xref: /freebsd/usr.sbin/nscd/cachelib.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/time.h>
32 #include <assert.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include "cachelib.h"
36 #include "debug.h"
37 
38 #define INITIAL_ENTRIES_CAPACITY 32
39 #define ENTRIES_CAPACITY_STEP 32
40 
41 #define STRING_SIMPLE_HASH_BODY(in_var, var, a, M)		\
42 	for ((var) = 0; *(in_var) != '\0'; ++(in_var))		\
43 		(var) = ((a)*(var) + *(in_var)) % (M)
44 
45 #define STRING_SIMPLE_MP2_HASH_BODY(in_var, var, a, M)		\
46 	for ((var) = 0; *(in_var) != 0; ++(in_var))		\
47 		(var) = ((a)*(var) + *(in_var)) & (M - 1)
48 
49 static int cache_elemsize_common_continue_func(struct cache_common_entry_ *,
50 	struct cache_policy_item_ *);
51 static int cache_lifetime_common_continue_func(struct cache_common_entry_ *,
52 	struct cache_policy_item_ *);
53 static void clear_cache_entry(struct cache_entry_ *);
54 static void destroy_cache_entry(struct cache_entry_ *);
55 static void destroy_cache_mp_read_session(struct cache_mp_read_session_ *);
56 static void destroy_cache_mp_write_session(struct cache_mp_write_session_ *);
57 static int entries_bsearch_cmp_func(const void *, const void *);
58 static int entries_qsort_cmp_func(const void *, const void *);
59 static struct cache_entry_ ** find_cache_entry_p(struct cache_ *,
60 	const char *);
61 static void flush_cache_entry(struct cache_entry_ *);
62 static void flush_cache_policy(struct cache_common_entry_ *,
63 	struct cache_policy_ *, struct cache_policy_ *,
64 		int (*)(struct cache_common_entry_ *,
65 		struct cache_policy_item_ *));
66 static int ht_items_cmp_func(const void *, const void *);
67 static int ht_items_fixed_size_left_cmp_func(const void *, const void *);
68 static hashtable_index_t ht_item_hash_func(const void *, size_t);
69 
70 /*
71  * Hashing and comparing routines, that are used with the hash tables
72  */
73 static int
74 ht_items_cmp_func(const void *p1, const void *p2)
75 {
76     	struct cache_ht_item_data_ *hp1, *hp2;
77 	size_t min_size;
78 	int result;
79 
80 	hp1 = (struct cache_ht_item_data_ *)p1;
81 	hp2 = (struct cache_ht_item_data_ *)p2;
82 
83 	assert(hp1->key != NULL);
84 	assert(hp2->key != NULL);
85 
86 	if (hp1->key_size != hp2->key_size) {
87 		min_size = (hp1->key_size < hp2->key_size) ? hp1->key_size :
88 			hp2->key_size;
89 		result = memcmp(hp1->key, hp2->key, min_size);
90 
91 		if (result == 0)
92 			return ((hp1->key_size < hp2->key_size) ? -1 : 1);
93 		else
94 			return (result);
95 	} else
96 		return (memcmp(hp1->key, hp2->key, hp1->key_size));
97 }
98 
99 static int
100 ht_items_fixed_size_left_cmp_func(const void *p1, const void *p2)
101 {
102     	struct cache_ht_item_data_ *hp1, *hp2;
103 	size_t min_size;
104 	int result;
105 
106 	hp1 = (struct cache_ht_item_data_ *)p1;
107 	hp2 = (struct cache_ht_item_data_ *)p2;
108 
109 	assert(hp1->key != NULL);
110 	assert(hp2->key != NULL);
111 
112 	if (hp1->key_size != hp2->key_size) {
113 		min_size = (hp1->key_size < hp2->key_size) ? hp1->key_size :
114 			hp2->key_size;
115 		result = memcmp(hp1->key, hp2->key, min_size);
116 
117 		if (result == 0)
118 			if (min_size == hp1->key_size)
119 			    return (0);
120 			else
121 			    return ((hp1->key_size < hp2->key_size) ? -1 : 1);
122 		else
123 			return (result);
124 	} else
125 		return (memcmp(hp1->key, hp2->key, hp1->key_size));
126 }
127 
128 static hashtable_index_t
129 ht_item_hash_func(const void *p, size_t cache_entries_size)
130 {
131     	struct cache_ht_item_data_ *hp;
132 	size_t i;
133 
134 	hashtable_index_t retval;
135 
136 	hp = (struct cache_ht_item_data_ *)p;
137 	assert(hp->key != NULL);
138 
139 	retval = 0;
140 	for (i = 0; i < hp->key_size; ++i)
141 	    retval = (127 * retval + (unsigned char)hp->key[i]) %
142 		cache_entries_size;
143 
144 	return retval;
145 }
146 
147 HASHTABLE_GENERATE(cache_ht_, cache_ht_item_, struct cache_ht_item_data_, data,
148 	ht_item_hash_func, ht_items_cmp_func);
149 
150 /*
151  * Routines to sort and search the entries by name
152  */
153 static int
154 entries_bsearch_cmp_func(const void *key, const void *ent)
155 {
156 
157 	assert(key != NULL);
158 	assert(ent != NULL);
159 
160 	return (strcmp((char const *)key,
161 		(*(struct cache_entry_ const **)ent)->name));
162 }
163 
164 static int
165 entries_qsort_cmp_func(const void *e1, const void *e2)
166 {
167 
168 	assert(e1 != NULL);
169 	assert(e2 != NULL);
170 
171 	return (strcmp((*(struct cache_entry_ const **)e1)->name,
172 		(*(struct cache_entry_ const **)e2)->name));
173 }
174 
175 static struct cache_entry_ **
176 find_cache_entry_p(struct cache_ *the_cache, const char *entry_name)
177 {
178 
179 	return ((struct cache_entry_ **)(bsearch(entry_name, the_cache->entries,
180 		the_cache->entries_size, sizeof(struct cache_entry_ *),
