1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1996 - 2001 Brian Somers <brian@Awfulhak.org>
5 * based on work by Toshiharu OHNO <tony-o@iij.ad.jp>
6 * Internet Initiative Japan, Inc (IIJ)
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/param.h>
32
33 #ifdef __FreeBSD__
34 #include <netinet/in.h>
35 #endif
36 #include <sys/un.h>
37
38 #include <string.h>
39 #include <termios.h>
40
41 #include "layer.h"
42 #include "mbuf.h"
43 #include "log.h"
44 #include "defs.h"
45 #include "timer.h"
46 #include "fsm.h"
47 #include "acf.h"
48 #include "proto.h"
49 #include "lqr.h"
50 #include "hdlc.h"
51 #include "lcp.h"
52 #include "async.h"
53 #include "throughput.h"
54 #include "ccp.h"
55 #include "link.h"
56 #include "descriptor.h"
57 #include "physical.h"
58 #include "mp.h"
59 #include "chat.h"
60 #include "auth.h"
61 #include "chap.h"
62 #include "command.h"
63 #include "cbcp.h"
64 #include "datalink.h"
65
66 struct echolqr {
67 u_int32_t magic;
68 u_int32_t signature;
69 u_int32_t sequence;
70 };
71
72 #define SIGNATURE 0x594e4f54
73
74 static void
SendEchoReq(struct lcp * lcp)75 SendEchoReq(struct lcp *lcp)
76 {
77 struct hdlc *hdlc = &link2physical(lcp->fsm.link)->hdlc;
78 struct echolqr echo;
79
80 echo.magic = htonl(lcp->want_magic);
81 echo.signature = htonl(SIGNATURE);
82 echo.sequence = htonl(hdlc->lqm.echo.seq_sent);
83 fsm_Output(&lcp->fsm, CODE_ECHOREQ, hdlc->lqm.echo.seq_sent++,
84 (u_char *)&echo, sizeof echo, MB_ECHOOUT);
85 }
86
87 struct mbuf *
lqr_RecvEcho(struct fsm * fp,struct mbuf * bp)88 lqr_RecvEcho(struct fsm *fp, struct mbuf *bp)
89 {
90 struct hdlc *hdlc = &link2physical(fp->link)->hdlc;
91 struct lcp *lcp = fsm2lcp(fp);
92 struct echolqr lqr;
93
94 if (m_length(bp) >= sizeof lqr) {
95 m_freem(mbuf_Read(bp, &lqr, sizeof lqr));
96 bp = NULL;
97 lqr.magic = ntohl(lqr.magic);
98 lqr.signature = ntohl(lqr.signature);
99 lqr.sequence = ntohl(lqr.sequence);
100
101 /* Tolerate echo replies with either magic number */
102 if (lqr.magic != 0 && lqr.magic != lcp->his_magic &&
103 lqr.magic != lcp->want_magic) {
104 log_Printf(LogWARN, "%s: lqr_RecvEcho: Bad magic: expected 0x%08x,"
105 " got 0x%08x\n", fp->link->name, lcp->his_magic, lqr.magic);
106 /*
107 * XXX: We should send a terminate request. But poor implementations may
108 * die as a result.
