xref: /freebsd/usr.sbin/pmcstat/pmcpl_calltree.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, Fabien Thomas
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Process hwpmc(4) samples as calltree.
31  *
32  * Output file format compatible with Kcachegrind (kdesdk).
33  * Handle top mode with a sorted tree display.
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include <sys/param.h>
40 #include <sys/endian.h>
41 #include <sys/queue.h>
42 
43 #include <assert.h>
44 #include <curses.h>
45 #include <ctype.h>
46 #include <err.h>
47 #include <errno.h>
48 #include <fcntl.h>
49 #include <pmc.h>
50 #include <pmclog.h>
51 #include <stdint.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54 #include <string.h>
55 #include <unistd.h>
56 #include <sysexits.h>
57 
58 #include "pmcstat.h"
59 #include "pmcstat_log.h"
60 #include "pmcstat_top.h"
61 #include "pmcpl_calltree.h"
62 
63 #define	min(A,B)		((A) < (B) ? (A) : (B))
64 #define	max(A,B)		((A) > (B) ? (A) : (B))
65 
66 #define	PMCPL_CT_GROWSIZE	4
67 
68 static int pmcstat_skiplink = 0;
69 
70 struct pmcpl_ct_node;
71 
72 /* Get the sample value for PMC a. */
73 #define	PMCPL_CT_SAMPLE(a, b) \
74 	((a) < (b)->npmcs ? (b)->sb[a] : 0)
75 
76 /* Get the sample value in percent related to rsamples. */
77 #define	PMCPL_CT_SAMPLEP(a, b) \
78 	(PMCPL_CT_SAMPLE(a, b) * 100.0 / rsamples->sb[a])
79 
80 struct pmcpl_ct_sample {
81 	int		npmcs;		/* Max pmc index available. */
82 	unsigned	*sb;		/* Sample buffer for 0..npmcs. */
83 };
84 
85 struct pmcpl_ct_arc {
86 	struct pmcpl_ct_sample	pcta_samples;
87 	struct pmcpl_ct_sample	pcta_callid;
88 	unsigned		pcta_call;
89 	struct pmcpl_ct_node	*pcta_child;
90 };
91 
92 struct pmcpl_ct_instr {
93 	uintfptr_t		pctf_func;
94 	struct pmcpl_ct_sample	pctf_samples;
95 };
96 
97 /*
98  * Each calltree node is tracked by a pmcpl_ct_node struct.
99  */
100 struct pmcpl_ct_node {
101 	struct pmcstat_image	*pct_image;
102 	uintfptr_t		pct_func;
103 
104 	struct pmcstat_symbol	*pct_sym;
105 	pmcstat_interned_string	pct_ifl;
106 	pmcstat_interned_string	pct_ifn;
107 
108 	struct pmcpl_ct_sample	pct_samples;
109 
110 	int			pct_narc;
111 	int			pct_arc_c;
112 	struct pmcpl_ct_arc 	*pct_arc;
113 
114 	/* TODO: optimize for large number of items. */
115 	int			pct_ninstr;
116 	int			pct_instr_c;
117 	struct pmcpl_ct_instr	*pct_instr;
118 
119 #define PMCPL_PCT_ADDR	0
120 #define PMCPL_PCT_NAME	1
121 	char			pct_type;
122 #define	PMCPL_PCT_WHITE	0
123 #define	PMCPL_PCT_GREY	1
124 #define	PMCPL_PCT_BLACK	2
125 	char			pct_color;
126 };
127 
128 struct pmcpl_ct_node_hash {
129 	struct pmcpl_ct_node  *pch_ctnode;
130 	STAILQ_ENTRY(pmcpl_ct_node_hash) pch_next;
131 };
132 
133 static struct pmcpl_ct_sample pmcpl_ct_callid;
134 
135 #define	PMCPL_CT_MAXCOL		PMC_CALLCHAIN_DEPTH_MAX
136 #define	PMCPL_CT_MAXLINE	1024	/* TODO: dynamic. */
137 
138 struct pmcpl_ct_line {
139 	unsigned	ln_sum;
140 	unsigned	ln_index;
141 };
142 
143 static struct pmcpl_ct_line	pmcpl_ct_topmax[PMCPL_CT_MAXLINE+1];
144 static struct pmcpl_ct_node
145     *pmcpl_ct_topscreen[PMCPL_CT_MAXCOL+1][PMCPL_CT_MAXLINE+1];
146 
147 /*
148  * All nodes indexed by function/image name are placed in a hash table.
149  */
150 static STAILQ_HEAD(,pmcpl_ct_node_hash) pmcpl_ct_node_hash[PMCSTAT_NHASH];
151 
152 /*
153  * Root node for the graph.
154  */
155 static struct pmcpl_ct_node *pmcpl_ct_root;
156 
157 /*
158  * Prototypes
159  */
160 
161 /*
162  * Initialize a samples.
163  */
164 
165 static void
166 pmcpl_ct_samples_init(struct pmcpl_ct_sample *samples)
167 {
168 
169 	samples->npmcs = 0;
170 	samples->sb = NULL;
171 }
172 
173 /*
174  * Free a samples.
175  */
176 
177 static void
178 pmcpl_ct_samples_free(struct pmcpl_ct_sample *samples)
179 {
180 
181 	samples->npmcs = 0;
182 	free(samples->sb);
183 	samples->sb = NULL;
184 }
185 
186 /*
187  * Grow a sample block to store pmcstat_npmcs PMCs.