181 		entries_bsearch_cmp_func)));
182 }
183 
184 static void
185 destroy_cache_mp_write_session(struct cache_mp_write_session_ *ws)
186 {
187 
188 	struct cache_mp_data_item_	*data_item;
189 
190 	TRACE_IN(destroy_cache_mp_write_session);
191 	assert(ws != NULL);
192 	while (!TAILQ_EMPTY(&ws->items)) {
193 		data_item = TAILQ_FIRST(&ws->items);
194 		TAILQ_REMOVE(&ws->items, data_item, entries);
195 		free(data_item->value);
196 		free(data_item);
197 	}
198 
199 	free(ws);
200 	TRACE_OUT(destroy_cache_mp_write_session);
201 }
202 
203 static void
204 destroy_cache_mp_read_session(struct cache_mp_read_session_ *rs)
205 {
206 
207 	TRACE_IN(destroy_cache_mp_read_session);
208 	assert(rs != NULL);
209 	free(rs);
210 	TRACE_OUT(destroy_cache_mp_read_session);
211 }
212 
213 static void
214 destroy_cache_entry(struct cache_entry_ *entry)
215 {
216 	struct cache_common_entry_	*common_entry;
217 	struct cache_mp_entry_		*mp_entry;
218 	struct cache_mp_read_session_	*rs;
219 	struct cache_mp_write_session_	*ws;
220 	struct cache_ht_item_ *ht_item;
221 	struct cache_ht_item_data_ *ht_item_data;
222 
223 	TRACE_IN(destroy_cache_entry);
224 	assert(entry != NULL);
225 
226 	if (entry->params->entry_type == CET_COMMON) {
227 		common_entry = (struct cache_common_entry_ *)entry;
228 
229 		HASHTABLE_FOREACH(&(common_entry->items), ht_item) {
230 			HASHTABLE_ENTRY_FOREACH(ht_item, data, ht_item_data)
231 			{
232 				free(ht_item_data->key);
233 				free(ht_item_data->value);
234 			}
235 			HASHTABLE_ENTRY_CLEAR(ht_item, data);
236 		}
237 
238 		HASHTABLE_DESTROY(&(common_entry->items), data);
239 
240 		/* FIFO policy is always first */
241 		destroy_cache_fifo_policy(common_entry->policies[0]);
242 		switch (common_entry->common_params.policy) {
243 		case CPT_LRU:
244 			destroy_cache_lru_policy(common_entry->policies[1]);
245 			break;
246 		case CPT_LFU:
247 			destroy_cache_lfu_policy(common_entry->policies[1]);
248 			break;
249 		default:
250 		break;
251 		}
252 		free(common_entry->policies);
253 	} else {
254 		mp_entry = (struct cache_mp_entry_ *)entry;
255 
256 		while (!TAILQ_EMPTY(&mp_entry->ws_head)) {
257 			ws = TAILQ_FIRST(&mp_entry->ws_head);
258 			TAILQ_REMOVE(&mp_entry->ws_head, ws, entries);
259 			destroy_cache_mp_write_session(ws);
260 		}
261 
262 		while (!TAILQ_EMPTY(&mp_entry->rs_head)) {
263 			rs = TAILQ_FIRST(&mp_entry->rs_head);
264 			TAILQ_REMOVE(&mp_entry->rs_head, rs, entries);
265 			destroy_cache_mp_read_session(rs);
266 		}
267 
268 		if (mp_entry->completed_write_session != NULL)
269 			destroy_cache_mp_write_session(
270 				mp_entry->completed_write_session);
271 
272 		if (mp_entry->pending_write_session != NULL)
273 			destroy_cache_mp_write_session(
274 				mp_entry->pending_write_session);
275 	}
276 
277 	free(entry->name);
278 	free(entry);
279 	TRACE_OUT(destroy_cache_entry);
280 }
281 
282 static void
283 clear_cache_entry(struct cache_entry_ *entry)
284 {
285 	struct cache_mp_entry_		*mp_entry;
286 	struct cache_common_entry_	*common_entry;
287 	struct cache_ht_item_ *ht_item;
288 	struct cache_ht_item_data_ *ht_item_data;
289 	struct cache_policy_ *policy;
290 	struct cache_policy_item_ *item, *next_item;
291 	size_t entry_size;
292 	int i;
293 
294 	if (entry->params->entry_type == CET_COMMON) {
295 		common_entry = (struct cache_common_entry_ *)entry;
296 
297 		entry_size = 0;
298 		HASHTABLE_FOREACH(&(common_entry->items), ht_item) {
299 			HASHTABLE_ENTRY_FOREACH(ht_item, data, ht_item_data)
300 			{
301 				free(ht_item_data->key);
302 				free(ht_item_data->value);
303 			}
304 			entry_size += HASHTABLE_ENTRY_SIZE(ht_item, data);
305 			HASHTABLE_ENTRY_CLEAR(ht_item, data);
306 		}
307 
308 		common_entry->items_size -= entry_size;
309 		for (i = 0; i < common_entry->policies_size; ++i) {
310 			policy = common_entry->policies[i];
311 
312 			next_item = NULL;
313 			item = policy->get_first_item_func(policy);
314 			while (item != NULL) {
315 				next_item = policy->get_next_item_func(policy,
316 			    		item);
317 				policy->remove_item_func(policy, item);
318 				policy->destroy_item_func(item);
319 				item = next_item;
320 			}
321 		}
322 	} else {
323 		mp_entry = (struct cache_mp_entry_ *)entry;
324 
325 		if (mp_entry->rs_size == 0) {
326 			if (mp_entry->completed_write_session != NULL) {
327 				destroy_cache_mp_write_session(
328 					mp_entry->completed_write_session);
329 				mp_entry->completed_write_session = NULL;
330 			}
331 
332 			memset(&mp_entry->creation_time, 0,
333 				sizeof(struct timeval));
334 			memset(&mp_entry->last_request_time, 0,
335 				sizeof(struct timeval));
336 		}
337 	}
338 }
339 
340 /*
341  * When passed to the flush_cache_policy, ensures that all old elements are
342  * deleted.
