xref: /freebsd/usr.sbin/makefs/zfs/vdev.c (revision 38a52bd3b5cac3da6f7f6eef3dd050e6aa08ebb3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2022 The FreeBSD Foundation
5  *
6  * This software was developed by Mark Johnston under sponsorship from
7  * the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions are
11  * met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <assert.h>
32 #include <fcntl.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <unistd.h>
36 
37 #include <util.h>
38 
39 #include "zfs.h"
40 
41 #pragma clang diagnostic push
42 #pragma clang diagnostic ignored "-Wunused-function"
43 #include "zfs/fletcher.c"
44 #include "zfs/sha256.c"
45 #pragma clang diagnostic pop
46 
47 static void
48 blkptr_set(blkptr_t *bp, off_t off, off_t size, uint8_t dntype, uint8_t level,
49     uint64_t fill, enum zio_checksum cksumt, zio_cksum_t *cksum)
50 {
51 	dva_t *dva;
52 
53 	assert(powerof2(size));
54 
55 	BP_ZERO(bp);
56 	BP_SET_LSIZE(bp, size);
57 	BP_SET_PSIZE(bp, size);
58 	BP_SET_CHECKSUM(bp, cksumt);
59 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
60 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
61 	BP_SET_BIRTH(bp, TXG, TXG);
62 	BP_SET_LEVEL(bp, level);
63 	BP_SET_FILL(bp, fill);
64 	BP_SET_TYPE(bp, dntype);
65 
66 	dva = BP_IDENTITY(bp);
67 	DVA_SET_VDEV(dva, 0);
68 	DVA_SET_OFFSET(dva, off);
69 	DVA_SET_ASIZE(dva, size);
70 	memcpy(&bp->blk_cksum, cksum, sizeof(*cksum));
71 }
72 
73 /*
74  * Write a block of data to the vdev.  The offset is always relative to the end
75  * of the second leading vdev label.
76  *
77  * Consumers should generally use the helpers below, which provide block
78  * pointers and update dnode accounting, rather than calling this function
79  * directly.
80  */
81 static void
82 vdev_pwrite(const zfs_opt_t *zfs, const void *buf, size_t len, off_t off)
83 {
84 	ssize_t n;
85 
86 	assert(off >= 0 && off < zfs->asize);
87 	assert(powerof2(len));
88 	assert((off_t)len > 0 && off + (off_t)len > off &&
89 	    off + (off_t)len < zfs->asize);
90 	if (zfs->spacemap != NULL) {
91 		/*
92 		 * Verify that the blocks being written were in fact allocated.
93 		 *
94 		 * The space map isn't available once the on-disk space map is
95 		 * finalized, so this check doesn't quite catch everything.
96 		 */
97 		assert(bit_ntest(zfs->spacemap, off >> zfs->ashift,
98 		    (off + len - 1) >> zfs->ashift, 1));
99 	}
100 
101 	off += VDEV_LABEL_START_SIZE;
102 	for (size_t sofar = 0; sofar < len; sofar += n) {
103 		n = pwrite(zfs->fd, (const char *)buf + sofar, len - sofar,
104 		    off + sofar);
105 		if (n < 0)
106 			err(1, "pwrite");
107 		assert(n > 0);
108 	}
109 }
110 
111 void
112 vdev_pwrite_data(zfs_opt_t *zfs, uint8_t datatype, uint8_t cksumtype,
113     uint8_t level, uint64_t fill, const void *data, off_t sz, off_t loc,
114     blkptr_t *bp)
115 {
116 	zio_cksum_t cksum;
117 
118 	assert(cksumtype == ZIO_CHECKSUM_FLETCHER_4);
119 
120 	fletcher_4_native(data, sz, NULL, &cksum);
121 	blkptr_set(bp, loc, sz, datatype, level, fill, cksumtype, &cksum);
122 	vdev_pwrite(zfs, data, sz, loc);
123 }
124 
125 void
126 vdev_pwrite_dnode_indir(zfs_opt_t *zfs, dnode_phys_t *dnode, uint8_t level,
127     uint64_t fill, const void *data, off_t sz, off_t loc, blkptr_t *bp)
128 {
129 	vdev_pwrite_data(zfs, dnode->dn_type, dnode->dn_checksum, level, fill,
130 	    data, sz, loc, bp);
