1 /* 2 * Copyright (c) 2014 Roger Pau Monné <royger@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * This multiboot implementation only implements a subset of the full 29 * multiboot specification in order to be able to boot Xen and a 30 * FreeBSD Dom0. Trying to use it to boot other multiboot compliant 31 * kernels will most surely fail. 32 * 33 * The full multiboot specification can be found here: 34 * http://www.gnu.org/software/grub/manual/multiboot/multiboot.html 35 */ 36 37 #include <sys/cdefs.h> 38 39 #include <sys/param.h> 40 #include <sys/exec.h> 41 #include <sys/linker.h> 42 #include <sys/module.h> 43 #include <sys/stdint.h> 44 #define _MACHINE_ELF_WANT_32BIT 45 #include <machine/elf.h> 46 #include <machine/metadata.h> 47 #include <machine/pc/bios.h> 48 #include <string.h> 49 #include <stand.h> 50 51 #include "bootstrap.h" 52 #include <sys/multiboot.h> 53 #include "vbe.h" 54 #include "libzfs.h" 55 #include "libi386.h" 56 #include "../btx/lib/btxv86.h" 57 58 #define SUPPORT_DHCP 59 #include <bootp.h> 60 61 #define MULTIBOOT_SUPPORTED_FLAGS \ 62 (MULTIBOOT_AOUT_KLUDGE|MULTIBOOT_PAGE_ALIGN|MULTIBOOT_MEMORY_INFO) 63 #define METADATA_FIXED_SIZE (PAGE_SIZE*4) 64 #define METADATA_MODULE_SIZE PAGE_SIZE 65 66 #define METADATA_RESV_SIZE(mod_num) \ 67 roundup(METADATA_FIXED_SIZE + METADATA_MODULE_SIZE * mod_num, PAGE_SIZE) 68 69 /* MB data heap pointer */ 70 static vm_offset_t last_addr; 71 72 static int multiboot_loadfile(char *, u_int64_t, struct preloaded_file **); 73 static int multiboot_exec(struct preloaded_file *); 74 75 static int multiboot_obj_loadfile(char *, u_int64_t, struct preloaded_file **); 76 static int multiboot_obj_exec(struct preloaded_file *fp); 77 78 struct file_format multiboot = { multiboot_loadfile, multiboot_exec }; 79 struct file_format multiboot_obj = 80 { multiboot_obj_loadfile, multiboot_obj_exec }; 81 82 static int 83 num_modules(struct preloaded_file *kfp) 84 { 85 struct kernel_module *kmp; 86 int mod_num = 0; 87 88 for (kmp = kfp->f_modules; kmp != NULL; kmp = kmp->m_next) 89 mod_num++; 90 91 return (mod_num); 92 } 93 94 static int 95 multiboot_loadfile(char *filename, u_int64_t dest, 96 struct preloaded_file **result) 97 { 98 uint32_t *magic; 99 int i, error; 100 caddr_t header_search; 101 ssize_t search_size; 102 int fd; 103 struct multiboot_header *header; 104 struct preloaded_file *fp; 105 106 if (filename == NULL) 107 return (EFTYPE); 108 109 /* is kernel already loaded? */ 110 fp = file_findfile(NULL, NULL); 111 if (fp != NULL) { 112 return (EFTYPE); 113 } 114 115 if ((fd = open(filename, O_RDONLY)) == -1) 116 return (errno); 117 118 /* 119 * Read MULTIBOOT_SEARCH size in order to search for the 120 * multiboot magic header. 121 */ 122 header_search = malloc(MULTIBOOT_SEARCH); 123 if (header_search == NULL) { 124 close(fd); 125 return (ENOMEM); 126 } 127 128 search_size = read(fd, header_search, MULTIBOOT_SEARCH); 129 magic = (uint32_t *)header_search; 130 131 header = NULL; 132 for (i = 0; i < (search_size / sizeof(uint32_t)); i++) { 133 if (magic[i] == MULTIBOOT_HEADER_MAGIC) { 134 header = (struct multiboot_header *)&magic[i]; 135 break; 136 } 137 } 138 139 if (header == NULL) { 140 error = EFTYPE; 141 goto out; 142 } 143 144 /* Valid multiboot header has been found, validate checksum */ 145 if (header->magic + header->flags + header->checksum != 0) { 146 printf( 147 "Multiboot checksum failed, magic: 0x%x flags: 0x%x checksum: 0x%x\n", 148 header->magic, header->flags, header->checksum); 149 error = EFTYPE; 150 goto out; 151 } 