343  */
344 static int
345 cache_lifetime_common_continue_func(struct cache_common_entry_ *entry,
346 	struct cache_policy_item_ *item)
347 {
348 
349 	return ((item->last_request_time.tv_sec - item->creation_time.tv_sec >
350 		entry->common_params.max_lifetime.tv_sec) ? 1: 0);
351 }
352 
353 /*
354  * When passed to the flush_cache_policy, ensures that all elements, that
355  * exceed the size limit, are deleted.
356  */
357 static int
358 cache_elemsize_common_continue_func(struct cache_common_entry_ *entry,
359 	struct cache_policy_item_ *item)
360 {
361 
362 	return ((entry->items_size > entry->common_params.satisf_elemsize) ? 1
363     		: 0);
364 }
365 
366 /*
367  * Removes the elements from the cache entry, while the continue_func returns 1.
368  */
369 static void
370 flush_cache_policy(struct cache_common_entry_ *entry,
371 	struct cache_policy_ *policy,
372 	struct cache_policy_ *connected_policy,
373 	int (*continue_func)(struct cache_common_entry_ *,
374 		struct cache_policy_item_ *))
375 {
376 	struct cache_policy_item_ *item, *next_item, *connected_item;
377 	struct cache_ht_item_ *ht_item;
378 	struct cache_ht_item_data_ *ht_item_data, ht_key;
379 	hashtable_index_t hash;
380 
381 	assert(policy != NULL);
382 
383 	next_item = NULL;
384 	item = policy->get_first_item_func(policy);
385 	while ((item != NULL) && (continue_func(entry, item) == 1)) {
386 		next_item = policy->get_next_item_func(policy, item);
387 
388 		connected_item = item->connected_item;
389 		policy->remove_item_func(policy, item);
390 
391 		memset(&ht_key, 0, sizeof(struct cache_ht_item_data_));
392 		ht_key.key = item->key;
393 		ht_key.key_size = item->key_size;
394 
395 		hash = HASHTABLE_CALCULATE_HASH(cache_ht_, &entry->items,
396 			&ht_key);
397 		assert(hash >= 0);
398 		assert(hash < HASHTABLE_ENTRIES_COUNT(&entry->items));
399 
400 		ht_item = HASHTABLE_GET_ENTRY(&(entry->items), hash);
401 		ht_item_data = HASHTABLE_ENTRY_FIND(cache_ht_, ht_item,
402 			&ht_key);
403 		assert(ht_item_data != NULL);
404 		free(ht_item_data->key);
405 		free(ht_item_data->value);
406 		HASHTABLE_ENTRY_REMOVE(cache_ht_, ht_item, ht_item_data);
407 		--entry->items_size;
408 
409 		policy->destroy_item_func(item);
410 
411 		if (connected_item != NULL) {
412 			connected_policy->remove_item_func(connected_policy,
413 				connected_item);
414 			connected_policy->destroy_item_func(connected_item);
415 		}
416 
417 		item = next_item;
418 	}
419 }
420 
421 static void
422 flush_cache_entry(struct cache_entry_ *entry)
423 {
424 	struct cache_mp_entry_		*mp_entry;
425 	struct cache_common_entry_	*common_entry;
426 	struct cache_policy_ *policy, *connected_policy;
427 
428 	connected_policy = NULL;
429 	if (entry->params->entry_type == CET_COMMON) {
430 		common_entry = (struct cache_common_entry_ *)entry;
431 		if ((common_entry->common_params.max_lifetime.tv_sec != 0) ||
432 		    (common_entry->common_params.max_lifetime.tv_usec != 0)) {
433 
434 			policy = common_entry->policies[0];
435 			if (common_entry->policies_size > 1)
436 				connected_policy = common_entry->policies[1];
437 
438 			flush_cache_policy(common_entry, policy,
439 				connected_policy,
440 				cache_lifetime_common_continue_func);
441 		}
442 
443 
444 		if ((common_entry->common_params.max_elemsize != 0) &&
445 			common_entry->items_size >
446 			common_entry->common_params.max_elemsize) {
447 
448 			if (common_entry->policies_size > 1) {
449 				policy = common_entry->policies[1];
450 				connected_policy = common_entry->policies[0];
451 			} else {
452 				policy = common_entry->policies[0];
453 				connected_policy = NULL;
454 			}
455 
456 			flush_cache_policy(common_entry, policy,
457 				connected_policy,
458 				cache_elemsize_common_continue_func);
459 		}
460 	} else {
461 		mp_entry = (struct cache_mp_entry_ *)entry;
462 
463 		if ((mp_entry->mp_params.max_lifetime.tv_sec != 0)
464 			|| (mp_entry->mp_params.max_lifetime.tv_usec != 0)) {
465 
466 			if (mp_entry->last_request_time.tv_sec -
467 				mp_entry->last_request_time.tv_sec >
468 				mp_entry->mp_params.max_lifetime.tv_sec)
469 				clear_cache_entry(entry);
470 		}
471 	}
472 }
473 
474 struct cache_ *
475 init_cache(struct cache_params const *params)
476 {
477 	struct cache_ *retval;
478 
479 	TRACE_IN(init_cache);
480 	assert(params != NULL);
481 
482 	retval = (struct cache_ *)calloc(1, sizeof(struct cache_));
483 	assert(retval != NULL);
484 
485 	assert(params != NULL);
486 	memcpy(&retval->params, params, sizeof(struct cache_params));
487 
488 	retval->entries = (struct cache_entry_ **)calloc(1,
489 		sizeof(struct cache_entry_ *) * INITIAL_ENTRIES_CAPACITY);
490 	assert(retval->entries != NULL);
491 
492 	retval->entries_capacity = INITIAL_ENTRIES_CAPACITY;