188  */
189 
190 static void
191 pmcpl_ct_samples_grow(struct pmcpl_ct_sample *samples)
192 {
193 	unsigned int npmcs;
194 
195 	/* Enough storage. */
196 	if (pmcstat_npmcs <= samples->npmcs)
197                 return;
198 
199 	npmcs = samples->npmcs +
200 	    max(pmcstat_npmcs - samples->npmcs, PMCPL_CT_GROWSIZE);
201 	samples->sb = reallocarray(samples->sb, npmcs, sizeof(unsigned));
202 	if (samples->sb == NULL)
203 		errx(EX_SOFTWARE, "ERROR: out of memory");
204 	bzero((char *)samples->sb + samples->npmcs * sizeof(unsigned),
205 	    (npmcs - samples->npmcs) * sizeof(unsigned));
206 	samples->npmcs = npmcs;
207 }
208 
209 /*
210  * Compute the sum of all root arcs.
211  */
212 
213 static void
214 pmcpl_ct_samples_root(struct pmcpl_ct_sample *samples)
215 {
216 	int i, pmcin;
217 
218 	pmcpl_ct_samples_init(samples);
219 	pmcpl_ct_samples_grow(samples);
220 
221 	for (i = 0; i < pmcpl_ct_root->pct_narc; i++)
222 		for (pmcin = 0; pmcin < pmcstat_npmcs; pmcin++)
223 			samples->sb[pmcin] += PMCPL_CT_SAMPLE(pmcin,
224 			    &pmcpl_ct_root->pct_arc[i].pcta_samples);
225 }
226 
227 /*
228  * Grow the arc table.
229  */
230 
231 static void
232 pmcpl_ct_arc_grow(int cursize, int *maxsize, struct pmcpl_ct_arc **items)
233 {
234 	unsigned int nmaxsize;
235 
236 	if (cursize < *maxsize)
237 		return;
238 
239 	nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
240 	*items = reallocarray(*items, nmaxsize, sizeof(struct pmcpl_ct_arc));
241 	if (*items == NULL)
242 		errx(EX_SOFTWARE, "ERROR: out of memory");
243 	bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_arc),
244 	    (nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_arc));
245 	*maxsize = nmaxsize;
246 }
247 
248 /*
249  * Grow the instr table.
250  */
251 
252 static void
253 pmcpl_ct_instr_grow(int cursize, int *maxsize, struct pmcpl_ct_instr **items)
254 {
255 	unsigned int nmaxsize;
256 
257 	if (cursize < *maxsize)
258 		return;
259 
260 	nmaxsize = *maxsize + max(cursize + 1 - *maxsize, PMCPL_CT_GROWSIZE);
261 	*items = reallocarray(*items, nmaxsize, sizeof(struct pmcpl_ct_instr));
262 	if (*items == NULL)
263 		errx(EX_SOFTWARE, "ERROR: out of memory");
264 	bzero((char *)*items + *maxsize * sizeof(struct pmcpl_ct_instr),
265 	    (nmaxsize - *maxsize) * sizeof(struct pmcpl_ct_instr));
266 	*maxsize = nmaxsize;
267 }
268 
269 /*
270  * Add a new instruction sample to given node.
271  */
272 
273 static void
274 pmcpl_ct_instr_add(struct pmcpl_ct_node *ct, int pmcin,
275     uintfptr_t pc, unsigned v)
276 {
277 	int i;
278 	struct pmcpl_ct_instr *in;
279 
280 	for (i = 0; i<ct->pct_ninstr; i++) {
281 		if (ct->pct_instr[i].pctf_func == pc) {
282 			in = &ct->pct_instr[i];
283 			pmcpl_ct_samples_grow(&in->pctf_samples);
284 			in->pctf_samples.sb[pmcin] += v;
285 			return;
286 		}
287 	}
288 
289 	pmcpl_ct_instr_grow(ct->pct_ninstr, &ct->pct_instr_c, &ct->pct_instr);
290 	in = &ct->pct_instr[ct->pct_ninstr];
291 	in->pctf_func = pc;
292 	pmcpl_ct_samples_init(&in->pctf_samples);
293 	pmcpl_ct_samples_grow(&in->pctf_samples);
294 	in->pctf_samples.sb[pmcin] = v;
295 	ct->pct_ninstr++;
296 }
297 
298 /*
299  * Allocate a new node.
300  */
301 
302 static struct pmcpl_ct_node *
303 pmcpl_ct_node_allocate(void)
304 {
305 	struct pmcpl_ct_node *ct;
306 
307 	if ((ct = malloc(sizeof(*ct))) == NULL)
308 		err(EX_OSERR, "ERROR: Cannot allocate callgraph node");
309 
310 	pmcpl_ct_samples_init(&ct->pct_samples);
311 
312 	ct->pct_sym	= NULL;
313 	ct->pct_image	= NULL;
314 	ct->pct_func	= 0;
315 
316 	ct->pct_narc	= 0;
317 	ct->pct_arc_c	= 0;
318 	ct->pct_arc	= NULL;
319 
320 	ct->pct_ninstr	= 0;
321 	ct->pct_instr_c	= 0;
322 	ct->pct_instr	= NULL;
323 
324 	ct->pct_color   = PMCPL_PCT_WHITE;
325 
326 	return (ct);
327 }
328 
329 /*
330  * Free a node.
331  */
332 
333 static void
334 pmcpl_ct_node_free(struct pmcpl_ct_node *ct)
335 {
336 	int i;
337 
338 	for (i = 0; i < ct->pct_narc; i++) {
339 		pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_samples);
340 		pmcpl_ct_samples_free(&ct->pct_arc[i].pcta_callid);
341 	}
342 
343 	pmcpl_ct_samples_free(&ct->pct_samples);
344 	free(ct->pct_arc);
345 	free(ct->pct_instr);
346 	free(ct);
347 }
348 
349 /*
350  * Clear the graph tag on each node.
