1 /*- 2 * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in thereg 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/types.h> 32 #include <sys/event.h> 33 #include <sys/socket.h> 34 #include <sys/time.h> 35 #include <sys/param.h> 36 #include <sys/un.h> 37 #include <assert.h> 38 #include <err.h> 39 #include <errno.h> 40 #include <fcntl.h> 41 #include <libutil.h> 42 #include <pthread.h> 43 #include <signal.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <unistd.h> 48 49 #include "agents/passwd.h" 50 #include "agents/group.h" 51 #include "agents/services.h" 52 #include "cachelib.h" 53 #include "config.h" 54 #include "debug.h" 55 #include "log.h" 56 #include "nscdcli.h" 57 #include "parser.h" 58 #include "query.h" 59 #include "singletons.h" 60 61 #ifndef CONFIG_PATH 62 #define CONFIG_PATH "/etc/nscd.conf" 63 #endif 64 #define DEFAULT_CONFIG_PATH "nscd.conf" 65 66 #define MAX_SOCKET_IO_SIZE 4096 67 68 struct processing_thread_args { 69 cache the_cache; 70 struct configuration *the_configuration; 71 struct runtime_env *the_runtime_env; 72 }; 73 74 static void accept_connection(struct kevent *, struct runtime_env *, 75 struct configuration *); 76 static void destroy_cache_(cache); 77 static void destroy_runtime_env(struct runtime_env *); 78 static cache init_cache_(struct configuration *); 79 static struct runtime_env *init_runtime_env(struct configuration *); 80 static void print_version_info(void); 81 static void processing_loop(cache, struct runtime_env *, 82 struct configuration *); 83 static void process_socket_event(struct kevent *, struct runtime_env *, 84 struct configuration *); 85 static void process_timer_event(struct kevent *, struct runtime_env *, 86 struct configuration *); 87 static void *processing_thread(void *); 88 static void usage(void); 89 90 void get_time_func(struct timeval *); 91 92 static void 93 print_version_info(void) 94 { 95 TRACE_IN(print_version_info); 96 printf("nscd v0.2 (20 Oct 2005)\nwas developed during SoC 2005\n"); 97 TRACE_OUT(print_version_info); 98 } 99 100 static void 101 usage(void) 102 { 103 fprintf(stderr, 104 "usage: nscd [-dnst] [-i cachename] [-I cachename]\n"); 105 exit(1); 106 } 107 108 static cache 109 init_cache_(struct configuration *config) 110 { 111 struct cache_params params; 112 cache retval; 113 114 struct configuration_entry *config_entry; 115 size_t size, i; 116 int res; 117 118 TRACE_IN(init_cache_); 119 120 memset(¶ms, 0, sizeof(struct cache_params)); 121 params.get_time_func = get_time_func; 122 retval = init_cache(¶ms); 123 124 size = configuration_get_entries_size(config); 125 for (i = 0; i < size; ++i) { 126 config_entry = configuration_get_entry(config, i); 127 /* 128 * We should register common entries now - multipart entries 129 * would be registered automatically during the queries. 130 */ 131 res = register_cache_entry(retval, (struct cache_entry_params *) 132 &config_entry->positive_cache_params); 133 config_entry->positive_cache_entry = find_cache_entry(retval, 134 config_entry->positive_cache_params.entry_name); 135 assert(config_entry->positive_cache_entry != 136 INVALID_CACHE_ENTRY); 137 138 res = register_cache_entry(retval, (struct cache_entry_params *) 139 &config_entry->negative_cache_params); 140 config_entry->negative_cache_entry = find_cache_entry(retval, 141 config_entry->negative_cache_params.entry_name); 142 assert(config_entry->negative_cache_entry != 143 INVALID_CACHE_ENTRY); 144 } 145 146 LOG_MSG_2("cache", "cache was successfully initialized"); 147 TRACE_OUT(init_cache_); 148 return (retval); 149 } 150 151 static void 152 destroy_cache_(cache the_cache) 153 { 154 TRACE_IN(destroy_cache_); 155 destroy_cache(the_cache); 156 TRACE_OUT(destroy_cache_); 157 } 158 159 /* 160 * Socket and kqueues are prepared here. We have one global queue for both 161 * socket and timers events. 