493 	retval->entries_size = 0;
494 
495 	TRACE_OUT(init_cache);
496 	return (retval);
497 }
498 
499 void
500 destroy_cache(struct cache_ *the_cache)
501 {
502 
503 	TRACE_IN(destroy_cache);
504 	assert(the_cache != NULL);
505 
506 	if (the_cache->entries != NULL) {
507 		size_t i;
508 		for (i = 0; i < the_cache->entries_size; ++i)
509 			destroy_cache_entry(the_cache->entries[i]);
510 
511 		free(the_cache->entries);
512 	}
513 
514 	free(the_cache);
515 	TRACE_OUT(destroy_cache);
516 }
517 
518 int
519 register_cache_entry(struct cache_ *the_cache,
520 	struct cache_entry_params const *params)
521 {
522 	int policies_size;
523 	size_t entry_name_size;
524 	struct cache_common_entry_	*new_common_entry;
525 	struct cache_mp_entry_		*new_mp_entry;
526 
527 	TRACE_IN(register_cache_entry);
528 	assert(the_cache != NULL);
529 
530 	if (find_cache_entry(the_cache, params->entry_name) != NULL) {
531 		TRACE_OUT(register_cache_entry);
532 		return (-1);
533 	}
534 
535 	if (the_cache->entries_size == the_cache->entries_capacity) {
536 		struct cache_entry_ **new_entries;
537 		size_t	new_capacity;
538 
539 		new_capacity = the_cache->entries_capacity +
540 			ENTRIES_CAPACITY_STEP;
541 		new_entries = (struct cache_entry_ **)calloc(1,
542 			sizeof(struct cache_entry_ *) * new_capacity);
543 		assert(new_entries != NULL);
544 
545 		memcpy(new_entries, the_cache->entries,
546 			sizeof(struct cache_entry_ *)
547 			* the_cache->entries_size);
548 
549 		free(the_cache->entries);
550 		the_cache->entries = new_entries;
551 	}
552 
553 	entry_name_size = strlen(params->entry_name) + 1;
554 	switch (params->entry_type)
555 	{
556 	case CET_COMMON:
557 		new_common_entry = (struct cache_common_entry_ *)calloc(1,
558 			sizeof(struct cache_common_entry_));
559 		assert(new_common_entry != NULL);
560 
561 		memcpy(&new_common_entry->common_params, params,
562 			sizeof(struct common_cache_entry_params));
563 		new_common_entry->params =
564 		  (struct cache_entry_params *)&new_common_entry->common_params;
565 
566 		new_common_entry->common_params.entry_name = (char *)calloc(1,
567 			entry_name_size);
568 		assert(new_common_entry->common_params.entry_name != NULL);
569 		strlcpy(new_common_entry->common_params.entry_name,
570 			params->entry_name, entry_name_size);
571 		new_common_entry->name =
572 			new_common_entry->common_params.entry_name;
573 
574 		HASHTABLE_INIT(&(new_common_entry->items),
575 			struct cache_ht_item_data_, data,
576 			new_common_entry->common_params.cache_entries_size);
577 
578 		if (new_common_entry->common_params.policy == CPT_FIFO)
579 			policies_size = 1;
580 		else
581 			policies_size = 2;
582 
583 		new_common_entry->policies = (struct cache_policy_ **)calloc(1,
584 			sizeof(struct cache_policy_ *) * policies_size);
585 		assert(new_common_entry->policies != NULL);
586 
587 		new_common_entry->policies_size = policies_size;
588 		new_common_entry->policies[0] = init_cache_fifo_policy();
589 
590 		if (policies_size > 1) {
591 			switch (new_common_entry->common_params.policy) {
592 			case CPT_LRU:
593 				new_common_entry->policies[1] =
594 					init_cache_lru_policy();
595 			break;
596 			case CPT_LFU:
597 				new_common_entry->policies[1] =
598 					init_cache_lfu_policy();
599 			break;
600 			default:
601 			break;
602 			}
603 		}
604 
605 		new_common_entry->get_time_func =
606 			the_cache->params.get_time_func;
607 		the_cache->entries[the_cache->entries_size++] =
608 			(struct cache_entry_ *)new_common_entry;
609 		break;
610 	case CET_MULTIPART:
611 		new_mp_entry = (struct cache_mp_entry_ *)calloc(1,
612 			sizeof(struct cache_mp_entry_));
613 		assert(new_mp_entry != NULL);
614 
615 		memcpy(&new_mp_entry->mp_params, params,
616 			sizeof(struct mp_cache_entry_params));
617 		new_mp_entry->params =
618 			(struct cache_entry_params *)&new_mp_entry->mp_params;
619 
620 		new_mp_entry->mp_params.entry_name = (char *)calloc(1,
621 			entry_name_size);
622 		assert(new_mp_entry->mp_params.entry_name != NULL);
623 		strlcpy(new_mp_entry->mp_params.entry_name, params->entry_name,
624 			entry_name_size);
625 		new_mp_entry->name = new_mp_entry->mp_params.entry_name;
626 
627 		TAILQ_INIT(&new_mp_entry->ws_head);
628 		TAILQ_INIT(&new_mp_entry->rs_head);
629 
630 		new_mp_entry->get_time_func = the_cache->params.get_time_func;
631 		the_cache->entries[the_cache->entries_size++] =
632 			(struct cache_entry_ *)new_mp_entry;
633 		break;
634 	}
635 
636 
637 	qsort(the_cache->entries, the_cache->entries_size,
638 		sizeof(struct cache_entry_ *), entries_qsort_cmp_func);
639 
640 	TRACE_OUT(register_cache_entry);
641 	return (0);
642 }
643 
644 int
645 unregister_cache_entry(struct cache_ *the_cache, const char *entry_name)
