status_tc(&compl->status,
1265 			    NVME_SCT_COMMAND_SPECIFIC,
1266 			    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1267 			return (1);
1268 		}
1269 		nsq->head = nsq->tail = 0;
1270 
1271 		nsq->cqid = (command->cdw11 >> 16) & 0xffff;
1272 		if ((nsq->cqid == 0) || (nsq->cqid > sc->num_cqueues)) {
1273 			pci_nvme_status_tc(&compl->status,
1274 			    NVME_SCT_COMMAND_SPECIFIC,
1275 			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1276 			return (1);
1277 		}
1278 
1279 		if (sc->compl_queues[nsq->cqid].qbase == NULL) {
1280 			pci_nvme_status_tc(&compl->status,
1281 			    NVME_SCT_COMMAND_SPECIFIC,
1282 			    NVME_SC_COMPLETION_QUEUE_INVALID);
1283 			return (1);
1284 		}
1285 
1286 		nsq->qpriority = (command->cdw11 >> 1) & 0x03;
1287 
1288 		nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1289 		              sizeof(struct nvme_command) * (size_t)nsq->size);
1290 
1291 		DPRINTF("%s sq %u size %u gaddr %p cqid %u", __func__,
1292 		        qid, nsq->size, nsq->qbase, nsq->cqid);
1293 
1294 		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1295 
1296 		DPRINTF("%s completed creating IOSQ qid %u",
1297 		         __func__, qid);
1298 	} else {
1299 		/*
1300 		 * Guest sent non-cont submission queue request.
1301 		 * This setting is unsupported by this emulation.
1302 		 */
1303 		WPRINTF("%s unsupported non-contig (list-based) "
1304 		         "create i/o submission queue", __func__);
1305 
1306 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1307 	}
1308 	return (1);
1309 }
1310 
1311 static int
1312 nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1313 	struct nvme_completion* compl)
1314 {
1315 	uint16_t qid = command->cdw10 & 0xffff;
1316 	uint16_t sqid;
1317 
1318 	DPRINTF("%s DELETE_IO_CQ %u", __func__, qid);
1319 	if (qid == 0 || qid > sc->num_cqueues ||
1320 	    (sc->compl_queues[qid].qbase == NULL)) {
1321 		WPRINTF("%s queue index %u / num_cqueues %u",
1322 		        __func__, qid, sc->num_cqueues);
1323 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1324 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1325 		return (1);
1326 	}
1327 
1328 	/* Deleting an Active CQ is an error */
1329 	for (sqid = 1; sqid < sc->num_squeues + 1; sqid++)
1330 		if (sc->submit_queues[sqid].cqid == qid) {
1331 			pci_nvme_status_tc(&compl->status,
1332 			    NVME_SCT_COMMAND_SPECIFIC,
1333 			    NVME_SC_INVALID_QUEUE_DELETION);
1334 			return (1);
1335 		}
1336 
1337 	sc->compl_queues[qid].qbase = NULL;
1338 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1339 	return (1);
1340 }
1341 
1342 static int
1343 nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
1344 	struct nvme_completion* compl)
1345 {
1346 	struct nvme_completion_queue *ncq;
1347 	uint16_t qid = command->cdw10 & 0xffff;
1348 
1349 	/* Only support Physically Contiguous queues */
1350 	if ((command->cdw11 & NVME_CMD_CDW11_PC) == 0) {
1351 		WPRINTF("%s unsupported non-contig (list-based) "
1352 		         "create i/o completion queue",
1353 		         __func__);
1354 
1355 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1356 		return (1);
1357 	}
1358 
1359 	if ((qid == 0) || (qid > sc->num_cqueues) ||
1360 	    (sc->compl_queues[qid].qbase != NULL)) {
1361 		WPRINTF("%s queue index %u > num_cqueues %u",
1362 			__func__, qid, sc->num_cqueues);
1363 		pci_nvme_status_tc(&compl->status,
1364 		    NVME_SCT_COMMAND_SPECIFIC,
1365 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
1366 		return (1);
1367  	}
1368 
1369 	ncq = &sc->compl_queues[qid];
1370 	ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1;
1371 	ncq->intr_vec = (command->cdw11 >> 16) & 0xffff;
1372 	if (ncq->intr_vec > (sc->max_queues + 1)) {
1373 		pci_nvme_status_tc(&compl->status,
1374 		    NVME_SCT_COMMAND_SPECIFIC,
1375 		    NVME_SC_INVALID_INTERRUPT_VECTOR);
1376 		return (1);
1377 	}
1378 
1379 	ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
1380 	if ((ncq->size < 2) || (ncq->size > sc->max_qentries))  {
1381 		/*
1382 		 * Queues must specify at least two entries
1383 		 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
1384 		 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
1385 		 */
1386 		pci_nvme_status_tc(&compl->status,
1387 		    NVME_SCT_COMMAND_SPECIFIC,
1388 		    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
1389 		return (1);
1390 	}
1391 	ncq->head = ncq->tail = 0;
1392 	ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
1393 		     command->prp1,
1394 		     sizeof(struct nvme_command) * (size_t)ncq->size);
1395 
1396 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1397 
1398 
1399 	return (1);
1400 }
1401 
1402 static int
1403 nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command,
1404 	struct nvme_completion* compl)
1405 {
1406 	uint64_t logoff;
1407 	uint32_t logsize;
1408 	uint8_t logpage;
1409 
1410 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1411 
1412 	/*
1413 	 * Command specifies the number of dwords to return in fields NUMDU
1414 	 * and NUMDL. This is a zero-based value.
1415 	 */
1416 	logpage = command->cdw10 & 0xFF;
1417 	logsize = ((command->cdw11 << 16) | (command->cdw10 >> 16)) + 1;
1418 	logsize *= sizeof(uint32_t);
1419 	logoff  = ((uint64_t)(command->cdw13) << 32) | command->cdw12;
1420 
1421 	DPRINTF("%s log page %u len %u", __func__, logpage, logsize);
1422 
1423 	switch (logpage) {
1424 	case NVME_LOG_ERROR:
1425 		if (logoff >= sizeof(sc->err_log)) {
1426 			pci_nvme_status_genc(&compl->status,
1427 			    NVME_SC_INVALID_FIELD);
1428 			break;
1429 		}
1430 
1431 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1432 		    command->prp2, (uint8_t *)&sc->err_log + logoff,
1433 		    MIN(logsize - logoff, sizeof(sc->err_log)),
1434 		    NVME_COPY_TO_PRP);
1435 		break;
1436 	case NVME_LOG_HEALTH_INFORMATION:
1437 		if (logoff >= sizeof(sc->health_log)) {
1438 			pci_nvme_status_genc(&compl->status,
1439 			    NVME_SC_INVALID_FIELD);
1440 			break;
1441 		}
1442 
1443 		pthread_mutex_lock(&sc->mtx);
1444 		memcpy(&sc->health_log.data_units_read, &sc->read_data_units,
1445 		    sizeof(sc->health_log.data_units_read));
1446 		memcpy(&sc->health_log.data_units_written, &sc->write_data_units,
1447 		    sizeof(sc->health_log.data_units_written));
1448 		memcpy(&sc->health_log.host_read_commands, &sc->read_commands,
1449 		    sizeof(sc->health_log.host_read_commands));
1450 		memcpy(&sc->health_log.host_write_commands, &sc->write_commands,
1451 		    sizeof(sc->health_log.host_write_commands));
1452 		pthread_mutex_unlock(&sc->mtx);
1453 
1454 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1455 		    command->prp2, (uint8_t *)&sc->health_log + logoff,
1456 		    MIN(logsize - logoff, sizeof(sc->health_log)),
1457 		    NVME_COPY_TO_PRP);
1458 		break;
1459 	case NVME_LOG_FIRMWARE_SLOT:
1460 		if (logoff >= sizeof(sc->fw_log)) {
1461 			pci_nvme_status_genc(&compl->status,
1462 			    NVME_SC_INVALID_FIELD);
1463 			break;
1464 		}
1465 
1466 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1467 		    command->prp2, (uint8_t *)&sc->fw_log + logoff,
1468 		    MIN(logsize - logoff, sizeof(sc->fw_log)),
1469 		    NVME_COPY_TO_PRP);
1470 		break;
1471 	case NVME_LOG_CHANGED_NAMESPACE:
1472 		if (logoff >= sizeof(sc->ns_log)) {
1473 			pci_nvme_status_genc(&compl->status,
1474 			    NVME_SC_INVALID_FIELD);
1475 			break;
1476 		}
1477 
1478 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1479 		    command->prp2, (uint8_t *)&sc->ns_log + logoff,
1480 		    MIN(logsize - logoff, sizeof(sc->ns_log)),
1481 		    NVME_COPY_TO_PRP);
1482 		memset(&sc->ns_log, 0, sizeof(sc->ns_log));
1483 		break;
1484 	default:
1485 		DPRINTF("%s get log page %x command not supported",
1486 		        __func__, logpage);
1487 
1488 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1489 		    NVME_SC_INVALID_LOG_PAGE);
1490 	}
1491 
1492 	return (1);
1493 }
1494 
1495 static int
1496 nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command,
1497 	struct nvme_completion* compl)
1498 {
1499 	void *dest;
1500 	uint16_t status;
1501 
1502 	DPRINTF("%s identify 0x%x nsid 0x%x", __func__,
1503 	        command->cdw10 & 0xFF, command->nsid);
1504 
1505 	status = 0;
1506 	pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
1507 
1508 	switch (command->cdw10 & 0xFF) {
1509 	case 0x00: /* return Identify Namespace data structure */
1510 		/* Global NS only valid with NS Management */
1511 		if (command->nsid == NVME_GLOBAL_NAMESPACE_TAG) {
1512 			pci_nvme_status_genc(&status,
1513 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1514 			break;
1515 		}
1516 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1517 		    command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata),
1518 		    NVME_COPY_TO_PRP);
1519 		break;
1520 	case 0x01: /* return Identify Controller data structure */
1521 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
1522 		    command->prp2, (uint8_t *)&sc->ctrldata,
1523 		    sizeof(sc->ctrldata),
1524 		    NVME_COPY_TO_PRP);
1525 		break;
1526 	case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */
1527 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1528 		                  sizeof(uint32_t) * 1024);
1529 		/* All unused entries shall be zero */
1530 		memset(dest, 0, sizeof(uint32_t) * 1024);
1531 		((uint32_t *)dest)[0] = 1;
1532 		break;
1533 	case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */
1534 		if (command->nsid != 1) {
1535 			pci_nvme_status_genc(&status,
1536 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
1537 			break;
1538 		}
1539 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1540 		                  sizeof(uint32_t) * 1024);
1541 		/* All bytes after the descriptor shall be zero */
1542 		memset(dest, 0, sizeof(uint32_t) * 1024);
1543 
1544 		/* Return NIDT=1 (i.e. EUI64) descriptor */
1545 		((uint8_t *)dest)[0] = 1;
1546 		((uint8_t *)dest)[1] = sizeof(uint64_t);
1547 		memcpy(((uint8_t *)dest) + 4, sc->nsdata.eui64, sizeof(uint64_t));
1548 		break;
1549 	case 0x13:
1550 		/*
1551 		 * Controller list is optional but used by UNH tests. Return
1552 		 * a valid but empty list.
