1 /*- 2 * Copyright (c) 1996 - 2001 Brian Somers <brian@Awfulhak.org> 3 * based on work by Toshiharu OHNO <tony-o@iij.ad.jp> 4 * Internet Initiative Japan, Inc (IIJ) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/param.h> 32 33 #ifdef __FreeBSD__ 34 #include <netinet/in.h> 35 #endif 36 #include <sys/un.h> 37 38 #include <string.h> 39 #include <termios.h> 40 41 #include "layer.h" 42 #include "mbuf.h" 43 #include "log.h" 44 #include "defs.h" 45 #include "timer.h" 46 #include "fsm.h" 47 #include "acf.h" 48 #include "proto.h" 49 #include "lqr.h" 50 #include "hdlc.h" 51 #include "lcp.h" 52 #include "async.h" 53 #include "throughput.h" 54 #include "ccp.h" 55 #include "link.h" 56 #include "descriptor.h" 57 #include "physical.h" 58 #include "mp.h" 59 #include "chat.h" 60 #include "auth.h" 61 #include "chap.h" 62 #include "command.h" 63 #include "cbcp.h" 64 #include "datalink.h" 65 66 struct echolqr { 67 u_int32_t magic; 68 u_int32_t signature; 69 u_int32_t sequence; 70 }; 71 72 #define SIGNATURE 0x594e4f54 73 74 static void 75 SendEchoReq(struct lcp *lcp) 76 { 77 struct hdlc *hdlc = &link2physical(lcp->fsm.link)->hdlc; 78 struct echolqr echo; 79 80 echo.magic = htonl(lcp->want_magic); 81 echo.signature = htonl(SIGNATURE); 82 echo.sequence = htonl(hdlc->lqm.echo.seq_sent); 83 fsm_Output(&lcp->fsm, CODE_ECHOREQ, hdlc->lqm.echo.seq_sent++, 84 (u_char *)&echo, sizeof echo, MB_ECHOOUT); 85 } 86 87 struct mbuf * 88 lqr_RecvEcho(struct fsm *fp, struct mbuf *bp) 89 { 90 struct hdlc *hdlc = &link2physical(fp->link)->hdlc; 91 struct lcp *lcp = fsm2lcp(fp); 92 struct echolqr lqr; 93 94 if (m_length(bp) >= sizeof lqr) { 95 m_freem(mbuf_Read(bp, &lqr, sizeof lqr)); 96 bp = NULL; 97 lqr.magic = ntohl(lqr.magic); 98 lqr.signature = ntohl(lqr.signature); 99 lqr.sequence = ntohl(lqr.sequence); 100 101 /* Tolerate echo replies with either magic number */ 102 if (lqr.magic != 0 && lqr.magic != lcp->his_magic && 103 lqr.magic != lcp->want_magic) { 104 log_Printf(LogWARN, "%s: lqr_RecvEcho: Bad magic: expected 0x%08x," 105 " got 0x%08x\n", fp->link->name, lcp->his_magic, lqr.magic); 106 /* 107 * XXX: We should send a terminate request. But poor implementations may 108 * die as a result. 109 */ 110 } 111 if (lqr.signature == SIGNATURE 112 || lqr.signature == lcp->want_magic) { /* some implementations return the wrong magic */ 113 /* careful not to update lqm.echo.seq_recv with older values */ 114 if ((hdlc->lqm.echo.seq_recv > (u_int32_t)0 - 5 && lqr.sequence < 5) || 115 (hdlc->lqm.echo.seq_recv <= (u_int32_t)0 - 5 && 116 lqr.sequence > hdlc->lqm.echo.seq_recv)) 117 hdlc->lqm.echo.seq_recv = lqr.sequence; 118 } else 119 log_Printf(LogWARN, "lqr_RecvEcho: Got sig 0x%08lx, not 0x%08lx !