1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2022 The FreeBSD Foundation 5 * 6 * This software was developed by Mark Johnston under sponsorship from 7 * the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions are 11 * met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/endian.h> 33 34 #include <assert.h> 35 #include <stddef.h> 36 #include <string.h> 37 38 #include <util.h> 39 40 #include "makefs.h" 41 #include "zfs.h" 42 43 typedef struct zfs_zap_entry { 44 char *name; /* entry key, private copy */ 45 uint64_t hash; /* key hash */ 46 union { 47 uint8_t *valp; 48 uint16_t *val16p; 49 uint32_t *val32p; 50 uint64_t *val64p; 51 }; /* entry value, an integer array */ 52 uint64_t val64; /* embedded value for a common case */ 53 size_t intsz; /* array element size; 1, 2, 4 or 8 */ 54 size_t intcnt; /* array size */ 55 STAILQ_ENTRY(zfs_zap_entry) next; 56 } zfs_zap_entry_t; 57 58 struct zfs_zap { 59 STAILQ_HEAD(, zfs_zap_entry) kvps; 60 uint64_t hashsalt; /* key hash input */ 61 unsigned long kvpcnt; /* number of key-value pairs */ 62 unsigned long chunks; /* count of chunks needed for fat ZAP */ 63 bool micro; /* can this be a micro ZAP? */ 64 65 dnode_phys_t *dnode; /* backpointer */ 66 zfs_objset_t *os; /* backpointer */ 67 }; 68 69 static uint16_t 70 zap_entry_chunks(zfs_zap_entry_t *ent) 71 { 72 return (1 + howmany(strlen(ent->name) + 1, ZAP_LEAF_ARRAY_BYTES) + 73 howmany(ent->intsz * ent->intcnt, ZAP_LEAF_ARRAY_BYTES)); 74 } 75 76 static uint64_t 77 zap_hash(uint64_t salt, const char *name) 78 { 79 static uint64_t crc64_table[256]; 80 const uint64_t crc64_poly = 0xC96C5795D7870F42UL; 81 const uint8_t *cp; 82 uint64_t crc; 83 uint8_t c; 84 85 assert(salt != 0); 86 if (crc64_table[128] == 0) { 87 for (int i = 0; i < 256; i++) { 88 uint64_t *t; 89 90 t = crc64_table + i; 91 *t = i; 92 for (int j = 8; j > 0; j--) 93 *t = (*t >> 1) ^ (-(*t & 1) & crc64_poly); 94 } 95 } 96 assert(crc64_table[128] == crc64_poly); 97 98 for (cp = (const uint8_t *)name, crc = salt; (c = *cp) != '\0'; cp++) 99 crc = (crc >> 8) ^ crc64_table[(crc ^ c) & 0xFF]; 100 101 /* 102 * Only use 28 bits, since we need 4 bits in the cookie for the 103 * collision differentiator. We MUST use the high bits, since 104 * those are the ones that we first pay attention to when 105 * choosing the bucket. 106 */ 107 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); 108 109 return (crc); 110 } 111 112 zfs_zap_t * 113 zap_alloc(zfs_objset_t *os, dnode_phys_t *dnode) 114 { 115 zfs_zap_t *zap; 116 117 zap = ecalloc(1, sizeof(*zap)); 118 STAILQ_INIT(&zap->kvps); 119 zap->hashsalt = ((uint64_t)random() << 32) | random(); 120 zap->micro = true; 121 zap->kvpcnt = 0; 122 zap->chunks = 0; 123 zap->dnode = dnode; 124 zap->os = os; 125 return (zap); 126 } 127 128 void 129 zap_add(zfs_zap_t *zap, const char *name, size_t intsz, size_t intcnt, 130 const uint8_t *val) 131 { 132 zfs_zap_entry_t *ent; 133 134 assert(intsz == 1 || intsz == 2 || intsz == 4 || intsz == 8); 135 assert(strlen(name) + 1 <= ZAP_MAXNAMELEN); 136 assert(intcnt <= ZAP_MAXVALUELEN && intcnt * intsz <= ZAP_MAXVALUELEN); 137 138 ent = ecalloc(1, sizeof(*ent)); 139 ent->name = estrdup(name); 140 ent->hash = zap_hash(zap->hashsalt, ent->name); 141 ent->intsz = intsz; 142 ent->intcnt = intcnt; 143 if (intsz == sizeof(uint64_t) && intcnt == 1) { 144 /* 145 * Micro-optimization to elide a memory allocation in that most 146 * common case where this is a directory entry. 147 */ 148 ent->val64p = &ent->val64; 149 } else { 150 ent->valp = ecalloc(intcnt, intsz); 151 } 152 memcpy(ent->valp, val, intcnt * intsz); 153 zap->kvpcnt++; 154 zap->chunks += zap_entry_chunks(ent); 155 STAILQ_INSERT_TAIL(&zap->kvps, ent, next); 156 157 if (zap->micro && (intcnt != 1 || intsz != sizeof(uint64_t) || 158 strlen(name) + 1 > MZAP_NAME_LEN || zap->kvpcnt > MZAP_ENT_MAX)) 159 zap->micro = false; 160 } 161 162 void 163 zap_add_uint64(zfs_zap_t *zap, const char *name, uint64_t val) 164 { 165 zap_add(zap, name, sizeof(uint64_t), 1, (uint8_t *)&val); 166 } 167 168 void 169 zap_add_string(zfs_zap_t *zap, const char *name, const char *val) 170 { 171 zap_add(zap, name, 1, strlen(val) + 1, val); 172 } 173 174 bool 175 zap_entry_exists(zfs_zap_t *zap, const char *name) 176 { 177 zfs_zap_entry_t *ent; 178 179 STAILQ_FOREACH(ent, &zap->kvps, next) { 180 if (strcmp(ent->name, name) == 0) 181 return (true); 182 } 183 return (false); 184 } 185 186 static void 187 zap_micro_write(zfs_opt_t *zfs, zfs_zap_t *zap) 188 { 189 dnode_phys_t *dnode; 190 zfs_zap_entry_t *ent; 191 mzap_phys_t *mzap; 192 mzap_ent_phys_t *ment; 193 off_t bytes, loc; 194 195 memset(zfs->filebuf, 0, sizeof(zfs->filebuf)); 196 mzap = (mzap_phys_t *)&zfs->filebuf[0]; 197 mzap->mz_block_type = ZBT_MICRO; 198 mzap->mz_salt = zap->hashsalt; 199 mzap->mz_normflags = 0; 200 201 bytes = sizeof(*mzap) + (zap->kvpcnt - 1) * sizeof(*ment); 202 assert(bytes <= (off_t)MZAP_MAX_BLKSZ); 203 204 ment = &mzap->mz_chunk[0]; 205 STAILQ_FOREACH(ent, &zap->kvps, next) { 206 memcpy(&ment->mze_value, ent->valp, ent->intsz * ent->intcnt); 207 ment->mze_cd = 0; /* XXX-MJ */ 208 strlcpy(ment->mze_name, ent->name, sizeof(ment->mze_name)); 209 ment++; 210 } 211 212 loc = objset_space_alloc(zfs, zap->os, &bytes); 213 214 dnode = zap->dnode; 215 dnode->dn_maxblkid = 0; 216 dnode->dn_datablkszsec = bytes >> MINBLOCKSHIFT; 217 dnode->dn_flags = DNODE_FLAG_USED_BYTES; 218 219 vdev_pwrite_dnode_data(zfs, dnode, zfs->filebuf, bytes, loc); 220 } 221 222 /* 223 * Write some data to the fat ZAP leaf chunk starting at index "li". 224 * 225 * Note that individual integers in the value may be split among consecutive 226 * leaves. 