646 {
647 	struct cache_entry_ **del_ent;
648 
649 	TRACE_IN(unregister_cache_entry);
650 	assert(the_cache != NULL);
651 
652 	del_ent = find_cache_entry_p(the_cache, entry_name);
653 	if (del_ent != NULL) {
654 		destroy_cache_entry(*del_ent);
655 		--the_cache->entries_size;
656 
657 		memmove(del_ent, del_ent + 1,
658 			(&(the_cache->entries[--the_cache->entries_size]) -
659 	    		del_ent) * sizeof(struct cache_entry_ *));
660 
661 		TRACE_OUT(unregister_cache_entry);
662 		return (0);
663 	} else {
664 		TRACE_OUT(unregister_cache_entry);
665 		return (-1);
666 	}
667 }
668 
669 struct cache_entry_ *
670 find_cache_entry(struct cache_ *the_cache, const char *entry_name)
671 {
672 	struct cache_entry_ **result;
673 
674 	TRACE_IN(find_cache_entry);
675 	result = find_cache_entry_p(the_cache, entry_name);
676 
677 	if (result == NULL) {
678 		TRACE_OUT(find_cache_entry);
679 		return (NULL);
680 	} else {
681 		TRACE_OUT(find_cache_entry);
682 		return (*result);
683 	}
684 }
685 
686 /*
687  * Tries to read the element with the specified key from the cache. If the
688  * value_size is too small, it will be filled with the proper number, and
689  * the user will need to call cache_read again with the value buffer, that
690  * is large enough.
691  * Function returns 0 on success, -1 on error, and -2 if the value_size is too
692  * small.
693  */
694 int
695 cache_read(struct cache_entry_ *entry, const char *key, size_t key_size,
696 	char *value, size_t *value_size)
697 {
698 	struct cache_common_entry_	*common_entry;
699 	struct cache_ht_item_data_	item_data, *find_res;
700 	struct cache_ht_item_		*item;
701 	hashtable_index_t	hash;
702 	struct cache_policy_item_ *connected_item;
703 
704 	TRACE_IN(cache_read);
705 	assert(entry != NULL);
706 	assert(key != NULL);
707 	assert(value_size != NULL);
708 	assert(entry->params->entry_type == CET_COMMON);
709 
710 	common_entry = (struct cache_common_entry_ *)entry;
711 
712 	memset(&item_data, 0, sizeof(struct cache_ht_item_data_));
713 	/* can't avoid the cast here */
714 	item_data.key = (char *)key;
715 	item_data.key_size = key_size;
716 
717 	hash = HASHTABLE_CALCULATE_HASH(cache_ht_, &common_entry->items,
718 		&item_data);
719 	assert(hash >= 0);
720 	assert(hash < HASHTABLE_ENTRIES_COUNT(&common_entry->items));
721 
722 	item = HASHTABLE_GET_ENTRY(&(common_entry->items), hash);
723 	find_res = HASHTABLE_ENTRY_FIND(cache_ht_, item, &item_data);
724 	if (find_res == NULL) {
725 		TRACE_OUT(cache_read);
726 		return (-1);
727 	}
728 
729 	if ((common_entry->common_params.max_lifetime.tv_sec != 0) ||
730 		(common_entry->common_params.max_lifetime.tv_usec != 0)) {
731 
732 		if (find_res->fifo_policy_item->last_request_time.tv_sec -
733 			find_res->fifo_policy_item->creation_time.tv_sec >
734 			common_entry->common_params.max_lifetime.tv_sec) {
735 
736 			free(find_res->key);
737 			free(find_res->value);
738 
739 			connected_item =
740 			    find_res->fifo_policy_item->connected_item;
741 			if (connected_item != NULL) {
742 				common_entry->policies[1]->remove_item_func(
743 					common_entry->policies[1],
744 			    		connected_item);
745 				common_entry->policies[1]->destroy_item_func(
746 					connected_item);
747 			}
748 
749 			common_entry->policies[0]->remove_item_func(
750 				common_entry->policies[0],
751 					find_res->fifo_policy_item);
752 			common_entry->policies[0]->destroy_item_func(
753 				find_res->fifo_policy_item);
754 
755 			HASHTABLE_ENTRY_REMOVE(cache_ht_, item, find_res);
756 			--common_entry->items_size;
757 		}
758 	}
759 
760 	if ((*value_size < find_res->value_size) || (value == NULL)) {
761 		*value_size = find_res->value_size;
762 		TRACE_OUT(cache_read);
763 		return (-2);
764 	}
765 
766 	*value_size = find_res->value_size;
767 	memcpy(value, find_res->value, find_res->value_size);
768 
769 	++find_res->fifo_policy_item->request_count;
770 	common_entry->get_time_func(
771 		&find_res->fifo_policy_item->last_request_time);
772 	common_entry->policies[0]->update_item_func(common_entry->policies[0],
773 		find_res->fifo_policy_item);
774 
775 	if (find_res->fifo_policy_item->connected_item != NULL) {
776 		connected_item = find_res->fifo_policy_item->connected_item;
777 		memcpy(&connected_item->last_request_time,
778 			&find_res->fifo_policy_item->last_request_time,
779 			sizeof(struct timeval));
780 		connected_item->request_count =
781 			find_res->fifo_policy_item->request_count;
782 
783 		common_entry->policies[1]->update_item_func(
784 			common_entry->policies[1], connected_item);
785 	}
786 
787 	TRACE_OUT(cache_read);
788 	return (0);
789 }
790 
791 /*
792  * Writes the value with the specified key into the cache entry.