109 */
110 }
111 if (lqr.signature == SIGNATURE
112 || lqr.signature == lcp->want_magic) { /* some implementations return the wrong magic */
113 /* careful not to update lqm.echo.seq_recv with older values */
114 if ((hdlc->lqm.echo.seq_recv > (u_int32_t)0 - 5 && lqr.sequence < 5) ||
115 (hdlc->lqm.echo.seq_recv <= (u_int32_t)0 - 5 &&
116 lqr.sequence > hdlc->lqm.echo.seq_recv))
117 hdlc->lqm.echo.seq_recv = lqr.sequence;
118 } else
119 log_Printf(LogWARN, "lqr_RecvEcho: Got sig 0x%08lx, not 0x%08lx !\n",
120 (u_long)lqr.signature, (u_long)SIGNATURE);
121 } else
122 log_Printf(LogWARN, "lqr_RecvEcho: Got packet size %zd, expecting %ld !\n",
123 m_length(bp), (long)sizeof(struct echolqr));
124 return bp;
125 }
126
127 void
lqr_ChangeOrder(struct lqrdata * src,struct lqrdata * dst)128 lqr_ChangeOrder(struct lqrdata *src, struct lqrdata *dst)
129 {
130 u_int32_t *sp, *dp;
131 unsigned n;
132
133 sp = (u_int32_t *) src;
134 dp = (u_int32_t *) dst;
135 for (n = 0; n < sizeof(struct lqrdata) / sizeof(u_int32_t); n++, sp++, dp++)
136 *dp = ntohl(*sp);
137 }
138
139 static void
SendLqrData(struct lcp * lcp)140 SendLqrData(struct lcp *lcp)
141 {
142 struct mbuf *bp;
143 int extra;
144
145 extra = proto_WrapperOctets(lcp, PROTO_LQR) +
146 acf_WrapperOctets(lcp, PROTO_LQR);
147 bp = m_get(sizeof(struct lqrdata) + extra, MB_LQROUT);
148 bp->m_len -= extra;
149 bp->m_offset += extra;
150
151 /*
152 * Send on the highest priority queue. We send garbage - the real data
153 * is written by lqr_LayerPush() where we know how to fill in all the
154 * fields. Note, lqr_LayerPush() ``knows'' that we're pushing onto the
155 * highest priority queue, and factors out packet & octet values from
156 * other queues!
157 */
158 link_PushPacket(lcp->fsm.link, bp, lcp->fsm.bundle,
159 LINK_QUEUES(lcp->fsm.link) - 1, PROTO_LQR);
160 }
161
162 static void
SendLqrReport(void * v)163 SendLqrReport(void *v)
164 {
165 struct lcp *lcp = (struct lcp *)v;
166 struct physical *p = link2physical(lcp->fsm.link);
167
168 timer_Stop(&p->hdlc.lqm.timer);
169
170 if (p->hdlc.lqm.method & LQM_LQR) {
171 if (p->hdlc.lqm.lqr.resent > 5) {
172 /* XXX: Should implement LQM strategy */
173 log_Printf(LogPHASE, "%s: ** Too many LQR packets lost **\n",
174 lcp->fsm.link->name);
175 log_Printf(LogLQM, "%s: Too many LQR packets lost\n",
176 lcp->fsm.link->name);
177 p->hdlc.lqm.method = 0;
178 datalink_Down(p->dl, CLOSE_NORMAL);
179 } else {
180 SendLqrData(lcp);
181 p->hdlc.lqm.lqr.resent++;
182 }
183 } else if (p->hdlc.lqm.method & LQM_ECHO) {
184 if ((p->hdlc.lqm.echo.seq_sent > 5 &&
185 p->hdlc.lqm.echo.seq_sent - 5 > p->hdlc.lqm.echo.seq_recv) ||
186 (p->hdlc.lqm.echo.seq_sent <= 5 &&
187 p->hdlc.lqm.echo.seq_sent > p->hdlc.lqm.echo.seq_recv + 5)) {
188 log_Printf(LogPHASE, "%s: ** Too many LCP ECHO packets lost **\n",
189 lcp->fsm.link->name);
190 log_Printf(LogLQM, "%s: Too many LCP ECHO packets lost\n",
191 lcp->fsm.link->name);
192 p->hdlc.lqm.method = 0;
193 datalink_Down(p->dl, CLOSE_NORMAL);
194 } else
195 SendEchoReq(lcp);
196 }
197 if (p->hdlc.lqm.method && p->hdlc.lqm.timer.load)
198 timer_Start(&p->hdlc.lqm.timer);
199 }
200
201 struct mbuf *
