xref: /freebsd/usr.sbin/powerd/powerd.c (revision 1aaed33edb24c98a09130cd66667d6a795b6b2a8)
1 /*-
2  * Copyright (c) 2004 Colin Percival
3  * Copyright (c) 2005 Nate Lawson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted providing that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
19  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
24  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/ioctl.h>
33 #include <sys/sysctl.h>
34 #include <sys/resource.h>
35 #include <sys/socket.h>
36 #include <sys/time.h>
37 #include <sys/un.h>
38 
39 #include <err.h>
40 #include <errno.h>
41 #include <fcntl.h>
42 #include <libutil.h>
43 #include <signal.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <sysexits.h>
48 #include <unistd.h>
49 
50 #ifdef __i386__
51 #define USE_APM
52 #endif
53 
54 #ifdef USE_APM
55 #include <machine/apm_bios.h>
56 #endif
57 
58 #define DEFAULT_ACTIVE_PERCENT	75
59 #define DEFAULT_IDLE_PERCENT	50
60 #define DEFAULT_POLL_INTERVAL	250	/* Poll interval in milliseconds */
61 
62 typedef enum {
63 	MODE_MIN,
64 	MODE_ADAPTIVE,
65 	MODE_HIADAPTIVE,
66 	MODE_MAX,
67 } modes_t;
68 
69 typedef enum {
70 	SRC_AC,
71 	SRC_BATTERY,
72 	SRC_UNKNOWN,
73 } power_src_t;
74 
75 static const char *modes[] = {
76 	"AC",
77 	"battery",
78 	"unknown"
79 };
80 
81 #define ACPIAC		"hw.acpi.acline"
82 #define PMUAC		"dev.pmu.0.acline"
83 #define APMDEV		"/dev/apm"
84 #define DEVDPIPE	"/var/run/devd.pipe"
85 #define DEVCTL_MAXBUF	1024
86 
87 static int	read_usage_times(int *load);
88 static int	read_freqs(int *numfreqs, int **freqs, int **power,
89 		    int minfreq, int maxfreq);
90 static int	set_freq(int freq);
91 static void	acline_init(void);
92 static void	acline_read(void);
93 static int	devd_init(void);
94 static void	devd_close(void);
95 static void	handle_sigs(int sig);
96 static void	parse_mode(char *arg, int *mode, int ch);
97 static void	usage(void);
98 
99 /* Sysctl data structures. */
100 static int	cp_times_mib[2];
101 static int	freq_mib[4];
102 static int	levels_mib[4];
103 static int	acline_mib[4];
104 static size_t	acline_mib_len;
105 
106 /* Configuration */
107 static int	cpu_running_mark;
108 static int	cpu_idle_mark;
109 static int	poll_ival;
110 static int	vflag;
111 
112 static volatile sig_atomic_t exit_requested;
113 static power_src_t acline_status;
114 static enum {
115 	ac_none,
116 	ac_sysctl,
117 	ac_acpi_devd,
118 #ifdef USE_APM
119 	ac_apm,
120 #endif
121 } acline_mode;
122 #ifdef USE_APM
123 static int	apm_fd = -1;
124 #endif
125 static int	devd_pipe = -1;
126 
127 #define DEVD_RETRY_INTERVAL 60 /* seconds */
128 static struct timeval tried_devd;
129 
130 static int
131 read_usage_times(int *load)
132 {
133 	static long *cp_times = NULL, *cp_times_old = NULL;
134 	static int ncpus = 0;
135 	size_t cp_times_len;
136 	int error, cpu, i, total;
137 
138 	if (cp_times == NULL) {
139 		cp_times_len = 0;
140 		error = sysctl(cp_times_mib, 2, NULL, &cp_times_len, NULL, 0);
141 		if (error)
142 			return (error);
143 		if ((cp_times = malloc(cp_times_len)) == NULL)
144 			return (errno);
145 		if ((cp_times_old = malloc(cp_times_len)) == NULL) {