\n", 120 (u_long)lqr.signature, (u_long)SIGNATURE); 121 } else 122 log_Printf(LogWARN, "lqr_RecvEcho: Got packet size %zd, expecting %ld !\n", 123 m_length(bp), (long)sizeof(struct echolqr)); 124 return bp; 125 } 126 127 void 128 lqr_ChangeOrder(struct lqrdata *src, struct lqrdata *dst) 129 { 130 u_int32_t *sp, *dp; 131 unsigned n; 132 133 sp = (u_int32_t *) src; 134 dp = (u_int32_t *) dst; 135 for (n = 0; n < sizeof(struct lqrdata) / sizeof(u_int32_t); n++, sp++, dp++) 136 *dp = ntohl(*sp); 137 } 138 139 static void 140 SendLqrData(struct lcp *lcp) 141 { 142 struct mbuf *bp; 143 int extra; 144 145 extra = proto_WrapperOctets(lcp, PROTO_LQR) + 146 acf_WrapperOctets(lcp, PROTO_LQR); 147 bp = m_get(sizeof(struct lqrdata) + extra, MB_LQROUT); 148 bp->m_len -= extra; 149 bp->m_offset += extra; 150 151 /* 152 * Send on the highest priority queue. We send garbage - the real data 153 * is written by lqr_LayerPush() where we know how to fill in all the 154 * fields. Note, lqr_LayerPush() ``knows'' that we're pushing onto the 155 * highest priority queue, and factors out packet & octet values from 156 * other queues! 157 */ 158 link_PushPacket(lcp->fsm.link, bp, lcp->fsm.bundle, 159 LINK_QUEUES(lcp->fsm.link) - 1, PROTO_LQR); 160 } 161 162 static void 163 SendLqrReport(void *v) 164 { 165 struct lcp *lcp = (struct lcp *)v; 166 struct physical *p = link2physical(lcp->fsm.link); 167 168 timer_Stop(&p->hdlc.lqm.timer); 169 170 if (p->hdlc.lqm.method & LQM_LQR) { 171 if (p->hdlc.lqm.lqr.resent > 5) { 172 /* XXX: Should implement LQM strategy */ 173 log_Printf(LogPHASE, "%s: ** Too many LQR packets lost **\n", 174 lcp->fsm.link->name); 175 log_Printf(LogLQM, "%s: Too many LQR packets lost\n", 176 lcp->fsm.link->name); 177 p->hdlc.lqm.method = 0; 178 datalink_Down(p->dl, CLOSE_NORMAL); 179 } else { 180 SendLqrData(lcp); 181 p->hdlc.lqm.lqr.resent++; 182 } 183 } else if (p->hdlc.lqm.method & LQM_ECHO) { 184 if ((p->hdlc.lqm.echo.seq_sent > 5 && 185 p->hdlc.lqm.echo.seq_sent - 5 > p->hdlc.lqm.echo.seq_recv) || 186 (p->hdlc.lqm.echo.seq_sent <= 5 && 187 p->hdlc.lqm.echo.seq_sent > p->hdlc.lqm.echo.seq_recv + 5)) { 188 log_Printf(LogPHASE, "%s: ** Too many LCP ECHO packets lost **\n", 189 lcp->fsm.link->name); 190 log_Printf(LogLQM, "%s: Too many LCP ECHO packets lost\n", 191 lcp->fsm.link->name); 192 p->hdlc.lqm.method = 0; 193 datalink_Down(p->dl, CLOSE_NORMAL); 194 } else 195 SendEchoReq(lcp); 196 } 197 if (p->hdlc.lqm.method && p->hdlc.lqm.timer.load) 198 timer_Start(&p->hdlc.lqm.timer); 199 } 200 201 struct mbuf * 202 lqr_Input(struct bundle *bundle __unused, struct link *l, struct mbuf *bp) 203 { 204 struct physical *p = link2physical(l); 205 struct lcp *lcp = p->hdlc.lqm.owner; 206 int len; 207 208 if (p == NULL) { 209 log_Printf(LogERROR, "lqr_Input: Not a physical link - dropped\n"); 210 m_freem(bp); 211 return NULL; 212 } 213 214 len = m_length(bp); 215 if (len != sizeof(struct lqrdata)) 216 log_Printf(LogWARN, "lqr_Input: Got packet size %d, expecting %ld !