351  */
352 static void
353 pmcpl_ct_node_cleartag(void)
354 {
355 	int i;
356 	struct pmcpl_ct_node_hash *pch;
357 
358 	for (i = 0; i < PMCSTAT_NHASH; i++)
359 		STAILQ_FOREACH(pch, &pmcpl_ct_node_hash[i], pch_next)
360 			pch->pch_ctnode->pct_color = PMCPL_PCT_WHITE;
361 
362 	pmcpl_ct_root->pct_color = PMCPL_PCT_WHITE;
363 }
364 
365 /*
366  * Print the callchain line by line with maximum cost at top.
367  */
368 
369 static int
370 pmcpl_ct_node_dumptop(int pmcin, struct pmcpl_ct_node *ct,
371     struct pmcpl_ct_sample *rsamples, int x, int *y)
372 {
373 	int i, terminal;
374 	struct pmcpl_ct_arc *arc;
375 
376 	if (ct->pct_color == PMCPL_PCT_GREY)
377 		return 0;
378 
379 	if (x >= PMCPL_CT_MAXCOL) {
380 		pmcpl_ct_topscreen[x][*y] = NULL;
381 		return 1;
382 	}
383 	pmcpl_ct_topscreen[x][*y] = ct;
384 
385 	/*
386 	 * Check if this is a terminal node.
387 	 * We need to check that some samples exist
388 	 * for at least one arc for that PMC.
389 	 */
390 	terminal = 1;
391 	for (i = 0; i < ct->pct_narc; i++) {
392 		arc = &ct->pct_arc[i];
393 		if (arc->pcta_child->pct_color != PMCPL_PCT_GREY &&
394 		    PMCPL_CT_SAMPLE(pmcin,
395 		    &arc->pcta_samples) != 0 &&
396 		    PMCPL_CT_SAMPLEP(pmcin,
397 		    &arc->pcta_samples) > pmcstat_threshold) {
398 			terminal = 0;
399 			break;
400 		}
401 	}
402 
403 	if (ct->pct_narc == 0 || terminal) {
404 		pmcpl_ct_topscreen[x+1][*y] = NULL;
405 		if (*y >= PMCPL_CT_MAXLINE)
406 			return 1;
407 		*y = *y + 1;
408 		for (i=0; i < x; i++)
409 			pmcpl_ct_topscreen[i][*y] =
410 			    pmcpl_ct_topscreen[i][*y - 1];
411 		return 0;
412 	}
413 
414 	ct->pct_color = PMCPL_PCT_GREY;
415 	for (i = 0; i < ct->pct_narc; i++) {
416 		if (PMCPL_CT_SAMPLE(pmcin,
417 		    &ct->pct_arc[i].pcta_samples) == 0)
418 			continue;
419 		if (PMCPL_CT_SAMPLEP(pmcin,
420 		    &ct->pct_arc[i].pcta_samples) > pmcstat_threshold) {
421 			if (pmcpl_ct_node_dumptop(pmcin,
422 			        ct->pct_arc[i].pcta_child,
423 			        rsamples, x+1, y)) {
424 				ct->pct_color = PMCPL_PCT_BLACK;
425 				return 1;
426 			}
427 		}
428 	}
429 	ct->pct_color = PMCPL_PCT_BLACK;
430 
431 	return 0;
432 }
433 
434 /*
435  * Compare two top line by sum.
436  */
437 static int
438 pmcpl_ct_line_compare(const void *a, const void *b)
439 {
440 	const struct pmcpl_ct_line *ct1, *ct2;
441 
442 	ct1 = (const struct pmcpl_ct_line *) a;
443 	ct2 = (const struct pmcpl_ct_line *) b;
444 
445 	/* Sort in reverse order */
446 	if (ct1->ln_sum < ct2->ln_sum)
447 		return (1);
448 	if (ct1->ln_sum > ct2->ln_sum)
449 		return (-1);
450 	return (0);
451 }
452 
453 /*
454  * Format and display given PMC index.
455  */
456 
457 static void
458 pmcpl_ct_node_printtop(struct pmcpl_ct_sample *rsamples, int pmcin, int maxy)
459 {
460 #undef	TS
461 #undef	TSI
462 #define	TS(x, y)	(pmcpl_ct_topscreen[x][y])
463 #define	TSI(x, y)	(pmcpl_ct_topscreen[x][pmcpl_ct_topmax[y].ln_index])
464 
465 	int v_attrs, ns_len, vs_len, is_len, width, indentwidth, x, y;
466 	float v;
467 	char ns[30], vs[10], is[20];
468 	struct pmcpl_ct_node *ct;
469 	const char *space = " ";
470 
471 	/*
472 	 * Sort by line cost.