146 			free(cp_times);
147 			cp_times = NULL;
148 			return (errno);
149 		}
150 		ncpus = cp_times_len / (sizeof(long) * CPUSTATES);
151 	}
152 
153 	cp_times_len = sizeof(long) * CPUSTATES * ncpus;
154 	error = sysctl(cp_times_mib, 2, cp_times, &cp_times_len, NULL, 0);
155 	if (error)
156 		return (error);
157 
158 	if (load) {
159 		*load = 0;
160 		for (cpu = 0; cpu < ncpus; cpu++) {
161 			total = 0;
162 			for (i = 0; i < CPUSTATES; i++) {
163 			    total += cp_times[cpu * CPUSTATES + i] -
164 				cp_times_old[cpu * CPUSTATES + i];
165 			}
166 			if (total == 0)
167 				continue;
168 			*load += 100 - (cp_times[cpu * CPUSTATES + CP_IDLE] -
169 			    cp_times_old[cpu * CPUSTATES + CP_IDLE]) * 100 / total;
170 		}
171 	}
172 
173 	memcpy(cp_times_old, cp_times, cp_times_len);
174 
175 	return (0);
176 }
177 
178 static int
179 read_freqs(int *numfreqs, int **freqs, int **power, int minfreq, int maxfreq)
180 {
181 	char *freqstr, *p, *q;
182 	int i, j;
183 	size_t len = 0;
184 
185 	if (sysctl(levels_mib, 4, NULL, &len, NULL, 0))
186 		return (-1);
187 	if ((freqstr = malloc(len)) == NULL)
188 		return (-1);
189 	if (sysctl(levels_mib, 4, freqstr, &len, NULL, 0))
190 		return (-1);
191 
192 	*numfreqs = 1;
193 	for (p = freqstr; *p != '\0'; p++)
194 		if (*p == ' ')
195 			(*numfreqs)++;
196 
197 	if ((*freqs = malloc(*numfreqs * sizeof(int))) == NULL) {
198 		free(freqstr);
199 		return (-1);
200 	}
201 	if ((*power = malloc(*numfreqs * sizeof(int))) == NULL) {
202 		free(freqstr);
203 		free(*freqs);
204 		return (-1);
205 	}
206 	for (i = 0, j = 0, p = freqstr; i < *numfreqs; i++) {
207 		q = strchr(p, ' ');
208 		if (q != NULL)
209 			*q = '\0';
210 		if (sscanf(p, "%d/%d", &(*freqs)[j], &(*power)[i]) != 2) {
211 			free(freqstr);
212 			free(*freqs);
213 			free(*power);
214 			return (-1);
215 		}
216 		if (((*freqs)[j] >= minfreq || minfreq == -1) &&
217 		    ((*freqs)[j] <= maxfreq || maxfreq == -1))
218 			j++;
219 		p = q + 1;
220 	}
221 
222 	*numfreqs = j;
223 	if ((*freqs = realloc(*freqs, *numfreqs * sizeof(int))) == NULL) {
224 		free(freqstr);
225 		free(*freqs);
226 		free(*power);
227 		return (-1);
228 	}
229 
230 	free(freqstr);
231 	return (0);
232 }
233 
234 static int
235 get_freq(void)
236 {
237 	size_t len;
238 	int curfreq;
239 
240 	len = sizeof(curfreq);
241 	if (sysctl(freq_mib, 4, &curfreq, &len, NULL, 0) != 0) {
242 		if (vflag)
243 			warn("error reading current CPU frequency");
244 		curfreq = 0;
245 	}
246 	return (curfreq);
247 }
248 
249 static int
250 set_freq(int freq)
251 {
252 
253 	if (sysctl(freq_mib, 4, NULL, NULL, &freq, sizeof(freq))) {
254 		if (errno != EPERM)
255 			return (-1);
256 	}
257 
258 	return (0);
259 }
260 
261 static int
262 get_freq_id(int freq, int *freqs, int numfreqs)
263 {
264 	int i = 1;
265 
266 	while (i < numfreqs) {
267 		if (freqs[i] < freq)
268 			break;
269 		i++;
270 	}
271 	return (i - 1);
272 }
273 
274 /*
275  * Try to use ACPI to find the AC line status.  If this fails, fall back
276  * to APM.  If nothing succeeds, we'll just run in default mode.