\n", 217 len, (long)sizeof(struct lqrdata)); 218 else if (!IsAccepted(l->lcp.cfg.lqr) && !(p->hdlc.lqm.method & LQM_LQR)) { 219 bp = m_pullup(proto_Prepend(bp, PROTO_LQR, 0, 0)); 220 lcp_SendProtoRej(lcp, MBUF_CTOP(bp), bp->m_len); 221 } else { 222 struct lqrdata *lqr; 223 224 bp = m_pullup(bp); 225 lqr = (struct lqrdata *)MBUF_CTOP(bp); 226 if (ntohl(lqr->MagicNumber) != lcp->his_magic) 227 log_Printf(LogWARN, "lqr_Input: magic 0x%08lx is wrong," 228 " expecting 0x%08lx\n", 229 (u_long)ntohl(lqr->MagicNumber), (u_long)lcp->his_magic); 230 else { 231 struct lqrdata lastlqr; 232 233 memcpy(&lastlqr, &p->hdlc.lqm.lqr.peer, sizeof lastlqr); 234 lqr_ChangeOrder(lqr, &p->hdlc.lqm.lqr.peer); 235 lqr_Dump(l->name, "Input", &p->hdlc.lqm.lqr.peer); 236 /* we have received an LQR from our peer */ 237 p->hdlc.lqm.lqr.resent = 0; 238 239 /* Snapshot our state when the LQR packet was received */ 240 memcpy(&p->hdlc.lqm.lqr.prevSave, &p->hdlc.lqm.lqr.Save, 241 sizeof p->hdlc.lqm.lqr.prevSave); 242 p->hdlc.lqm.lqr.Save.InLQRs = ++p->hdlc.lqm.lqr.InLQRs; 243 p->hdlc.lqm.lqr.Save.InPackets = p->hdlc.lqm.ifInUniPackets; 244 p->hdlc.lqm.lqr.Save.InDiscards = p->hdlc.lqm.ifInDiscards; 245 p->hdlc.lqm.lqr.Save.InErrors = p->hdlc.lqm.ifInErrors; 246 p->hdlc.lqm.lqr.Save.InOctets = p->hdlc.lqm.lqr.InGoodOctets; 247 248 lqr_Analyse(&p->hdlc, &lastlqr, &p->hdlc.lqm.lqr.peer); 249 250 /* 251 * Generate an LQR response if we're not running an LQR timer OR 252 * two successive LQR's PeerInLQRs are the same. 253 */ 254 if (p->hdlc.lqm.timer.load == 0 || !(p->hdlc.lqm.method & LQM_LQR) || 255 (lastlqr.PeerInLQRs && 256 lastlqr.PeerInLQRs == p->hdlc.lqm.lqr.peer.PeerInLQRs)) 257 SendLqrData(lcp); 258 } 259 } 260 m_freem(bp); 261 return NULL; 262 } 263 264 /* 265 * When LCP is reached to opened state, We'll start LQM activity. 266 */ 267 static void 268 lqr_Setup(struct lcp *lcp) 269 { 270 struct physical *physical = link2physical(lcp->fsm.link); 271 int period; 272 273 physical->hdlc.lqm.lqr.resent = 0; 274 physical->hdlc.lqm.echo.seq_sent = 0; 275 physical->hdlc.lqm.echo.seq_recv = 0; 276 memset(&physical->hdlc.lqm.lqr.peer, '\0', 277 sizeof physical->hdlc.lqm.lqr.peer); 278 279 physical->hdlc.lqm.method = lcp->cfg.echo ? LQM_ECHO : 0; 280 if (IsEnabled(lcp->cfg.lqr) && !REJECTED(lcp, TY_QUALPROTO)) 281 physical->hdlc.lqm.method |= LQM_LQR; 282 timer_Stop(&physical->hdlc.lqm.timer); 283 284 physical->hdlc.lqm.lqr.peer_timeout = lcp->his_lqrperiod; 285 if (lcp->his_lqrperiod) 286 log_Printf(LogLQM, "%s: Expecting LQR every %d.