793  * Functions returns 0 on success, and -1 on error.
794  */
795 int
796 cache_write(struct cache_entry_ *entry, const char *key, size_t key_size,
797     	char const *value, size_t value_size)
798 {
799 	struct cache_common_entry_	*common_entry;
800 	struct cache_ht_item_data_	item_data, *find_res;
801 	struct cache_ht_item_		*item;
802 	hashtable_index_t	hash;
803 
804 	struct cache_policy_		*policy, *connected_policy;
805 	struct cache_policy_item_	*policy_item;
806 	struct cache_policy_item_	*connected_policy_item;
807 
808 	TRACE_IN(cache_write);
809 	assert(entry != NULL);
810 	assert(key != NULL);
811 	assert(value != NULL);
812 	assert(entry->params->entry_type == CET_COMMON);
813 
814 	common_entry = (struct cache_common_entry_ *)entry;
815 
816 	memset(&item_data, 0, sizeof(struct cache_ht_item_data_));
817 	/* can't avoid the cast here */
818 	item_data.key = (char *)key;
819 	item_data.key_size = key_size;
820 
821 	hash = HASHTABLE_CALCULATE_HASH(cache_ht_, &common_entry->items,
822 		&item_data);
823 	assert(hash >= 0);
824 	assert(hash < HASHTABLE_ENTRIES_COUNT(&common_entry->items));
825 
826 	item = HASHTABLE_GET_ENTRY(&(common_entry->items), hash);
827 	find_res = HASHTABLE_ENTRY_FIND(cache_ht_, item, &item_data);
828 	if (find_res != NULL) {
829 		TRACE_OUT(cache_write);
830 		return (-1);
831 	}
832 
833 	item_data.key = (char *)malloc(key_size);
834 	memcpy(item_data.key, key, key_size);
835 
836 	item_data.value = (char *)malloc(value_size);
837 	assert(item_data.value != NULL);
838 
839 	memcpy(item_data.value, value, value_size);
840 	item_data.value_size = value_size;
841 
842 	policy_item = common_entry->policies[0]->create_item_func();
843 	policy_item->key = item_data.key;
844 	policy_item->key_size = item_data.key_size;
845 	common_entry->get_time_func(&policy_item->creation_time);
846 
847 	if (common_entry->policies_size > 1) {
848 		connected_policy_item =
849 			common_entry->policies[1]->create_item_func();
850 		memcpy(&connected_policy_item->creation_time,
851 			&policy_item->creation_time,
852 			sizeof(struct timeval));
853 		connected_policy_item->key = policy_item->key;
854 		connected_policy_item->key_size = policy_item->key_size;
855 
856 		connected_policy_item->connected_item = policy_item;
857 		policy_item->connected_item = connected_policy_item;
858 	}
859 
860 	item_data.fifo_policy_item = policy_item;
861 
862 	common_entry->policies[0]->add_item_func(common_entry->policies[0],
863 		policy_item);
864 	if (common_entry->policies_size > 1)
865 		common_entry->policies[1]->add_item_func(
866 			common_entry->policies[1], connected_policy_item);
867 
868 	HASHTABLE_ENTRY_STORE(cache_ht_, item, &item_data);
869 	++common_entry->items_size;
870 
871 	if ((common_entry->common_params.max_elemsize != 0) &&
872 		(common_entry->items_size >
873 		common_entry->common_params.max_elemsize)) {
874 		if (common_entry->policies_size > 1) {
875 			policy = common_entry->policies[1];
876 			connected_policy = common_entry->policies[0];
877 		} else {
878 			policy = common_entry->policies[0];
879 			connected_policy = NULL;
880 		}
881 
882 		flush_cache_policy(common_entry, policy, connected_policy,
883 			cache_elemsize_common_continue_func);
884 	}
885 
886 	TRACE_OUT(cache_write);
887 	return (0);
888 }
889 
890 /*
891  * Initializes the write session for the specified multipart entry. This
892  * session then should be filled with data either committed or abandoned by
893  * using close_cache_mp_write_session or abandon_cache_mp_write_session
894  * respectively.
895  * Returns NULL on errors (when there are too many opened write sessions for
896  * the entry).
897  */
898 struct cache_mp_write_session_ *
899 open_cache_mp_write_session(struct cache_entry_ *entry)
900 {
901 	struct cache_mp_entry_	*mp_entry;
902 	struct cache_mp_write_session_	*retval;
903 
904 	TRACE_IN(open_cache_mp_write_session);
905 	assert(entry != NULL);
906 	assert(entry->params->entry_type == CET_MULTIPART);
907 	mp_entry = (struct cache_mp_entry_ *)entry;
908 
909 	if ((mp_entry->mp_params.max_sessions > 0) &&
910 		(mp_entry->ws_size == mp_entry->mp_params.max_sessions)) {
911 		TRACE_OUT(open_cache_mp_write_session);
912 		return (NULL);
913 	}
914 
915 	retval = (struct cache_mp_write_session_ *)calloc(1,
916 		sizeof(struct cache_mp_write_session_));
917 	assert(retval != NULL);
918 
919 	TAILQ_INIT(&retval->items);
920 	retval->parent_entry = mp_entry;
921 
922 	TAILQ_INSERT_HEAD(&mp_entry->ws_head, retval, entries);
923 	++mp_entry->ws_size;
924 
925 	TRACE_OUT(open_cache_mp_write_session);
926 	return (retval);
927 }
928 
929 /*
930  * Writes data to the specified session. Return 0 on success and -1 on errors
931  * (when write session size limit is exceeded).