131 
132 	assert((dnode->dn_flags & DNODE_FLAG_USED_BYTES) != 0);
133 	dnode->dn_used += sz;
134 }
135 
136 void
137 vdev_pwrite_dnode_data(zfs_opt_t *zfs, dnode_phys_t *dnode, const void *data,
138     off_t sz, off_t loc)
139 {
140 	vdev_pwrite_dnode_indir(zfs, dnode, 0, 1, data, sz, loc,
141 	    &dnode->dn_blkptr[0]);
142 }
143 
144 static void
145 vdev_label_set_checksum(void *buf, off_t off, off_t size)
146 {
147 	zio_cksum_t cksum;
148 	zio_eck_t *eck;
149 
150 	assert(size > 0 && (size_t)size >= sizeof(zio_eck_t));
151 
152 	eck = (zio_eck_t *)((char *)buf + size) - 1;
153 	eck->zec_magic = ZEC_MAGIC;
154 	ZIO_SET_CHECKSUM(&eck->zec_cksum, off, 0, 0, 0);
155 	zio_checksum_SHA256(buf, size, NULL, &cksum);
156 	eck->zec_cksum = cksum;
157 }
158 
159 /*
160  * Set embedded checksums and write the label at the specified index.
161  */
162 void
163 vdev_label_write(zfs_opt_t *zfs, int ind, const vdev_label_t *labelp)
164 {
165 	vdev_label_t *label;
166 	ssize_t n;
167 	off_t blksz, loff;
168 
169 	assert(ind >= 0 && ind < VDEV_LABELS);
170 
171 	/*
172 	 * Make a copy since we have to modify the label to set checksums.
173 	 */
174 	label = ecalloc(1, sizeof(*label));
175 	memcpy(label, labelp, sizeof(*label));
176 
177 	if (ind < 2)
178 		loff = ind * sizeof(*label);
179 	else
180 		loff = zfs->vdevsize - (VDEV_LABELS - ind) * sizeof(*label);
181 
182 	/*
183 	 * Set the verifier checksum for the boot block.  We don't use it, but
184 	 * the FreeBSD loader reads it and will complain if the checksum isn't
185 	 * valid.
186 	 */
187 	vdev_label_set_checksum(&label->vl_be,
188 	    loff + __offsetof(vdev_label_t, vl_be), sizeof(label->vl_be));
189 
190 	/*
191 	 * Set the verifier checksum for the label.
192 	 */
193 	vdev_label_set_checksum(&label->vl_vdev_phys,
194 	    loff + __offsetof(vdev_label_t, vl_vdev_phys),
195 	    sizeof(label->vl_vdev_phys));
196 
197 	/*
198 	 * Set the verifier checksum for the uberblocks.  There is one uberblock
199 	 * per sector; for example, with an ashift of 12 we end up with
200 	 * 128KB/4KB=32 copies of the uberblock in the ring.
201 	 */
202 	blksz = 1 << zfs->ashift;
203 	assert(sizeof(label->vl_uberblock) % blksz == 0);
204 	for (size_t roff = 0; roff < sizeof(label->vl_uberblock);
205 	    roff += blksz) {
206 		vdev_label_set_checksum(&label->vl_uberblock[0] + roff,
207 		    loff + __offsetof(vdev_label_t, vl_uberblock) + roff,
208 		    blksz);
209 	}
210 
211 	n = pwrite(zfs->fd, label, sizeof(*label), loff);
212 	if (n < 0)
213 		err(1, "writing vdev label");
214 	assert(n == sizeof(*label));
215 
216 	free(label);
217 }
218 
219 /*
220  * Find a chunk of contiguous free space of length *lenp, according to the
221  * following rules:
222  * 1. If the length is less than or equal to 128KB, the returned run's length
223  *    will be the smallest power of 2 equal to or larger than the length.
224  * 2. If the length is larger than 128KB, the returned run's length will be
225  *    the smallest multiple of 128KB that is larger than the length.
226  * 3. The returned run's length will be size-aligned up to 128KB.
227  *
228  * XXX-MJ the third rule isn't actually required, so this can just be a dumb
229  * bump allocator.  Maybe there's some benefit to keeping large blocks aligned,
230  * so let's keep it for now and hope we don't get too much fragmentation.
