1 /*- 2 * Copyright (c) 1998 Michael Smith <msmith@freebsd.org> 3 * Copyright (c) 1998 Peter Wemm <peter@freebsd.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/exec.h> 33 #include <sys/linker.h> 34 #include <sys/module.h> 35 #include <sys/stdint.h> 36 #include <string.h> 37 #include <machine/elf.h> 38 #include <stand.h> 39 #define FREEBSD_ELF 40 #include <link.h> 41 42 #include "bootstrap.h" 43 44 #define COPYOUT(s,d,l) archsw.arch_copyout((vm_offset_t)(s), d, l) 45 46 #if defined(__i386__) && __ELF_WORD_SIZE == 64 47 #undef ELF_TARG_CLASS 48 #undef ELF_TARG_MACH 49 #define ELF_TARG_CLASS ELFCLASS64 50 #define ELF_TARG_MACH EM_X86_64 51 #endif 52 53 typedef struct elf_file { 54 Elf_Phdr *ph; 55 Elf_Ehdr *ehdr; 56 Elf_Sym *symtab; 57 Elf_Hashelt *hashtab; 58 Elf_Hashelt nbuckets; 59 Elf_Hashelt nchains; 60 Elf_Hashelt *buckets; 61 Elf_Hashelt *chains; 62 Elf_Rel *rel; 63 size_t relsz; 64 Elf_Rela *rela; 65 size_t relasz; 66 char *strtab; 67 size_t strsz; 68 int fd; 69 caddr_t firstpage; 70 size_t firstlen; 71 int kernel; 72 u_int64_t off; 73 } *elf_file_t; 74 75 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef, u_int64_t loadaddr); 76 static int __elfN(lookup_symbol)(struct preloaded_file *mp, elf_file_t ef, const char* name, Elf_Sym* sym); 77 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, 78 Elf_Addr p, void *val, size_t len); 79 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef, 80 Elf_Addr p_start, Elf_Addr p_end); 81 static symaddr_fn __elfN(symaddr); 82 static char *fake_modname(const char *name); 83 84 const char *__elfN(kerneltype) = "elf kernel"; 85 const char *__elfN(moduletype) = "elf module"; 86 87 u_int64_t __elfN(relocation_offset) = 0; 88 89 static int 90 __elfN(load_elf_header)(char *filename, elf_file_t ef) 91 { 92 ssize_t bytes_read; 93 Elf_Ehdr *ehdr; 94 int err; 95 96 /* 97 * Open the image, read and validate the ELF header 98 */ 99 if (filename == NULL) /* can't handle nameless */ 100 return (EFTYPE); 101 if ((ef->fd = open(filename, O_RDONLY)) == -1) 102 return (errno); 103 ef->firstpage = malloc(PAGE_SIZE); 104 if (ef->firstpage == NULL) { 105 close(ef->fd); 106 return (ENOMEM); 107 } 108 bytes_read = read(ef->fd, ef->firstpage, PAGE_SIZE); 109 ef->firstlen = (size_t)bytes_read; 110 if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) { 111 err = EFTYPE; /* could be EIO, but may be small file */ 112 goto error; 113 } 114 ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage; 115 116 /* Is it ELF? */ 117 if (!IS_ELF(*ehdr)) { 118 err = EFTYPE; 119 goto error; 120 } 121 if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */ 122 ehdr->e_ident[EI_DATA] != ELF_TARG_DATA || 123 ehdr->e_ident[EI_VERSION] != EV_CURRENT || /* Version ? */ 124 ehdr->e_version != EV_CURRENT || 125 ehdr->e_machine != ELF_TARG_MACH) { /* Machine ? */ 126 err = EFTYPE; 127 goto error; 128 } 129 130 return (0); 131 132 error: 133 if (ef->firstpage != NULL) { 134 free(ef->firstpage); 135 ef->firstpage = NULL; 136 } 137 if (ef->fd != -1) { 138 close(ef->fd); 139 ef->fd = -1; 140 } 141 return (err); 142 } 143 144 /* 145 * Attempt to load the file (file) as an ELF module. It will be stored at 146 * (dest), and a pointer to a module structure describing the loaded object 147 * will be saved in (result). 148 */ 149 int 150 __elfN(loadfile)(char *filename, u_int64_t dest, struct preloaded_file **result) 151 { 152 return (__elfN(loadfile_raw)(filename, dest, result, 0)); 153 } 154 155 int 156 __elfN(loadfile_raw)(char *filename, u_int64_t dest, 157 struct preloaded_file **result, int multiboot) 158 { 159 struct preloaded_file *fp, *kfp; 160 struct elf_file ef; 161 Elf_Ehdr *ehdr; 162 int err; 163 164 fp = NULL; 165 bzero(&ef, sizeof(struct elf_file)); 166 ef.fd = -1; 167 168 err = __elfN(load_elf_header)(filename, &ef); 169 if (err != 0) 170 return (err); 171 172 ehdr = ef.ehdr; 173 174 /* 175 * Check to see what sort of module we are. 176 */ 177 kfp = file_findfile(NULL, __elfN(kerneltype)); 178 #ifdef __powerpc__ 179 /* 180 * Kernels can be ET_DYN, so just assume the first loaded object is the 181 * kernel. This assumption will be checked later. 