473 	 */
474 	for (y = 0; ; y++) {
475 		ct = TS(1, y);
476 		if (ct == NULL)
477 			break;
478 
479 		pmcpl_ct_topmax[y].ln_sum = 0;
480 		pmcpl_ct_topmax[y].ln_index = y;
481 		for (x = 1; TS(x, y) != NULL; x++) {
482 			pmcpl_ct_topmax[y].ln_sum +=
483 			    PMCPL_CT_SAMPLE(pmcin, &TS(x, y)->pct_samples);
484 		}
485 	}
486 	qsort(pmcpl_ct_topmax, y, sizeof(pmcpl_ct_topmax[0]),
487 	    pmcpl_ct_line_compare);
488 	pmcpl_ct_topmax[y].ln_index = y;
489 
490 	for (y = 0; y < maxy; y++) {
491 		ct = TSI(1, y);
492 		if (ct == NULL)
493 			break;
494 
495 		if (y > 0)
496 			PMCSTAT_PRINTW("\n");
497 
498 		/* Output sum. */
499 		v = pmcpl_ct_topmax[y].ln_sum * 100.0 /
500 		    rsamples->sb[pmcin];
501 		snprintf(vs, sizeof(vs), "%.1f", v);
502 		v_attrs = PMCSTAT_ATTRPERCENT(v);
503 		PMCSTAT_ATTRON(v_attrs);
504 		PMCSTAT_PRINTW("%5.5s ", vs);
505 		PMCSTAT_ATTROFF(v_attrs);
506 
507 		width = indentwidth = 5 + 1;
508 
509 		for (x = 1; (ct = TSI(x, y)) != NULL; x++) {
510 
511 			vs[0] = '\0'; vs_len = 0;
512 			is[0] = '\0'; is_len = 0;
513 
514 			/* Format value. */
515 			v = PMCPL_CT_SAMPLEP(pmcin, &ct->pct_samples);
516 			if (v > pmcstat_threshold)
517 				vs_len  = snprintf(vs, sizeof(vs),
518 				    "(%.1f%%)", v);
519 			v_attrs = PMCSTAT_ATTRPERCENT(v);
520 
521 			if (pmcstat_skiplink && v <= pmcstat_threshold) {
522 				strlcpy(ns, ".", sizeof(ns));
523 				ns_len = 1;
524 			} else {
525 			if (ct->pct_sym != NULL) {
526 				ns_len = snprintf(ns, sizeof(ns), "%s",
527 				    pmcstat_string_unintern(ct->pct_sym->ps_name));
528 			} else
529 				ns_len = snprintf(ns, sizeof(ns), "%p",
530 				    (void *)ct->pct_func);
531 
532 			/* Format image. */
533 			if (x == 1 ||
534 			    TSI(x-1, y)->pct_image != ct->pct_image)
535 				is_len = snprintf(is, sizeof(is), "@%s",
536 				    pmcstat_string_unintern(ct->pct_image->pi_name));
537 
538 			/* Check for line wrap. */
539 			width += ns_len + is_len + vs_len + 1;
540 			}
541 			if (width >= pmcstat_displaywidth) {
542 				maxy--;
543 				if (y >= maxy)
544 					break;
545 				PMCSTAT_PRINTW("\n%*s", indentwidth, space);
546 				width = indentwidth + ns_len + is_len + vs_len;
547 			}
548 
549 			PMCSTAT_ATTRON(v_attrs);
550 			PMCSTAT_PRINTW("%s%s%s ", ns, is, vs);
551 			PMCSTAT_ATTROFF(v_attrs);
552 		}
553 	}
554 }
555 
556 /*
557  * Output top mode snapshot.
558  */
559 
560 void
561 pmcpl_ct_topdisplay(void)
562 {
563 	int y;
564 	struct pmcpl_ct_sample r, *rsamples;
565 
566 	rsamples = &r;
567 	pmcpl_ct_samples_root(rsamples);
568 	pmcpl_ct_node_cleartag();
569 
570 	PMCSTAT_PRINTW("%5.5s %s\n", "%SAMP", "CALLTREE");
571 
572 	y = 0;
573 	if (pmcpl_ct_node_dumptop(pmcstat_pmcinfilter,
574 	    pmcpl_ct_root, rsamples, 0, &y))
575 		PMCSTAT_PRINTW("...\n");
576 	pmcpl_ct_topscreen[1][y] = NULL;
577 
578 	pmcpl_ct_node_printtop(rsamples,
579 	    pmcstat_pmcinfilter, pmcstat_displayheight - 2);
580 
581 	pmcpl_ct_samples_free(rsamples);
582 }
583 
584 /*
585  * Handle top mode keypress.
586  */
587 
588 int
589 pmcpl_ct_topkeypress(int c, void *arg)
590 {
591 	WINDOW *w;
592 
593 	w = (WINDOW *)arg;
594 
595 	switch (c) {
596 	case 'f':
597 		pmcstat_skiplink = !pmcstat_skiplink;
598 		wprintw(w, "skip empty link %s",
599 		    pmcstat_skiplink ? "on" : "off");
600 		break;
601 	}
602 
603 	return 0;
604 }
605 
606 /*
607  * Look for a callgraph node associated with pmc `pmcid' in the global
608  * hash table that corresponds to the given `pc' value in the process map
609  * `ppm'.
610  */
611 
612 static void
613 pmcpl_ct_node_update(struct pmcpl_ct_node *parent,
614     struct pmcpl_ct_node *child, int pmcin, unsigned v, int cd)
615 {
616 	struct pmcpl_ct_arc *arc;
617 	int i;
618 
619 	assert(parent != NULL);
620 
621 	/*
622 	 * Find related arc in parent node and
623 	 * increment the sample count.
624 	 */
625 	for (i = 0; i < parent->pct_narc; i++) {
626 		if (parent->pct_arc[i].pcta_child == child) {
627 			arc = &parent->pct_arc[i];
628 			pmcpl_ct_samples_grow(&arc->pcta_samples);
629 			arc->pcta_samples.sb[pmcin] += v;
630 			/* Estimate call count. */
631 			if (cd) {
632 			pmcpl_ct_samples_grow(&arc->pcta_callid);
633 			if (pmcpl_ct_callid.sb[pmcin] -
634 			    arc->pcta_callid.sb[pmcin] > 1)
635 				arc->pcta_call++;
636 			arc->pcta_callid.sb[pmcin] =
637 			    pmcpl_ct_callid.sb[pmcin];
638 			}
639 			return;
640 		}
641 	}
642 
643 	/*
644 	 * No arc found for us, add ourself to the parent.