1553 		 */
1554 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
1555 		                  sizeof(uint16_t) * 2048);
1556 		memset(dest, 0, sizeof(uint16_t) * 2048);
1557 		break;
1558 	default:
1559 		DPRINTF("%s unsupported identify command requested 0x%x",
1560 		         __func__, command->cdw10 & 0xFF);
1561 		pci_nvme_status_genc(&status, NVME_SC_INVALID_FIELD);
1562 		break;
1563 	}
1564 
1565 	compl->status = status;
1566 	return (1);
1567 }
1568 
1569 static const char *
1570 nvme_fid_to_name(uint8_t fid)
1571 {
1572 	const char *name;
1573 
1574 	switch (fid) {
1575 	case NVME_FEAT_ARBITRATION:
1576 		name = "Arbitration";
1577 		break;
1578 	case NVME_FEAT_POWER_MANAGEMENT:
1579 		name = "Power Management";
1580 		break;
1581 	case NVME_FEAT_LBA_RANGE_TYPE:
1582 		name = "LBA Range Type";
1583 		break;
1584 	case NVME_FEAT_TEMPERATURE_THRESHOLD:
1585 		name = "Temperature Threshold";
1586 		break;
1587 	case NVME_FEAT_ERROR_RECOVERY:
1588 		name = "Error Recovery";
1589 		break;
1590 	case NVME_FEAT_VOLATILE_WRITE_CACHE:
1591 		name = "Volatile Write Cache";
1592 		break;
1593 	case NVME_FEAT_NUMBER_OF_QUEUES:
1594 		name = "Number of Queues";
1595 		break;
1596 	case NVME_FEAT_INTERRUPT_COALESCING:
1597 		name = "Interrupt Coalescing";
1598 		break;
1599 	case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
1600 		name = "Interrupt Vector Configuration";
1601 		break;
1602 	case NVME_FEAT_WRITE_ATOMICITY:
1603 		name = "Write Atomicity Normal";
1604 		break;
1605 	case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
1606 		name = "Asynchronous Event Configuration";
1607 		break;
1608 	case NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
1609 		name = "Autonomous Power State Transition";
1610 		break;
1611 	case NVME_FEAT_HOST_MEMORY_BUFFER:
1612 		name = "Host Memory Buffer";
1613 		break;
1614 	case NVME_FEAT_TIMESTAMP:
1615 		name = "Timestamp";
1616 		break;
1617 	case NVME_FEAT_KEEP_ALIVE_TIMER:
1618 		name = "Keep Alive Timer";
1619 		break;
1620 	case NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT:
1621 		name = "Host Controlled Thermal Management";
1622 		break;
1623 	case NVME_FEAT_NON_OP_POWER_STATE_CONFIG:
1624 		name = "Non-Operation Power State Config";
1625 		break;
1626 	case NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG:
1627 		name = "Read Recovery Level Config";
1628 		break;
1629 	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
1630 		name = "Predictable Latency Mode Config";
1631 		break;
1632 	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW:
1633 		name = "Predictable Latency Mode Window";
1634 		break;
1635 	case NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES:
1636 		name = "LBA Status Information Report Interval";
1637 		break;
1638 	case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
1639 		name = "Host Behavior Support";
1640 		break;
1641 	case NVME_FEAT_SANITIZE_CONFIG:
1642 		name = "Sanitize Config";
1643 		break;
1644 	case NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION:
1645 		name = "Endurance Group Event Configuration";
1646 		break;
1647 	case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
1648 		name = "Software Progress Marker";
1649 		break;
1650 	case NVME_FEAT_HOST_IDENTIFIER:
1651 		name = "Host Identifier";
1652 		break;
1653 	case NVME_FEAT_RESERVATION_NOTIFICATION_MASK:
1654 		name = "Reservation Notification Mask";
1655 		break;
1656 	case NVME_FEAT_RESERVATION_PERSISTENCE:
1657 		name = "Reservation Persistence";
1658 		break;
1659 	case NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG:
1660 		name = "Namespace Write Protection Config";
1661 		break;
1662 	default:
1663 		name = "Unknown";
1664 		break;
1665 	}
1666 
1667 	return (name);
1668 }
1669 
1670 static void
1671 nvme_feature_invalid_cb(struct pci_nvme_softc *sc __unused,
1672     struct nvme_feature_obj *feat __unused,
1673     struct nvme_command *command __unused,
1674     struct nvme_completion *compl)
1675 {
1676 	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1677 }
1678 
1679 static void
1680 nvme_feature_iv_config(struct pci_nvme_softc *sc,
1681     struct nvme_feature_obj *feat __unused,
1682     struct nvme_command *command,
1683     struct nvme_completion *compl)
1684 {
1685 	uint32_t i;
1686 	uint32_t cdw11 = command->cdw11;
1687 	uint16_t iv;
1688 	bool cd;
1689 
1690 	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1691 
1692 	iv = cdw11 & 0xffff;
1693 	cd = cdw11 & (1 << 16);
1694 
1695 	if (iv > (sc->max_queues + 1)) {
1696 		return;
1697 	}
1698 
1699 	/* No Interrupt Coalescing (i.e. not Coalescing Disable) for Admin Q */
1700 	if ((iv == 0) && !cd)
1701 		return;
1702 
1703 	/* Requested Interrupt Vector must be used by a CQ */
1704 	for (i = 0; i < sc->num_cqueues + 1; i++) {
1705 		if (sc->compl_queues[i].intr_vec == iv) {
1706 			pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1707 		}
1708 	}
1709 }
1710 
1711 #define NVME_ASYNC_EVENT_ENDURANCE_GROUP		(0x4000)
1712 static void
1713 nvme_feature_async_event(struct pci_nvme_softc *sc __unused,
1714     struct nvme_feature_obj *feat __unused,
1715     struct nvme_command *command,
1716     struct nvme_completion *compl)
1717 {
1718 	if (command->cdw11 & NVME_ASYNC_EVENT_ENDURANCE_GROUP)
1719 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1720 }
1721 
1722 #define NVME_TEMP_THRESH_OVER	0
1723 #define NVME_TEMP_THRESH_UNDER	1
1724 static void
1725 nvme_feature_temperature(struct pci_nvme_softc *sc,
1726     struct nvme_feature_obj *feat __unused,
1727     struct nvme_command *command,
1728     struct nvme_completion *compl)
1729 {
1730 	uint16_t	tmpth;	/* Temperature Threshold */
1731 	uint8_t		tmpsel; /* Threshold Temperature Select */
1732 	uint8_t		thsel;  /* Threshold Type Select */
1733 	bool		set_crit = false;
1734 	bool		report_crit;
1735 
1736 	tmpth  = command->cdw11 & 0xffff;
1737 	tmpsel = (command->cdw11 >> 16) & 0xf;
1738 	thsel  = (command->cdw11 >> 20) & 0x3;
1739 
1740 	DPRINTF("%s: tmpth=%#x tmpsel=%#x thsel=%#x", __func__, tmpth, tmpsel, thsel);
1741 
1742 	/* Check for unsupported values */
1743 	if (((tmpsel != 0) && (tmpsel != 0xf)) ||
1744 	    (thsel > NVME_TEMP_THRESH_UNDER)) {
1745 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1746 		return;
1747 	}
1748 
1749 	if (((thsel == NVME_TEMP_THRESH_OVER)  && (NVME_TEMPERATURE >= tmpth)) ||
1750 	    ((thsel == NVME_TEMP_THRESH_UNDER) && (NVME_TEMPERATURE <= tmpth)))
1751 		set_crit = true;
1752 
1753 	pthread_mutex_lock(&sc->mtx);
1754 	if (set_crit)
1755 		sc->health_log.critical_warning |=
1756 		    NVME_CRIT_WARN_ST_TEMPERATURE;
1757 	else
1758 		sc->health_log.critical_warning &=
1759 		    ~NVME_CRIT_WARN_ST_TEMPERATURE;
1760 	pthread_mutex_unlock(&sc->mtx);
1761 
1762 	report_crit = sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11 &
1763 	    NVME_CRIT_WARN_ST_TEMPERATURE;
1764 
1765 	if (set_crit && report_crit)
1766 		pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_SMART,
1767 		    sc->health_log.critical_warning);
1768 
1769 	DPRINTF("%s: set_crit=%c critical_warning=%#x status=%#x", __func__, set_crit ? 'T':'F', sc->health_log.critical_warning, compl->status);
1770 }
1771 
1772 static void
1773 nvme_feature_num_queues(struct pci_nvme_softc *sc,
1774     struct nvme_feature_obj *feat __unused,
1775     struct nvme_command *command,
1776     struct nvme_completion *compl)
1777 {
1778 	uint16_t nqr;	/* Number of Queues Requested */
1779 
1780 	if (sc->num_q_is_set) {
1781 		WPRINTF("%s: Number of Queues already set", __func__);