277  */
278 static void
279 acline_init(void)
280 {
281 	acline_mib_len = 4;
282 
283 	if (sysctlnametomib(ACPIAC, acline_mib, &acline_mib_len) == 0) {
284 		acline_mode = ac_sysctl;
285 		if (vflag)
286 			warnx("using sysctl for AC line status");
287 #if __powerpc__
288 	} else if (sysctlnametomib(PMUAC, acline_mib, &acline_mib_len) == 0) {
289 		acline_mode = ac_sysctl;
290 		if (vflag)
291 			warnx("using sysctl for AC line status");
292 #endif
293 #ifdef USE_APM
294 	} else if ((apm_fd = open(APMDEV, O_RDONLY)) >= 0) {
295 		if (vflag)
296 			warnx("using APM for AC line status");
297 		acline_mode = ac_apm;
298 #endif
299 	} else {
300 		warnx("unable to determine AC line status");
301 		acline_mode = ac_none;
302 	}
303 }
304 
305 static void
306 acline_read(void)
307 {
308 	if (acline_mode == ac_acpi_devd) {
309 		char buf[DEVCTL_MAXBUF], *ptr;
310 		ssize_t rlen;
311 		int notify;
312 
313 		rlen = read(devd_pipe, buf, sizeof(buf));
314 		if (rlen == 0 || (rlen < 0 && errno != EWOULDBLOCK)) {
315 			if (vflag)
316 				warnx("lost devd connection, switching to sysctl");
317 			devd_close();
318 			acline_mode = ac_sysctl;
319 			/* FALLTHROUGH */
320 		}
321 		if (rlen > 0 &&
322 		    (ptr = strstr(buf, "system=ACPI")) != NULL &&
323 		    (ptr = strstr(ptr, "subsystem=ACAD")) != NULL &&
324 		    (ptr = strstr(ptr, "notify=")) != NULL &&
325 		    sscanf(ptr, "notify=%x", &notify) == 1)
326 			acline_status = (notify ? SRC_AC : SRC_BATTERY);
327 	}
328 	if (acline_mode == ac_sysctl) {
329 		int acline;
330 		size_t len;
331 
332 		len = sizeof(acline);
333 		if (sysctl(acline_mib, acline_mib_len, &acline, &len,
334 		    NULL, 0) == 0)
335 			acline_status = (acline ? SRC_AC : SRC_BATTERY);
336 		else
337 			acline_status = SRC_UNKNOWN;
338 	}
339 #ifdef USE_APM
340 	if (acline_mode == ac_apm) {
341 		struct apm_info info;
342 
343 		if (ioctl(apm_fd, APMIO_GETINFO, &info) == 0) {
344 			acline_status = (info.ai_acline ? SRC_AC : SRC_BATTERY);
345 		} else {
346 			close(apm_fd);
347 			apm_fd = -1;
348 			acline_mode = ac_none;
349 			acline_status = SRC_UNKNOWN;
350 		}
351 	}
352 #endif
353 	/* try to (re)connect to devd */
354 	if (acline_mode == ac_sysctl) {
355 		struct timeval now;
356 
357 		gettimeofday(&now, NULL);
358 		if (now.tv_sec > tried_devd.tv_sec + DEVD_RETRY_INTERVAL) {
359 			if (devd_init() >= 0) {
360 				if (vflag)
361 					warnx("using devd for AC line status");
362 				acline_mode = ac_acpi_devd;
363 			}
364 			tried_devd = now;
365 		}
366 	}
367 }
368 
369 static int
370 devd_init(void)
371 {
372 	struct sockaddr_un devd_addr;
373 
374 	bzero(&devd_addr, sizeof(devd_addr));
375 	if ((devd_pipe = socket(PF_LOCAL, SOCK_STREAM, 0)) < 0) {
376 		if (vflag)
377 			warn("%s(): socket()", __func__);
378 		return (-1);
379 	}
380 