162 */ 163 static struct runtime_env * 164 init_runtime_env(struct configuration *config) 165 { 166 int serv_addr_len; 167 struct sockaddr_un serv_addr; 168 169 struct kevent eventlist; 170 struct timespec timeout; 171 172 struct runtime_env *retval; 173 174 TRACE_IN(init_runtime_env); 175 retval = (struct runtime_env *)malloc(sizeof(struct runtime_env)); 176 assert(retval != NULL); 177 memset(retval, 0, sizeof(struct runtime_env)); 178 179 retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0); 180 181 if (config->force_unlink == 1) 182 unlink(config->socket_path); 183 184 memset(&serv_addr, 0, sizeof(struct sockaddr_un)); 185 serv_addr.sun_family = PF_LOCAL; 186 strncpy(serv_addr.sun_path, config->socket_path, 187 sizeof(serv_addr.sun_path)); 188 serv_addr_len = sizeof(serv_addr.sun_family) + 189 strlen(serv_addr.sun_path) + 1; 190 191 if (bind(retval->sockfd, (struct sockaddr *)&serv_addr, 192 serv_addr_len) == -1) { 193 close(retval->sockfd); 194 free(retval); 195 196 LOG_ERR_2("runtime environment", "can't bind socket to path: " 197 "%s", config->socket_path); 198 TRACE_OUT(init_runtime_env); 199 return (NULL); 200 } 201 LOG_MSG_2("runtime environment", "using socket %s", 202 config->socket_path); 203 204 /* 205 * Here we're marking socket as non-blocking and setting its backlog 206 * to the maximum value 207 */ 208 chmod(config->socket_path, config->socket_mode); 209 listen(retval->sockfd, -1); 210 fcntl(retval->sockfd, F_SETFL, O_NONBLOCK); 211 212 retval->queue = kqueue(); 213 assert(retval->queue != -1); 214 215 EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT, 216 0, 0, 0); 217 memset(&timeout, 0, sizeof(struct timespec)); 218 kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout); 219 220 LOG_MSG_2("runtime environment", "successfully initialized"); 221 TRACE_OUT(init_runtime_env); 222 return (retval); 223 } 224 225 static void 226 destroy_runtime_env(struct runtime_env *env) 227 { 228 TRACE_IN(destroy_runtime_env); 229 close(env->queue); 230 close(env->sockfd); 231 free(env); 232 TRACE_OUT(destroy_runtime_env); 233 } 234 235 static void 236 accept_connection(struct kevent *event_data, struct runtime_env *env, 237 struct configuration *config) 238 { 239 struct kevent eventlist[2]; 240 struct timespec timeout; 241 struct query_state *qstate; 242 243 int fd; 244 int res; 245 246 uid_t euid; 247 gid_t egid; 248 249 TRACE_IN(accept_connection); 250 fd = accept(event_data->ident, NULL, NULL); 251 if (fd == -1) { 252 LOG_ERR_2("accept_connection", "error %d during accept()", 253 errno); 254 TRACE_OUT(accept_connection); 255 return; 256 } 257 258 if (getpeereid(fd, &euid, &egid) != 0) { 259 LOG_ERR_2("accept_connection", "error %d during getpeereid()", 260 errno); 261 TRACE_OUT(accept_connection); 262 return; 263 } 264 265 qstate = init_query_state(fd, sizeof(int), euid, egid); 266 if (qstate == NULL) { 267 LOG_ERR_2("accept_connection", "can't init query_state"); 268 TRACE_OUT(accept_connection); 269 return; 270 } 271 272 memset(&timeout, 0, sizeof(struct timespec)); 273 EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT, 274 0, qstate->timeout.tv_sec * 1000, qstate); 275 EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT, 276 NOTE_LOWAT, qstate->kevent_watermark, qstate); 277 