1782 		pci_nvme_status_genc(&compl->status,
1783 		    NVME_SC_COMMAND_SEQUENCE_ERROR);
1784 		return;
1785 	}
1786 
1787 	nqr = command->cdw11 & 0xFFFF;
1788 	if (nqr == 0xffff) {
1789 		WPRINTF("%s: Illegal NSQR value %#x", __func__, nqr);
1790 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1791 		return;
1792 	}
1793 
1794 	sc->num_squeues = ONE_BASED(nqr);
1795 	if (sc->num_squeues > sc->max_queues) {
1796 		DPRINTF("NSQR=%u is greater than max %u", sc->num_squeues,
1797 					sc->max_queues);
1798 		sc->num_squeues = sc->max_queues;
1799 	}
1800 
1801 	nqr = (command->cdw11 >> 16) & 0xFFFF;
1802 	if (nqr == 0xffff) {
1803 		WPRINTF("%s: Illegal NCQR value %#x", __func__, nqr);
1804 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1805 		return;
1806 	}
1807 
1808 	sc->num_cqueues = ONE_BASED(nqr);
1809 	if (sc->num_cqueues > sc->max_queues) {
1810 		DPRINTF("NCQR=%u is greater than max %u", sc->num_cqueues,
1811 					sc->max_queues);
1812 		sc->num_cqueues = sc->max_queues;
1813 	}
1814 
1815 	/* Patch the command value which will be saved on callback's return */
1816 	command->cdw11 = NVME_FEATURE_NUM_QUEUES(sc);
1817 	compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc);
1818 
1819 	sc->num_q_is_set = true;
1820 }
1821 
1822 static int
1823 nvme_opc_set_features(struct pci_nvme_softc *sc, struct nvme_command *command,
1824 	struct nvme_completion *compl)
1825 {
1826 	struct nvme_feature_obj *feat;
1827 	uint32_t nsid = command->nsid;
1828 	uint8_t fid = NVMEV(NVME_FEAT_SET_FID, command->cdw10);
1829 	bool sv = NVMEV(NVME_FEAT_SET_SV, command->cdw10);
1830 
1831 	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1832 
1833 	if (fid >= NVME_FID_MAX) {
1834 		DPRINTF("%s invalid feature 0x%x", __func__, fid);
1835 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1836 		return (1);
1837 	}
1838 
1839 	if (sv) {
1840 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1841 		    NVME_SC_FEATURE_NOT_SAVEABLE);
1842 		return (1);
1843 	}
1844 
1845 	feat = &sc->feat[fid];
1846 
1847 	if (feat->namespace_specific && (nsid == NVME_GLOBAL_NAMESPACE_TAG)) {
1848 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1849 		return (1);
1850 	}
1851 
1852 	if (!feat->namespace_specific &&
1853 	    !((nsid == 0) || (nsid == NVME_GLOBAL_NAMESPACE_TAG))) {
1854 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1855 		    NVME_SC_FEATURE_NOT_NS_SPECIFIC);
1856 		return (1);
1857 	}
1858 
1859 	compl->cdw0 = 0;
1860 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1861 
1862 	if (feat->set)
1863 		feat->set(sc, feat, command, compl);
1864 	else {
1865 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1866 		    NVME_SC_FEATURE_NOT_CHANGEABLE);
1867 		return (1);
1868 	}
1869 
1870 	DPRINTF("%s: status=%#x cdw11=%#x", __func__, compl->status, command->cdw11);
1871 	if (compl->status == NVME_SC_SUCCESS) {
1872 		feat->cdw11 = command->cdw11;
1873 		if ((fid == NVME_FEAT_ASYNC_EVENT_CONFIGURATION) &&
1874 		    (command->cdw11 != 0))
1875 			pci_nvme_aen_notify(sc);
1876 	}
1877 
1878 	return (0);
1879 }
1880 
1881 #define NVME_FEATURES_SEL_SUPPORTED	0x3
1882 #define NVME_FEATURES_NS_SPECIFIC	(1 << 1)
1883 
1884 static int
1885 nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command,
1886 	struct nvme_completion* compl)
1887 {
1888 	struct nvme_feature_obj *feat;
1889 	uint8_t fid = command->cdw10 & 0xFF;
1890 	uint8_t sel = (command->cdw10 >> 8) & 0x7;
1891 
1892 	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
1893 
1894 	if (fid >= NVME_FID_MAX) {
1895 		DPRINTF("%s invalid feature 0x%x", __func__, fid);
1896 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1897 		return (1);
1898 	}
1899 
1900 	compl->cdw0 = 0;
1901 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1902 
1903 	feat = &sc->feat[fid];
1904 	if (feat->get) {
1905 		feat->get(sc, feat, command, compl);
1906 	}
1907 
1908 	if (compl->status == NVME_SC_SUCCESS) {
1909 		if ((sel == NVME_FEATURES_SEL_SUPPORTED) && feat->namespace_specific)
1910 			compl->cdw0 = NVME_FEATURES_NS_SPECIFIC;
1911 		else
1912 			compl->cdw0 = feat->cdw11;
1913 	}
1914 
1915 	return (0);
1916 }
1917 
1918 static int
1919 nvme_opc_format_nvm(struct pci_nvme_softc* sc, struct nvme_command* command,
1920 	struct nvme_completion* compl)
1921 {
1922 	uint8_t	ses, lbaf, pi;
1923 
1924 	/* Only supports Secure Erase Setting - User Data Erase */
1925 	ses = (command->cdw10 >> 9) & 0x7;
1926 	if (ses > 0x1) {
1927 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1928 		return (1);
1929 	}
1930 
1931 	/* Only supports a single LBA Format */
1932 	lbaf = command->cdw10 & 0xf;
1933 	if (lbaf != 0) {
1934 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
1935 		    NVME_SC_INVALID_FORMAT);
1936 		return (1);
1937 	}
1938 
1939 	/* Doesn't support Protection Information */
1940 	pi = (command->cdw10 >> 5) & 0x7;
1941 	if (pi != 0) {
1942 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
1943 		return (1);
1944 	}
1945 
1946 	if (sc->nvstore.type == NVME_STOR_RAM) {
1947 		if (sc->nvstore.ctx)
1948 			free(sc->nvstore.ctx);
1949 		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
1950 		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1951 	} else {
1952 		struct pci_nvme_ioreq *req;
1953 		int err;
1954 
1955 		req = pci_nvme_get_ioreq(sc);
1956 		if (req == NULL) {
1957 			pci_nvme_status_genc(&compl->status,
1958 			    NVME_SC_INTERNAL_DEVICE_ERROR);
1959 			WPRINTF("%s: unable to allocate IO req", __func__);
1960 			return (1);
1961 		}
1962 		req->nvme_sq = &sc->submit_queues[0];
1963 		req->sqid = 0;
1964 		req->opc = command->opc;
1965 		req->cid = command->cid;
1966 		req->nsid = command->nsid;
1967 
1968 		req->io_req.br_offset = 0;
1969 		req->io_req.br_resid = sc->nvstore.size;
1970 		req->io_req.br_callback = pci_nvme_io_done;
1971 
1972 		err = blockif_delete(sc->nvstore.ctx, &req->io_req);
1973 		if (err) {
1974 			pci_nvme_status_genc(&compl->status,
1975 			    NVME_SC_INTERNAL_DEVICE_ERROR);
1976 			pci_nvme_release_ioreq(sc, req);
1977 		} else
1978 			compl->status = NVME_NO_STATUS;
1979 	}
1980 
1981 	return (1);
1982 }
1983 
1984 static int
1985 nvme_opc_abort(struct pci_nvme_softc *sc __unused, struct nvme_command *command,
1986     struct nvme_completion *compl)
1987 {
1988 	DPRINTF("%s submission queue %u, command ID 0x%x", __func__,
1989 	        command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF);
1990 
1991 	/* TODO: search for the command ID and abort it */
1992 
1993 	compl->cdw0 = 1;
1994 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
1995 	return (1);
1996 }
1997 
1998 static int
1999 nvme_opc_async_event_req(struct pci_nvme_softc* sc,
2000 	struct nvme_command* command, struct nvme_completion* compl)
2001 {
2002 	DPRINTF("%s async event request count=%u aerl=%u cid=%#x", __func__,
2003 	    sc->aer_count, sc->ctrldata.aerl, command->cid);
2004 
2005 	/* Don't exceed the Async Event Request Limit (AERL). */
2006 	if (pci_nvme_aer_limit_reached(sc)) {
2007 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
2008 				NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED);
2009 		return (1);
2010 	}
2011 
2012 	if (pci_nvme_aer_add(sc, command->cid)) {
2013 		pci_nvme_status_tc(&compl->status, NVME_SCT_GENERIC,
2014 				NVME_SC_INTERNAL_DEVICE_ERROR);
2015 		return (1);
2016 	}
2017 
2018 	/*
2019 	 * Raise events when they happen based on the Set Features cmd.
2020 	 * These events happen async, so only set completion successful if
2021 	 * there is an event reflective of the request to get event.