381 	devd_addr.sun_family = PF_LOCAL;
382 	strlcpy(devd_addr.sun_path, DEVDPIPE, sizeof(devd_addr.sun_path));
383 	if (connect(devd_pipe, (struct sockaddr *)&devd_addr,
384 	    sizeof(devd_addr)) == -1) {
385 		if (vflag)
386 			warn("%s(): connect()", __func__);
387 		close(devd_pipe);
388 		devd_pipe = -1;
389 		return (-1);
390 	}
391 
392 	if (fcntl(devd_pipe, F_SETFL, O_NONBLOCK) == -1) {
393 		if (vflag)
394 			warn("%s(): fcntl()", __func__);
395 		close(devd_pipe);
396 		return (-1);
397 	}
398 
399 	return (devd_pipe);
400 }
401 
402 static void
403 devd_close(void)
404 {
405 
406 	close(devd_pipe);
407 	devd_pipe = -1;
408 }
409 
410 static void
411 parse_mode(char *arg, int *mode, int ch)
412 {
413 
414 	if (strcmp(arg, "minimum") == 0 || strcmp(arg, "min") == 0)
415 		*mode = MODE_MIN;
416 	else if (strcmp(arg, "maximum") == 0 || strcmp(arg, "max") == 0)
417 		*mode = MODE_MAX;
418 	else if (strcmp(arg, "adaptive") == 0 || strcmp(arg, "adp") == 0)
419 		*mode = MODE_ADAPTIVE;
420 	else if (strcmp(arg, "hiadaptive") == 0 || strcmp(arg, "hadp") == 0)
421 		*mode = MODE_HIADAPTIVE;
422 	else
423 		errx(1, "bad option: -%c %s", (char)ch, optarg);
424 }
425 
426 static void
427 handle_sigs(int __unused sig)
428 {
429 
430 	exit_requested = 1;
431 }
432 
433 static void
434 usage(void)
435 {
436 
437 	fprintf(stderr,
438 "usage: powerd [-v] [-a mode] [-b mode] [-i %%] [-m freq] [-M freq] [-n mode] [-p ival] [-r %%] [-P pidfile]\n");
439 	exit(1);
440 }
441 
442 int
443 main(int argc, char * argv[])
444 {
445 	struct timeval timeout;
446 	fd_set fdset;
447 	int nfds;
448 	struct pidfh *pfh = NULL;
449 	const char *pidfile = NULL;
450 	int freq, curfreq, initfreq, *freqs, i, j, *mwatts, numfreqs, load;
451 	int minfreq = -1, maxfreq = -1;
452 	int ch, mode, mode_ac, mode_battery, mode_none, idle, to;
453 	uint64_t mjoules_used;
454 	size_t len;
455 
456 	/* Default mode for all AC states is adaptive. */
457 	mode_ac = mode_none = MODE_HIADAPTIVE;
458 	mode_battery = MODE_ADAPTIVE;
459 	cpu_running_mark = DEFAULT_ACTIVE_PERCENT;
460 	cpu_idle_mark = DEFAULT_IDLE_PERCENT;
461 	poll_ival = DEFAULT_POLL_INTERVAL;
462 	mjoules_used = 0;
463 	vflag = 0;
464 
465 	/* User must be root to control frequencies. */
466 	if (geteuid() != 0)
467 		errx(1, "must be root to run");
468 
469 	while ((ch = getopt(argc, argv, "a:b:i:m:M:n:p:P:r:v")) != -1)
470 		switch (ch) {
471 		case 'a':
472 			parse_mode(optarg, &mode_ac, ch);
473 			break;
474 		case 'b':
475 			parse_mode(optarg, &mode_battery, ch);
476 			break;
477 		case 'i':
478 			cpu_idle_mark = atoi(optarg);
479 			if (cpu_idle_mark < 0 || cpu_idle_mark > 100) {
480 				warnx("%d is not a valid percent",
481 				    cpu_idle_mark);
482 				usage();
483 			}
484 			break;
485 		case 'm':
486 			minfreq = atoi(optarg);
487 			if (minfreq < 0) {