231  * Alternately we could try to allocate all blocks of a certain size from the
232  * same metaslab.
233  */
234 off_t
235 vdev_space_alloc(zfs_opt_t *zfs, off_t *lenp)
236 {
237 	off_t len;
238 	int align, loc, minblksz, nbits;
239 
240 	minblksz = 1 << zfs->ashift;
241 	len = roundup2(*lenp, minblksz);
242 
243 	assert(len != 0);
244 	assert(len / minblksz <= INT_MAX);
245 
246 	if (len < MAXBLOCKSIZE) {
247 		if ((len & (len - 1)) != 0)
248 			len = (off_t)1 << flsll(len);
249 		align = len / minblksz;
250 	} else {
251 		len = roundup2(len, MAXBLOCKSIZE);
252 		align = MAXBLOCKSIZE / minblksz;
253 	}
254 
255 	for (loc = 0, nbits = len / minblksz;; loc = roundup2(loc, align)) {
256 		bit_ffc_area_at(zfs->spacemap, loc, zfs->spacemapbits, nbits,
257 		    &loc);
258 		if (loc == -1) {
259 			errx(1, "failed to find %ju bytes of space",
260 			    (uintmax_t)len);
261 		}
262 		if ((loc & (align - 1)) == 0)
263 			break;
264 	}
265 	assert(loc + nbits > loc);
266 	bit_nset(zfs->spacemap, loc, loc + nbits - 1);
267 	*lenp = len;
268 
269 	return ((off_t)loc << zfs->ashift);
270 }
271 
272 static void
273 vdev_spacemap_init(zfs_opt_t *zfs)
274 {
275 	uint64_t nbits;
276 
277 	assert(powerof2(zfs->mssize));
278 
279 	nbits = rounddown2(zfs->asize, zfs->mssize) >> zfs->ashift;
280 	if (nbits > INT_MAX) {
281 		/*
282 		 * With the smallest block size of 512B, the limit on the image
283 		 * size is 2TB.  That should be enough for anyone.
284 		 */
285 		errx(1, "image size is too large");
286 	}
287 	zfs->spacemapbits = (int)nbits;
288 	zfs->spacemap = bit_alloc(zfs->spacemapbits);
289 	if (zfs->spacemap == NULL)
290 		err(1, "bitstring allocation failed");
291 }
292 
293 void
294 vdev_spacemap_write(zfs_opt_t *zfs)
295 {
296 	dnode_phys_t *objarr;
297 	bitstr_t *spacemap;
298 	uint64_t *objarrblk;
299 	off_t smblksz, objarrblksz, objarrloc;
300 
301 	struct {
302 		dnode_phys_t	*dnode;
303 		uint64_t	dnid;
304 		off_t		loc;
305 	} *sma;
306 
307 	objarrblksz = sizeof(uint64_t) * zfs->mscount;
308 	assert(objarrblksz <= MAXBLOCKSIZE);
309 	objarrloc = objset_space_alloc(zfs, zfs->mos, &objarrblksz);
310 	objarrblk = ecalloc(1, objarrblksz);
311 
312 	objarr = objset_dnode_lookup(zfs->mos, zfs->objarrid);
313 	objarr->dn_datablkszsec = objarrblksz >> MINBLOCKSHIFT;
314 
315 	/*
316 	 * Use the smallest block size for space maps.  The space allocation
317 	 * algorithm should aim to minimize the number of holes.
318 	 */
319 	smblksz = 1 << zfs->ashift;
320 
321 	/*
322 	 * First allocate dnodes and space for all of our space maps.  No more
323 	 * space can be allocated from the vdev after this point.
324 	 */
325 	sma = ecalloc(zfs->mscount, sizeof(*sma));
326 	for (uint64_t i = 0; i < zfs->mscount; i++) {
327 		sma[i].dnode = objset_dnode_bonus_alloc(zfs->mos,
328 		    DMU_OT_SPACE_MAP, DMU_OT_SPACE_MAP_HEADER,
329 		    sizeof(space_map_phys_t), &sma[i].dnid);
330 		sma[i].loc = objset_space_alloc(zfs, zfs->mos, &smblksz);
331 	}
332 	spacemap = zfs->spacemap;
333 	zfs->spacemap = NULL;
334 
335 	/*
336 	 * Now that the set of allocated space is finalized, populate each space
337 	 * map and write it to the vdev.