932  */
933 int
934 cache_mp_write(struct cache_mp_write_session_ *ws, char *data,
935 	size_t data_size)
936 {
937 	struct cache_mp_data_item_	*new_item;
938 
939 	TRACE_IN(cache_mp_write);
940 	assert(ws != NULL);
941 	assert(ws->parent_entry != NULL);
942 	assert(ws->parent_entry->params->entry_type == CET_MULTIPART);
943 
944 	if ((ws->parent_entry->mp_params.max_elemsize > 0) &&
945 		(ws->parent_entry->mp_params.max_elemsize == ws->items_size)) {
946 		TRACE_OUT(cache_mp_write);
947 		return (-1);
948 	}
949 
950 	new_item = (struct cache_mp_data_item_ *)calloc(1,
951 		sizeof(struct cache_mp_data_item_));
952 	assert(new_item != NULL);
953 
954 	new_item->value = (char *)malloc(data_size);
955 	assert(new_item->value != NULL);
956 	memcpy(new_item->value, data, data_size);
957 	new_item->value_size = data_size;
958 
959 	TAILQ_INSERT_TAIL(&ws->items, new_item, entries);
960 	++ws->items_size;
961 
962 	TRACE_OUT(cache_mp_write);
963 	return (0);
964 }
965 
966 /*
967  * Abandons the write session and frees all the connected resources.
968  */
969 void
970 abandon_cache_mp_write_session(struct cache_mp_write_session_ *ws)
971 {
972 
973 	TRACE_IN(abandon_cache_mp_write_session);
974 	assert(ws != NULL);
975 	assert(ws->parent_entry != NULL);
976 	assert(ws->parent_entry->params->entry_type == CET_MULTIPART);
977 
978 	TAILQ_REMOVE(&ws->parent_entry->ws_head, ws, entries);
979 	--ws->parent_entry->ws_size;
980 
981 	destroy_cache_mp_write_session(ws);
982 	TRACE_OUT(abandon_cache_mp_write_session);
983 }
984 
985 /*
986  * Commits the session to the entry, for which it was created.
987  */
988 void
989 close_cache_mp_write_session(struct cache_mp_write_session_ *ws)
990 {
991 
992 	TRACE_IN(close_cache_mp_write_session);
993 	assert(ws != NULL);
994 	assert(ws->parent_entry != NULL);
995 	assert(ws->parent_entry->params->entry_type == CET_MULTIPART);
996 
997 	TAILQ_REMOVE(&ws->parent_entry->ws_head, ws, entries);
998 	--ws->parent_entry->ws_size;
999 
1000 	if (ws->parent_entry->completed_write_session == NULL) {
1001 		/*
1002 		 * If there is no completed session yet, this will be the one
1003 		 */
1004 		ws->parent_entry->get_time_func(
1005 	    		&ws->parent_entry->creation_time);
1006 		ws->parent_entry->completed_write_session = ws;
1007 	} else {
1008 		/*
1009 		 * If there is a completed session, then we'll save our session
1010 		 * as a pending session. If there is already a pending session,
1011 		 * it would be destroyed.
1012 		 */
1013 		if (ws->parent_entry->pending_write_session != NULL)
1014 			destroy_cache_mp_write_session(
1015 				ws->parent_entry->pending_write_session);
1016 
1017 		ws->parent_entry->pending_write_session = ws;
1018 	}
1019 	TRACE_OUT(close_cache_mp_write_session);
1020 }
1021 
1022 /*
1023  * Opens read session for the specified entry. Returns NULL on errors (when
1024  * there are no data in the entry, or the data are obsolete).
1025  */
1026 struct cache_mp_read_session_ *
1027 open_cache_mp_read_session(struct cache_entry_ *entry)
1028 {
1029 	struct cache_mp_entry_			*mp_entry;
1030 	struct cache_mp_read_session_	*retval;
1031 
1032 	TRACE_IN(open_cache_mp_read_session);
1033 	assert(entry != NULL);
1034 	assert(entry->params->entry_type == CET_MULTIPART);
1035 	mp_entry = (struct cache_mp_entry_ *)entry;
1036 
1037 	if (mp_entry->completed_write_session == NULL) {
1038 		TRACE_OUT(open_cache_mp_read_session);
1039 		return (NULL);
1040 	}
1041 
1042 	if ((mp_entry->mp_params.max_lifetime.tv_sec != 0)
1043 		|| (mp_entry->mp_params.max_lifetime.tv_usec != 0)) {
1044 		if (mp_entry->last_request_time.tv_sec -
1045 			mp_entry->last_request_time.tv_sec >
1046 			mp_entry->mp_params.max_lifetime.tv_sec) {
1047 			flush_cache_entry(entry);
1048 			TRACE_OUT(open_cache_mp_read_session);
1049 			return (NULL);
1050 		}
1051 	}
1052 
1053 	retval = (struct cache_mp_read_session_ *)calloc(1,
1054 		sizeof(struct cache_mp_read_session_));
1055 	assert(retval != NULL);
1056 
1057 	retval->parent_entry = mp_entry;
1058 	retval->current_item = TAILQ_FIRST(
1059 		&mp_entry->completed_write_session->items);
1060 
1061 	TAILQ_INSERT_HEAD(&mp_entry->rs_head, retval, entries);
1062 	++mp_entry->rs_size;
1063 
1064 	mp_entry->get_time_func(&mp_entry->last_request_time);
1065 	TRACE_OUT(open_cache_mp_read_session);
1066 	return (retval);
1067 }
1068 
1069 /*
1070  * Reads the data from the read session - step by step.