2022 	 */
2023 	compl->status = NVME_NO_STATUS;
2024 	pci_nvme_aen_notify(sc);
2025 
2026 	return (0);
2027 }
2028 
2029 static void
2030 pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value)
2031 {
2032 	struct nvme_completion compl;
2033 	struct nvme_command *cmd;
2034 	struct nvme_submission_queue *sq;
2035 	struct nvme_completion_queue *cq;
2036 	uint16_t sqhead;
2037 
2038 	DPRINTF("%s index %u", __func__, (uint32_t)value);
2039 
2040 	sq = &sc->submit_queues[0];
2041 	cq = &sc->compl_queues[0];
2042 
2043 	pthread_mutex_lock(&sq->mtx);
2044 
2045 	sqhead = sq->head;
2046 	DPRINTF("sqhead %u, tail %u", sqhead, sq->tail);
2047 
2048 	while (sqhead != atomic_load_acq_short(&sq->tail)) {
2049 		cmd = &(sq->qbase)[sqhead];
2050 		compl.cdw0 = 0;
2051 		compl.status = 0;
2052 
2053 		switch (cmd->opc) {
2054 		case NVME_OPC_DELETE_IO_SQ:
2055 			DPRINTF("%s command DELETE_IO_SQ", __func__);
2056 			nvme_opc_delete_io_sq(sc, cmd, &compl);
2057 			break;
2058 		case NVME_OPC_CREATE_IO_SQ:
2059 			DPRINTF("%s command CREATE_IO_SQ", __func__);
2060 			nvme_opc_create_io_sq(sc, cmd, &compl);
2061 			break;
2062 		case NVME_OPC_DELETE_IO_CQ:
2063 			DPRINTF("%s command DELETE_IO_CQ", __func__);
2064 			nvme_opc_delete_io_cq(sc, cmd, &compl);
2065 			break;
2066 		case NVME_OPC_CREATE_IO_CQ:
2067 			DPRINTF("%s command CREATE_IO_CQ", __func__);
2068 			nvme_opc_create_io_cq(sc, cmd, &compl);
2069 			break;
2070 		case NVME_OPC_GET_LOG_PAGE:
2071 			DPRINTF("%s command GET_LOG_PAGE", __func__);
2072 			nvme_opc_get_log_page(sc, cmd, &compl);
2073 			break;
2074 		case NVME_OPC_IDENTIFY:
2075 			DPRINTF("%s command IDENTIFY", __func__);
2076 			nvme_opc_identify(sc, cmd, &compl);
2077 			break;
2078 		case NVME_OPC_ABORT:
2079 			DPRINTF("%s command ABORT", __func__);
2080 			nvme_opc_abort(sc, cmd, &compl);
2081 			break;
2082 		case NVME_OPC_SET_FEATURES:
2083 			DPRINTF("%s command SET_FEATURES", __func__);
2084 			nvme_opc_set_features(sc, cmd, &compl);
2085 			break;
2086 		case NVME_OPC_GET_FEATURES:
2087 			DPRINTF("%s command GET_FEATURES", __func__);
2088 			nvme_opc_get_features(sc, cmd, &compl);
2089 			break;
2090 		case NVME_OPC_FIRMWARE_ACTIVATE:
2091 			DPRINTF("%s command FIRMWARE_ACTIVATE", __func__);
2092 			pci_nvme_status_tc(&compl.status,
2093 			    NVME_SCT_COMMAND_SPECIFIC,
2094 			    NVME_SC_INVALID_FIRMWARE_SLOT);
2095 			break;
2096 		case NVME_OPC_ASYNC_EVENT_REQUEST:
2097 			DPRINTF("%s command ASYNC_EVENT_REQ", __func__);
2098 			nvme_opc_async_event_req(sc, cmd, &compl);
2099 			break;
2100 		case NVME_OPC_FORMAT_NVM:
2101 			DPRINTF("%s command FORMAT_NVM", __func__);
2102 			if (NVMEV(NVME_CTRLR_DATA_OACS_FORMAT,
2103 			    sc->ctrldata.oacs) == 0) {
2104 				pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2105 				break;
2106 			}
2107 			nvme_opc_format_nvm(sc, cmd, &compl);
2108 			break;
2109 		case NVME_OPC_SECURITY_SEND:
2110 		case NVME_OPC_SECURITY_RECEIVE:
2111 		case NVME_OPC_SANITIZE:
2112 		case NVME_OPC_GET_LBA_STATUS:
2113 			DPRINTF("%s command OPC=%#x (unsupported)", __func__,
2114 			    cmd->opc);
2115 			/* Valid but unsupported opcodes */
2116 			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_FIELD);
2117 			break;
2118 		default:
2119 			DPRINTF("%s command OPC=%#X (not implemented)",
2120 			    __func__,
2121 			    cmd->opc);
2122 			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
2123 		}
2124 		sqhead = (sqhead + 1) % sq->size;
2125 
2126 		if (NVME_COMPLETION_VALID(compl)) {
2127 			pci_nvme_cq_update(sc, &sc->compl_queues[0],
2128 			    compl.cdw0,
2129 			    cmd->cid,
2130 			    0,		/* SQID */
2131 			    compl.status);
2132 		}
2133 	}
2134 
2135 	DPRINTF("setting sqhead %u", sqhead);
2136 	sq->head = sqhead;
2137 
2138 	if (cq->head != cq->tail)
2139 		pci_generate_msix(sc->nsc_pi, 0);
2140 
2141 	pthread_mutex_unlock(&sq->mtx);
2142 }
2143 
2144 /*
2145  * Update the Write and Read statistics reported in SMART data
2146  *
2147  * NVMe defines "data unit" as thousand's of 512 byte blocks and is rounded up.
2148  * E.g. 1 data unit is 1 - 1,000 512 byte blocks. 3 data units are 2,001 - 3,000
2149  * 512 byte blocks. Rounding up is achieved by initializing the remainder to 999.
2150  */
2151 static void
2152 pci_nvme_stats_write_read_update(struct pci_nvme_softc *sc, uint8_t opc,
2153     size_t bytes, uint16_t status)
2154 {
2155 
2156 	pthread_mutex_lock(&sc->mtx);
2157 	switch (opc) {
2158 	case NVME_OPC_WRITE:
2159 		sc->write_commands++;
2160 		if (status != NVME_SC_SUCCESS)
2161 			break;
2162 		sc->write_dunits_remainder += (bytes / 512);
2163 		while (sc->write_dunits_remainder >= 1000) {
2164 			sc->write_data_units++;
2165 			sc->write_dunits_remainder -= 1000;
2166 		}
2167 		break;
2168 	case NVME_OPC_READ:
2169 		sc->read_commands++;
2170 		if (status != NVME_SC_SUCCESS)
2171 			break;
2172 		sc->read_dunits_remainder += (bytes / 512);
2173 		while (sc->read_dunits_remainder >= 1000) {
2174 			sc->read_data_units++;
2175 			sc->read_dunits_remainder -= 1000;
2176 		}
2177 		break;
2178 	default:
2179 		DPRINTF("%s: Invalid OPC 0x%02x for stats", __func__, opc);
2180 		break;
2181 	}
2182 	pthread_mutex_unlock(&sc->mtx);
2183 }
2184 
2185 /*
2186  * Check if the combination of Starting LBA (slba) and number of blocks
2187  * exceeds the range of the underlying storage.
2188  *
2189  * Because NVMe specifies the SLBA in blocks as a uint64_t and blockif stores
2190  * the capacity in bytes as a uint64_t, care must be taken to avoid integer
2191  * overflow.
2192  */
2193 static bool
2194 pci_nvme_out_of_range(struct pci_nvme_blockstore *nvstore, uint64_t slba,
2195     uint32_t nblocks)
2196 {
2197 	size_t	offset, bytes;
2198 
2199 	/* Overflow check of multiplying Starting LBA by the sector size */
2200 	if (slba >> (64 - nvstore->sectsz_bits))
2201 		return (true);
2202 
2203 	offset = slba << nvstore->sectsz_bits;
2204 	bytes = nblocks << nvstore->sectsz_bits;
2205 
2206 	/* Overflow check of Number of Logical Blocks */
2207 	if ((nvstore->size <= offset) || ((nvstore->size - offset) < bytes))
2208 		return (true);
2209 
2210 	return (false);
2211 }
2212 
2213 static int
2214 pci_nvme_append_iov_req(struct pci_nvme_softc *sc __unused,
2215     struct pci_nvme_ioreq *req, uint64_t gpaddr, size_t size, uint64_t offset)
2216 {
2217 	int iovidx;
2218 	bool range_is_contiguous;
2219 
2220 	if (req == NULL)
2221 		return (-1);
2222 
2223 	if (req->io_req.br_iovcnt == NVME_MAX_IOVEC) {
2224 		return (-1);
2225 	}
2226 
2227 	/*
2228 	 * Minimize the number of IOVs by concatenating contiguous address
2229 	 * ranges. If the IOV count is zero, there is no previous range to
2230 	 * concatenate.
2231 	 */
2232 	if (req->io_req.br_iovcnt == 0)
2233 		range_is_contiguous = false;
2234 	else
2235 		range_is_contiguous = (req->prev_gpaddr + req->prev_size) == gpaddr;
2236 
2237 	if (range_is_contiguous) {
2238 		iovidx = req->io_req.br_iovcnt - 1;
2239 
2240 		req->io_req.br_iov[iovidx].iov_base =
2241 		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2242 				     req->prev_gpaddr, size);
2243 		if (req->io_req.br_iov[iovidx].iov_base == NULL)
2244 			return (-1);
2245 
2246 		req->prev_size += size;
2247 		req->io_req.br_resid += size;
2248 
2249 		req->io_req.br_iov[iovidx].iov_len = req->prev_size;
2250 	} else {
2251 		iovidx = req->io_req.br_iovcnt;
2252 		if (iovidx == 0) {
2253 			req->io_req.br_offset = offset;
2254 			req->io_req.br_resid = 0;
2255 			req->io_req.br_param = req;
2256 		}
2257 
2258 		req->io_req.br_iov[iovidx].iov_base =
2259 		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
2260 				     gpaddr, size);
2261 		if (req->io_req.br_iov[iovidx].iov_base == NULL)
2262 			return (-1);
2263 
2264 		req->io_req.br_iov[iovidx].iov_len = size;
2265 
2266 		req->prev_gpaddr = gpaddr;
2267 		req->prev_size = size;
2268 		req->io_req.br_resid += size;
2269 
2270 		req->io_req.br_iovcnt++;
2271 	}
2272 
2273 	return (0);
2274 }
2275 
2276 static void
2277 pci_nvme_set_completion(struct pci_nvme_softc *sc,
2278     struct nvme_submission_queue *sq, int sqid, uint16_t cid, uint16_t status)
2279 {
2280 	struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid];
2281 
2282 	DPRINTF("%s sqid %d cqid %u cid %u status: 0x%x 0x%x",
2283 		 __func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status),
2284 		 NVME_STATUS_GET_SC(status));
2285 
2286 	pci_nvme_cq_update(sc, cq, 0, cid, sqid, status);
2287 
2288 	if (cq->head != cq->tail) {
2289 		if (cq->intr_en & NVME_CQ_INTEN) {
2290 			pci_generate_msix(sc->nsc_pi, cq->intr_vec);
2291 		} else {
2292 			DPRINTF("%s: CQ%u interrupt disabled",
2293 						__func__, sq->cqid);
2294 		}
2295 	}
2296 }
2297 
2298 static void
2299 pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req)
2300 {
2301 	req->sc = NULL;
2302 	req->nvme_sq = NULL;
2303 	req->sqid = 0;
2304 
2305 	pthread_mutex_lock(&sc->mtx);
2306 
2307 	STAILQ_INSERT_TAIL(&sc->ioreqs_free, req, link);
2308 	sc->pending_ios--;
2309 
2310 	/* when no more IO pending, can set to ready if device reset/enabled */
2311 	if (sc->pending_ios == 0 &&
2312 	    NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts)))
2313 		sc->regs.csts |= NVME_CSTS_RDY;
2314 
2315 	pthread_mutex_unlock(&sc->mtx);
2316 
2317 	sem_post(&sc->iosemlock);
2318 }
2319 
2320 static struct pci_nvme_ioreq *
2321 pci_nvme_get_ioreq(struct pci_nvme_softc *sc)
2322 {
2323 	struct pci_nvme_ioreq *req = NULL;
2324 
2325 	sem_wait(&sc->iosemlock);
2326 	pthread_mutex_lock(&sc->mtx);
2327 
2328 	req = STAILQ_FIRST(&sc->ioreqs_free);
2329 	assert(req != NULL);
2330 	STAILQ_REMOVE_HEAD(&sc->ioreqs_free, link);
2331 
2332 	req->sc = sc;
2333 
2334 	sc->pending_ios++;
2335 
2336 	pthread_mutex_unlock(&sc->mtx);
2337 
2338 	req->io_req.br_iovcnt = 0;
2339 	req->io_req.br_offset = 0;
2340 	req->io_req.br_resid = 0;
2341 	req->io_req.br_param = req;
2342 	req->prev_gpaddr = 0;
2343 	req->prev_size = 0;
2344 
2345 	return req;
2346 }
2347 
2348 static void
2349 pci_nvme_io_done(struct blockif_req *br, int err)
2350 {
2351 	struct pci_nvme_ioreq *req = br->br_param;
2352 	struct nvme_submission_queue *sq = req->nvme_sq;
2353 	uint16_t code, status;
2354 
2355 	DPRINTF("%s error %d %s", __func__, err, strerror(err));
2356 
2357 	/* TODO return correct error */
2358 	code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS;
2359 	status = 0;
2360 	pci_nvme_status_genc(&status, code);
2361 
2362 	pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, status);
2363 	pci_nvme_stats_write_read_update(req->sc, req->opc,
2364 	    req->bytes, status);
2365 	pci_nvme_release_ioreq(req->sc, req);
2366 }
2367 
2368 /*
2369  * Implements the Flush command. The specification states:
2370  *    If a volatile write cache is not present, Flush commands complete
2371  *    successfully and have no effect
2372  * in the description of the Volatile Write Cache (VWC) field of the Identify
2373  * Controller data. Therefore, set status to Success if the command is
2374  * not supported (i.e. RAM or as indicated by the blockif).