182 */ 183 if (kfp == NULL) 184 ef.kernel = 1; 185 #endif 186 if (ef.kernel || ehdr->e_type == ET_EXEC) { 187 /* Looks like a kernel */ 188 if (kfp != NULL) { 189 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: kernel already loaded\n"); 190 err = EPERM; 191 goto oerr; 192 } 193 /* 194 * Calculate destination address based on kernel entrypoint. 195 * 196 * For ARM, the destination address is independent of any values in the 197 * elf header (an ARM kernel can be loaded at any 2MB boundary), so we 198 * leave dest set to the value calculated by archsw.arch_loadaddr() and 199 * passed in to this function. 200 */ 201 #ifndef __arm__ 202 if (ehdr->e_type == ET_EXEC) 203 dest = (ehdr->e_entry & ~PAGE_MASK); 204 #endif 205 if ((ehdr->e_entry & ~PAGE_MASK) == 0) { 206 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: not a kernel (maybe static binary?)\n"); 207 err = EPERM; 208 goto oerr; 209 } 210 ef.kernel = 1; 211 212 } else if (ehdr->e_type == ET_DYN) { 213 /* Looks like a kld module */ 214 if (multiboot != 0) { 215 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module as multiboot\n"); 216 err = EPERM; 217 goto oerr; 218 } 219 if (kfp == NULL) { 220 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module before kernel\n"); 221 err = EPERM; 222 goto oerr; 223 } 224 if (strcmp(__elfN(kerneltype), kfp->f_type)) { 225 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: can't load module with kernel type '%s'\n", kfp->f_type); 226 err = EPERM; 227 goto oerr; 228 } 229 /* Looks OK, got ahead */ 230 ef.kernel = 0; 231 232 } else { 233 err = EFTYPE; 234 goto oerr; 235 } 236 237 if (archsw.arch_loadaddr != NULL) 238 dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest); 239 else 240 dest = roundup(dest, PAGE_SIZE); 241 242 /* 243 * Ok, we think we should handle this. 244 */ 245 fp = file_alloc(); 246 if (fp == NULL) { 247 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadfile: cannot allocate module info\n"); 248 err = EPERM; 249 goto out; 250 } 251 if (ef.kernel == 1 && multiboot == 0) 252 setenv("kernelname", filename, 1); 253 fp->f_name = strdup(filename); 254 if (multiboot == 0) { 255 fp->f_type = strdup(ef.kernel ? 256 __elfN(kerneltype) : __elfN(moduletype)); 257 } else { 258 if (multiboot == 1) 259 fp->f_type = strdup("elf multiboot kernel"); 260 else 261 fp->f_type = strdup("elf multiboot2 kernel"); 262 } 263 264 #ifdef ELF_VERBOSE 265 if (ef.kernel) 266 printf("%s entry at 0x%jx\n", filename, (uintmax_t)ehdr->e_entry); 267 #else 268 printf("%s ", filename); 269 #endif 270 271 fp->f_size = __elfN(loadimage)(fp, &ef, dest); 272 if (fp->f_size == 0 || fp->f_addr == 0) 273 goto ioerr; 274 275 /* save exec header as metadata */ 276 file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr); 277 278 /* Load OK, return module pointer */ 279 *result = (struct preloaded_file *)fp; 280 err = 0; 281 goto out; 282 283 ioerr: 284 err = EIO; 285 oerr: 286 file_discard(fp); 287 out: 288 if (ef.firstpage) 289 free(ef.firstpage); 290 if (ef.fd != -1) 291 close(ef.fd); 292 return(err); 293 } 294 295 /* 296 * With the file (fd) open on the image, and (ehdr) containing 297 * the Elf header, load the image at (off) 298 */ 299 static int 300 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, u_int64_t off) 301 { 302 int i; 303 u_int j; 304 Elf_Ehdr *ehdr; 305 Elf_Phdr *phdr, *php; 306 Elf_Shdr *shdr; 307 char *shstr; 308 int ret; 309 vm_offset_t firstaddr; 310 vm_offset_t lastaddr; 311 size_t chunk; 312 ssize_t result; 313 Elf_Addr ssym, esym; 314 Elf_Dyn *dp; 315 Elf_Addr adp; 316 Elf_Addr ctors; 317 int ndp; 318 int symstrindex; 319 int symtabindex; 