lqr_Input(struct bundle * bundle __unused,struct link * l,struct mbuf * bp)202 lqr_Input(struct bundle *bundle __unused, struct link *l, struct mbuf *bp)
203 {
204 struct physical *p = link2physical(l);
205 struct lcp *lcp = p->hdlc.lqm.owner;
206 int len;
207
208 if (p == NULL) {
209 log_Printf(LogERROR, "lqr_Input: Not a physical link - dropped\n");
210 m_freem(bp);
211 return NULL;
212 }
213
214 len = m_length(bp);
215 if (len != sizeof(struct lqrdata))
216 log_Printf(LogWARN, "lqr_Input: Got packet size %d, expecting %ld !\n",
217 len, (long)sizeof(struct lqrdata));
218 else if (!IsAccepted(l->lcp.cfg.lqr) && !(p->hdlc.lqm.method & LQM_LQR)) {
219 bp = m_pullup(proto_Prepend(bp, PROTO_LQR, 0, 0));
220 lcp_SendProtoRej(lcp, MBUF_CTOP(bp), bp->m_len);
221 } else {
222 struct lqrdata *lqr;
223
224 bp = m_pullup(bp);
225 lqr = (struct lqrdata *)MBUF_CTOP(bp);
226 if (ntohl(lqr->MagicNumber) != lcp->his_magic)
227 log_Printf(LogWARN, "lqr_Input: magic 0x%08lx is wrong,"
228 " expecting 0x%08lx\n",
229 (u_long)ntohl(lqr->MagicNumber), (u_long)lcp->his_magic);
230 else {
231 struct lqrdata lastlqr;
232
233 memcpy(&lastlqr, &p->hdlc.lqm.lqr.peer, sizeof lastlqr);
234 lqr_ChangeOrder(lqr, &p->hdlc.lqm.lqr.peer);
235 lqr_Dump(l->name, "Input", &p->hdlc.lqm.lqr.peer);
236 /* we have received an LQR from our peer */
237 p->hdlc.lqm.lqr.resent = 0;
238
239 /* Snapshot our state when the LQR packet was received */
240 memcpy(&p->hdlc.lqm.lqr.prevSave, &p->hdlc.lqm.lqr.Save,
241 sizeof p->hdlc.lqm.lqr.prevSave);
242 p->hdlc.lqm.lqr.Save.InLQRs = ++p->hdlc.lqm.lqr.InLQRs;
243 p->hdlc.lqm.lqr.Save.InPackets = p->hdlc.lqm.ifInUniPackets;
244 p->hdlc.lqm.lqr.Save.InDiscards = p->hdlc.lqm.ifInDiscards;
245 p->hdlc.lqm.lqr.Save.InErrors = p->hdlc.lqm.ifInErrors;
246 p->hdlc.lqm.lqr.Save.InOctets = p->hdlc.lqm.lqr.InGoodOctets;
247
248 lqr_Analyse(&p->hdlc, &lastlqr, &p->hdlc.lqm.lqr.peer);
249
250 /*
251 * Generate an LQR response if we're not running an LQR timer OR
252 * two successive LQR's PeerInLQRs are the same.
253 */
254 if (p->hdlc.lqm.timer.load == 0 || !(p->hdlc.lqm.method & LQM_LQR) ||
255 (lastlqr.PeerInLQRs &&
256 lastlqr.PeerInLQRs == p->hdlc.lqm.lqr.peer.PeerInLQRs))
257 SendLqrData(lcp);
258 }
259 }
260 m_freem(bp);
261 return NULL;
262 }
263
264 /*
265 * When LCP is reached to opened state, We'll start LQM activity.
266 */
267 static void
lqr_Setup(struct lcp * lcp)268 lqr_Setup(struct lcp *lcp)
269 {
270 struct physical *physical = link2physical(lcp->fsm.link);
271 int period;
272
273 physical->hdlc.lqm.lqr.resent = 0;
274 physical->hdlc.lqm.echo.seq_sent = 0;
275 physical->hdlc.lqm.echo.seq_recv = 0;
276 memset(&physical->hdlc.lqm.lqr.peer, '\0',
277 sizeof physical->hdlc.lqm.lqr.peer);
278
279 physical->hdlc.lqm.method = lcp->cfg.echo ? LQM_ECHO : 0;
280 if (IsEnabled(lcp->cfg.lqr) && !REJECTED(lcp, TY_QUALPROTO))
281 physical->hdlc.lqm.method |= LQM_LQR;
282 timer_Stop(&physical->hdlc.lqm.timer);
283
284 physical->hdlc.lqm.lqr.peer_timeout = lcp->his_lqrperiod;
285 if (lcp->his_lqrperiod)
286 log_Printf(LogLQM, "%s: Expecting LQR every %d.%02d secs\n",
287 physical->link.name, lcp->his_lqrperiod / 100,
288 lcp->his_lqrperiod % 100);
289
290 period = lcp->want_lqrperiod ?