152 153 if ((header->flags & ~MULTIBOOT_SUPPORTED_FLAGS) != 0) { 154 printf("Unsupported multiboot flags found: 0x%x\n", 155 header->flags); 156 error = EFTYPE; 157 goto out; 158 } 159 /* AOUT KLUDGE means we just load entire flat file as blob */ 160 if (header->flags & MULTIBOOT_AOUT_KLUDGE) { 161 vm_offset_t laddr; 162 int got; 163 164 dest = header->load_addr; 165 if (lseek(fd, 0, SEEK_SET) == -1) { 166 printf("lseek failed\n"); 167 error = EIO; 168 goto out; 169 } 170 laddr = dest; 171 for (;;) { 172 got = archsw.arch_readin(fd, laddr, 4096); 173 if (got == 0) 174 break; 175 if (got < 0) { 176 printf("error reading: %s", strerror(errno)); 177 error = EIO; 178 goto out; 179 } 180 laddr += got; 181 } 182 183 fp = file_alloc(); 184 if (fp == NULL) { 185 error = ENOMEM; 186 goto out; 187 } 188 fp->f_name = strdup(filename); 189 fp->f_type = strdup("aout multiboot kernel"); 190 fp->f_addr = header->entry_addr; 191 fp->f_size = laddr - dest; 192 if (fp->f_size == 0) { 193 file_discard(fp); 194 error = EIO; 195 goto out; 196 } 197 fp->f_metadata = NULL; 198 error = 0; 199 } else { 200 error = elf32_loadfile_raw(filename, dest, &fp, 1); 201 if (error != 0) { 202 printf("elf32_loadfile_raw failed: %d unable to " 203 "load multiboot kernel\n", error); 204 goto out; 205 } 206 } 207 208 setenv("kernelname", fp->f_name, 1); 209 bios_addsmapdata(fp); 210 *result = fp; 211 out: 212 free(header_search); 213 close(fd); 214 return (error); 215 } 216 217 /* 218 * returns allocated virtual address from MB info area 219 */ 220 static vm_offset_t 221 mb_malloc(size_t n) 222 { 223 vm_offset_t ptr = last_addr; 224 if (ptr + n >= high_heap_base) 225 return (0); 226 last_addr = roundup(last_addr + n, MULTIBOOT_INFO_ALIGN); 227 return (ptr); 228 } 229 230 static int 231 multiboot_exec(struct preloaded_file *fp) 232 { 233 struct preloaded_file *mfp; 234 vm_offset_t entry; 235 struct file_metadata *md; 236 struct multiboot_info *mb_info = NULL; 237 struct multiboot_mod_list *mb_mod = NULL; 238 multiboot_memory_map_t *mmap; 239 struct bios_smap *smap; 240 struct devdesc *rootdev; 241 char *cmdline = NULL; 242 size_t len; 243 int error, num, i; 244 int rootfs = 0; /* flag for rootfs */ 245 int xen = 0; /* flag for xen */ 246 int kernel = 0; /* flag for kernel */ 247 248 /* Set up base for mb_malloc. */ 249 for (mfp = fp; mfp->f_next != NULL; mfp = mfp->f_next); 250 251 /* Start info block from new page. */ 252 last_addr = roundup(mfp->f_addr + mfp->f_size, MULTIBOOT_MOD_ALIGN); 253 254 /* Allocate the multiboot struct and fill the basic details. */ 255 mb_info = (struct multiboot_info *)PTOV(mb_malloc(sizeof (*mb_info))); 256 257 bzero(mb_info, sizeof(struct multiboot_info)); 258 mb_info->flags = MULTIBOOT_INFO_MEMORY|MULTIBOOT_INFO_BOOT_LOADER_NAME; 259 mb_info->mem_lower = bios_basemem / 1024; 260 mb_info->mem_upper = bios_extmem / 1024; 261 mb_info->boot_loader_name = mb_malloc(strlen(bootprog_info) + 1); 262 263 i386_copyin(bootprog_info, mb_info->boot_loader_name, 264 strlen(bootprog_info) + 1); 265 266 i386_getdev((void **)(&rootdev), NULL, NULL); 267 if (rootdev == NULL) { 268 printf("can't determine root device\n"); 269 error = EINVAL; 270 goto error; 271 } 272 273 /* 274 * Boot image command line. If args were not provided, we need to set 275 * args here, and that depends on image type... 276 * Fortunately we only have following options: 277 * 64 or 32 bit unix or xen. So we just check if f_name has unix. 278 */ 279 /* Do we boot xen? */ 280 if (strstr(fp->f_name, "unix") == NULL) 281 xen = 1; 