1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2022 The FreeBSD Foundation 5 * 6 * This software was developed by Mark Johnston under sponsorship from 7 * the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions are 11 * met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/stat.h> 32 33 #include <assert.h> 34 #include <dirent.h> 35 #include <fcntl.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <unistd.h> 39 40 #include <util.h> 41 42 #include "makefs.h" 43 #include "zfs.h" 44 45 typedef struct { 46 const char *name; 47 unsigned int id; 48 uint16_t size; 49 sa_bswap_type_t bs; 50 } zfs_sattr_t; 51 52 typedef struct zfs_fs { 53 zfs_objset_t *os; 54 55 /* Offset table for system attributes, indexed by a zpl_attr_t. */ 56 uint16_t *saoffs; 57 size_t sacnt; 58 const zfs_sattr_t *satab; 59 } zfs_fs_t; 60 61 /* 62 * The order of the attributes doesn't matter, this is simply the one hard-coded 63 * by OpenZFS, based on a zdb dump of the SA_REGISTRY table. 64 */ 65 typedef enum zpl_attr { 66 ZPL_ATIME, 67 ZPL_MTIME, 68 ZPL_CTIME, 69 ZPL_CRTIME, 70 ZPL_GEN, 71 ZPL_MODE, 72 ZPL_SIZE, 73 ZPL_PARENT, 74 ZPL_LINKS, 75 ZPL_XATTR, 76 ZPL_RDEV, 77 ZPL_FLAGS, 78 ZPL_UID, 79 ZPL_GID, 80 ZPL_PAD, 81 ZPL_ZNODE_ACL, 82 ZPL_DACL_COUNT, 83 ZPL_SYMLINK, 84 ZPL_SCANSTAMP, 85 ZPL_DACL_ACES, 86 ZPL_DXATTR, 87 ZPL_PROJID, 88 } zpl_attr_t; 89 90 /* 91 * This table must be kept in sync with zpl_attr_layout[] and zpl_attr_t. 92 */ 93 static const zfs_sattr_t zpl_attrs[] = { 94 #define _ZPL_ATTR(n, s, b) { .name = #n, .id = n, .size = s, .bs = b } 95 _ZPL_ATTR(ZPL_ATIME, sizeof(uint64_t) * 2, SA_UINT64_ARRAY), 96 _ZPL_ATTR(ZPL_MTIME, sizeof(uint64_t) * 2, SA_UINT64_ARRAY), 97 _ZPL_ATTR(ZPL_CTIME, sizeof(uint64_t) * 2, SA_UINT64_ARRAY), 98 _ZPL_ATTR(ZPL_CRTIME, sizeof(uint64_t) * 2, SA_UINT64_ARRAY), 99 _ZPL_ATTR(ZPL_GEN, sizeof(uint64_t), SA_UINT64_ARRAY), 100 _ZPL_ATTR(ZPL_MODE, sizeof(uint64_t), SA_UINT64_ARRAY), 101 _ZPL_ATTR(ZPL_SIZE, sizeof(uint64_t), SA_UINT64_ARRAY), 102 _ZPL_ATTR(ZPL_PARENT, sizeof(uint64_t), SA_UINT64_ARRAY), 103 _ZPL_ATTR(ZPL_LINKS, sizeof(uint64_t), SA_UINT64_ARRAY), 104 _ZPL_ATTR(ZPL_XATTR, sizeof(uint64_t), SA_UINT64_ARRAY), 105 _ZPL_ATTR(ZPL_RDEV, sizeof(uint64_t), SA_UINT64_ARRAY), 106 _ZPL_ATTR(ZPL_FLAGS, sizeof(uint64_t), SA_UINT64_ARRAY), 107 _ZPL_ATTR(ZPL_UID, sizeof(uint64_t), SA_UINT64_ARRAY), 108 _ZPL_ATTR(ZPL_GID, sizeof(uint64_t), SA_UINT64_ARRAY), 109 _ZPL_ATTR(ZPL_PAD, sizeof(uint64_t), SA_UINT64_ARRAY), 110 _ZPL_ATTR(ZPL_ZNODE_ACL, 88, SA_UINT64_ARRAY), 111 _ZPL_ATTR(ZPL_DACL_COUNT, sizeof(uint64_t), SA_UINT64_ARRAY), 112 _ZPL_ATTR(ZPL_SYMLINK, 0, SA_UINT8_ARRAY), 113 _ZPL_ATTR(ZPL_SCANSTAMP, sizeof(uint64_t) * 4, SA_UINT8_ARRAY), 114 _ZPL_ATTR(ZPL_DACL_ACES, 0, SA_ACL), 115 _ZPL_ATTR(ZPL_DXATTR, 0, SA_UINT8_ARRAY), 116 _ZPL_ATTR(ZPL_PROJID, sizeof(uint64_t), SA_UINT64_ARRAY), 117 #undef ZPL_ATTR 118 }; 119 120 /* 121 * This layout matches that of a filesystem created using OpenZFS on FreeBSD. 