291 lcp->want_lqrperiod : lcp->cfg.lqrperiod * 100;
292 physical->hdlc.lqm.timer.func = SendLqrReport;
293 physical->hdlc.lqm.timer.name = "lqm";
294 physical->hdlc.lqm.timer.arg = lcp;
295
296 if (lcp->want_lqrperiod || physical->hdlc.lqm.method & LQM_ECHO) {
297 log_Printf(LogLQM, "%s: Will send %s every %d.%02d secs\n",
298 physical->link.name, lcp->want_lqrperiod ? "LQR" : "LCP ECHO",
299 period / 100, period % 100);
300 physical->hdlc.lqm.timer.load = period * SECTICKS / 100;
301 } else {
302 physical->hdlc.lqm.timer.load = 0;
303 if (!lcp->his_lqrperiod)
304 log_Printf(LogLQM, "%s: LQR/LCP ECHO not negotiated\n",
305 physical->link.name);
306 }
307 }
308
309 void
lqr_Start(struct lcp * lcp)310 lqr_Start(struct lcp *lcp)
311 {
312 struct physical *p = link2physical(lcp->fsm.link);
313
314 lqr_Setup(lcp);
315 if (p->hdlc.lqm.timer.load)
316 SendLqrReport(lcp);
317 }
318
319 void
lqr_reStart(struct lcp * lcp)320 lqr_reStart(struct lcp *lcp)
321 {
322 struct physical *p = link2physical(lcp->fsm.link);
323
324 lqr_Setup(lcp);
325 if (p->hdlc.lqm.timer.load)
326 timer_Start(&p->hdlc.lqm.timer);
327 }
328
329 void
lqr_StopTimer(struct physical * physical)330 lqr_StopTimer(struct physical *physical)
331 {
332 timer_Stop(&physical->hdlc.lqm.timer);
333 }
334
335 void
lqr_Stop(struct physical * physical,int method)336 lqr_Stop(struct physical *physical, int method)
337 {
338 if (method == LQM_LQR)
339 log_Printf(LogLQM, "%s: Stop sending LQR, Use LCP ECHO instead.\n",
340 physical->link.name);
341 if (method == LQM_ECHO)
342 log_Printf(LogLQM, "%s: Stop sending LCP ECHO.\n",
343 physical->link.name);
344 physical->hdlc.lqm.method &= ~method;
345 if (physical->hdlc.lqm.method)
346 SendLqrReport(physical->hdlc.lqm.owner);
347 else
348 timer_Stop(&physical->hdlc.lqm.timer);
349 }
350
351 void
lqr_Dump(const char * link,const char * message,const struct lqrdata * lqr)352 lqr_Dump(const char *link, const char *message, const struct lqrdata *lqr)
353 {
354 if (log_IsKept(LogLQM)) {
355 log_Printf(LogLQM, "%s: %s:\n", link, message);
356 log_Printf(LogLQM, " Magic: %08x LastOutLQRs: %08x\n",
357 lqr->MagicNumber, lqr->LastOutLQRs);
358 log_Printf(LogLQM, " LastOutPackets: %08x LastOutOctets: %08x\n",
359 lqr->LastOutPackets, lqr->LastOutOctets);
360 log_Printf(LogLQM, " PeerInLQRs: %08x PeerInPackets: %08x\n",
361 lqr->PeerInLQRs, lqr->PeerInPackets);
362 log_Printf(LogLQM, " PeerInDiscards: %08x PeerInErrors: %08x\n",
363 lqr->PeerInDiscards, lqr->PeerInErrors);
364 log_Printf(LogLQM, " PeerInOctets: %08x PeerOutLQRs: %08x\n",
365 lqr->PeerInOctets, lqr->PeerOutLQRs);
366 log_Printf(LogLQM, " PeerOutPackets: %08x PeerOutOctets: %08x\n",
367 lqr->PeerOutPackets, lqr->PeerOutOctets);
368 }
369 }
370
371 void
lqr_Analyse(const struct hdlc * hdlc,const struct lqrdata * oldlqr,const struct lqrdata * newlqr)372 lqr_Analyse(const struct hdlc *hdlc, const struct lqrdata *oldlqr,
373 const struct lqrdata *newlqr)