488 				warnx("%d is not a valid CPU frequency",
489 				    minfreq);
490 				usage();
491 			}
492 			break;
493 		case 'M':
494 			maxfreq = atoi(optarg);
495 			if (maxfreq < 0) {
496 				warnx("%d is not a valid CPU frequency",
497 				    maxfreq);
498 				usage();
499 			}
500 			break;
501 		case 'n':
502 			parse_mode(optarg, &mode_none, ch);
503 			break;
504 		case 'p':
505 			poll_ival = atoi(optarg);
506 			if (poll_ival < 5) {
507 				warnx("poll interval is in units of ms");
508 				usage();
509 			}
510 			break;
511 		case 'P':
512 			pidfile = optarg;
513 			break;
514 		case 'r':
515 			cpu_running_mark = atoi(optarg);
516 			if (cpu_running_mark <= 0 || cpu_running_mark > 100) {
517 				warnx("%d is not a valid percent",
518 				    cpu_running_mark);
519 				usage();
520 			}
521 			break;
522 		case 'v':
523 			vflag = 1;
524 			break;
525 		default:
526 			usage();
527 		}
528 
529 	mode = mode_none;
530 
531 	/* Poll interval is in units of ms. */
532 	poll_ival *= 1000;
533 
534 	/* Look up various sysctl MIBs. */
535 	len = 2;
536 	if (sysctlnametomib("kern.cp_times", cp_times_mib, &len))
537 		err(1, "lookup kern.cp_times");
538 	len = 4;
539 	if (sysctlnametomib("dev.cpu.0.freq", freq_mib, &len))
540 		err(EX_UNAVAILABLE, "no cpufreq(4) support -- aborting");
541 	len = 4;
542 	if (sysctlnametomib("dev.cpu.0.freq_levels", levels_mib, &len))
543 		err(1, "lookup freq_levels");
544 
545 	/* Check if we can read the load and supported freqs. */
546 	if (read_usage_times(NULL))
547 		err(1, "read_usage_times");
548 	if (read_freqs(&numfreqs, &freqs, &mwatts, minfreq, maxfreq))
549 		err(1, "error reading supported CPU frequencies");
550 	if (numfreqs == 0)
551 		errx(1, "no CPU frequencies in user-specified range");
552 
553 	/* Run in the background unless in verbose mode. */
554 	if (!vflag) {
555 		pid_t otherpid;
556 
557 		pfh = pidfile_open(pidfile, 0600, &otherpid);
558 		if (pfh == NULL) {
559 			if (errno == EEXIST) {
560 				errx(1, "powerd already running, pid: %d",
561 				    otherpid);
562 			}
563 			warn("cannot open pid file");
564 		}
565 		if (daemon(0, 0) != 0) {
566 			warn("cannot enter daemon mode, exiting");
567 			pidfile_remove(pfh);
568 			exit(EXIT_FAILURE);
569 
570 		}
571 		pidfile_write(pfh);
572 	}
573 
574 	/* Decide whether to use ACPI or APM to read the AC line status. */
575 	acline_init();
576 
577 	/*
578 	 * Exit cleanly on signals.
579 	 */
580 	signal(SIGINT, handle_sigs);
581 	signal(SIGTERM, handle_sigs);
582 
583 	freq = initfreq = curfreq = get_freq();
584 	i = get_freq_id(curfreq, freqs, numfreqs);
585 	if (freq < 1)
586 		freq = 1;
587 
588 	/*
589 	 * If we are in adaptive mode and the current frequency is outside the
590 	 * user-defined range, adjust it to be within the user-defined range.