645 	 */
646 	pmcpl_ct_arc_grow(parent->pct_narc,
647 	    &parent->pct_arc_c, &parent->pct_arc);
648 	arc = &parent->pct_arc[parent->pct_narc];
649 	pmcpl_ct_samples_grow(&arc->pcta_samples);
650 	arc->pcta_samples.sb[pmcin] = v;
651 	arc->pcta_call = 1;
652 	if (cd) {
653 		pmcpl_ct_samples_grow(&arc->pcta_callid);
654 		arc->pcta_callid.sb[pmcin] = pmcpl_ct_callid.sb[pmcin];
655 	}
656 	arc->pcta_child = child;
657 	parent->pct_narc++;
658 }
659 
660 /*
661  * Lookup by image/pc.
662  */
663 
664 static struct pmcpl_ct_node *
665 pmcpl_ct_node_hash_lookup(struct pmcstat_image *image, uintfptr_t pc,
666     struct pmcstat_symbol *sym, char *fl, char *fn)
667 {
668 	int i;
669 	unsigned int hash;
670 	struct pmcpl_ct_node *ct;
671 	struct pmcpl_ct_node_hash *h;
672 	pmcstat_interned_string	ifl, ifn;
673 
674 	if (fn != NULL) {
675 		ifl = pmcstat_string_intern(fl);
676 		ifn = pmcstat_string_intern(fn);
677 	} else {
678 		ifl = 0;
679 		ifn = 0;
680 	}
681 
682 	for (hash = i = 0; i < (int)sizeof(uintfptr_t); i++)
683 		hash += (pc >> i) & 0xFF;
684 
685 	hash &= PMCSTAT_HASH_MASK;
686 
687 	STAILQ_FOREACH(h, &pmcpl_ct_node_hash[hash], pch_next) {
688 		ct = h->pch_ctnode;
689 
690 		assert(ct != NULL);
691 
692 		if (ct->pct_image == image && ct->pct_func == pc) {
693 			if (fn == NULL)
694 				return (ct);
695 			if (ct->pct_type == PMCPL_PCT_NAME &&
696 			    ct->pct_ifl == ifl && ct->pct_ifn == ifn)
697 				return (ct);
698 		}
699 	}
700 
701 	/*
702 	 * We haven't seen this (pmcid, pc) tuple yet, so allocate a
703 	 * new callgraph node and a new hash table entry for it.
704 	 */
705 	ct = pmcpl_ct_node_allocate();
706 	if ((h = malloc(sizeof(*h))) == NULL)
707 		err(EX_OSERR, "ERROR: Could not allocate callgraph node");
708 
709 	if (fn != NULL) {
710 		ct->pct_type = PMCPL_PCT_NAME;
711 		ct->pct_ifl = ifl;
712 		ct->pct_ifn = ifn;
713 	} else
714 		ct->pct_type = PMCPL_PCT_ADDR;
715 	ct->pct_image = image;
716 	ct->pct_func = pc;
717 	ct->pct_sym = sym;
718 
719 	h->pch_ctnode = ct;
720 	STAILQ_INSERT_HEAD(&pmcpl_ct_node_hash[hash], h, pch_next);
721 	return (ct);
722 }
723 
724 /*
725  * Record a callchain.
726  */
727 
728 void
729 pmcpl_ct_process(struct pmcstat_process *pp, struct pmcstat_pmcrecord *pmcr,
730     uint32_t nsamples, uintfptr_t *cc, int usermode, uint32_t cpu)
731 {
732 	int i, n, pmcin;
733 	uintfptr_t pc, loadaddress;
734 	struct pmcstat_image *image;
735 	struct pmcstat_symbol *sym;
736 	struct pmcstat_pcmap *ppm[PMC_CALLCHAIN_DEPTH_MAX];
737 	struct pmcstat_process *km;
738 	struct pmcpl_ct_node *ct;
739 	struct pmcpl_ct_node *ctl[PMC_CALLCHAIN_DEPTH_MAX+1];
740 
741 	(void) cpu;
742 
743 	assert(nsamples>0 && nsamples<=PMC_CALLCHAIN_DEPTH_MAX);
744 
745 	/* Get the PMC index. */
746 	pmcin = pmcr->pr_pmcin;
747 
748 	/*
749 	 * Validate mapping for the callchain.
750 	 * Go from bottom to first invalid entry.
751 	 */
752 	km = pmcstat_kernproc;
753 	for (n = 0; n < (int)nsamples; n++) {
754 		ppm[n] = pmcstat_process_find_map(usermode ?
755 		    pp : km, cc[n]);
756 		if (ppm[n] == NULL) {
757 			/* Detect full frame capture (kernel + user). */
758 			if (!usermode) {
759 				ppm[n] = pmcstat_process_find_map(pp, cc[n]);
760 				if (ppm[n] != NULL)
761 					km = pp;
762 			}
763 		}
764 		if (ppm[n] == NULL)
765 			break;
766 	}
767 	if (n-- == 0) {
768 		pmcstat_stats.ps_callchain_dubious_frames++;
769 		pmcr->pr_dubious_frames++;
770 		return;
771 	}
772 
773 	/* Increase the call generation counter. */
774 	pmcpl_ct_samples_grow(&pmcpl_ct_callid);
775 	pmcpl_ct_callid.sb[pmcin]++;
776 
777 	/*
778 	 * Build node list.
779 	 */
780 	ctl[0] = pmcpl_ct_root;
781 	for (i = 1; n >= 0; n--) {
782 		image = ppm[n]->ppm_image;
783 		loadaddress = ppm[n]->ppm_lowpc +
784 		    image->pi_vaddr - image->pi_start;
785 		/* Convert to an offset in the image. */
786 		pc = cc[n] - loadaddress;
787 		/*
788 		 * Try determine the function at this offset.  If we can't
789 		 * find a function round leave the `pc' value alone.