res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout); 278 if (res < 0) 279 LOG_ERR_2("accept_connection", "kevent error"); 280 281 TRACE_OUT(accept_connection); 282 } 283 284 static void 285 process_socket_event(struct kevent *event_data, struct runtime_env *env, 286 struct configuration *config) 287 { 288 struct kevent eventlist[2]; 289 struct timeval query_timeout; 290 struct timespec kevent_timeout; 291 int nevents; 292 int eof_res, res; 293 ssize_t io_res; 294 struct query_state *qstate; 295 296 TRACE_IN(process_socket_event); 297 eof_res = event_data->flags & EV_EOF ? 1 : 0; 298 res = 0; 299 300 memset(&kevent_timeout, 0, sizeof(struct timespec)); 301 EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE, 302 0, 0, NULL); 303 nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout); 304 if (nevents == -1) { 305 if (errno == ENOENT) { 306 /* the timer is already handling this event */ 307 TRACE_OUT(process_socket_event); 308 return; 309 } else { 310 /* some other error happened */ 311 LOG_ERR_2("process_socket_event", "kevent error, errno" 312 " is %d", errno); 313 TRACE_OUT(process_socket_event); 314 return; 315 } 316 } 317 qstate = (struct query_state *)event_data->udata; 318 319 /* 320 * If the buffer that is to be send/received is too large, 321 * we send it implicitly, by using query_io_buffer_read and 322 * query_io_buffer_write functions in the query_state. These functions 323 * use the temporary buffer, which is later send/received in parts. 324 * The code below implements buffer splitting/mergind for send/receive 325 * operations. It also does the actual socket IO operations. 326 */ 327 if (((qstate->use_alternate_io == 0) && 328 (qstate->kevent_watermark <= event_data->data)) || 329 ((qstate->use_alternate_io != 0) && 330 (qstate->io_buffer_watermark <= event_data->data))) { 331 if (qstate->use_alternate_io != 0) { 332 switch (qstate->io_buffer_filter) { 333 case EVFILT_READ: 334 io_res = query_socket_read(qstate, 335 qstate->io_buffer_p, 336 qstate->io_buffer_watermark); 337 if (io_res < 0) { 338 qstate->use_alternate_io = 0; 339 qstate->process_func = NULL; 340 } else { 341 qstate->io_buffer_p += io_res; 342 if (qstate->io_buffer_p == 343 qstate->io_buffer + 344 qstate->io_buffer_size) { 345 qstate->io_buffer_p = 346 qstate->io_buffer; 347 qstate->use_alternate_io = 0; 348 } 349 } 350 break; 351 default: 352 break; 353 } 354 } 355 356 if (qstate->use_alternate_io == 0) { 357 do { 358 res = qstate->process_func(qstate); 359 } while ((qstate->kevent_watermark == 0) && 360 (qstate->process_func != NULL) && 361 (res == 0)); 362 363 if (res != 0) 364 qstate->process_func = NULL; 365 } 366 367 if ((qstate->use_alternate_io != 0) && 368 (qstate->io_buffer_filter == EVFILT_WRITE)) { 369 io_res = query_socket_write(qstate, qstate->io_buffer_p, 370 qstate->io_buffer_watermark); 371 if (io_res < 0) { 372 qstate->use_alternate_io = 0; 373 qstate->process_func = NULL; 374 } else 375 qstate->io_buffer_p += io_res; 376 } 377 } else { 378 /* assuming that socket was closed */ 379 qstate->process_func = NULL; 380 qstate->use_alternate_io = 0; 381 } 382 383 if (((qstate->process_func == NULL) && 384 (qstate->use_alternate_io == 0)) || 385 (eof_res != 0) || (res != 0)) { 386 destroy_query_state(qstate); 387 close(event_data->ident); 388 TRACE_OUT(process_socket_event); 389 return; 390 } 391 392 /* updating the query_state lifetime variable */ 393 get_time_func(&query_timeout); 394 query_timeout.tv_usec = 0; 395 query_timeout.tv_sec -= qstate->creation_time.tv_sec; 396 if (query_timeout.tv_sec > qstate->timeout.tv_sec) 397 query_timeout.tv_sec = 0; 398 else 399 query_timeout.tv_sec = qstate->timeout.tv_sec - 400 query_timeout.tv_sec; 401 402 if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p == 403 qstate->io_buffer + qstate->io_buffer_size)) 404 qstate->use_alternate_io = 0; 405 406 if (qstate->use_alternate_io == 0) { 407 /* 408 * If we must send/receive the large block of data, 409 * we should prepare the query_state's io_XXX fields. 