591 	 */
592 	acline_read();
593 	if (acline_status > SRC_UNKNOWN)
594 		errx(1, "invalid AC line status %d", acline_status);
595 	if ((acline_status == SRC_AC &&
596 	    (mode_ac == MODE_ADAPTIVE || mode_ac == MODE_HIADAPTIVE)) ||
597 	    (acline_status == SRC_BATTERY &&
598 	    (mode_battery == MODE_ADAPTIVE || mode_battery == MODE_HIADAPTIVE)) ||
599 	    (acline_status == SRC_UNKNOWN &&
600 	    (mode_none == MODE_ADAPTIVE || mode_none == MODE_HIADAPTIVE))) {
601 		/* Read the current frequency. */
602 		len = sizeof(curfreq);
603 		if (sysctl(freq_mib, 4, &curfreq, &len, NULL, 0) != 0) {
604 			if (vflag)
605 				warn("error reading current CPU frequency");
606 		}
607 		if (curfreq < freqs[numfreqs - 1]) {
608 			if (vflag) {
609 				printf("CPU frequency is below user-defined "
610 				    "minimum; changing frequency to %d "
611 				    "MHz\n", freqs[numfreqs - 1]);
612 			}
613 			if (set_freq(freqs[numfreqs - 1]) != 0) {
614 				warn("error setting CPU freq %d",
615 				    freqs[numfreqs - 1]);
616 			}
617 		} else if (curfreq > freqs[0]) {
618 			if (vflag) {
619 				printf("CPU frequency is above user-defined "
620 				    "maximum; changing frequency to %d "
621 				    "MHz\n", freqs[0]);
622 			}
623 			if (set_freq(freqs[0]) != 0) {
624 				warn("error setting CPU freq %d",
625 				    freqs[0]);
626 			}
627 		}
628 	}
629 
630 	idle = 0;
631 	/* Main loop. */
632 	for (;;) {
633 		FD_ZERO(&fdset);
634 		if (devd_pipe >= 0) {
635 			FD_SET(devd_pipe, &fdset);
636 			nfds = devd_pipe + 1;
637 		} else {
638 			nfds = 0;
639 		}
640 		if (mode == MODE_HIADAPTIVE || idle < 120)
641 			to = poll_ival;
642 		else if (idle < 360)
643 			to = poll_ival * 2;
644 		else
645 			to = poll_ival * 4;
646 		timeout.tv_sec = to / 1000000;
647 		timeout.tv_usec = to % 1000000;
648 		select(nfds, &fdset, NULL, &fdset, &timeout);
649 
650 		/* If the user requested we quit, print some statistics. */
651 		if (exit_requested) {
652 			if (vflag && mjoules_used != 0)
653 				printf("total joules used: %u.%03u\n",
654 				    (u_int)(mjoules_used / 1000),
655 				    (int)mjoules_used % 1000);
656 			break;
657 		}
658 
659 		/* Read the current AC status and record the mode. */
660 		acline_read();
661 		switch (acline_status) {
662 		case SRC_AC:
663 			mode = mode_ac;
664 			break;
665 		case SRC_BATTERY:
666 			mode = mode_battery;
667 			break;
668 		case SRC_UNKNOWN:
669 			mode = mode_none;
670 			break;
671 		default:
672 			errx(1, "invalid AC line status %d", acline_status);
673 		}
674 
675 		/* Read the current frequency. */
676 		if (idle % 32 == 0) {
677 			if ((curfreq = get_freq()) == 0)
678 				continue;
679 			i = get_freq_id(curfreq, freqs, numfreqs);
680 		}
681 		idle++;
682 		if (vflag) {
683 			/* Keep a sum of all power actually used. */
684 			if (mwatts[i] != -1)
685 				mjoules_used +=
686 				    (mwatts[i] * (poll_ival / 1000)) / 1000;
687 		}
688 
689 		/* Always switch to the lowest frequency in min mode. */