1071  * Returns 0 on success, -1 on error (when there are no more data), and -2 if
1072  * the data_size is too small.  In the last case, data_size would be filled
1073  * the proper value.
1074  */
1075 int
1076 cache_mp_read(struct cache_mp_read_session_ *rs, char *data, size_t *data_size)
1077 {
1078 
1079 	TRACE_IN(cache_mp_read);
1080 	assert(rs != NULL);
1081 
1082 	if (rs->current_item == NULL) {
1083 		TRACE_OUT(cache_mp_read);
1084 		return (-1);
1085 	}
1086 
1087 	if (rs->current_item->value_size > *data_size) {
1088 		*data_size = rs->current_item->value_size;
1089 		if (data == NULL) {
1090 			TRACE_OUT(cache_mp_read);
1091 			return (0);
1092 		}
1093 
1094 		TRACE_OUT(cache_mp_read);
1095 		return (-2);
1096 	}
1097 
1098 	*data_size = rs->current_item->value_size;
1099 	memcpy(data, rs->current_item->value, rs->current_item->value_size);
1100 	rs->current_item = TAILQ_NEXT(rs->current_item, entries);
1101 
1102 	TRACE_OUT(cache_mp_read);
1103 	return (0);
1104 }
1105 
1106 /*
1107  * Closes the read session. If there are no more read sessions and there is
1108  * a pending write session, it will be committed and old
1109  * completed_write_session will be destroyed.
1110  */
1111 void
1112 close_cache_mp_read_session(struct cache_mp_read_session_ *rs)
1113 {
1114 
1115 	TRACE_IN(close_cache_mp_read_session);
1116 	assert(rs != NULL);
1117 	assert(rs->parent_entry != NULL);
1118 
1119 	TAILQ_REMOVE(&rs->parent_entry->rs_head, rs, entries);
1120 	--rs->parent_entry->rs_size;
1121 
1122 	if ((rs->parent_entry->rs_size == 0) &&
1123 		(rs->parent_entry->pending_write_session != NULL)) {
1124 		destroy_cache_mp_write_session(
1125 			rs->parent_entry->completed_write_session);
1126 		rs->parent_entry->completed_write_session =
1127 			rs->parent_entry->pending_write_session;
1128 		rs->parent_entry->pending_write_session = NULL;
1129 	}
1130 
1131 	destroy_cache_mp_read_session(rs);
1132 	TRACE_OUT(close_cache_mp_read_session);
1133 }
1134 
1135 int
1136 transform_cache_entry(struct cache_entry_ *entry,
1137 	enum cache_transformation_t transformation)
1138 {
1139 
1140 	TRACE_IN(transform_cache_entry);
1141 	switch (transformation) {
1142 	case CTT_CLEAR:
1143 		clear_cache_entry(entry);
1144 		TRACE_OUT(transform_cache_entry);
1145 		return (0);
1146 	case CTT_FLUSH:
1147 		flush_cache_entry(entry);
1148 		TRACE_OUT(transform_cache_entry);
1149 		return (0);
1150 	default:
1151 		TRACE_OUT(transform_cache_entry);
1152 		return (-1);
1153 	}
1154 }
1155 
1156 int
1157 transform_cache_entry_part(struct cache_entry_ *entry,
1158 	enum cache_transformation_t transformation, const char *key_part,
1159 	size_t key_part_size, enum part_position_t part_position)
1160 {
1161 	struct cache_common_entry_ *common_entry;
1162 	struct cache_ht_item_ *ht_item;
1163 	struct cache_ht_item_data_ *ht_item_data, ht_key;
1164 
1165 	struct cache_policy_item_ *item, *connected_item;
1166 
1167 	TRACE_IN(transform_cache_entry_part);
1168 	if (entry->params->entry_type != CET_COMMON) {
1169 		TRACE_OUT(transform_cache_entry_part);
1170 		return (-1);
1171 	}
1172 
1173 	if (transformation != CTT_CLEAR) {
1174 		TRACE_OUT(transform_cache_entry_part);
1175 		return (-1);
1176 	}
1177 
1178 	memset(&ht_key, 0, sizeof(struct cache_ht_item_data_));
1179 	ht_key.key = (char *)key_part;	/* can't avoid casting here */
1180 	ht_key.key_size = key_part_size;
1181 
1182 	common_entry = (struct cache_common_entry_ *)entry;
1183 	HASHTABLE_FOREACH(&(common_entry->items), ht_item) {
1184 		do {
1185 			ht_item_data = HASHTABLE_ENTRY_FIND_SPECIAL(cache_ht_,
1186 				ht_item, &ht_key,
1187 				ht_items_fixed_size_left_cmp_func);
1188 
1189 			if (ht_item_data != NULL) {
1190 			    item = ht_item_data->fifo_policy_item;
1191 			    connected_item = item->connected_item;
1192 
1193 			    common_entry->policies[0]->remove_item_func(
1194 				common_entry->policies[0],
1195 				item);
1196 
1197 			    free(ht_item_data->key);
1198 			    free(ht_item_data->value);
1199 			    HASHTABLE_ENTRY_REMOVE(cache_ht_, ht_item,
1200 				ht_item_data);
1201 			    --common_entry->items_size;
1202 
1203 			    common_entry->policies[0]->destroy_item_func(
1204 				item);
1205 			    if (common_entry->policies_size == 2) {
1206 				common_entry->policies[1]->remove_item_func(
1207 				    common_entry->policies[1],
1208 				    connected_item);
1209 				common_entry->policies[1]->destroy_item_func(
1210 				    connected_item);
1211 			    }
1212 			}
1213 		} while (ht_item_data != NULL);
1214 	}
1215 
1216 	TRACE_OUT(transform_cache_entry_part);
1217 	return (0);
1218 }
1219