410 * We should also substitute its write_func and read_func 411 * with the query_io_buffer_write and query_io_buffer_read, 412 * which will allow us to implicitly send/receive this large 413 * buffer later (in the subsequent calls to the 414 * process_socket_event). 415 */ 416 if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) { 417 if (qstate->io_buffer != NULL) 418 free(qstate->io_buffer); 419 420 qstate->io_buffer = (char *)malloc( 421 qstate->kevent_watermark); 422 assert(qstate->io_buffer != NULL); 423 memset(qstate->io_buffer, 0, qstate->kevent_watermark); 424 425 qstate->io_buffer_p = qstate->io_buffer; 426 qstate->io_buffer_size = qstate->kevent_watermark; 427 qstate->io_buffer_filter = qstate->kevent_filter; 428 429 qstate->write_func = query_io_buffer_write; 430 qstate->read_func = query_io_buffer_read; 431 432 if (qstate->kevent_filter == EVFILT_READ) 433 qstate->use_alternate_io = 1; 434 435 qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE; 436 EV_SET(&eventlist[1], event_data->ident, 437 qstate->kevent_filter, EV_ADD | EV_ONESHOT, 438 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate); 439 } else { 440 EV_SET(&eventlist[1], event_data->ident, 441 qstate->kevent_filter, EV_ADD | EV_ONESHOT, 442 NOTE_LOWAT, qstate->kevent_watermark, qstate); 443 } 444 } else { 445 if (qstate->io_buffer + qstate->io_buffer_size - 446 qstate->io_buffer_p < 447 MAX_SOCKET_IO_SIZE) { 448 qstate->io_buffer_watermark = qstate->io_buffer + 449 qstate->io_buffer_size - qstate->io_buffer_p; 450 EV_SET(&eventlist[1], event_data->ident, 451 qstate->io_buffer_filter, 452 EV_ADD | EV_ONESHOT, NOTE_LOWAT, 453 qstate->io_buffer_watermark, 454 qstate); 455 } else { 456 qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE; 457 EV_SET(&eventlist[1], event_data->ident, 458 qstate->io_buffer_filter, EV_ADD | EV_ONESHOT, 459 NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate); 460 } 461 } 462 EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, 463 EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate); 464 kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout); 465 466 TRACE_OUT(process_socket_event); 467 } 468 469 /* 470 * This routine is called if timer event has been signaled in the kqueue. It 471 * just closes the socket and destroys the query_state. 472 */ 473 static void 474 process_timer_event(struct kevent *event_data, struct runtime_env *env, 475 struct configuration *config) 476 { 477 struct query_state *qstate; 478 479 TRACE_IN(process_timer_event); 480 qstate = (struct query_state *)event_data->udata; 481 destroy_query_state(qstate); 482 close(event_data->ident); 483 TRACE_OUT(process_timer_event); 484 } 485 486 /* 487 * Processing loop is the basic processing routine, that forms a body of each 488 * procssing thread 489 */ 490 static void 491 processing_loop(cache the_cache, struct runtime_env *env, 492 struct configuration *config) 493 { 494 struct timespec timeout; 495 const int eventlist_size = 1; 496 struct kevent eventlist[eventlist_size]; 497 int nevents, i; 498 499 TRACE_MSG("=> processing_loop"); 500 memset(&timeout, 