690 		if (mode == MODE_MIN) {
691 			freq = freqs[numfreqs - 1];
692 			if (curfreq != freq) {
693 				if (vflag) {
694 					printf("now operating on %s power; "
695 					    "changing frequency to %d MHz\n",
696 					    modes[acline_status], freq);
697 				}
698 				idle = 0;
699 				if (set_freq(freq) != 0) {
700 					warn("error setting CPU freq %d",
701 					    freq);
702 					continue;
703 				}
704 			}
705 			continue;
706 		}
707 
708 		/* Always switch to the highest frequency in max mode. */
709 		if (mode == MODE_MAX) {
710 			freq = freqs[0];
711 			if (curfreq != freq) {
712 				if (vflag) {
713 					printf("now operating on %s power; "
714 					    "changing frequency to %d MHz\n",
715 					    modes[acline_status], freq);
716 				}
717 				idle = 0;
718 				if (set_freq(freq) != 0) {
719 					warn("error setting CPU freq %d",
720 				    	    freq);
721 					continue;
722 				}
723 			}
724 			continue;
725 		}
726 
727 		/* Adaptive mode; get the current CPU usage times. */
728 		if (read_usage_times(&load)) {
729 			if (vflag)
730 				warn("read_usage_times() failed");
731 			continue;
732 		}
733 
734 		if (mode == MODE_ADAPTIVE) {
735 			if (load > cpu_running_mark) {
736 				if (load > 95 || load > cpu_running_mark * 2)
737 					freq *= 2;
738 				else
739 					freq = freq * load / cpu_running_mark;
740 				if (freq > freqs[0])
741 					freq = freqs[0];
742 			} else if (load < cpu_idle_mark &&
743 			    curfreq * load < freqs[get_freq_id(
744 			    freq * 7 / 8, freqs, numfreqs)] *
745 			    cpu_running_mark) {
746 				freq = freq * 7 / 8;
747 				if (freq < freqs[numfreqs - 1])
748 					freq = freqs[numfreqs - 1];
749 			}
750 		} else { /* MODE_HIADAPTIVE */
751 			if (load > cpu_running_mark / 2) {
752 				if (load > 95 || load > cpu_running_mark)
753 					freq *= 4;
754 				else
755 					freq = freq * load * 2 / cpu_running_mark;
756 				if (freq > freqs[0] * 2)
757 					freq = freqs[0] * 2;
758 			} else if (load < cpu_idle_mark / 2 &&
759 			    curfreq * load < freqs[get_freq_id(
760 			    freq * 31 / 32, freqs, numfreqs)] *
761 			    cpu_running_mark / 2) {
762 				freq = freq * 31 / 32;
763 				if (freq < freqs[numfreqs - 1])
764 					freq = freqs[numfreqs - 1];
765 			}
766 		}
767 		if (vflag) {
768 		    printf("load %3d%%, current freq %4d MHz (%2d), wanted freq %4d MHz\n",
769 			load, curfreq, i, freq);
770 		}
771 		j = get_freq_id(freq, freqs, numfreqs);
772 		if (i != j) {
773 			if (vflag) {
774 				printf("changing clock"
775 				    " speed from %d MHz to %d MHz\n",
776 				    freqs[i], freqs[j]);
777 			}
778 			idle = 0;
779 			if (set_freq(freqs[j]))
780 				warn("error setting CPU frequency %d",
781 				    freqs[j]);
782 		}
783 	}
784 	if (set_freq(initfreq))
785 		warn("error setting CPU frequency %d", initfreq);
786 	free(freqs);
787 	free(mwatts);
788 	devd_close();
789 	if (!vflag)
790 		pidfile_remove(pfh);
791 
792 	exit(0);
793 }
794