227 */ 228 static void 229 zap_fat_write_array_chunk(zap_leaf_t *l, uint16_t li, size_t sz, 230 const uint8_t *val) 231 { 232 struct zap_leaf_array *la; 233 234 assert(sz <= ZAP_MAXVALUELEN); 235 236 for (uint16_t n, resid = sz; resid > 0; resid -= n, val += n, li++) { 237 n = MIN(resid, ZAP_LEAF_ARRAY_BYTES); 238 239 la = &ZAP_LEAF_CHUNK(l, li).l_array; 240 assert(la->la_type == ZAP_CHUNK_FREE); 241 la->la_type = ZAP_CHUNK_ARRAY; 242 memcpy(la->la_array, val, n); 243 la->la_next = li + 1; 244 } 245 la->la_next = 0xffff; 246 } 247 248 /* 249 * Find the shortest hash prefix length which lets us distribute keys without 250 * overflowing a leaf block. This is not (space) optimal, but is simple, and 251 * directories large enough to overflow a single 128KB leaf block are uncommon. 252 */ 253 static unsigned int 254 zap_fat_write_prefixlen(zfs_zap_t *zap, zap_leaf_t *l) 255 { 256 zfs_zap_entry_t *ent; 257 unsigned int prefixlen; 258 259 if (zap->chunks <= ZAP_LEAF_NUMCHUNKS(l)) { 260 /* 261 * All chunks will fit in a single leaf block. 262 */ 263 return (0); 264 } 265 266 for (prefixlen = 1; prefixlen < (unsigned int)l->l_bs; prefixlen++) { 267 uint32_t *leafchunks; 268 269 leafchunks = ecalloc(1u << prefixlen, sizeof(*leafchunks)); 270 STAILQ_FOREACH(ent, &zap->kvps, next) { 271 uint64_t li; 272 uint16_t chunks; 273 274 li = ZAP_HASH_IDX(ent->hash, prefixlen); 275 276 chunks = zap_entry_chunks(ent); 277 if (ZAP_LEAF_NUMCHUNKS(l) - leafchunks[li] < chunks) { 278 /* 279 * Not enough space, grow the prefix and retry. 280 */ 281 break; 282 } 283 leafchunks[li] += chunks; 284 } 285 free(leafchunks); 286 287 if (ent == NULL) { 288 /* 289 * Everything fits, we're done. 290 */ 291 break; 292 } 293 } 294 295 /* 296 * If this fails, then we need to expand the pointer table. For now 297 * this situation is unhandled since it is hard to trigger. 298 */ 299 assert(prefixlen < (unsigned int)l->l_bs); 300 301 return (prefixlen); 302 } 303 304 /* 305 * Initialize a fat ZAP leaf block. 306 */ 307 static void 308 zap_fat_write_leaf_init(zap_leaf_t *l, uint64_t prefix, int prefixlen) 309 { 310 zap_leaf_phys_t *leaf; 311 312 leaf = l->l_phys; 313 314 leaf->l_hdr.lh_block_type = ZBT_LEAF; 315 leaf->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 316 leaf->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 317 leaf->l_hdr.lh_prefix = prefix; 318 leaf->l_hdr.lh_prefix_len = prefixlen; 319 320 /* Initialize the leaf hash table. */ 321 assert(leaf->l_hdr.lh_nfree < 0xffff); 322 memset(leaf->l_hash, 0xff, 323 ZAP_LEAF_HASH_NUMENTRIES(l) * sizeof(*leaf->l_hash)); 324 325 /* Initialize the leaf chunks. */ 326 for (uint16_t i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 327 struct zap_leaf_free *lf; 328 329 lf = &ZAP_LEAF_CHUNK(l, i).l_free; 330 lf->lf_type = ZAP_CHUNK_FREE; 331 if (i + 1 == ZAP_LEAF_NUMCHUNKS(l)) 332 lf->lf_next = 0xffff; 333 else 334 lf->lf_next = i + 1; 335 } 336 } 337 338 static void 339 zap_fat_write(zfs_opt_t *zfs, zfs_zap_t *zap) 340 { 341 struct dnode_cursor *c; 342 zap_leaf_t l; 343 zap_phys_t *zaphdr; 344 struct zap_table_phys *zt; 345 zfs_zap_entry_t *ent; 346 dnode_phys_t *dnode; 347 uint8_t *leafblks; 348 uint64_t lblkcnt, *ptrhasht; 349 off_t loc, blksz; 350 size_t blkshift; 351 unsigned int prefixlen; 352 int ptrcnt; 353 354 /* 355 * For simplicity, always use the largest block size. This should be ok 356 * since most directories will be micro ZAPs, but it's space inefficient 357 * for small ZAPs and might need to be revisited. 