0, sizeof(struct timespec)); 501 memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size); 502 503 for (;;) { 504 nevents = kevent(env->queue, NULL, 0, eventlist, 505 eventlist_size, NULL); 506 /* 507 * we can only receive 1 event on success 508 */ 509 if (nevents == 1) { 510 struct kevent *event_data; 511 event_data = &eventlist[0]; 512 513 if (event_data->ident == env->sockfd) { 514 for (i = 0; i < event_data->data; ++i) 515 accept_connection(event_data, env, config); 516 517 EV_SET(eventlist, s_runtime_env->sockfd, 518 EVFILT_READ, EV_ADD | EV_ONESHOT, 519 0, 0, 0); 520 memset(&timeout, 0, 521 sizeof(struct timespec)); 522 kevent(s_runtime_env->queue, eventlist, 523 1, NULL, 0, &timeout); 524 525 } else { 526 switch (event_data->filter) { 527 case EVFILT_READ: 528 case EVFILT_WRITE: 529 process_socket_event(event_data, 530 env, config); 531 break; 532 case EVFILT_TIMER: 533 process_timer_event(event_data, 534 env, config); 535 break; 536 default: 537 break; 538 } 539 } 540 } else { 541 /* this branch shouldn't be currently executed */ 542 } 543 } 544 545 TRACE_MSG("<= processing_loop"); 546 } 547 548 /* 549 * Wrapper above the processing loop function. It sets the thread signal mask 550 * to avoid SIGPIPE signals (which can happen if the client works incorrectly). 551 */ 552 static void * 553 processing_thread(void *data) 554 { 555 struct processing_thread_args *args; 556 sigset_t new; 557 558 TRACE_MSG("=> processing_thread"); 559 args = (struct processing_thread_args *)data; 560 561 sigemptyset(&new); 562 sigaddset(&new, SIGPIPE); 563 if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0) 564 LOG_ERR_1("processing thread", 565 "thread can't block the SIGPIPE signal"); 566 567 processing_loop(args->the_cache, args->the_runtime_env, 568 args->the_configuration); 569 free(args); 570 TRACE_MSG("<= processing_thread"); 571 572 return (NULL); 573 } 574 575 void 576 get_time_func(struct timeval *time) 577 { 578 struct timespec res; 579 memset(&res, 0, sizeof(struct timespec)); 580 clock_gettime(CLOCK_MONOTONIC, &res); 581 582 time->tv_sec = res.tv_sec; 583 time->tv_usec = 0; 584 } 585 586 /* 587 * The idea of _nss_cache_cycle_prevention_function is that nsdispatch will 588 * search for this symbol in the executable. This symbol is the attribute of 589 * the caching daemon. So, if it exists, nsdispatch won't try to connect to 590 * the caching daemon and will just ignore the 'cache' source in the 591 * nsswitch.conf. This method helps to avoid cycles and organize 592 * self-performing requests. 593 */ 594 void 595 _nss_cache_cycle_prevention_function(void) 596 { 597 } 598 599 int 600 main(int argc, char *argv[]) 601 { 602 struct processing_thread_args *thread_args; 603 pthread_t *threads; 604 605 struct pidfh *pidfile; 606 pid_t pid; 607 608 char const *config_file; 609 char const *error_str; 610 int error_line; 611 int i, res; 612 613 int trace_mode_enabled; 614 int force_single_threaded; 615 int do_not_daemonize; 616 int clear_user_cache_entries, clear_all_cache_entries; 617 char *user_config_entry_name, *global_config_entry_name; 618 int show_statistics; 619 int daemon_mode, interactive_mode; 620 621 622 /* by default all debug messages are omitted */ 623 TRACE_OFF(); 624 625 /* startup output */ 626 print_version_info(); 627 628 /* parsing command line arguments */ 629 trace_mode_enabled = 0; 630 force_single_threaded = 0; 631 do_not_daemonize = 0; 632 clear_user_cache_entries = 0; 633 clear_all_cache_entries = 0; 634 show_statistics = 0; 635 user_config_entry_name = NULL; 636 