2375  */
2376 static bool
2377 nvme_opc_flush(struct pci_nvme_softc *sc __unused,
2378     struct nvme_command *cmd __unused,
2379     struct pci_nvme_blockstore *nvstore,
2380     struct pci_nvme_ioreq *req,
2381     uint16_t *status)
2382 {
2383 	bool pending = false;
2384 
2385 	if (nvstore->type == NVME_STOR_RAM) {
2386 		pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2387 	} else {
2388 		int err;
2389 
2390 		req->io_req.br_callback = pci_nvme_io_done;
2391 
2392 		err = blockif_flush(nvstore->ctx, &req->io_req);
2393 		switch (err) {
2394 		case 0:
2395 			pending = true;
2396 			break;
2397 		case EOPNOTSUPP:
2398 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2399 			break;
2400 		default:
2401 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2402 		}
2403 	}
2404 
2405 	return (pending);
2406 }
2407 
2408 static uint16_t
2409 nvme_write_read_ram(struct pci_nvme_softc *sc,
2410     struct pci_nvme_blockstore *nvstore,
2411     uint64_t prp1, uint64_t prp2,
2412     size_t offset, uint64_t bytes,
2413     bool is_write)
2414 {
2415 	uint8_t *buf = nvstore->ctx;
2416 	enum nvme_copy_dir dir;
2417 	uint16_t status;
2418 
2419 	if (is_write)
2420 		dir = NVME_COPY_TO_PRP;
2421 	else
2422 		dir = NVME_COPY_FROM_PRP;
2423 
2424 	status = 0;
2425 	if (nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, prp1, prp2,
2426 	    buf + offset, bytes, dir))
2427 		pci_nvme_status_genc(&status,
2428 		    NVME_SC_DATA_TRANSFER_ERROR);
2429 	else
2430 		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2431 
2432 	return (status);
2433 }
2434 
2435 static uint16_t
2436 nvme_write_read_blockif(struct pci_nvme_softc *sc,
2437     struct pci_nvme_blockstore *nvstore,
2438     struct pci_nvme_ioreq *req,
2439     uint64_t prp1, uint64_t prp2,
2440     size_t offset, uint64_t bytes,
2441     bool is_write)
2442 {
2443 	uint64_t size;
2444 	int err;
2445 	uint16_t status = NVME_NO_STATUS;
2446 
2447 	size = MIN(PAGE_SIZE - (prp1 % PAGE_SIZE), bytes);
2448 	if (pci_nvme_append_iov_req(sc, req, prp1, size, offset)) {
2449 		err = -1;
2450 		goto out;
2451 	}
2452 
2453 	offset += size;
2454 	bytes  -= size;
2455 
2456 	if (bytes == 0) {
2457 		;
2458 	} else if (bytes <= PAGE_SIZE) {
2459 		size = bytes;
2460 		if (pci_nvme_append_iov_req(sc, req, prp2, size, offset)) {
2461 			err = -1;
2462 			goto out;
2463 		}
2464 	} else {
2465 		void *vmctx = sc->nsc_pi->pi_vmctx;
2466 		uint64_t *prp_list = &prp2;
2467 		uint64_t *last = prp_list;
2468 
2469 		/* PRP2 is pointer to a physical region page list */
2470 		while (bytes) {
2471 			/* Last entry in list points to the next list */
2472 			if ((prp_list == last) && (bytes > PAGE_SIZE)) {
2473 				uint64_t prp = *prp_list;
2474 
2475 				prp_list = paddr_guest2host(vmctx, prp,
2476 				    PAGE_SIZE - (prp % PAGE_SIZE));
2477 				if (prp_list == NULL) {
2478 					err = -1;
2479 					goto out;
2480 				}
2481 				last = prp_list + (NVME_PRP2_ITEMS - 1);
2482 			}
2483 
2484 			size = MIN(bytes, PAGE_SIZE);
2485 
2486 			if (pci_nvme_append_iov_req(sc, req, *prp_list, size,
2487 			    offset)) {
2488 				err = -1;
2489 				goto out;
2490 			}
2491 
2492 			offset += size;
2493 			bytes  -= size;
2494 
2495 			prp_list++;
2496 		}
2497 	}
2498 	req->io_req.br_callback = pci_nvme_io_done;
2499 	if (is_write)
2500 		err = blockif_write(nvstore->ctx, &req->io_req);
2501 	else
2502 		err = blockif_read(nvstore->ctx, &req->io_req);
2503 out:
2504 	if (err)
2505 		pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR);
2506 
2507 	return (status);
2508 }
2509 
2510 static bool
2511 nvme_opc_write_read(struct pci_nvme_softc *sc,
2512     struct nvme_command *cmd,
2513     struct pci_nvme_blockstore *nvstore,
2514     struct pci_nvme_ioreq *req,
2515     uint16_t *status)
2516 {
2517 	uint64_t lba, nblocks, bytes;
2518 	size_t offset;
2519 	bool is_write = cmd->opc == NVME_OPC_WRITE;
2520 	bool pending = false;
2521 
2522 	lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10;
2523 	nblocks = (cmd->cdw12 & 0xFFFF) + 1;
2524 	bytes = nblocks << nvstore->sectsz_bits;
2525 	if (bytes > NVME_MAX_DATA_SIZE) {
2526 		WPRINTF("%s command would exceed MDTS", __func__);
2527 		pci_nvme_status_genc(status, NVME_SC_INVALID_FIELD);
2528 		goto out;
2529 	}
2530 
2531 	if (pci_nvme_out_of_range(nvstore, lba, nblocks)) {
2532 		WPRINTF("%s command would exceed LBA range(slba=%#lx nblocks=%#lx)",
2533 		    __func__, lba, nblocks);
2534 		pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2535 		goto out;
2536 	}
2537 
2538 	offset = lba << nvstore->sectsz_bits;
2539 
2540 	req->bytes = bytes;
2541 	req->io_req.br_offset = lba;
2542 
2543 	/* PRP bits 1:0 must be zero */
2544 	cmd->prp1 &= ~0x3UL;
2545 	cmd->prp2 &= ~0x3UL;
2546 
2547 	if (nvstore->type == NVME_STOR_RAM) {
2548 		*status = nvme_write_read_ram(sc, nvstore, cmd->prp1,
2549 		    cmd->prp2, offset, bytes, is_write);
2550 	} else {
2551 		*status = nvme_write_read_blockif(sc, nvstore, req,
2552 		    cmd->prp1, cmd->prp2, offset, bytes, is_write);
2553 
2554 		if (*status == NVME_NO_STATUS)
2555 			pending = true;
2556 	}
2557 out:
2558 	if (!pending)
2559 		pci_nvme_stats_write_read_update(sc, cmd->opc, bytes, *status);
2560 
2561 	return (pending);
2562 }
2563 
2564 static void
2565 pci_nvme_dealloc_sm(struct blockif_req *br, int err)
2566 {
2567 	struct pci_nvme_ioreq *req = br->br_param;
2568 	struct pci_nvme_softc *sc = req->sc;
2569 	bool done = true;
2570 	uint16_t status;
2571 
2572 	status = 0;
2573 	if (err) {
2574 		pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR);
2575 	} else if ((req->prev_gpaddr + 1) == (req->prev_size)) {
2576 		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2577 	} else {
2578 		struct iovec *iov = req->io_req.br_iov;
2579 
2580 		req->prev_gpaddr++;
2581 		iov += req->prev_gpaddr;
2582 
2583 		/* The iov_* values already include the sector size */
2584 		req->io_req.br_offset = (off_t)iov->iov_base;
2585 		req->io_req.br_resid = iov->iov_len;
2586 		if (blockif_delete(sc->nvstore.ctx, &req->io_req)) {
2587 			pci_nvme_status_genc(&status,
2588 			    NVME_SC_INTERNAL_DEVICE_ERROR);
2589 		} else
2590 			done = false;
2591 	}
2592 
2593 	if (done) {
2594 		pci_nvme_set_completion(sc, req->nvme_sq, req->sqid, req->cid,
2595 		    status);
2596 		pci_nvme_release_ioreq(sc, req);
2597 	}
2598 }
2599 
2600 static bool
2601 nvme_opc_dataset_mgmt(struct pci_nvme_softc *sc,
2602     struct nvme_command *cmd,
2603     struct pci_nvme_blockstore *nvstore,
2604     struct pci_nvme_ioreq *req,
2605     uint16_t *status)
2606 {
2607 	struct nvme_dsm_range *range = NULL;
2608 	uint32_t nr, r, non_zero, dr;
2609 	int err;
2610 	bool pending = false;
2611 
2612 	if ((sc->ctrldata.oncs & NVME_ONCS_DSM) == 0) {
2613 		pci_nvme_status_genc(status, NVME_SC_INVALID_OPCODE);
2614 		goto out;
2615 	}
2616 
2617 	nr = cmd->cdw10 & 0xff;
2618 
2619 	/* copy locally because a range entry could straddle PRPs */
2620 #ifdef	__FreeBSD__
2621 	range = calloc(1, NVME_MAX_DSM_TRIM);
2622 #else
2623 	_Static_assert(NVME_MAX_DSM_TRIM % sizeof(struct nvme_dsm_range) == 0,
2624 	    "NVME_MAX_DSM_TRIM is not a multiple of struct size");
2625 	range = calloc(NVME_MAX_DSM_TRIM / sizeof (*range), sizeof (*range));
2626 #endif
2627 	if (range == NULL) {
2628 		pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2629 		goto out;
2630 	}
2631 	nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, cmd->prp1, cmd->prp2,
2632 	    (uint8_t *)range, NVME_MAX_DSM_TRIM, NVME_COPY_FROM_PRP);
2633 
2634 	/* Check for invalid ranges and the number of non-zero lengths */
2635 	non_zero = 0;
2636 	for (r = 0; r <= nr; r++) {
2637 		if (pci_nvme_out_of_range(nvstore,
2638 		    range[r].starting_lba, range[r].length)) {
2639 			pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
2640 			goto out;
2641 		}
2642 		if (range[r].length != 0)
2643 			non_zero++;
2644 	}
2645 
2646 	if (cmd->cdw11 & NVME_DSM_ATTR_DEALLOCATE) {
2647 		size_t offset, bytes;
2648 		int sectsz_bits = sc->nvstore.sectsz_bits;
2649 
2650 		/*
2651 		 * DSM calls are advisory only, and compliant controllers
2652 		 * may choose to take no actions (i.e. return Success).