320 Elf_Size size; 321 u_int fpcopy; 322 Elf_Sym sym; 323 Elf_Addr p_start, p_end; 324 325 dp = NULL; 326 shdr = NULL; 327 ret = 0; 328 firstaddr = lastaddr = 0; 329 ehdr = ef->ehdr; 330 if (ehdr->e_type == ET_EXEC) { 331 #if defined(__i386__) || defined(__amd64__) 332 #if __ELF_WORD_SIZE == 64 333 off = - (off & 0xffffffffff000000ull);/* x86_64 relocates after locore */ 334 #else 335 off = - (off & 0xff000000u); /* i386 relocates after locore */ 336 #endif 337 #elif defined(__powerpc__) 338 /* 339 * On the purely virtual memory machines like e500, the kernel is 340 * linked against its final VA range, which is most often not 341 * available at the loader stage, but only after kernel initializes 342 * and completes its VM settings. In such cases we cannot use p_vaddr 343 * field directly to load ELF segments, but put them at some 344 * 'load-time' locations. 345 */ 346 if (off & 0xf0000000u) { 347 off = -(off & 0xf0000000u); 348 /* 349 * XXX the physical load address should not be hardcoded. Note 350 * that the Book-E kernel assumes that it's loaded at a 16MB 351 * boundary for now... 352 */ 353 off += 0x01000000; 354 ehdr->e_entry += off; 355 #ifdef ELF_VERBOSE 356 printf("Converted entry 0x%08x\n", ehdr->e_entry); 357 #endif 358 } else 359 off = 0; 360 #elif defined(__arm__) && !defined(EFI) 361 /* 362 * The elf headers in arm kernels specify virtual addresses in all 363 * header fields, even the ones that should be physical addresses. 364 * We assume the entry point is in the first page, and masking the page 365 * offset will leave us with the virtual address the kernel was linked 366 * at. We subtract that from the load offset, making 'off' into the 367 * value which, when added to a virtual address in an elf header, 368 * translates it to a physical address. We do the va->pa conversion on 369 * the entry point address in the header now, so that later we can 370 * launch the kernel by just jumping to that address. 371 * 372 * When booting from UEFI the copyin and copyout functions handle 373 * adjusting the location relative to the first virtual address. 374 * Because of this there is no need to adjust the offset or entry 375 * point address as these will both be handled by the efi code. 376 */ 377 off -= ehdr->e_entry & ~PAGE_MASK; 378 ehdr->e_entry += off; 379 #ifdef ELF_VERBOSE 380 printf("ehdr->e_entry 0x%08x, va<->pa off %llx\n", ehdr->e_entry, off); 381 #endif 382 #else 383 off = 0; /* other archs use direct mapped kernels */ 384 #endif 385 } 386 ef->off = off; 387 388 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { 389 /* use entry address from header */ 390 fp->f_addr = ehdr->e_entry; 391 } 392 393 if (ef->kernel) 394 __elfN(relocation_offset) = off; 395 396 if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) { 397 printf("elf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: program header not within first page\n"); 398 goto out; 399 } 400 phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff); 401 402 for (i = 0; i < ehdr->e_phnum; i++) { 403 /* We want to load PT_LOAD segments only.. */ 404 if (phdr[i].p_type != PT_LOAD) 405 continue; 406 407 #ifdef ELF_VERBOSE 408 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { 409 printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx", 410 (long)phdr[i].p_filesz, (long)phdr[i].p_offset, 411 (long)(phdr[i].p_paddr + off), 412 (long)(phdr[i].p_paddr + off + phdr[i].p_memsz - 1)); 413 } else { 414 printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx", 415 (long)phdr[i].p_filesz, (long)phdr[i].p_offset, 416 (long)(phdr[i].p_vaddr + off), 417 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1)); 418 } 419 #else 420 if ((phdr[i].p_flags & PF_W) == 0) { 421 printf("text=0x%lx ", (long)phdr[i].p_filesz); 422 } else { 423 printf("data=0x%lx", (long)phdr[i].p_filesz); 424 if (phdr[i].p_filesz < phdr[i].p_memsz) 425 