global_config_entry_name = NULL; 637 while ((res = getopt(argc, argv, "nstdi:I:")) != -1) { 638 switch (res) { 639 case 'n': 640 do_not_daemonize = 1; 641 break; 642 case 's': 643 force_single_threaded = 1; 644 break; 645 case 't': 646 trace_mode_enabled = 1; 647 break; 648 case 'i': 649 clear_user_cache_entries = 1; 650 if (optarg != NULL) 651 if (strcmp(optarg, "all") != 0) 652 user_config_entry_name = strdup(optarg); 653 break; 654 case 'I': 655 clear_all_cache_entries = 1; 656 if (optarg != NULL) 657 if (strcmp(optarg, "all") != 0) 658 global_config_entry_name = 659 strdup(optarg); 660 break; 661 case 'd': 662 show_statistics = 1; 663 break; 664 case '?': 665 default: 666 usage(); 667 /* NOT REACHED */ 668 } 669 } 670 671 daemon_mode = do_not_daemonize | force_single_threaded | 672 trace_mode_enabled; 673 interactive_mode = clear_user_cache_entries | clear_all_cache_entries | 674 show_statistics; 675 676 if ((daemon_mode != 0) && (interactive_mode != 0)) { 677 LOG_ERR_1("main", "daemon mode and interactive_mode arguments " 678 "can't be used together"); 679 usage(); 680 } 681 682 if (interactive_mode != 0) { 683 FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r"); 684 char pidbuf[256]; 685 686 struct nscd_connection_params connection_params; 687 nscd_connection connection; 688 689 int result; 690 691 if (pidfin == NULL) 692 errx(EXIT_FAILURE, "There is no daemon running."); 693 694 memset(pidbuf, 0, sizeof(pidbuf)); 695 fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin); 696 fclose(pidfin); 697 698 if (ferror(pidfin) != 0) 699 errx(EXIT_FAILURE, "Can't read from pidfile."); 700 701 if (sscanf(pidbuf, "%d", &pid) != 1) 702 errx(EXIT_FAILURE, "Invalid pidfile."); 703 LOG_MSG_1("main", "daemon PID is %d", pid); 704 705 706 memset(&connection_params, 0, 707 sizeof(struct nscd_connection_params)); 708 connection_params.socket_path = DEFAULT_SOCKET_PATH; 709 connection = open_nscd_connection__(&connection_params); 710 if (connection == INVALID_NSCD_CONNECTION) 711 errx(EXIT_FAILURE, "Can't connect to the daemon."); 712 713 if (clear_user_cache_entries != 0) { 714 result = nscd_transform__(connection, 715 user_config_entry_name, TT_USER); 716 if (result != 0) 717 LOG_MSG_1("main", 718 "user cache transformation failed"); 719 else 720 LOG_MSG_1("main", 721 "user cache_transformation " 722 "succeeded"); 723 } 724 725 if (clear_all_cache_entries != 0) { 726 if (geteuid() != 0) 727 errx(EXIT_FAILURE, "Only root can initiate " 728 "global cache transformation."); 729 730 result = nscd_transform__(connection, 731 global_config_entry_name, TT_ALL); 732 if (result != 0) 733 LOG_MSG_1("main", 734 "global cache transformation " 735 "failed"); 736 else 737 LOG_MSG_1("main", 738 "global cache transformation " 739 "succeeded"); 740 } 741 742 close_nscd_connection__(connection); 743 744 free(user_config_entry_name); 745 free(global_config_entry_name); 746 return (EXIT_SUCCESS); 747 } 748 749 pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid); 750 if (pidfile == NULL) { 751 if (errno == EEXIST) 752 errx(EXIT_FAILURE, "Daemon already running, pid: %d.", 753 pid); 754 warn("Cannot open or create pidfile"); 755 } 756 757 if (trace_mode_enabled == 1) 758 TRACE_ON(); 759 760 /* blocking the main thread from receiving SIGPIPE signal */ 761 sigblock(sigmask(SIGPIPE)); 762 763 /* daemonization */ 764 if (do_not_daemonize == 0) { 765 res = daemon(0, trace_mode_enabled == 0 ? 