%02d secs\n", 287 physical->link.name, lcp->his_lqrperiod / 100, 288 lcp->his_lqrperiod % 100); 289 290 period = lcp->want_lqrperiod ? 291 lcp->want_lqrperiod : lcp->cfg.lqrperiod * 100; 292 physical->hdlc.lqm.timer.func = SendLqrReport; 293 physical->hdlc.lqm.timer.name = "lqm"; 294 physical->hdlc.lqm.timer.arg = lcp; 295 296 if (lcp->want_lqrperiod || physical->hdlc.lqm.method & LQM_ECHO) { 297 log_Printf(LogLQM, "%s: Will send %s every %d.%02d secs\n", 298 physical->link.name, lcp->want_lqrperiod ? "LQR" : "LCP ECHO", 299 period / 100, period % 100); 300 physical->hdlc.lqm.timer.load = period * SECTICKS / 100; 301 } else { 302 physical->hdlc.lqm.timer.load = 0; 303 if (!lcp->his_lqrperiod) 304 log_Printf(LogLQM, "%s: LQR/LCP ECHO not negotiated\n", 305 physical->link.name); 306 } 307 } 308 309 void 310 lqr_Start(struct lcp *lcp) 311 { 312 struct physical *p = link2physical(lcp->fsm.link); 313 314 lqr_Setup(lcp); 315 if (p->hdlc.lqm.timer.load) 316 SendLqrReport(lcp); 317 } 318 319 void 320 lqr_reStart(struct lcp *lcp) 321 { 322 struct physical *p = link2physical(lcp->fsm.link); 323 324 lqr_Setup(lcp); 325 if (p->hdlc.lqm.timer.load) 326 timer_Start(&p->hdlc.lqm.timer); 327 } 328 329 void 330 lqr_StopTimer(struct physical *physical) 331 { 332 timer_Stop(&physical->hdlc.lqm.timer); 333 } 334 335 void 336 lqr_Stop(struct physical *physical, int method) 337 { 338 if (method == LQM_LQR) 339 log_Printf(LogLQM, "%s: Stop sending LQR, Use LCP ECHO instead.\n", 340 physical->link.name); 341 if (method == LQM_ECHO) 342 log_Printf(LogLQM, "%s: Stop sending LCP ECHO.\n", 343 physical->link.name); 344 physical->hdlc.lqm.method &= ~method; 345 if (physical->hdlc.lqm.method) 346 SendLqrReport(physical->hdlc.lqm.owner); 347 else 348 timer_Stop(&physical->hdlc.lqm.timer); 349 } 350 351 void 352 lqr_Dump(const char *link, const char *message, const struct lqrdata *lqr) 353 { 354 if (log_IsKept(LogLQM)) { 355 log_Printf(LogLQM, "%s: %s:\n", link, message); 356 log_Printf(LogLQM, " Magic: %08x LastOutLQRs: %08x\n", 357 lqr->MagicNumber, lqr->LastOutLQRs); 358 log_Printf(LogLQM, " LastOutPackets: %08x LastOutOctets: %08x\n", 359 lqr->LastOutPackets, lqr->LastOutOctets); 360 log_Printf(LogLQM, " PeerInLQRs: %08x PeerInPackets: %08x\n", 361 lqr->PeerInLQRs, lqr->PeerInPackets); 362 log_Printf(LogLQM, " PeerInDiscards: %08x PeerInErrors: %08x\n", 363 lqr->PeerInDiscards, lqr->PeerInErrors); 364 log_Printf(LogLQM, " PeerInOctets: %08x PeerOutLQRs: %08x\n", 365 lqr->PeerInOctets, lqr->PeerOutLQRs); 366 log_Printf(LogLQM, " PeerOutPackets: %08x PeerOutOctets: %08x\n", 367 lqr->PeerOutPackets, lqr->PeerOutOctets); 368 } 369 } 370 371 void 372 lqr_Analyse(const struct hdlc *hdlc, const struct lqrdata *oldlqr, 373 const struct lqrdata *newlqr) 374 { 375 u_int32_t LQRs, transitLQRs, pkts, octets, disc, err; 376 377 