358 */ 359 blkshift = MAXBLOCKSHIFT; 360 blksz = (off_t)1 << blkshift; 361 362 /* 363 * Embedded pointer tables give up to 8192 entries. This ought to be 364 * enough for anything except massive directories. 365 */ 366 ptrcnt = (blksz / 2) / sizeof(uint64_t); 367 368 memset(zfs->filebuf, 0, sizeof(zfs->filebuf)); 369 zaphdr = (zap_phys_t *)&zfs->filebuf[0]; 370 zaphdr->zap_block_type = ZBT_HEADER; 371 zaphdr->zap_magic = ZAP_MAGIC; 372 zaphdr->zap_num_entries = zap->kvpcnt; 373 zaphdr->zap_salt = zap->hashsalt; 374 375 l.l_bs = blkshift; 376 l.l_phys = NULL; 377 378 zt = &zaphdr->zap_ptrtbl; 379 zt->zt_blk = 0; 380 zt->zt_numblks = 0; 381 zt->zt_shift = flsll(ptrcnt) - 1; 382 zt->zt_nextblk = 0; 383 zt->zt_blks_copied = 0; 384 385 /* 386 * How many leaf blocks do we need? Initialize them and update the 387 * header. 388 */ 389 prefixlen = zap_fat_write_prefixlen(zap, &l); 390 lblkcnt = 1 << prefixlen; 391 leafblks = ecalloc(lblkcnt, blksz); 392 for (unsigned int li = 0; li < lblkcnt; li++) { 393 l.l_phys = (zap_leaf_phys_t *)(leafblks + li * blksz); 394 zap_fat_write_leaf_init(&l, li, prefixlen); 395 } 396 zaphdr->zap_num_leafs = lblkcnt; 397 zaphdr->zap_freeblk = lblkcnt + 1; 398 399 /* 400 * For each entry, figure out which leaf block it belongs to based on 401 * the upper bits of its hash, allocate chunks from that leaf, and fill 402 * them out. 403 */ 404 ptrhasht = (uint64_t *)(&zfs->filebuf[0] + blksz / 2); 405 STAILQ_FOREACH(ent, &zap->kvps, next) { 406 struct zap_leaf_entry *le; 407 uint16_t *lptr; 408 uint64_t hi, li; 409 uint16_t namelen, nchunks, nnamechunks, nvalchunks; 410 411 hi = ZAP_HASH_IDX(ent->hash, zt->zt_shift); 412 li = ZAP_HASH_IDX(ent->hash, prefixlen); 413 assert(ptrhasht[hi] == 0 || ptrhasht[hi] == li + 1); 414 ptrhasht[hi] = li + 1; 415 l.l_phys = (zap_leaf_phys_t *)(leafblks + li * blksz); 416 417 namelen = strlen(ent->name) + 1; 418 419 /* 420 * How many leaf chunks do we need for this entry? 421 */ 422 nnamechunks = howmany(namelen, ZAP_LEAF_ARRAY_BYTES); 423 nvalchunks = howmany(ent->intcnt, 424 ZAP_LEAF_ARRAY_BYTES / ent->intsz); 425 nchunks = 1 + nnamechunks + nvalchunks; 426 427 /* 428 * Allocate a run of free leaf chunks for this entry, 429 * potentially extending a hash chain. 430 */ 431 assert(l.l_phys->l_hdr.lh_nfree >= nchunks); 432 l.l_phys->l_hdr.lh_nfree -= nchunks; 433 l.l_phys->l_hdr.lh_nentries++; 434 lptr = ZAP_LEAF_HASH_ENTPTR(&l, ent->hash); 435 while (*lptr != 0xffff) { 436 assert(*lptr < ZAP_LEAF_NUMCHUNKS(&l)); 437 le = ZAP_LEAF_ENTRY(&l, *lptr); 438 assert(le->le_type == ZAP_CHUNK_ENTRY); 439 le->le_cd++; 440 lptr = &le->le_next; 441 } 442 *lptr = l.l_phys->l_hdr.lh_freelist; 443 l.l_phys->l_hdr.lh_freelist += nchunks; 444 assert(l.l_phys->l_hdr.lh_freelist <= 445 ZAP_LEAF_NUMCHUNKS(&l)); 446 if (l.l_phys->l_hdr.lh_freelist == 447 ZAP_LEAF_NUMCHUNKS(&l)) 448 l.l_phys->l_hdr.lh_freelist = 0xffff; 449 450 /* 451 * Integer values must be stored in big-endian format. 