printf("+0x%lx", (long)(phdr[i].p_memsz -phdr[i].p_filesz)); 426 printf(" "); 427 } 428 #endif 429 fpcopy = 0; 430 if (ef->firstlen > phdr[i].p_offset) { 431 fpcopy = ef->firstlen - phdr[i].p_offset; 432 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { 433 archsw.arch_copyin(ef->firstpage + phdr[i].p_offset, 434 phdr[i].p_paddr + off, fpcopy); 435 } else { 436 archsw.arch_copyin(ef->firstpage + phdr[i].p_offset, 437 phdr[i].p_vaddr + off, fpcopy); 438 } 439 } 440 if (phdr[i].p_filesz > fpcopy) { 441 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { 442 if (kern_pread(ef->fd, phdr[i].p_paddr + off + fpcopy, 443 phdr[i].p_filesz - fpcopy, 444 phdr[i].p_offset + fpcopy) != 0) { 445 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 446 "_loadimage: read failed\n"); 447 goto out; 448 } 449 } else { 450 if (kern_pread(ef->fd, phdr[i].p_vaddr + off + fpcopy, 451 phdr[i].p_filesz - fpcopy, 452 phdr[i].p_offset + fpcopy) != 0) { 453 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 454 "_loadimage: read failed\n"); 455 goto out; 456 } 457 } 458 } 459 /* clear space from oversized segments; eg: bss */ 460 if (phdr[i].p_filesz < phdr[i].p_memsz) { 461 #ifdef ELF_VERBOSE 462 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { 463 printf(" (bss: 0x%lx-0x%lx)", 464 (long)(phdr[i].p_paddr + off + phdr[i].p_filesz), 465 (long)(phdr[i].p_paddr + off + phdr[i].p_memsz - 1)); 466 } else { 467 printf(" (bss: 0x%lx-0x%lx)", 468 (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz), 469 (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1)); 470 } 471 #endif 472 473 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { 474 kern_bzero(phdr[i].p_paddr + off + phdr[i].p_filesz, 475 phdr[i].p_memsz - phdr[i].p_filesz); 476 } else { 477 kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz, 478 phdr[i].p_memsz - phdr[i].p_filesz); 479 } 480 } 481 #ifdef ELF_VERBOSE 482 printf("\n"); 483 #endif 484 485 if (archsw.arch_loadseg != NULL) 486 archsw.arch_loadseg(ehdr, phdr + i, off); 487 488 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) { 489 if (firstaddr == 0 || firstaddr > (phdr[i].p_paddr + off)) 490 firstaddr = phdr[i].p_paddr + off; 491 if (lastaddr == 0 || 492 lastaddr < (phdr[i].p_paddr + off + phdr[i].p_memsz)) 493 lastaddr = phdr[i].p_paddr + off + phdr[i].p_memsz; 494 } else { 495 if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off)) 496 firstaddr = phdr[i].p_vaddr + off; 497 if (lastaddr == 0 || 498 lastaddr < (phdr[i].p_vaddr + off + phdr[i].p_memsz)) 499 lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz; 500 } 501 } 502 lastaddr = roundup(lastaddr, sizeof(long)); 503 504 /* 505 * Get the section headers. We need this for finding the .ctors 506 * section as well as for loading any symbols. Both may be hard 507 * to do if reading from a .gz file as it involves seeking. I 508 * think the rule is going to have to be that you must strip a 509 * file to remove symbols before gzipping it. 510 */ 511 chunk = ehdr->e_shnum * ehdr->e_shentsize; 512 if (chunk == 0 || ehdr->e_shoff == 0) 513 goto nosyms; 514 shdr = alloc_pread(ef->fd, ehdr->e_shoff, chunk); 515 if (shdr == NULL) { 516 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 517 "_loadimage: failed to read section headers"); 518 goto nosyms; 519 } 520 file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr); 521 522 /* 523 * Read the section string table and look for the .ctors section. 524 * We need to tell the kernel where it is so that it can call the 525 * ctors. 526 */ 527 chunk = shdr[ehdr->e_shstrndx].sh_size; 528 if (chunk) { 529 shstr = alloc_pread(ef->fd, shdr[ehdr->e_shstrndx].sh_offset, chunk); 530 if (shstr) { 531 for (i = 0; i < ehdr->e_shnum; i++) { 532 if (strcmp(shstr + shdr[i].sh_name, ".ctors") != 0) 533 continue; 534 ctors = shdr[i].sh_addr; 535 file_addmetadata(fp, MODINFOMD_CTORS_ADDR, sizeof(ctors), 536 &ctors); 537 size = shdr[i].sh_size; 538 file_addmetadata(fp, MODINFOMD_CTORS_SIZE, sizeof(size), 539 &size); 540 break; 541 } 542 free(shstr); 543 } 544 } 545 546 /* 547 * Now load any symbols. 