if (!newlqr->PeerInLQRs) /* No analysis possible yet! */ 378 return; 379 380 log_Printf(LogLQM, "Analysis:\n"); 381 382 LQRs = (newlqr->LastOutLQRs - oldlqr->LastOutLQRs) - 383 (newlqr->PeerInLQRs - oldlqr->PeerInLQRs); 384 transitLQRs = hdlc->lqm.lqr.OutLQRs - newlqr->LastOutLQRs; 385 pkts = (newlqr->LastOutPackets - oldlqr->LastOutPackets) - 386 (newlqr->PeerInPackets - oldlqr->PeerInPackets); 387 octets = (newlqr->LastOutOctets - oldlqr->LastOutOctets) - 388 (newlqr->PeerInOctets - oldlqr->PeerInOctets); 389 log_Printf(LogLQM, " Outbound lossage: %d LQR%s (%d en route), %d packet%s," 390 " %d octet%s\n", (int)LQRs, LQRs == 1 ? "" : "s", (int)transitLQRs, 391 (int)pkts, pkts == 1 ? "" : "s", 392 (int)octets, octets == 1 ? "" : "s"); 393 394 pkts = (newlqr->PeerOutPackets - oldlqr->PeerOutPackets) - 395 (hdlc->lqm.lqr.Save.InPackets - hdlc->lqm.lqr.prevSave.InPackets); 396 octets = (newlqr->PeerOutOctets - oldlqr->PeerOutOctets) - 397 (hdlc->lqm.lqr.Save.InOctets - hdlc->lqm.lqr.prevSave.InOctets); 398 log_Printf(LogLQM, " Inbound lossage: %d packet%s, %d octet%s\n", 399 (int)pkts, pkts == 1 ? "" : "s", 400 (int)octets, octets == 1 ? "" : "s"); 401 402 disc = newlqr->PeerInDiscards - oldlqr->PeerInDiscards; 403 err = newlqr->PeerInErrors - oldlqr->PeerInErrors; 404 if (disc && err) 405 log_Printf(LogLQM, " Likely due to both peer congestion" 406 " and physical errors\n"); 407 else if (disc) 408 log_Printf(LogLQM, " Likely due to peer congestion\n"); 409 else if (err) 410 log_Printf(LogLQM, " Likely due to physical errors\n"); 411 else if (pkts) 412 log_Printf(LogLQM, " Likely due to transport " 413 "congestion\n"); 414 } 415 416 static struct mbuf * 417 lqr_LayerPush(struct bundle *b __unused, struct link *l, struct mbuf *bp, 418 int pri __unused, u_short *proto) 419 { 420 struct physical *p = link2physical(l); 421 int len, layer; 422 423 if (!p) { 424 /* Oops - can't happen :-] */ 425 m_freem(bp); 426 return NULL; 427 } 428 429 bp = m_pullup(bp); 430 len = m_length(bp); 431 432 /*- 433 * From rfc1989: 434 * 435 * All octets which are included in the FCS calculation MUST be counted, 436 * including the packet header, the information field, and any padding. 437 * The FCS octets MUST also be counted, and one flag octet per frame 438 * MUST be counted. All other octets (such as additional flag 439 * sequences, and escape bits or octets) MUST NOT be counted. 440 * 441 * As we're stacked higher than the HDLC layer (otherwise HDLC wouldn't be 442 * able to calculate the FCS), we must not forget about these additional 443 * bytes when we're asynchronous. 