452 */ 453 switch (ent->intsz) { 454 case 1: 455 break; 456 case 2: 457 for (uint16_t *v = ent->val16p; 458 v - ent->val16p < (ptrdiff_t)ent->intcnt; 459 v++) 460 *v = htobe16(*v); 461 break; 462 case 4: 463 for (uint32_t *v = ent->val32p; 464 v - ent->val32p < (ptrdiff_t)ent->intcnt; 465 v++) 466 *v = htobe32(*v); 467 break; 468 case 8: 469 for (uint64_t *v = ent->val64p; 470 v - ent->val64p < (ptrdiff_t)ent->intcnt; 471 v++) 472 *v = htobe64(*v); 473 break; 474 default: 475 assert(0); 476 } 477 478 /* 479 * Finally, write out the leaf chunks for this entry. 480 */ 481 le = ZAP_LEAF_ENTRY(&l, *lptr); 482 assert(le->le_type == ZAP_CHUNK_FREE); 483 le->le_type = ZAP_CHUNK_ENTRY; 484 le->le_next = 0xffff; 485 le->le_name_chunk = *lptr + 1; 486 le->le_name_numints = namelen; 487 le->le_value_chunk = *lptr + 1 + nnamechunks; 488 le->le_value_intlen = ent->intsz; 489 le->le_value_numints = ent->intcnt; 490 le->le_hash = ent->hash; 491 zap_fat_write_array_chunk(&l, *lptr + 1, namelen, ent->name); 492 zap_fat_write_array_chunk(&l, *lptr + 1 + nnamechunks, 493 ent->intcnt * ent->intsz, ent->valp); 494 } 495 496 /* 497 * Initialize unused slots of the pointer table. 498 */ 499 for (int i = 0; i < ptrcnt; i++) 500 if (ptrhasht[i] == 0) 501 ptrhasht[i] = (i >> (zt->zt_shift - prefixlen)) + 1; 502 503 /* 504 * Write the whole thing to disk. 505 */ 506 dnode = zap->dnode; 507 dnode->dn_nblkptr = 1; 508 dnode->dn_datablkszsec = blksz >> MINBLOCKSHIFT; 509 dnode->dn_maxblkid = lblkcnt + 1; 510 dnode->dn_flags = DNODE_FLAG_USED_BYTES; 511 512 c = dnode_cursor_init(zfs, zap->os, zap->dnode, 513 (lblkcnt + 1) * blksz, blksz); 514 515 loc = objset_space_alloc(zfs, zap->os, &blksz); 516 vdev_pwrite_dnode_indir(zfs, dnode, 0, 1, zfs->filebuf, blksz, loc, 517 dnode_cursor_next(zfs, c, 0)); 518 519 for (uint64_t i = 0; i < lblkcnt; i++) { 520 loc = objset_space_alloc(zfs, zap->os, &blksz); 521 vdev_pwrite_dnode_indir(zfs, dnode, 0, 1, leafblks + i * blksz, 522 blksz, loc, dnode_cursor_next(zfs, c, (i + 1) * blksz)); 523 } 524 525 dnode_cursor_finish(zfs, c); 526 527 free(leafblks); 528 } 529 530 void 531 zap_write(zfs_opt_t *zfs, zfs_zap_t *zap) 532 { 533 zfs_zap_entry_t *ent; 534 535 if (zap->micro) { 536 zap_micro_write(zfs, zap); 537 } else { 538 assert(!STAILQ_EMPTY(&zap->kvps)); 539 assert(zap->kvpcnt > 0); 540 zap_fat_write(zfs, zap); 541 } 542 543 while ((ent = STAILQ_FIRST(&zap->kvps)) != NULL) { 544 STAILQ_REMOVE_HEAD(&zap->kvps, next); 545 if (ent->val64p != &ent->val64) 546 free(ent->valp); 547 free(ent->name); 548 free(ent); 549 } 550 free(zap); 551 } 552