338 	 */
339 	for (uint64_t i = 0; i < zfs->mscount; i++) {
340 		space_map_phys_t *sm;
341 		uint64_t alloc, length, *smblk;
342 		int shift, startb, endb, srunb, erunb;
343 
344 		/*
345 		 * We only allocate a single block for this space map, but
346 		 * OpenZFS assumes that a space map object with sufficient bonus
347 		 * space supports histograms.
348 		 */
349 		sma[i].dnode->dn_nblkptr = 3;
350 		sma[i].dnode->dn_datablkszsec = smblksz >> MINBLOCKSHIFT;
351 
352 		smblk = ecalloc(1, smblksz);
353 
354 		alloc = length = 0;
355 		shift = zfs->msshift - zfs->ashift;
356 		for (srunb = startb = i * (1 << shift),
357 		    endb = (i + 1) * (1 << shift);
358 		    srunb < endb; srunb = erunb) {
359 			uint64_t runlen, runoff;
360 
361 			/* Find a run of allocated space. */
362 			bit_ffs_at(spacemap, srunb, zfs->spacemapbits, &srunb);
363 			if (srunb == -1 || srunb >= endb)
364 				break;
365 
366 			bit_ffc_at(spacemap, srunb, zfs->spacemapbits, &erunb);
367 			if (erunb == -1 || erunb > endb)
368 				erunb = endb;
369 
370 			/*
371 			 * The space represented by [srunb, erunb) has been
372 			 * allocated.  Add a record to the space map to indicate
373 			 * this.  Run offsets are relative to the beginning of
374 			 * the metaslab.
375 			 */
376 			runlen = erunb - srunb;
377 			runoff = srunb - startb;
378 
379 			assert(length * sizeof(uint64_t) < (uint64_t)smblksz);
380 			smblk[length] = SM_PREFIX_ENCODE(SM2_PREFIX) |
381 			    SM2_RUN_ENCODE(runlen) | SM2_VDEV_ENCODE(0);
382 			smblk[length + 1] = SM2_TYPE_ENCODE(SM_ALLOC) |
383 			    SM2_OFFSET_ENCODE(runoff);
384 
385 			alloc += runlen << zfs->ashift;
386 			length += 2;
387 		}
388 
389 		sm = DN_BONUS(sma[i].dnode);
390 		sm->smp_length = length * sizeof(uint64_t);
391 		sm->smp_alloc = alloc;
392 
393 		vdev_pwrite_dnode_data(zfs, sma[i].dnode, smblk, smblksz,
394 		    sma[i].loc);
395 		free(smblk);
396 
397 		/* Record this space map in the space map object array. */
398 		objarrblk[i] = sma[i].dnid;
399 	}
400 
401 	/*
402 	 * All of the space maps are written, now write the object array.
403 	 */
404 	vdev_pwrite_dnode_data(zfs, objarr, objarrblk, objarrblksz, objarrloc);
405 	free(objarrblk);
406 
407 	assert(zfs->spacemap == NULL);
408 	free(spacemap);
409 	free(sma);
410 }
411 
412 void
413 vdev_init(zfs_opt_t *zfs, const char *image)
414 {
415 	assert(zfs->ashift >= MINBLOCKSHIFT);
416 
417 	zfs->fd = open(image, O_RDWR | O_CREAT | O_TRUNC, 0644);
418 	if (zfs->fd == -1)
419 		err(1, "Can't open `%s' for writing", image);
420 	if (ftruncate(zfs->fd, zfs->vdevsize) != 0)
421 		err(1, "Failed to extend image file `%s'", image);
422 
423 	vdev_spacemap_init(zfs);
424 }
425 
426 void
427 vdev_fini(zfs_opt_t *zfs)
428 {
429 	assert(zfs->spacemap == NULL);
430 
431 	if (zfs->fd != -1) {
432 		if (close(zfs->fd) != 0)
433 			err(1, "close");
434 		zfs->fd = -1;
435 	}
436 }
437