548 */ 549 symtabindex = -1; 550 symstrindex = -1; 551 for (i = 0; i < ehdr->e_shnum; i++) { 552 if (shdr[i].sh_type != SHT_SYMTAB) 553 continue; 554 for (j = 0; j < ehdr->e_phnum; j++) { 555 if (phdr[j].p_type != PT_LOAD) 556 continue; 557 if (shdr[i].sh_offset >= phdr[j].p_offset && 558 (shdr[i].sh_offset + shdr[i].sh_size <= 559 phdr[j].p_offset + phdr[j].p_filesz)) { 560 shdr[i].sh_offset = 0; 561 shdr[i].sh_size = 0; 562 break; 563 } 564 } 565 if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0) 566 continue; /* alread loaded in a PT_LOAD above */ 567 /* Save it for loading below */ 568 symtabindex = i; 569 symstrindex = shdr[i].sh_link; 570 } 571 if (symtabindex < 0 || symstrindex < 0) 572 goto nosyms; 573 574 /* Ok, committed to a load. */ 575 #ifndef ELF_VERBOSE 576 printf("syms=["); 577 #endif 578 ssym = lastaddr; 579 for (i = symtabindex; i >= 0; i = symstrindex) { 580 #ifdef ELF_VERBOSE 581 char *secname; 582 583 switch(shdr[i].sh_type) { 584 case SHT_SYMTAB: /* Symbol table */ 585 secname = "symtab"; 586 break; 587 case SHT_STRTAB: /* String table */ 588 secname = "strtab"; 589 break; 590 default: 591 secname = "WHOA!!"; 592 break; 593 } 594 #endif 595 596 size = shdr[i].sh_size; 597 archsw.arch_copyin(&size, lastaddr, sizeof(size)); 598 lastaddr += sizeof(size); 599 600 #ifdef ELF_VERBOSE 601 printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname, 602 (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset, 603 (uintmax_t)lastaddr, (uintmax_t)(lastaddr + shdr[i].sh_size)); 604 #else 605 if (i == symstrindex) 606 printf("+"); 607 printf("0x%lx+0x%lx", (long)sizeof(size), (long)size); 608 #endif 609 610 if (lseek(ef->fd, (off_t)shdr[i].sh_offset, SEEK_SET) == -1) { 611 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: could not seek for symbols - skipped!"); 612 lastaddr = ssym; 613 ssym = 0; 614 goto nosyms; 615 } 616 result = archsw.arch_readin(ef->fd, lastaddr, shdr[i].sh_size); 617 if (result < 0 || (size_t)result != shdr[i].sh_size) { 618 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) "_loadimage: could not read symbols - skipped! (%ju != %ju)", (uintmax_t)result, 619 (uintmax_t)shdr[i].sh_size); 620 lastaddr = ssym; 621 ssym = 0; 622 goto nosyms; 623 } 624 /* Reset offsets relative to ssym */ 625 lastaddr += shdr[i].sh_size; 626 lastaddr = roundup(lastaddr, sizeof(size)); 627 if (i == symtabindex) 628 symtabindex = -1; 629 else if (i == symstrindex) 630 symstrindex = -1; 631 } 632 esym = lastaddr; 633 #ifndef ELF_VERBOSE 634 printf("]"); 635 #endif 636 637 file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym); 638 file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym); 639 640 nosyms: 641 printf("\n"); 642 643 ret = lastaddr - firstaddr; 644 if (ehdr->e_ident[EI_OSABI] != ELFOSABI_SOLARIS) 645 fp->f_addr = firstaddr; 646 647 php = NULL; 648 for (i = 0; i < ehdr->e_phnum; i++) { 649 if (phdr[i].p_type == PT_DYNAMIC) { 650 php = phdr + i; 651 adp = php->p_vaddr; 652 file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp), &adp); 653 break; 654 } 655 } 656 657 if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */ 658 goto out; 659 660 ndp = php->p_filesz / sizeof(Elf_Dyn); 661 if (ndp == 0) 662 goto out; 663 dp = malloc(php->p_filesz); 664 if (dp == NULL) 665 goto out; 666 if (ehdr->e_ident[EI_OSABI] == ELFOSABI_SOLARIS) 667 archsw.arch_copyout(php->p_paddr + off, dp, php->p_filesz); 668 else 669 archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz); 670 671 ef->strsz = 0; 672 for (i = 0; i < ndp; i++) { 673 if (dp[i].d_tag == 0) 674 break; 675 switch (dp[i].d_tag) { 676 case DT_HASH: 677 ef->hashtab = (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off); 678 