2653 		 */
2654 		if (!nvstore->deallocate) {
2655 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2656 			goto out;
2657 		}
2658 
2659 		/* If all ranges have a zero length, return Success */
2660 		if (non_zero == 0) {
2661 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
2662 			goto out;
2663 		}
2664 
2665 		if (req == NULL) {
2666 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2667 			goto out;
2668 		}
2669 
2670 		offset = range[0].starting_lba << sectsz_bits;
2671 		bytes = range[0].length << sectsz_bits;
2672 
2673 		/*
2674 		 * If the request is for more than a single range, store
2675 		 * the ranges in the br_iov. Optimize for the common case
2676 		 * of a single range.
2677 		 *
2678 		 * Note that NVMe Number of Ranges is a zero based value
2679 		 */
2680 		req->io_req.br_iovcnt = 0;
2681 		req->io_req.br_offset = offset;
2682 		req->io_req.br_resid = bytes;
2683 
2684 		if (nr == 0) {
2685 			req->io_req.br_callback = pci_nvme_io_done;
2686 		} else {
2687 			struct iovec *iov = req->io_req.br_iov;
2688 
2689 			for (r = 0, dr = 0; r <= nr; r++) {
2690 				offset = range[r].starting_lba << sectsz_bits;
2691 				bytes = range[r].length << sectsz_bits;
2692 				if (bytes == 0)
2693 					continue;
2694 
2695 				if ((nvstore->size - offset) < bytes) {
2696 					pci_nvme_status_genc(status,
2697 					    NVME_SC_LBA_OUT_OF_RANGE);
2698 					goto out;
2699 				}
2700 				iov[dr].iov_base = (void *)offset;
2701 				iov[dr].iov_len = bytes;
2702 				dr++;
2703 			}
2704 			req->io_req.br_callback = pci_nvme_dealloc_sm;
2705 
2706 			/*
2707 			 * Use prev_gpaddr to track the current entry and
2708 			 * prev_size to track the number of entries
2709 			 */
2710 			req->prev_gpaddr = 0;
2711 			req->prev_size = dr;
2712 		}
2713 
2714 		err = blockif_delete(nvstore->ctx, &req->io_req);
2715 		if (err)
2716 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
2717 		else
2718 			pending = true;
2719 	}
2720 out:
2721 	free(range);
2722 	return (pending);
2723 }
2724 
2725 static void
2726 pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx)
2727 {
2728 	struct nvme_submission_queue *sq;
2729 	uint16_t status;
2730 	uint16_t sqhead;
2731 
2732 	/* handle all submissions up to sq->tail index */
2733 	sq = &sc->submit_queues[idx];
2734 
2735 	pthread_mutex_lock(&sq->mtx);
2736 
2737 	sqhead = sq->head;
2738 	DPRINTF("nvme_handle_io qid %u head %u tail %u cmdlist %p",
2739 	         idx, sqhead, sq->tail, sq->qbase);
2740 
2741 	while (sqhead != atomic_load_acq_short(&sq->tail)) {
2742 		struct nvme_command *cmd;
2743 		struct pci_nvme_ioreq *req;
2744 		uint32_t nsid;
2745 		bool pending;
2746 
2747 		pending = false;
2748 		req = NULL;
2749 		status = 0;
2750 
2751 		cmd = &sq->qbase[sqhead];
2752 		sqhead = (sqhead + 1) % sq->size;
2753 
2754 		nsid = le32toh(cmd->nsid);
2755 		if ((nsid == 0) || (nsid > sc->ctrldata.nn)) {
2756 			pci_nvme_status_genc(&status,
2757 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
2758 			status |= NVMEM(NVME_STATUS_DNR);
2759 			goto complete;
2760  		}
2761 
2762 		req = pci_nvme_get_ioreq(sc);
2763 		if (req == NULL) {
2764 			pci_nvme_status_genc(&status,
2765 			    NVME_SC_INTERNAL_DEVICE_ERROR);
2766 			WPRINTF("%s: unable to allocate IO req", __func__);
2767 			goto complete;
2768 		}
2769 		req->nvme_sq = sq;
2770 		req->sqid = idx;
2771 		req->opc = cmd->opc;
2772 		req->cid = cmd->cid;
2773 		req->nsid = cmd->nsid;
2774 
2775 		switch (cmd->opc) {
2776 		case NVME_OPC_FLUSH:
2777 			pending = nvme_opc_flush(sc, cmd, &sc->nvstore,
2778 			    req, &status);
2779  			break;
2780 		case NVME_OPC_WRITE:
2781 		case NVME_OPC_READ:
2782 			pending = nvme_opc_write_read(sc, cmd, &sc->nvstore,
2783 			    req, &status);
2784 			break;
2785 		case NVME_OPC_WRITE_ZEROES:
2786 			/* TODO: write zeroes
2787 			WPRINTF("%s write zeroes lba 0x%lx blocks %u",
2788 			        __func__, lba, cmd->cdw12 & 0xFFFF); */
2789 			pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
2790 			break;
2791 		case NVME_OPC_DATASET_MANAGEMENT:
2792  			pending = nvme_opc_dataset_mgmt(sc, cmd, &sc->nvstore,
2793 			    req, &status);
2794 			break;
2795  		default:
2796  			WPRINTF("%s unhandled io command 0x%x",
2797 			    __func__, cmd->opc);
2798 			pci_nvme_status_genc(&status, NVME_SC_INVALID_OPCODE);
2799 		}
2800 complete:
2801 		if (!pending) {
2802 			pci_nvme_set_completion(sc, sq, idx, cmd->cid, status);
2803 			if (req != NULL)
2804 				pci_nvme_release_ioreq(sc, req);
2805 		}
2806 	}
2807 
2808 	sq->head = sqhead;
2809 
2810 	pthread_mutex_unlock(&sq->mtx);
2811 }
2812 
2813 static void
2814 pci_nvme_handle_doorbell(struct pci_nvme_softc* sc,
2815 	uint64_t idx, int is_sq, uint64_t value)
2816 {
2817 	DPRINTF("nvme doorbell %lu, %s, val 0x%lx",
2818 	        idx, is_sq ? "SQ" : "CQ", value & 0xFFFF);
2819 
2820 	if (is_sq) {
2821 		if (idx > sc->num_squeues) {
2822 			WPRINTF("%s queue index %lu overflow from "
2823 			         "guest (max %u)",
2824 			         __func__, idx, sc->num_squeues);
2825 			return;
2826 		}
2827 
2828 		atomic_store_short(&sc->submit_queues[idx].tail,
2829 		                   (uint16_t)value);
2830 
2831 		if (idx == 0) {
2832 			pci_nvme_handle_admin_cmd(sc, value);
2833 		} else {
2834 			/* submission queue; handle new entries in SQ */
2835 			if (idx > sc->num_squeues) {
2836 				WPRINTF("%s SQ index %lu overflow from "
2837 				         "guest (max %u)",
2838 				         __func__, idx, sc->num_squeues);
2839 				return;
2840 			}
2841 			pci_nvme_handle_io_cmd(sc, (uint16_t)idx);
2842 		}
2843 	} else {
2844 		if (idx > sc->num_cqueues) {
2845 			WPRINTF("%s queue index %lu overflow from "
2846 			         "guest (max %u)",
2847 			         __func__, idx, sc->num_cqueues);
2848 			return;
2849 		}
2850 
2851 		atomic_store_short(&sc->compl_queues[idx].head,
2852 				(uint16_t)value);
2853 	}
2854 }
2855 
2856 static void
2857 pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite)
2858 {
2859 	const char *s = iswrite ? "WRITE" : "READ";
2860 
2861 	switch (offset) {
2862 	case NVME_CR_CAP_LOW:
2863 		DPRINTF("%s %s NVME_CR_CAP_LOW", func, s);
2864 		break;
2865 	case NVME_CR_CAP_HI:
2866 		DPRINTF("%s %s NVME_CR_CAP_HI", func, s);
2867 		break;
2868 	case NVME_CR_VS:
2869 		DPRINTF("%s %s NVME_CR_VS", func, s);
2870 		break;
2871 	case NVME_CR_INTMS:
2872 		DPRINTF("%s %s NVME_CR_INTMS", func, s);
2873 		break;
2874 	case NVME_CR_INTMC:
2875 		DPRINTF("%s %s NVME_CR_INTMC", func, s);
2876 		break;
2877 	case NVME_CR_CC:
2878 		DPRINTF("%s %s NVME_CR_CC", func, s);
2879 		break;
2880 	case NVME_CR_CSTS:
2881 		DPRINTF("%s %s NVME_CR_CSTS", func, s);
2882 		break;
2883 	case NVME_CR_NSSR:
2884 		DPRINTF("%s %s NVME_CR_NSSR", func, s);
2885 		break;
2886 	case NVME_CR_AQA:
2887 		DPRINTF("%s %s NVME_CR_AQA", func, s);
2888 		break;
2889 	case NVME_CR_ASQ_LOW:
2890 		DPRINTF("%s %s NVME_CR_ASQ_LOW", func, s);
2891 		break;
2892 	case NVME_CR_ASQ_HI:
2893 		DPRINTF("%s %s NVME_CR_ASQ_HI", func, s);
2894 		break;
2895 	case NVME_CR_ACQ_LOW:
2896 		DPRINTF("%s %s NVME_CR_ACQ_LOW", func, s);
2897 		break;
2898 	case NVME_CR_ACQ_HI:
2899 		DPRINTF("%s %s NVME_CR_ACQ_HI", func, s);
2900 		break;
2901 	default:
2902 		DPRINTF("unknown nvme bar-0 offset 0x%lx", offset);
2903 	}
2904 
2905 }
2906 
2907 static void
2908 pci_nvme_write_bar_0(struct pci_nvme_softc *sc, uint64_t offset, int size,
2909     uint64_t value)
2910 {
2911 	uint32_t ccreg;
2912 
2913 	if (offset >= NVME_DOORBELL_OFFSET) {
2914 		uint64_t belloffset = offset - NVME_DOORBELL_OFFSET;
2915 		uint64_t idx = belloffset / 8; /* door bell size = 2*int */
2916 		int is_sq = (belloffset % 8) < 4;
2917 
2918 		if ((sc->regs.csts & NVME_CSTS_RDY) == 0) {