282 283 entry = fp->f_addr; 284 285 num = 0; 286 for (mfp = fp->f_next; mfp != NULL; mfp = mfp->f_next) { 287 num++; 288 if (mfp->f_type != NULL && strcmp(mfp->f_type, "rootfs") == 0) 289 rootfs++; 290 if (mfp->f_type != NULL && strcmp(mfp->f_type, "kernel") == 0) 291 kernel++; 292 } 293 294 if (num == 0 || rootfs == 0) { 295 /* We need at least one module - rootfs. */ 296 printf("No rootfs module provided, aborting\n"); 297 error = EINVAL; 298 goto error; 299 } 300 if (xen == 1 && kernel == 0) { 301 printf("No kernel module provided for xen, aborting\n"); 302 error = EINVAL; 303 goto error; 304 } 305 mb_mod = (struct multiboot_mod_list *) PTOV(last_addr); 306 last_addr += roundup(sizeof(*mb_mod) * num, MULTIBOOT_INFO_ALIGN); 307 308 bzero(mb_mod, sizeof(*mb_mod) * num); 309 310 num = 0; 311 for (mfp = fp->f_next; mfp != NULL; mfp = mfp->f_next) { 312 mb_mod[num].mod_start = mfp->f_addr; 313 mb_mod[num].mod_end = mfp->f_addr + mfp->f_size; 314 315 if (strcmp(mfp->f_type, "kernel") == 0) { 316 cmdline = NULL; 317 error = mb_kernel_cmdline(mfp, rootdev, &cmdline); 318 if (error != 0) 319 goto error; 320 } else { 321 len = strlen(mfp->f_name) + 1; 322 len += strlen(mfp->f_type) + 5 + 1; 323 if (mfp->f_args != NULL) { 324 len += strlen(mfp->f_args) + 1; 325 } 326 cmdline = malloc(len); 327 if (cmdline == NULL) { 328 error = ENOMEM; 329 goto error; 330 } 331 332 if (mfp->f_args != NULL) 333 snprintf(cmdline, len, "%s type=%s %s", 334 mfp->f_name, mfp->f_type, mfp->f_args); 335 else 336 snprintf(cmdline, len, "%s type=%s", 337 mfp->f_name, mfp->f_type); 338 } 339 340 mb_mod[num].cmdline = mb_malloc(strlen(cmdline)+1); 341 i386_copyin(cmdline, mb_mod[num].cmdline, strlen(cmdline)+1); 342 free(cmdline); 343 num++; 344 } 345 346 mb_info->mods_count = num; 347 mb_info->mods_addr = VTOP(mb_mod); 348 mb_info->flags |= MULTIBOOT_INFO_MODS; 349 350 md = file_findmetadata(fp, MODINFOMD_SMAP); 351 if (md == NULL) { 352 printf("no memory smap\n"); 353 error = EINVAL; 354 goto error; 355 } 356 357 num = md->md_size / sizeof(struct bios_smap); /* number of entries */ 358 mmap = (multiboot_memory_map_t *)PTOV(mb_malloc(sizeof(*mmap) * num)); 359 360 mb_info->mmap_length = num * sizeof(*mmap); 361 smap = (struct bios_smap *)md->md_data; 362 363 for (i = 0; i < num; i++) { 364 mmap[i].size = sizeof(*smap); 365 mmap[i].addr = smap[i].base; 366 mmap[i].len = smap[i].length; 367 mmap[i].type = smap[i].type; 368 } 369 mb_info->mmap_addr = VTOP(mmap); 370 mb_info->flags |= MULTIBOOT_INFO_MEM_MAP; 371 372 if (strstr(getenv("loaddev"), "net") != NULL && 373 bootp_response != NULL) { 374 mb_info->drives_length = bootp_response_size; 375 mb_info->drives_addr = mb_malloc(bootp_response_size); 376 i386_copyin(bootp_response, mb_info->drives_addr, 377 bootp_response_size); 378 mb_info->flags &= ~MULTIBOOT_INFO_DRIVE_INFO; 379 } 380 /* 381 * Set the image command line. Need to do this as last thing, 382 * as illumos kernel dboot_startkern will check cmdline 383 * address as last check to find first free address. 384 */ 385 if (fp->f_args == NULL) { 386 if (xen) 387 cmdline = getenv("xen_cmdline"); 388 else 389 cmdline = getenv("boot-args"); 390 if (cmdline != NULL) { 391 fp->f_args = strdup(cmdline); 392 if (fp->f_args == NULL) { 393 error = ENOMEM; 394 goto error; 395 } 396 } 397 } 398 399 /* 400 * If the image is xen, we just use f_name + f_args for commandline 401 * for unix, we need to add zfs-bootfs. 