790 		 */
791 		if ((sym = pmcstat_symbol_search(image, pc)) != NULL)
792 			pc = sym->ps_start;
793 		else
794 			pmcstat_stats.ps_samples_unknown_function++;
795 
796 		ct = pmcpl_ct_node_hash_lookup(image, pc, sym, NULL, NULL);
797 		if (ct == NULL) {
798 			pmcstat_stats.ps_callchain_dubious_frames++;
799 			continue;
800 		}
801 		ctl[i++] = ct;
802 	}
803 	/* No valid node found. */
804 	if (i == 1)
805 		return;
806 	n = i;
807 
808 	ct = ctl[0];
809 	for (i = 1; i < n; i++)
810 		pmcpl_ct_node_update(ctl[i-1], ctl[i], pmcin, 1, 1);
811 
812 	/*
813 	 * Increment the sample count for this PMC.
814 	 */
815 	pmcpl_ct_samples_grow(&ctl[n-1]->pct_samples);
816 	ctl[n-1]->pct_samples.sb[pmcin]++;
817 
818 	/* Update per instruction sample if required. */
819 	if (args.pa_ctdumpinstr)
820 		pmcpl_ct_instr_add(ctl[n-1], pmcin, cc[0] -
821 		    (ppm[0]->ppm_lowpc + ppm[0]->ppm_image->pi_vaddr -
822 		     ppm[0]->ppm_image->pi_start), 1);
823 }
824 
825 /*
826  * Print node child cost.
827  */
828 
829 static void
830 pmcpl_ct_node_printchild(struct pmcpl_ct_node *ct, uintfptr_t paddr,
831     int pline)
832 {
833 	int i, j, line;
834 	uintfptr_t addr;
835 	struct pmcpl_ct_node *child;
836 	char sourcefile[PATH_MAX];
837 	char funcname[PATH_MAX];
838 
839 	/*
840 	 * Child cost.
841 	 * TODO: attach child cost to the real position in the function.
842 	 * TODO: cfn=<fn> / call <ncall> addr(<fn>) / addr(call <fn>) <arccost>
843 	 */
844 	for (i=0 ; i<ct->pct_narc; i++) {
845 		child = ct->pct_arc[i].pcta_child;
846 		/* Object binary. */
847 		fprintf(args.pa_graphfile, "cob=%s\n",
848 		    pmcstat_string_unintern(child->pct_image->pi_fullpath));
849 		/* Child function name. */
850 		addr = child->pct_image->pi_vaddr + child->pct_func;
851 		line = 0;
852 		/* Child function source file. */
853 		if (child->pct_type == PMCPL_PCT_NAME) {
854 			fprintf(args.pa_graphfile, "cfi=%s\ncfn=%s\n",
855 			    pmcstat_string_unintern(child->pct_ifl),
856 			    pmcstat_string_unintern(child->pct_ifn));
857 		} else if (pmcstat_image_addr2line(child->pct_image, addr,
858 		    sourcefile, sizeof(sourcefile), &line,
859 		    funcname, sizeof(funcname))) {
860 			fprintf(args.pa_graphfile, "cfi=%s\ncfn=%s\n",
861 				sourcefile, funcname);
862 		} else {
863 			if (child->pct_sym != NULL)
864 				fprintf(args.pa_graphfile,
865 				    "cfi=???\ncfn=%s\n",
866 				    pmcstat_string_unintern(
867 				        child->pct_sym->ps_name));
868 			else
869 				fprintf(args.pa_graphfile,
870 				    "cfi=???\ncfn=%p\n", (void *)addr);
871 		}
872 
873 		/* Child function address, line and call count. */
874 		fprintf(args.pa_graphfile, "calls=%u %p %u\n",
875 		    ct->pct_arc[i].pcta_call, (void *)addr, line);
876 
877 		/*
878 		 * Call address, line, sample.
879 		 * TODO: Associate call address to the right location.
880 		 */
881 		fprintf(args.pa_graphfile, "%p %u", (void *)paddr, pline);
882 		for (j = 0; j<pmcstat_npmcs; j++)
883 			fprintf(args.pa_graphfile, " %u",
884 			    PMCPL_CT_SAMPLE(j, &ct->pct_arc[i].pcta_samples));
885 		fprintf(args.pa_graphfile, "\n");
886 	}
887 }
888 
889 /*
890  * Print node self cost.
891  */
892 
893 static void
894 pmcpl_ct_node_printself(struct pmcpl_ct_node *ct)
895 {
896 	int i, j, fline, line;
897 	uintfptr_t faddr, addr;
898 	char sourcefile[PATH_MAX];
899 	char funcname[PATH_MAX];
900 
901 	/*
902 	 * Object binary.
903 	 */
904 	fprintf(args.pa_graphfile, "ob=%s\n",
905 	    pmcstat_string_unintern(ct->pct_image->pi_fullpath));
906 
907 	/*
908 	 * Function name.
909 	 */
910 	faddr = ct->pct_image->pi_vaddr + ct->pct_func;
911 	fline = 0;
912 	if (ct->pct_type == PMCPL_PCT_NAME) {
913 		fprintf(args.pa_graphfile, "fl=%s\nfn=%s\n",
914 		    pmcstat_string_unintern(ct->pct_ifl),
915 		    pmcstat_string_unintern(ct->pct_ifn));
916 	} else if (pmcstat_image_addr2line(ct->pct_image, faddr,
917 	    sourcefile, sizeof(sourcefile), &fline,
918 	    funcname, sizeof(funcname))) {
919 		fprintf(args.pa_graphfile, "fl=%s\nfn=%s\n",
920 		    sourcefile, funcname);
921 	} else {
922 		if (ct->pct_sym != NULL)
923 			fprintf(args.pa_graphfile, "fl=???\nfn=%s\n",
924 			    pmcstat_string_unintern(ct->pct_sym->ps_name));
925 		else
926 			fprintf(args.pa_graphfile, "fl=???\nfn=%p\n",
927 			    (void *)(ct->pct_image->pi_vaddr + ct->pct_func));
928 	}
929 
930 	/*
931 	 * Self cost.