0 : 1); 766 if (res != 0) { 767 LOG_ERR_1("main", "can't daemonize myself: %s", 768 strerror(errno)); 769 pidfile_remove(pidfile); 770 goto fin; 771 } else 772 LOG_MSG_1("main", "successfully daemonized"); 773 } 774 775 pidfile_write(pidfile); 776 777 s_agent_table = init_agent_table(); 778 register_agent(s_agent_table, init_passwd_agent()); 779 register_agent(s_agent_table, init_passwd_mp_agent()); 780 register_agent(s_agent_table, init_group_agent()); 781 register_agent(s_agent_table, init_group_mp_agent()); 782 register_agent(s_agent_table, init_services_agent()); 783 register_agent(s_agent_table, init_services_mp_agent()); 784 LOG_MSG_1("main", "request agents registered successfully"); 785 786 /* 787 * Hosts agent can't work properly until we have access to the 788 * appropriate dtab structures, which are used in nsdispatch 789 * calls 790 * 791 register_agent(s_agent_table, init_hosts_agent()); 792 */ 793 794 /* configuration initialization */ 795 s_configuration = init_configuration(); 796 fill_configuration_defaults(s_configuration); 797 798 error_str = NULL; 799 error_line = 0; 800 config_file = CONFIG_PATH; 801 802 res = parse_config_file(s_configuration, config_file, &error_str, 803 &error_line); 804 if ((res != 0) && (error_str == NULL)) { 805 config_file = DEFAULT_CONFIG_PATH; 806 res = parse_config_file(s_configuration, config_file, 807 &error_str, &error_line); 808 } 809 810 if (res != 0) { 811 if (error_str != NULL) { 812 LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n", 813 config_file, error_line, error_str); 814 } else { 815 LOG_ERR_1("main", "no configuration file found " 816 "- was looking for %s and %s", 817 CONFIG_PATH, DEFAULT_CONFIG_PATH); 818 } 819 destroy_configuration(s_configuration); 820 return (-1); 821 } 822 823 if (force_single_threaded == 1) 824 s_configuration->threads_num = 1; 825 826 /* cache initialization */ 827 s_cache = init_cache_(s_configuration); 828 if (s_cache == NULL) { 829 LOG_ERR_1("main", "can't initialize the cache"); 830 destroy_configuration(s_configuration); 831 return (-1); 832 } 833 834 /* runtime environment initialization */ 835 s_runtime_env = init_runtime_env(s_configuration); 836 if (s_runtime_env == NULL) { 837 LOG_ERR_1("main", "can't initialize the runtime environment"); 838 destroy_configuration(s_configuration); 839 destroy_cache_(s_cache); 840 return (-1); 841 } 842 843 if (s_configuration->threads_num > 1) { 844 threads = (pthread_t *)malloc(sizeof(pthread_t) * 845 s_configuration->threads_num); 846 memset(threads, 0, sizeof(pthread_t) * 847 s_configuration->threads_num); 848 for (i = 0; i < s_configuration->threads_num; ++i) { 849 thread_args = (struct processing_thread_args *)malloc( 850 sizeof(struct processing_thread_args)); 851 thread_args->the_cache = s_cache; 852 thread_args->the_runtime_env = s_runtime_env; 853 thread_args->the_configuration = s_configuration; 854 855 LOG_MSG_1("main", "thread #%d was successfully created", 856 i); 857 pthread_create(&threads[i], NULL, processing_thread, 858 thread_args); 859 860 thread_args = NULL; 861 } 862 863 for (i = 0; i < s_configuration->threads_num; ++i) 864 pthread_join(threads[i], NULL); 865 } else { 866 LOG_MSG_1("main", "working in single-threaded mode"); 867 processing_loop(s_cache, s_runtime_env, s_configuration); 868 } 869 870 fin: 871 /* runtime environment destruction */ 872 destroy_runtime_env(s_runtime_env); 873 874 /* cache destruction */ 875 destroy_cache_(s_cache); 876 877 /* configuration destruction */ 878 destroy_configuration(s_configuration); 879 880 /* agents table destruction */ 881 destroy_agent_table(s_agent_table); 882 883 pidfile_remove(pidfile); 884 return (EXIT_SUCCESS); 885 } 886