402 */ 403 if (xen) { 404 len = strlen(fp->f_name) + 1; 405 if (fp->f_args != NULL) 406 len += strlen(fp->f_args) + 1; 407 408 if (fp->f_args != NULL) { 409 if((cmdline = malloc(len)) == NULL) { 410 error = ENOMEM; 411 goto error; 412 } 413 snprintf(cmdline, len, "%s %s", fp->f_name, fp->f_args); 414 } else { 415 cmdline = strdup(fp->f_name); 416 if (cmdline == NULL) { 417 error = ENOMEM; 418 goto error; 419 } 420 } 421 } else { 422 cmdline = NULL; 423 if ((error = mb_kernel_cmdline(fp, rootdev, &cmdline)) != 0) 424 goto error; 425 } 426 427 mb_info->cmdline = mb_malloc(strlen(cmdline)+1); 428 i386_copyin(cmdline, mb_info->cmdline, strlen(cmdline)+1); 429 mb_info->flags |= MULTIBOOT_INFO_CMDLINE; 430 free(cmdline); 431 cmdline = NULL; 432 433 /* make sure we have text mode */ 434 bios_set_text_mode(VGA_TEXT_MODE); 435 436 dev_cleanup(); 437 __exec((void *)VTOP(multiboot_tramp), MULTIBOOT_BOOTLOADER_MAGIC, 438 (void *)entry, (void *)VTOP(mb_info)); 439 440 panic("exec returned"); 441 442 error: 443 free(cmdline); 444 return (error); 445 } 446 447 static int 448 multiboot_obj_loadfile(char *filename, u_int64_t dest, 449 struct preloaded_file **result) 450 { 451 struct preloaded_file *mfp, *kfp, *rfp; 452 int error, mod_num; 453 454 /* See if there's a aout multiboot kernel loaded */ 455 mfp = file_findfile(NULL, "aout multiboot kernel"); 456 if (mfp != NULL) { 457 /* we have normal kernel loaded, add module */ 458 rfp = file_loadraw(filename, "module", 0, NULL, 0); 459 if (rfp == NULL) { 460 printf( 461 "Unable to load %s as a multiboot payload module\n", 462 filename); 463 return (EINVAL); 464 } 465 rfp->f_size = roundup(rfp->f_size, PAGE_SIZE); 466 *result = rfp; 467 return (0); 468 } 469 470 /* See if there's a multiboot kernel loaded */ 471 mfp = file_findfile(NULL, "elf multiboot kernel"); 472 if (mfp == NULL) { 473 return (EFTYPE); /* this allows to check other methods */ 474 } 475 476 /* 477 * We have a multiboot kernel loaded, see if there's a 478 * kernel loaded also. 479 */ 480 kfp = file_findfile(NULL, "elf kernel"); 481 if (kfp == NULL) { 482 /* 483 * No kernel loaded, this must be it. The kernel has to 484 * be loaded as a raw file, it will be processed by 485 * Xen and correctly loaded as an ELF file. 486 */ 487 rfp = file_loadraw(filename, "elf kernel", 0, NULL, 0); 488 if (rfp == NULL) { 489 printf( 490 "Unable to load %s as a multiboot payload kernel\n", 491 filename); 492 return (EINVAL); 493 } 494 495 /* Load kernel metadata... */ 496 setenv("kernelname", filename, 1); 497 error = elf64_load_modmetadata(rfp, rfp->f_addr + rfp->f_size); 498 if (error) { 499 printf("Unable to load kernel %s metadata error: %d\n", 500 rfp->f_name, error); 501 return (EINVAL); 502 } 503 504 /* 505 * Save space at the end of the kernel in order to place 506 * the metadata information. We do an approximation of the 507 * max metadata size, this is not optimal but it's probably 508 * the best we can do at this point. Once all modules are 509 * loaded and the size of the metadata is known this 510 * space will be recovered if not used. 511 */ 512 mod_num = num_modules(rfp); 513 rfp->f_size = roundup(rfp->f_size, PAGE_SIZE); 514 rfp->f_size += METADATA_RESV_SIZE(mod_num); 515 *result = rfp; 516 } else { 517 /* The rest should be loaded as regular modules */ 518 error = elf64_obj_loadfile(filename, dest, result); 519 if (error != 0) { 520 printf("Unable to load %s as an object file, error: %d", 521 filename, error); 522 return (error); 523 } 524 } 525 526 return (0); 527 } 528 529 static int 530 multiboot_obj_exec(struct preloaded_file *fp __unused) 531 { 532 533 return (EFTYPE); 534 } 535