932 	 */
933 	if (ct->pct_ninstr > 0) {
934 		/*
935 		 * Per location cost.
936 		 */
937 		for (i = 0; i < ct->pct_ninstr; i++) {
938 			addr = ct->pct_image->pi_vaddr +
939 			    ct->pct_instr[i].pctf_func;
940 			line = 0;
941 			pmcstat_image_addr2line(ct->pct_image, addr,
942 			    sourcefile, sizeof(sourcefile), &line,
943 			    funcname, sizeof(funcname));
944 			fprintf(args.pa_graphfile, "%p %u",
945 			    (void *)addr, line);
946 			for (j = 0; j<pmcstat_npmcs; j++)
947 				fprintf(args.pa_graphfile, " %u",
948 				    PMCPL_CT_SAMPLE(j,
949 				    &ct->pct_instr[i].pctf_samples));
950 			fprintf(args.pa_graphfile, "\n");
951 		}
952 	} else {
953 		/* Global cost function cost. */
954 		fprintf(args.pa_graphfile, "%p %u", (void *)faddr, fline);
955 		for (i = 0; i<pmcstat_npmcs ; i++)
956 			fprintf(args.pa_graphfile, " %u",
957 			    PMCPL_CT_SAMPLE(i, &ct->pct_samples));
958 		fprintf(args.pa_graphfile, "\n");
959 	}
960 
961 	pmcpl_ct_node_printchild(ct, faddr, fline);
962 }
963 
964 static void
965 pmcpl_ct_printnode(struct pmcpl_ct_node *ct)
966 {
967 	int i;
968 
969 	if (ct == pmcpl_ct_root) {
970 		fprintf(args.pa_graphfile, "fn=root\n");
971 		fprintf(args.pa_graphfile, "0x0 1");
972 		for (i = 0; i<pmcstat_npmcs ; i++)
973 			fprintf(args.pa_graphfile, " 0");
974 		fprintf(args.pa_graphfile, "\n");
975 		pmcpl_ct_node_printchild(ct, 0, 0);
976 	} else
977 		pmcpl_ct_node_printself(ct);
978 }
979 
980 /*
981  * Breadth first traversal.
982  */
983 
984 static void
985 pmcpl_ct_bfs(struct pmcpl_ct_node *ct)
986 {
987 	int i;
988 	struct pmcpl_ct_node_hash *pch, *pchc;
989 	struct pmcpl_ct_node *child;
990 	STAILQ_HEAD(,pmcpl_ct_node_hash) q;
991 
992 	STAILQ_INIT(&q);
993 	if ((pch = malloc(sizeof(*pch))) == NULL)
994 		err(EX_OSERR, "ERROR: Cannot allocate queue");
995 	pch->pch_ctnode = ct;
996 	STAILQ_INSERT_TAIL(&q, pch, pch_next);
997 	ct->pct_color = PMCPL_PCT_BLACK;
998 
999 	while (!STAILQ_EMPTY(&q)) {
1000 		pch = STAILQ_FIRST(&q);
1001 		STAILQ_REMOVE_HEAD(&q, pch_next);
1002 		pmcpl_ct_printnode(pch->pch_ctnode);
1003 		for (i = 0; i<pch->pch_ctnode->pct_narc; i++) {
1004 			child = pch->pch_ctnode->pct_arc[i].pcta_child;
1005 			if (child->pct_color == PMCPL_PCT_WHITE) {
1006 				child->pct_color = PMCPL_PCT_BLACK;
1007 				if ((pchc = malloc(sizeof(*pchc))) == NULL)
1008 					err(EX_OSERR,
1009 					    "ERROR: Cannot allocate queue");
1010 				pchc->pch_ctnode = child;
1011 				STAILQ_INSERT_TAIL(&q, pchc, pch_next);
1012 			}
1013 		}
1014 		free(pch);
1015 	}
1016 }
1017 
1018 /*
1019  * Detect and fix inlined location.
1020  */
1021 
1022 static void
1023 _pmcpl_ct_expand_inline(struct pmcpl_ct_node *ct)
1024 {
1025 	int i, j;
1026 	unsigned fline, line, v;
1027 	uintfptr_t faddr, addr, pc;
1028 	char sourcefile[PATH_MAX];
1029 	char ffuncname[PATH_MAX], funcname[PATH_MAX];
1030 	char buffer[PATH_MAX];
1031 	struct pmcpl_ct_node *child;
1032 
1033 	/*
1034 	 * Resolve parent and compare to each instr location.
1035 	 */
1036 	faddr = ct->pct_image->pi_vaddr + ct->pct_func;
1037 	fline = 0;
1038 	if (!pmcstat_image_addr2line(ct->pct_image, faddr,
1039 	    sourcefile, sizeof(sourcefile), &fline,
1040 	    ffuncname, sizeof(ffuncname)))
1041 		return;
1042 
1043 	for (i = 0; i < ct->pct_ninstr; i++) {
1044 		addr = ct->pct_image->pi_vaddr +
1045 		    ct->pct_instr[i].pctf_func;
1046 		line = 0;
1047 		if (!pmcstat_image_addr2line(ct->pct_image, addr,
1048 		    sourcefile, sizeof(sourcefile), &line,
1049 		    funcname, sizeof(funcname)))
1050 			continue;
1051 
1052 		if (strcmp(funcname, ffuncname) == 0)
1053 			continue;
1054 
1055 		/*
1056 		 * - Lookup/create inline node by function name.