break; 679 case DT_STRTAB: 680 ef->strtab = (char *)(uintptr_t)(dp[i].d_un.d_ptr + off); 681 break; 682 case DT_STRSZ: 683 ef->strsz = dp[i].d_un.d_val; 684 break; 685 case DT_SYMTAB: 686 ef->symtab = (Elf_Sym*)(uintptr_t)(dp[i].d_un.d_ptr + off); 687 break; 688 case DT_REL: 689 ef->rel = (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off); 690 break; 691 case DT_RELSZ: 692 ef->relsz = dp[i].d_un.d_val; 693 break; 694 case DT_RELA: 695 ef->rela = (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off); 696 break; 697 case DT_RELASZ: 698 ef->relasz = dp[i].d_un.d_val; 699 break; 700 default: 701 break; 702 } 703 } 704 if (ef->hashtab == NULL || ef->symtab == NULL || 705 ef->strtab == NULL || ef->strsz == 0) 706 goto out; 707 COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets)); 708 COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains)); 709 ef->buckets = ef->hashtab + 2; 710 ef->chains = ef->buckets + ef->nbuckets; 711 712 if (__elfN(lookup_symbol)(fp, ef, "__start_set_modmetadata_set", &sym) != 0) 713 return 0; 714 p_start = sym.st_value + ef->off; 715 if (__elfN(lookup_symbol)(fp, ef, "__stop_set_modmetadata_set", &sym) != 0) 716 return ENOENT; 717 p_end = sym.st_value + ef->off; 718 719 if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0) 720 goto out; 721 722 if (ef->kernel) /* kernel must not depend on anything */ 723 goto out; 724 725 out: 726 if (dp) 727 free(dp); 728 if (shdr) 729 free(shdr); 730 return ret; 731 } 732 733 static char invalid_name[] = "bad"; 734 735 char * 736 fake_modname(const char *name) 737 { 738 const char *sp, *ep; 739 char *fp; 740 size_t len; 741 742 sp = strrchr(name, '/'); 743 if (sp) 744 sp++; 745 else 746 sp = name; 747 ep = strrchr(name, '.'); 748 if (ep) { 749 if (ep == name) { 750 sp = invalid_name; 751 ep = invalid_name + sizeof(invalid_name) - 1; 752 } 753 } else 754 ep = name + strlen(name); 755 len = ep - sp; 756 fp = malloc(len + 1); 757 if (fp == NULL) 758 return NULL; 759 memcpy(fp, sp, len); 760 fp[len] = '\0'; 761 return fp; 762 } 763 764 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 765 struct mod_metadata64 { 766 int md_version; /* structure version MDTV_* */ 767 int md_type; /* type of entry MDT_* */ 768 u_int64_t md_data; /* specific data */ 769 u_int64_t md_cval; /* common string label */ 770 }; 771 #endif 772 #if defined(__amd64__) && __ELF_WORD_SIZE == 32 773 struct mod_metadata32 { 774 int md_version; /* structure version MDTV_* */ 775 int md_type; /* type of entry MDT_* */ 776 u_int32_t md_data; /* specific data */ 777 u_int32_t md_cval; /* common string label */ 778 }; 779 #endif 780 781 int 782 __elfN(load_modmetadata)(struct preloaded_file *fp, u_int64_t dest) 783 { 784 struct elf_file ef; 785 int err, i, j; 786 Elf_Shdr *sh_meta, *shdr = NULL; 787 Elf_Shdr *sh_data[2]; 788 char *shstrtab = NULL; 789 size_t size; 790 Elf_Addr p_start, p_end; 791 792 bzero(&ef, sizeof(struct elf_file)); 793 ef.fd = -1; 794 795 err = __elfN(load_elf_header)(fp->f_name, &ef); 796 if (err != 0) 797 goto out; 798 799 if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) { 800 ef.kernel = 1; 801 } else if (ef.ehdr->e_type != ET_DYN) { 802 err = EFTYPE; 803 goto out; 804 } 805 806 size = ef.ehdr->e_shnum * ef.ehdr->e_shentsize; 807 shdr = alloc_pread(ef.fd, ef.ehdr->e_shoff, size); 808 if (shdr == NULL) { 809 err = ENOMEM; 810 goto out; 811 } 812 813 /* Load shstrtab. */ 814 shstrtab = alloc_pread(ef.fd, shdr[ef.ehdr->e_shstrndx].sh_offset, 815 shdr[ef.ehdr->e_shstrndx].sh_size); 816 if (shstrtab == NULL) { 817 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 818 "load_modmetadata: unable to load shstrtab\n"); 819 err = EFTYPE; 820 goto out; 821 } 822 823 /* Find set_modmetadata_set and data sections. */ 824 sh_data[0] = sh_data[1] = sh_meta = NULL; 825 for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) { 826 if (strcmp(&shstrtab[shdr[i].sh_name], 827 "set_modmetadata_set") == 0) { 828 sh_meta = &shdr[i]; 829 } 830 if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) || 831 (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) { 832 sh_data[j++] = &shdr[i]; 833 } 834 } 835 if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) { 836 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 837 "load_modmetadata: unable to find set_modmetadata_set or data sections\n"); 838 err = EFTYPE; 839 goto out; 840 } 841 842 /* Load set_modmetadata_set into memory */ 843 err = kern_pread(ef.fd, dest, sh_meta->sh_size, sh_meta->sh_offset); 844 if (err != 0) { 845 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 846 "load_modmetadata: unable to load set_modmetadata_set: %d\n", err); 847 goto out; 848 } 849 p_start = dest; 850 p_end = dest + sh_meta->sh_size; 851 dest += sh_meta->sh_size; 852 853 /* Load data sections into memory. */ 854 err = kern_pread(ef.fd, dest, sh_data[0]->sh_size, 855 sh_data[0]->sh_offset); 856 if (err != 0) { 857 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 858 "load_modmetadata: unable to load data: %d\n", err); 859 goto out; 860 } 861 862 /* 863 * We have to increment the dest, so that the offset is the same into 864 * both the .rodata and .data sections. 865 */ 866 ef.off = -(sh_data[0]->sh_addr - dest); 867 dest += (sh_data[1]->sh_addr - sh_data[0]->sh_addr); 868 869 err = kern_pread(ef.fd, dest, sh_data[1]->sh_size, 870 sh_data[1]->sh_offset); 871 if (err != 0) { 872 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 873 "load_modmetadata: unable to load data: %d\n", err); 874 goto out; 875 } 876 877 err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end); 878 if (err != 0) { 879 printf("\nelf" __XSTRING(__ELF_WORD_SIZE) 880 "load_modmetadata: unable to parse metadata: %d\n", err); 881 goto out; 882 } 883 884 out: 885 if (shstrtab != NULL) 886 free(shstrtab); 887 if (shdr != NULL) 888 free(shdr); 889 if (ef.firstpage != NULL) 890 free(ef.firstpage); 891 if (ef.fd != -1) 892 close(ef.fd); 893 return (err); 894 } 895 896 int 897 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef, 898 Elf_Addr p_start, Elf_Addr p_end) 899 { 900 struct mod_metadata md; 901 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 902 struct mod_metadata64 md64; 903 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 904 struct mod_metadata32 md32; 905 #endif 906 struct mod_depend *mdepend; 907 struct mod_version mver; 908 char *s; 909 int error, modcnt, minfolen; 910 Elf_Addr v, p; 911 912 modcnt = 0; 913 p = p_start; 914 while (p < p_end) { 915 COPYOUT(p, &v, sizeof(v)); 916 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v)); 917 if (error == EOPNOTSUPP) 918 v += ef->off; 919 else if (error != 0) 920 return (error); 921 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64 922 COPYOUT(v, &md64, sizeof(md64)); 923 error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64)); 924 if (error == EOPNOTSUPP) { 925 md64.md_cval += ef->off; 926 md64.md_data += ef->off; 927 } else if (error != 0) 928 return (error); 929 md.md_version = md64.md_version; 930 md.md_type = md64.md_type; 931 md.md_cval = (const char *)(uintptr_t)md64.md_cval; 932 md.md_data = (void *)(uintptr_t)md64.md_data; 933 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32 934 COPYOUT(v, &md32, sizeof(md32)); 935 error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32)); 936 if (error == EOPNOTSUPP) { 937 md32.md_cval += ef->off; 938 md32.md_data += ef->off; 939 } else if (error != 0) 940 return (error); 941 md.md_version = md32.md_version; 942 md.md_type = md32.md_type; 943 md.md_cval = (const char *)(uintptr_t)md32.md_cval; 944 md.md_data = (void *)(uintptr_t)md32.md_data; 945 #else 946 COPYOUT(v, &md, sizeof(md)); 947 error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md)); 948 if (error == EOPNOTSUPP) { 949 md.md_cval += ef->off; 950 md.md_data = (void *)((uintptr_t)md.md_data + (uintptr_t)ef->off); 951 } else if (error != 0) 952 return (error); 953 #endif 954 p += sizeof(Elf_Addr); 955 switch(md.md_type) { 956 case MDT_DEPEND: 957 if (ef->kernel) /* kernel must not depend on anything */ 958 break; 959 s = strdupout((vm_offset_t)md.md_cval); 960 minfolen = sizeof(*mdepend) + strlen(s) + 1; 961 mdepend = malloc(minfolen); 962 if (mdepend == NULL) 963 return ENOMEM; 964 COPYOUT((vm_offset_t)md.md_data, mdepend, sizeof(*mdepend)); 965 strcpy((char*)(mdepend + 1), s); 966 free(s); 967 file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen, mdepend); 968 free(mdepend); 969 break; 970 case MDT_VERSION: 971 s = strdupout((vm_offset_t)md.md_cval); 972 COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver)); 973 file_addmodule(fp, s, mver.mv_version, NULL); 974 free(s); 975 modcnt++; 976 break; 977 } 978 } 979 if (modcnt == 0) { 980 s = fake_modname(fp->f_name); 981 file_addmodule(fp, s, 1, NULL); 982 free(s); 983 } 984 return 0; 985 } 986 987 static unsigned long 988 elf_hash(const char *name) 989 { 990 const unsigned char *p = (const unsigned char *) name; 991 unsigned long h = 0; 992 unsigned long g; 993 994 while (*p != '\0') { 995 h = (h << 4) + *p++; 996 if ((g = h & 0xf0000000) != 0) 997 h ^= g >> 24; 998 h &= ~g; 999 } 1000 return h; 1001 } 1002 1003 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE) "_lookup_symbol: corrupt symbol table\n"; 1004 int 1005 __elfN(lookup_symbol)(struct preloaded_file *fp __unused, elf_file_t ef, 1006 const char* name, Elf_Sym *symp) 1007 { 1008 Elf_Hashelt symnum; 1009 Elf_Sym sym; 1010 char *strp; 1011 unsigned long hash; 1012 1013 hash = elf_hash(name); 1014 COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum)); 1015 1016 while (symnum != STN_UNDEF) { 1017 if (symnum >= ef->nchains) { 1018 printf(__elfN(bad_symtable)); 1019 return ENOENT; 1020 } 1021 1022 COPYOUT(ef->symtab + symnum, &sym, sizeof(sym)); 1023 if (sym.st_name == 0) { 1024 printf(__elfN(bad_symtable)); 1025 return ENOENT; 1026 } 1027 1028 strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name)); 1029 if (strcmp(name, strp) == 0) { 1030 free(strp); 1031 if (sym.st_shndx != SHN_UNDEF || 1032 (sym.st_value != 0 && 1033 ELF_ST_TYPE(sym.st_info) == STT_FUNC)) { 1034 *symp = sym; 1035 return 0; 1036 } 1037 return ENOENT; 1038 } 1039 free(strp); 1040 COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum)); 1041 } 1042 return ENOENT; 1043 } 1044 1045 /* 1046 * Apply any intra-module relocations to the value. p is the load address 1047 * of the value and val/len is the value to be modified. This does NOT modify 1048 * the image in-place, because this is done by kern_linker later on. 1049 * 1050 * Returns EOPNOTSUPP if no relocation method is supplied. 1051 */ 1052 static int 1053 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef, 1054 Elf_Addr p, void *val, size_t len) 1055 { 1056 size_t n; 1057 Elf_Rela a; 1058 Elf_Rel r; 1059 int error; 1060 1061 (void)mp; 1062 /* 1063 * The kernel is already relocated, but we still want to apply 1064 * offset adjustments. 1065 */ 1066 if (ef->kernel) 1067 return (EOPNOTSUPP); 1068 1069 for (n = 0; n < ef->relsz / sizeof(r); n++) { 1070 COPYOUT(ef->rel + n, &r, sizeof(r)); 1071 1072 error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL, 1073 ef->off, p, val, len); 1074 if (error != 0) 1075 return (error); 1076 } 1077 for (n = 0; n < ef->relasz / sizeof(a); n++) { 1078 COPYOUT(ef->rela + n, &a, sizeof(a)); 1079 1080 error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA, 1081 ef->off, p, val, len); 1082 if (error != 0) 1083 return (error); 1084 } 1085 1086 return (0); 1087 } 1088 1089 static Elf_Addr 1090 __elfN(symaddr)(struct elf_file *ef __unused, Elf_Size symidx __unused) 1091 { 1092 /* Symbol lookup by index not required here. */ 1093 return (0); 1094 } 1095