2919 			WPRINTF("doorbell write prior to RDY (offset=%#lx)\n",
2920 			    offset);
2921 			return;
2922 		}
2923 
2924 		if (belloffset > ((sc->max_queues+1) * 8 - 4)) {
2925 			WPRINTF("guest attempted an overflow write offset "
2926 			         "0x%lx, val 0x%lx in %s",
2927 			         offset, value, __func__);
2928 			return;
2929 		}
2930 
2931 		if (is_sq) {
2932 			if (sc->submit_queues[idx].qbase == NULL)
2933 				return;
2934 		} else if (sc->compl_queues[idx].qbase == NULL)
2935 			return;
2936 
2937 		pci_nvme_handle_doorbell(sc, idx, is_sq, value);
2938 		return;
2939 	}
2940 
2941 	DPRINTF("nvme-write offset 0x%lx, size %d, value 0x%lx",
2942 	        offset, size, value);
2943 
2944 	if (size != 4) {
2945 		WPRINTF("guest wrote invalid size %d (offset 0x%lx, "
2946 		         "val 0x%lx) to bar0 in %s",
2947 		         size, offset, value, __func__);
2948 		/* TODO: shutdown device */
2949 		return;
2950 	}
2951 
2952 	pci_nvme_bar0_reg_dumps(__func__, offset, 1);
2953 
2954 	pthread_mutex_lock(&sc->mtx);
2955 
2956 	switch (offset) {
2957 	case NVME_CR_CAP_LOW:
2958 	case NVME_CR_CAP_HI:
2959 		/* readonly */
2960 		break;
2961 	case NVME_CR_VS:
2962 		/* readonly */
2963 		break;
2964 	case NVME_CR_INTMS:
2965 		/* MSI-X, so ignore */
2966 		break;
2967 	case NVME_CR_INTMC:
2968 		/* MSI-X, so ignore */
2969 		break;
2970 	case NVME_CR_CC:
2971 		ccreg = (uint32_t)value;
2972 
2973 		DPRINTF("%s NVME_CR_CC en %x css %x shn %x iosqes %u "
2974 		         "iocqes %u",
2975 		        __func__,
2976 			 NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg),
2977 			 NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg),
2978 			 NVME_CC_GET_IOCQES(ccreg));
2979 
2980 		if (NVME_CC_GET_SHN(ccreg)) {
2981 			/* perform shutdown - flush out data to backend */
2982 			sc->regs.csts &= ~NVMEM(NVME_CSTS_REG_SHST);
2983 			sc->regs.csts |= NVMEF(NVME_CSTS_REG_SHST,
2984 			    NVME_SHST_COMPLETE);
2985 		}
2986 		if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) {
2987 			if (NVME_CC_GET_EN(ccreg) == 0)
2988 				/* transition 1-> causes controller reset */
2989 				pci_nvme_reset_locked(sc);
2990 			else
2991 				pci_nvme_init_controller(sc);
2992 		}
2993 
2994 		/* Insert the iocqes, iosqes and en bits from the write */
2995 		sc->regs.cc &= ~NVME_CC_WRITE_MASK;
2996 		sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK;
2997 		if (NVME_CC_GET_EN(ccreg) == 0) {
2998 			/* Insert the ams, mps and css bit fields */
2999 			sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK;
3000 			sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK;
3001 			sc->regs.csts &= ~NVME_CSTS_RDY;
3002 		} else if ((sc->pending_ios == 0) &&
3003 		    !(sc->regs.csts & NVME_CSTS_CFS)) {
3004 			sc->regs.csts |= NVME_CSTS_RDY;
3005 		}
3006 		break;
3007 	case NVME_CR_CSTS:
3008 		break;
3009 	case NVME_CR_NSSR:
3010 		/* ignore writes; don't support subsystem reset */
3011 		break;
3012 	case NVME_CR_AQA:
3013 		sc->regs.aqa = (uint32_t)value;
3014 		break;
3015 	case NVME_CR_ASQ_LOW:
3016 		sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) |
3017 		               (0xFFFFF000 & value);
3018 		break;
3019 	case NVME_CR_ASQ_HI:
3020 		sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) |
3021 		               (value << 32);
3022 		break;
3023 	case NVME_CR_ACQ_LOW:
3024 		sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) |
3025 		               (0xFFFFF000 & value);
3026 		break;
3027 	case NVME_CR_ACQ_HI:
3028 		sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) |
3029 		               (value << 32);
3030 		break;
3031 	default:
3032 		DPRINTF("%s unknown offset 0x%lx, value 0x%lx size %d",
3033 		         __func__, offset, value, size);
3034 	}
3035 	pthread_mutex_unlock(&sc->mtx);
3036 }
3037 
3038 static void
3039 pci_nvme_write(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
3040     uint64_t value)
3041 {
3042 	struct pci_nvme_softc* sc = pi->pi_arg;
3043 
3044 	if (baridx == pci_msix_table_bar(pi) ||
3045 	    baridx == pci_msix_pba_bar(pi)) {
3046 		DPRINTF("nvme-write baridx %d, msix: off 0x%lx, size %d, "
3047 		         " value 0x%lx", baridx, offset, size, value);
3048 
3049 		pci_emul_msix_twrite(pi, offset, size, value);
3050 		return;
3051 	}
3052 
3053 	switch (baridx) {
3054 	case 0:
3055 		pci_nvme_write_bar_0(sc, offset, size, value);
3056 		break;
3057 
3058 	default:
3059 		DPRINTF("%s unknown baridx %d, val 0x%lx",
3060 		         __func__, baridx, value);
3061 	}
3062 }
3063 
3064 static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc,
3065 	uint64_t offset, int size)
3066 {
3067 	uint64_t value;
3068 
3069 	pci_nvme_bar0_reg_dumps(__func__, offset, 0);
3070 
3071 	if (offset < NVME_DOORBELL_OFFSET) {
3072 		void *p = &(sc->regs);
3073 		pthread_mutex_lock(&sc->mtx);
3074 		memcpy(&value, (void *)((uintptr_t)p + offset), size);
3075 		pthread_mutex_unlock(&sc->mtx);
3076 	} else {
3077 		value = 0;
3078                 WPRINTF("pci_nvme: read invalid offset %ld", offset);
3079 	}
3080 
3081 	switch (size) {
3082 	case 1:
3083 		value &= 0xFF;
3084 		break;
3085 	case 2:
3086 		value &= 0xFFFF;
3087 		break;
3088 	case 4:
3089 		value &= 0xFFFFFFFF;
3090 		break;
3091 	}
3092 
3093 	DPRINTF("   nvme-read offset 0x%lx, size %d -> value 0x%x",
3094 	         offset, size, (uint32_t)value);
3095 
3096 	return (value);
3097 }
3098 
3099 
3100 
3101 static uint64_t
3102 pci_nvme_read(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
3103 {
3104 	struct pci_nvme_softc* sc = pi->pi_arg;
3105 
3106 	if (baridx == pci_msix_table_bar(pi) ||
3107 	    baridx == pci_msix_pba_bar(pi)) {
3108 		DPRINTF("nvme-read bar: %d, msix: regoff 0x%lx, size %d",
3109 		        baridx, offset, size);
3110 
3111 		return pci_emul_msix_tread(pi, offset, size);
3112 	}
3113 
3114 	switch (baridx) {
3115 	case 0:
3116        		return pci_nvme_read_bar_0(sc, offset, size);
3117 
3118 	default:
3119 		DPRINTF("unknown bar %d, 0x%lx", baridx, offset);
3120 	}
3121 
3122 	return (0);
3123 }
3124 
3125 static int
3126 pci_nvme_parse_config(struct pci_nvme_softc *sc, nvlist_t *nvl)
3127 {
3128 	char bident[sizeof("XXX:XXX")];
3129 	const char *value;
3130 	uint32_t sectsz;
3131 
3132 	sc->max_queues = NVME_QUEUES;
3133 	sc->max_qentries = NVME_MAX_QENTRIES;
3134 	sc->ioslots = NVME_IOSLOTS;
3135 	sc->num_squeues = sc->max_queues;
3136 	sc->num_cqueues = sc->max_queues;
3137 	sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3138 	sectsz = 0;
3139 #ifdef	__FreeBSD__
3140 	snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
3141 	         "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3142 #else
3143 	snprintf((char *)sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
3144 	         "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3145 #endif
3146 
3147 	value = get_config_value_node(nvl, "maxq");
3148 	if (value != NULL)
3149 		sc->max_queues = atoi(value);
3150 	value = get_config_value_node(nvl, "qsz");
3151 	if (value != NULL) {
3152 		sc->max_qentries = atoi(value);
3153 		if (sc->max_qentries <= 0) {
3154 			EPRINTLN("nvme: Invalid qsz option %d",
3155 			    sc->max_qentries);
3156 			return (-1);
3157 		}
3158 	}
3159 	value = get_config_value_node(nvl, "ioslots");
3160 	if (value != NULL) {
3161 		sc->ioslots = atoi(value);
3162 		if (sc->ioslots <= 0) {
3163 			EPRINTLN("Invalid ioslots option %d", sc->ioslots);
3164 			return (-1);
3165 		}
3166 	}
3167 	value = get_config_value_node(nvl, "sectsz");
3168 	if (value != NULL)
3169 		sectsz = atoi(value);
3170 	value = get_config_value_node(nvl, "ser");
3171 	if (value != NULL) {
3172 		/*
3173 		 * This field indicates the Product Serial Number in
3174 		 * 7-bit ASCII, unused bytes should be space characters.