1057 		 * - Move instr PMCs to the inline node.
1058 		 * - Link nodes.
1059 		 * The lookup create a specific node per image/pc.
1060 		 */
1061 		if (args.pa_verbosity >= 2)
1062 			fprintf(args.pa_printfile,
1063 			    "WARNING: inlined function at %p %s in %s\n",
1064 			    (void *)addr, funcname, ffuncname);
1065 
1066 		snprintf(buffer, sizeof(buffer), "%s@%s",
1067 			funcname, ffuncname);
1068 		child = pmcpl_ct_node_hash_lookup(ct->pct_image,
1069 		    ct->pct_func, ct->pct_sym, sourcefile, buffer);
1070 		assert(child != NULL);
1071 		pc = ct->pct_instr[i].pctf_func;
1072 		for (j = 0; j<pmcstat_npmcs; j++) {
1073 			v = PMCPL_CT_SAMPLE(j,
1074 			    &ct->pct_instr[i].pctf_samples);
1075 			if (v == 0)
1076 				continue;
1077 			pmcpl_ct_instr_add(child, j, pc, v);
1078 			pmcpl_ct_node_update(ct, child, j, v, 0);
1079 			if (j < ct->pct_samples.npmcs)
1080 				ct->pct_samples.sb[j] -=
1081 				    ct->pct_instr[i].pctf_samples.sb[j];
1082 			ct->pct_instr[i].pctf_samples.sb[j] = 0;
1083 		}
1084 	}
1085 }
1086 
1087 static void
1088 pmcpl_ct_expand_inline(void)
1089 {
1090 	int i;
1091 	struct pmcpl_ct_node_hash *pch;
1092 
1093 	if (!args.pa_ctdumpinstr)
1094 		return;
1095 
1096 	for (i = 0; i < PMCSTAT_NHASH; i++)
1097 		STAILQ_FOREACH(pch, &pmcpl_ct_node_hash[i], pch_next)
1098 			if (pch->pch_ctnode->pct_type == PMCPL_PCT_ADDR)
1099 				_pmcpl_ct_expand_inline(pch->pch_ctnode);
1100 }
1101 
1102 /*
1103  * Clean the PMC name for Kcachegrind formula
1104  */
1105 
1106 static void
1107 pmcpl_ct_fixup_pmcname(char *s)
1108 {
1109 	char *p;
1110 
1111 	for (p = s; *p; p++)
1112 		if (!isalnum(*p))
1113 			*p = '_';
1114 }
1115 
1116 /*
1117  * Print a calltree (KCachegrind) for all PMCs.
1118  */
1119 
1120 static void
1121 pmcpl_ct_print(void)
1122 {
1123 	int i;
1124 	char name[40];
1125 	struct pmcpl_ct_sample rsamples;
1126 
1127 	pmcpl_ct_samples_root(&rsamples);
1128 	pmcpl_ct_expand_inline();
1129 
1130 	fprintf(args.pa_graphfile,
1131 		"version: 1\n"
1132 		"creator: pmcstat\n"
1133 		"positions: instr line\n"
1134 		"events:");
1135 	for (i=0; i<pmcstat_npmcs; i++) {
1136 		snprintf(name, sizeof(name), "%s_%d",
1137 		    pmcstat_pmcindex_to_name(i), i);
1138 		pmcpl_ct_fixup_pmcname(name);
1139 		fprintf(args.pa_graphfile, " %s", name);
1140 	}
1141 	fprintf(args.pa_graphfile, "\nsummary:");
1142 	for (i=0; i<pmcstat_npmcs ; i++)
1143 		fprintf(args.pa_graphfile, " %u",
1144 		    PMCPL_CT_SAMPLE(i, &rsamples));
1145 	fprintf(args.pa_graphfile, "\n");
1146 	pmcpl_ct_bfs(pmcpl_ct_root);
1147 	pmcpl_ct_samples_free(&rsamples);
1148 }
1149 
1150 int
1151 pmcpl_ct_configure(char *opt)
1152 {
1153 
1154 	if (strncmp(opt, "skiplink=", 9) == 0) {
1155 		pmcstat_skiplink = atoi(opt+9);
1156 	} else
1157 		return (0);
1158 
1159 	return (1);
1160 }
1161 
1162 int
1163 pmcpl_ct_init(void)
1164 {
1165 	int i;
1166 
1167 	pmcpl_ct_root = pmcpl_ct_node_allocate();
1168 
1169 	for (i = 0; i < PMCSTAT_NHASH; i++)
1170 		STAILQ_INIT(&pmcpl_ct_node_hash[i]);
1171 
1172 	pmcpl_ct_samples_init(&pmcpl_ct_callid);
1173 
1174 	return (0);
1175 }
1176 
1177 void
1178 pmcpl_ct_shutdown(FILE *mf)
1179 {
1180 	int i;
1181 	struct pmcpl_ct_node_hash *pch, *pchtmp;
1182 
1183 	(void) mf;
1184 
1185 	if (args.pa_flags & FLAG_DO_CALLGRAPHS)
1186 		pmcpl_ct_print();
1187 
1188 	/*
1189 	 * Free memory.
1190 	 */
1191 
1192 	for (i = 0; i < PMCSTAT_NHASH; i++) {
1193 		STAILQ_FOREACH_SAFE(pch, &pmcpl_ct_node_hash[i], pch_next,
1194 		    pchtmp) {
1195 			pmcpl_ct_node_free(pch->pch_ctnode);
1196 			free(pch);
1197 		}
1198 	}
1199 
1200 	pmcpl_ct_node_free(pmcpl_ct_root);
1201 	pmcpl_ct_root = NULL;
1202 
1203 	pmcpl_ct_samples_free(&pmcpl_ct_callid);
1204 }
1205 
1206