374 {
375 u_int32_t LQRs, transitLQRs, pkts, octets, disc, err;
376
377 if (!newlqr->PeerInLQRs) /* No analysis possible yet! */
378 return;
379
380 log_Printf(LogLQM, "Analysis:\n");
381
382 LQRs = (newlqr->LastOutLQRs - oldlqr->LastOutLQRs) -
383 (newlqr->PeerInLQRs - oldlqr->PeerInLQRs);
384 transitLQRs = hdlc->lqm.lqr.OutLQRs - newlqr->LastOutLQRs;
385 pkts = (newlqr->LastOutPackets - oldlqr->LastOutPackets) -
386 (newlqr->PeerInPackets - oldlqr->PeerInPackets);
387 octets = (newlqr->LastOutOctets - oldlqr->LastOutOctets) -
388 (newlqr->PeerInOctets - oldlqr->PeerInOctets);
389 log_Printf(LogLQM, " Outbound lossage: %d LQR%s (%d en route), %d packet%s,"
390 " %d octet%s\n", (int)LQRs, LQRs == 1 ? "" : "s", (int)transitLQRs,
391 (int)pkts, pkts == 1 ? "" : "s",
392 (int)octets, octets == 1 ? "" : "s");
393
394 pkts = (newlqr->PeerOutPackets - oldlqr->PeerOutPackets) -
395 (hdlc->lqm.lqr.Save.InPackets - hdlc->lqm.lqr.prevSave.InPackets);
396 octets = (newlqr->PeerOutOctets - oldlqr->PeerOutOctets) -
397 (hdlc->lqm.lqr.Save.InOctets - hdlc->lqm.lqr.prevSave.InOctets);
398 log_Printf(LogLQM, " Inbound lossage: %d packet%s, %d octet%s\n",
399 (int)pkts, pkts == 1 ? "" : "s",
400 (int)octets, octets == 1 ? "" : "s");
401
402 disc = newlqr->PeerInDiscards - oldlqr->PeerInDiscards;
403 err = newlqr->PeerInErrors - oldlqr->PeerInErrors;
404 if (disc && err)
405 log_Printf(LogLQM, " Likely due to both peer congestion"
406 " and physical errors\n");
407 else if (disc)
408 log_Printf(LogLQM, " Likely due to peer congestion\n");
409 else if (err)
410 log_Printf(LogLQM, " Likely due to physical errors\n");
411 else if (pkts)
412 log_Printf(LogLQM, " Likely due to transport "
413 "congestion\n");
414 }
415
416 static struct mbuf *
lqr_LayerPush(struct bundle * b __unused,struct link * l,struct mbuf * bp,int pri __unused,u_short * proto)417 lqr_LayerPush(struct bundle *b __unused, struct link *l, struct mbuf *bp,
418 int pri __unused, u_short *proto)
419 {
420 struct physical *p = link2physical(l);
421 int len, layer;
422
423 if (!p) {
424 /* Oops - can't happen :-] */
425 m_freem(bp);
426 return NULL;
427 }
428
429 bp = m_pullup(bp);
430 len = m_length(bp);
431
432 /*-
433 * From rfc1989:
434 *
435 * All octets which are included in the FCS calculation MUST be counted,
436 * including the packet header, the information field, and any padding.
437 * The FCS octets MUST also be counted, and one flag octet per frame
438 * MUST be counted. All other octets (such as additional flag
439 * sequences, and escape bits or octets) MUST NOT be counted.
440 *
441 * As we're stacked higher than the HDLC layer (otherwise HDLC wouldn't be
442 * able to calculate the FCS), we must not forget about these additional
443 * bytes when we're asynchronous.
444 *
445 * We're also expecting to be stacked *before* the likes of the proto and
446 * acf layers (to avoid alignment issues), so deal with this too.