3175 		 * Ref: NVMe v1.3c.
3176 		 */
3177 		cpywithpad((char *)sc->ctrldata.sn,
3178 		    sizeof(sc->ctrldata.sn), value, ' ');
3179 	}
3180 	value = get_config_value_node(nvl, "eui64");
3181 	if (value != NULL)
3182 		sc->nvstore.eui64 = htobe64(strtoull(value, NULL, 0));
3183 	value = get_config_value_node(nvl, "dsm");
3184 	if (value != NULL) {
3185 		if (strcmp(value, "auto") == 0)
3186 			sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
3187 		else if (strcmp(value, "enable") == 0)
3188 			sc->dataset_management = NVME_DATASET_MANAGEMENT_ENABLE;
3189 		else if (strcmp(value, "disable") == 0)
3190 			sc->dataset_management = NVME_DATASET_MANAGEMENT_DISABLE;
3191 	}
3192 
3193 	value = get_config_value_node(nvl, "bootindex");
3194 	if (value != NULL) {
3195 		if (pci_emul_add_boot_device(sc->nsc_pi, atoi(value))) {
3196 			EPRINTLN("Invalid bootindex %d", atoi(value));
3197 			return (-1);
3198 		}
3199 	}
3200 
3201 	value = get_config_value_node(nvl, "ram");
3202 	if (value != NULL) {
3203 		uint64_t sz = strtoull(value, NULL, 10);
3204 
3205 		sc->nvstore.type = NVME_STOR_RAM;
3206 		sc->nvstore.size = sz * 1024 * 1024;
3207 		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
3208 		sc->nvstore.sectsz = 4096;
3209 		sc->nvstore.sectsz_bits = 12;
3210 		if (sc->nvstore.ctx == NULL) {
3211 			EPRINTLN("nvme: Unable to allocate RAM");
3212 			return (-1);
3213 		}
3214 	} else {
3215 		snprintf(bident, sizeof(bident), "%u:%u",
3216 		    sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
3217 		sc->nvstore.ctx = blockif_open(nvl, bident);
3218 		if (sc->nvstore.ctx == NULL) {
3219 			EPRINTLN("nvme: Could not open backing file: %s",
3220 			    strerror(errno));
3221 			return (-1);
3222 		}
3223 		sc->nvstore.type = NVME_STOR_BLOCKIF;
3224 		sc->nvstore.size = blockif_size(sc->nvstore.ctx);
3225 	}
3226 
3227 	if (sectsz == 512 || sectsz == 4096 || sectsz == 8192)
3228 		sc->nvstore.sectsz = sectsz;
3229 	else if (sc->nvstore.type != NVME_STOR_RAM)
3230 		sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx);
3231 	for (sc->nvstore.sectsz_bits = 9;
3232 	     (1U << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz;
3233 	     sc->nvstore.sectsz_bits++);
3234 
3235 	if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES)
3236 		sc->max_queues = NVME_QUEUES;
3237 
3238 	return (0);
3239 }
3240 
3241 static void
3242 pci_nvme_resized(struct blockif_ctxt *bctxt __unused, void *arg,
3243     size_t new_size)
3244 {
3245 	struct pci_nvme_softc *sc;
3246 	struct pci_nvme_blockstore *nvstore;
3247 	struct nvme_namespace_data *nd;
3248 
3249 	sc = arg;
3250 	nvstore = &sc->nvstore;
3251 	nd = &sc->nsdata;
3252 
3253 	nvstore->size = new_size;
3254 	pci_nvme_init_nsdata_size(nvstore, nd);
3255 
3256 	/* Add changed NSID to list */
3257 	sc->ns_log.ns[0] = 1;
3258 	sc->ns_log.ns[1] = 0;
3259 
3260 	pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_NOTICE,
3261 	    PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED);
3262 }
3263 
3264 static int
3265 pci_nvme_init(struct pci_devinst *pi, nvlist_t *nvl)
3266 {
3267 	struct pci_nvme_softc *sc;
3268 	uint32_t pci_membar_sz;
3269 	int	error;
3270 
3271 	error = 0;
3272 
3273 	sc = calloc(1, sizeof(struct pci_nvme_softc));
3274 	pi->pi_arg = sc;
3275 	sc->nsc_pi = pi;
3276 
3277 	error = pci_nvme_parse_config(sc, nvl);
3278 	if (error < 0)
3279 		goto done;
3280 	else
3281 		error = 0;
3282 
3283 	STAILQ_INIT(&sc->ioreqs_free);
3284 	sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq));
3285 	for (uint32_t i = 0; i < sc->ioslots; i++) {
3286 		STAILQ_INSERT_TAIL(&sc->ioreqs_free, &sc->ioreqs[i], link);
3287 	}
3288 
3289 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A);
3290 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D);
3291 	pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE);
3292 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM);
3293 	pci_set_cfgdata8(pi, PCIR_PROGIF,
3294 	                 PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0);
3295 
3296 	/*
3297 	 * Allocate size of NVMe registers + doorbell space for all queues.
3298 	 *
3299 	 * The specification requires a minimum memory I/O window size of 16K.
3300 	 * The Windows driver will refuse to start a device with a smaller
3301 	 * window.
3302 	 */
3303 	pci_membar_sz = sizeof(struct nvme_registers) +
3304 	    2 * sizeof(uint32_t) * (sc->max_queues + 1);
3305 	pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN);
3306 
3307 	DPRINTF("nvme membar size: %u", pci_membar_sz);
3308 
3309 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz);
3310 	if (error) {
3311 		WPRINTF("%s pci alloc mem bar failed", __func__);
3312 		goto done;
3313 	}
3314 
3315 	error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR);
3316 	if (error) {
3317 		WPRINTF("%s pci add msixcap failed", __func__);
3318 		goto done;
3319 	}
3320 
3321 	error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP);
3322 	if (error) {
3323 		WPRINTF("%s pci add Express capability failed", __func__);
3324 		goto done;
3325 	}
3326 
3327 	pthread_mutex_init(&sc->mtx, NULL);
3328 	sem_init(&sc->iosemlock, 0, sc->ioslots);
3329 	blockif_register_resize_callback(sc->nvstore.ctx, pci_nvme_resized, sc);
3330 
3331 	pci_nvme_init_queues(sc, sc->max_queues, sc->max_queues);
3332 	/*
3333 	 * Controller data depends on Namespace data so initialize Namespace
3334 	 * data first.
3335 	 */
3336 	pci_nvme_init_nsdata(sc, &sc->nsdata, 1, &sc->nvstore);
3337 	pci_nvme_init_ctrldata(sc);
3338 	pci_nvme_init_logpages(sc);
3339 	pci_nvme_init_features(sc);
3340 
3341 	pci_nvme_aer_init(sc);
3342 	pci_nvme_aen_init(sc);
3343 
3344 	pci_nvme_reset(sc);
3345 done:
3346 	return (error);
3347 }
3348 
3349 static int
3350 pci_nvme_legacy_config(nvlist_t *nvl, const char *opts)
3351 {
3352 	char *cp, *ram;
3353 
3354 	if (opts == NULL)
3355 		return (0);
3356 
3357 	if (strncmp(opts, "ram=", 4) == 0) {
3358 		cp = strchr(opts, ',');
3359 		if (cp == NULL) {
3360 			set_config_value_node(nvl, "ram", opts + 4);
3361 			return (0);
3362 		}
3363 		ram = strndup(opts + 4, cp - opts - 4);
3364 		set_config_value_node(nvl, "ram", ram);
3365 		free(ram);
3366 		return (pci_parse_legacy_config(nvl, cp + 1));
3367 	} else
3368 		return (blockif_legacy_config(nvl, opts));
3369 }
3370 
3371 static const struct pci_devemu pci_de_nvme = {
3372 	.pe_emu =	"nvme",
3373 	.pe_init =	pci_nvme_init,
3374 	.pe_legacy_config = pci_nvme_legacy_config,
3375 	.pe_barwrite =	pci_nvme_write,
3376 	.pe_barread =	pci_nvme_read
3377 };
3378 PCI_EMUL_SET(pci_de_nvme);
3379