444 * 445 * We're also expecting to be stacked *before* the likes of the proto and 446 * acf layers (to avoid alignment issues), so deal with this too. 447 */ 448 449 p->hdlc.lqm.ifOutUniPackets++; 450 p->hdlc.lqm.ifOutOctets += len + 1; /* plus 1 flag octet! */ 451 for (layer = 0; layer < l->nlayers; layer++) 452 switch (l->layer[layer]->type) { 453 case LAYER_ACF: 454 p->hdlc.lqm.ifOutOctets += acf_WrapperOctets(&l->lcp, *proto); 455 break; 456 case LAYER_ASYNC: 457 /* Not included - see rfc1989 */ 458 break; 459 case LAYER_HDLC: 460 p->hdlc.lqm.ifOutOctets += hdlc_WrapperOctets(); 461 break; 462 case LAYER_LQR: 463 layer = l->nlayers; 464 break; 465 case LAYER_PROTO: 466 p->hdlc.lqm.ifOutOctets += proto_WrapperOctets(&l->lcp, *proto); 467 break; 468 case LAYER_SYNC: 469 /* Nothing to add on */ 470 break; 471 default: 472 log_Printf(LogWARN, "Oops, don't know how to do octets for %s layer\n", 473 l->layer[layer]->name); 474 break; 475 } 476 477 if (*proto == PROTO_LQR) { 478 /* Overwrite the entire packet (created in SendLqrData()) */ 479 struct lqrdata lqr; 480 size_t pending_pkts, pending_octets; 481 482 p->hdlc.lqm.lqr.OutLQRs++; 483 484 /* 485 * We need to compensate for the fact that we're pushing our data 486 * onto the highest priority queue by factoring out packet & octet 487 * values from other queues! 488 */ 489 link_PendingLowPriorityData(l, &pending_pkts, &pending_octets); 490 491 memset(&lqr, '\0', sizeof lqr); 492 lqr.MagicNumber = p->link.lcp.want_magic; 493 lqr.LastOutLQRs = p->hdlc.lqm.lqr.peer.PeerOutLQRs; 494 lqr.LastOutPackets = p->hdlc.lqm.lqr.peer.PeerOutPackets; 495 lqr.LastOutOctets = p->hdlc.lqm.lqr.peer.PeerOutOctets; 496 lqr.PeerInLQRs = p->hdlc.lqm.lqr.Save.InLQRs; 497 lqr.PeerInPackets = p->hdlc.lqm.lqr.Save.InPackets; 498 lqr.PeerInDiscards = p->hdlc.lqm.lqr.Save.InDiscards; 499 lqr.PeerInErrors = p->hdlc.lqm.lqr.Save.InErrors; 500 lqr.PeerInOctets = p->hdlc.lqm.lqr.Save.InOctets; 501 lqr.PeerOutLQRs = p->hdlc.lqm.lqr.OutLQRs; 502 lqr.PeerOutPackets = p->hdlc.lqm.ifOutUniPackets - pending_pkts; 503 /* Don't forget our ``flag'' octets.... */ 504 lqr.PeerOutOctets = p->hdlc.lqm.ifOutOctets - pending_octets - pending_pkts; 505 lqr_Dump(l->name, "Output", &lqr); 506 lqr_ChangeOrder(&lqr, (struct lqrdata *)MBUF_CTOP(bp)); 507 } 508 509 return bp; 510 } 511 512 static struct mbuf * 513 lqr_LayerPull(struct bundle *b __unused, struct link *l __unused, 514 struct mbuf *bp, u_short *proto) 515 { 516 /* 517 * This is the ``Rx'' process from rfc1989, although a part of it is 518 * actually performed by sync_LayerPull() & hdlc_LayerPull() so that 519 * our octet counts are correct. 520 */ 521 522 if (*proto == PROTO_LQR) 523 m_settype(bp, MB_LQRIN); 524 return bp; 525 } 526 527 /* 528 * Statistics for pulled packets are recorded either in hdlc_PullPacket() 529 * or sync_PullPacket() 530 */ 531 532 struct layer lqrlayer = { LAYER_LQR, "lqr", lqr_LayerPush, lqr_LayerPull }; 533