447 */
448
449 p->hdlc.lqm.ifOutUniPackets++;
450 p->hdlc.lqm.ifOutOctets += len + 1; /* plus 1 flag octet! */
451 for (layer = 0; layer < l->nlayers; layer++)
452 switch (l->layer[layer]->type) {
453 case LAYER_ACF:
454 p->hdlc.lqm.ifOutOctets += acf_WrapperOctets(&l->lcp, *proto);
455 break;
456 case LAYER_ASYNC:
457 /* Not included - see rfc1989 */
458 break;
459 case LAYER_HDLC:
460 p->hdlc.lqm.ifOutOctets += hdlc_WrapperOctets();
461 break;
462 case LAYER_LQR:
463 layer = l->nlayers;
464 break;
465 case LAYER_PROTO:
466 p->hdlc.lqm.ifOutOctets += proto_WrapperOctets(&l->lcp, *proto);
467 break;
468 case LAYER_SYNC:
469 /* Nothing to add on */
470 break;
471 default:
472 log_Printf(LogWARN, "Oops, don't know how to do octets for %s layer\n",
473 l->layer[layer]->name);
474 break;
475 }
476
477 if (*proto == PROTO_LQR) {
478 /* Overwrite the entire packet (created in SendLqrData()) */
479 struct lqrdata lqr;
480 size_t pending_pkts, pending_octets;
481
482 p->hdlc.lqm.lqr.OutLQRs++;
483
484 /*
485 * We need to compensate for the fact that we're pushing our data
486 * onto the highest priority queue by factoring out packet & octet
487 * values from other queues!
488 */
489 link_PendingLowPriorityData(l, &pending_pkts, &pending_octets);
490
491 memset(&lqr, '\0', sizeof lqr);
492 lqr.MagicNumber = p->link.lcp.want_magic;
493 lqr.LastOutLQRs = p->hdlc.lqm.lqr.peer.PeerOutLQRs;
494 lqr.LastOutPackets = p->hdlc.lqm.lqr.peer.PeerOutPackets;
495 lqr.LastOutOctets = p->hdlc.lqm.lqr.peer.PeerOutOctets;
496 lqr.PeerInLQRs = p->hdlc.lqm.lqr.Save.InLQRs;
497 lqr.PeerInPackets = p->hdlc.lqm.lqr.Save.InPackets;
498 lqr.PeerInDiscards = p->hdlc.lqm.lqr.Save.InDiscards;
499 lqr.PeerInErrors = p->hdlc.lqm.lqr.Save.InErrors;
500 lqr.PeerInOctets = p->hdlc.lqm.lqr.Save.InOctets;
501 lqr.PeerOutLQRs = p->hdlc.lqm.lqr.OutLQRs;
502 lqr.PeerOutPackets = p->hdlc.lqm.ifOutUniPackets - pending_pkts;
503 /* Don't forget our ``flag'' octets.... */
504 lqr.PeerOutOctets = p->hdlc.lqm.ifOutOctets - pending_octets - pending_pkts;
505 lqr_Dump(l->name, "Output", &lqr);
506 lqr_ChangeOrder(&lqr, (struct lqrdata *)MBUF_CTOP(bp));
507 }
508
509 return bp;
510 }
511
512 static struct mbuf *
lqr_LayerPull(struct bundle * b __unused,struct link * l __unused,struct mbuf * bp,u_short * proto)513 lqr_LayerPull(struct bundle *b __unused, struct link *l __unused,
514 struct mbuf *bp, u_short *proto)
515 {
516 /*
517 * This is the ``Rx'' process from rfc1989, although a part of it is
518 * actually performed by sync_LayerPull() & hdlc_LayerPull() so that
519 * our octet counts are correct.
520 */
521
522 if (*proto == PROTO_LQR)
523 m_settype(bp, MB_LQRIN);
524 return bp;
525 }
526
527 /*
528 * Statistics for pulled packets are recorded either in hdlc_PullPacket()
529 * or sync_PullPacket()
530 */
531
532 struct layer lqrlayer = { LAYER_LQR, "lqr", lqr_LayerPush, lqr_LayerPull };
533