122 * It need not match in general, but FreeBSD's loader doesn't bother parsing the 123 * layout and just hard-codes attribute offsets. 124 */ 125 static const sa_attr_type_t zpl_attr_layout[] = { 126 ZPL_MODE, 127 ZPL_SIZE, 128 ZPL_GEN, 129 ZPL_UID, 130 ZPL_GID, 131 ZPL_PARENT, 132 ZPL_FLAGS, 133 ZPL_ATIME, 134 ZPL_MTIME, 135 ZPL_CTIME, 136 ZPL_CRTIME, 137 ZPL_LINKS, 138 ZPL_DACL_COUNT, 139 ZPL_DACL_ACES, 140 ZPL_SYMLINK, 141 }; 142 143 /* 144 * Keys for the ZPL attribute tables in the SA layout ZAP. The first two 145 * indices are reserved for legacy attribute encoding. 146 */ 147 #define SA_LAYOUT_INDEX_DEFAULT 2 148 #define SA_LAYOUT_INDEX_SYMLINK 3 149 150 struct fs_populate_dir { 151 SLIST_ENTRY(fs_populate_dir) next; 152 int dirfd; 153 uint64_t objid; 154 zfs_zap_t *zap; 155 }; 156 157 struct fs_populate_arg { 158 zfs_opt_t *zfs; 159 zfs_fs_t *fs; /* owning filesystem */ 160 uint64_t rootdirid; /* root directory dnode ID */ 161 int rootdirfd; /* root directory fd */ 162 SLIST_HEAD(, fs_populate_dir) dirs; /* stack of directories */ 163 }; 164 165 static void fs_build_one(zfs_opt_t *, zfs_dsl_dir_t *, fsnode *, int); 166 167 static void 168 eclose(int fd) 169 { 170 if (close(fd) != 0) 171 err(1, "close"); 172 } 173 174 static bool 175 fsnode_isroot(const fsnode *cur) 176 { 177 return (strcmp(cur->name, ".") == 0); 178 } 179 180 /* 181 * Visit each node in a directory hierarchy, in pre-order depth-first order. 182 */ 183 static void 184 fsnode_foreach(fsnode *root, int (*cb)(fsnode *, void *), void *arg) 185 { 186 assert(root->type == S_IFDIR); 187 188 for (fsnode *cur = root; cur != NULL; cur = cur->next) { 189 assert(cur->type == S_IFREG || cur->type == S_IFDIR || 190 cur->type == S_IFLNK); 191 192 if (cb(cur, arg) == 0) 193 continue; 194 if (cur->type == S_IFDIR && cur->child != NULL) 195 fsnode_foreach(cur->child, cb, arg); 196 } 197 } 198 199 static void 200 fs_populate_dirent(struct fs_populate_arg *arg, fsnode *cur, uint64_t dnid) 201 { 202 struct fs_populate_dir *dir; 203 uint64_t type; 204 205 switch (cur->type) { 206 case S_IFREG: 207 type = DT_REG; 208 break; 209 case S_IFDIR: 210 type = DT_DIR; 211 break; 212 case S_IFLNK: 213 type = DT_LNK; 214 break; 215 default: 216 assert(0); 217 } 218 219 dir = SLIST_FIRST(&arg->dirs); 220 zap_add_uint64(dir->zap, cur->name, ZFS_DIRENT_MAKE(type, dnid)); 221 } 222 223 static void 224 fs_populate_attr(zfs_fs_t *fs, char *attrbuf, const void *val, uint16_t ind, 225 size_t *szp) 226 { 227 assert(ind < fs->sacnt); 228 assert(fs->saoffs[ind] != 0xffff); 229 230 memcpy(attrbuf + fs->saoffs[ind], val, fs->satab[ind].size); 231 *szp += fs->satab[ind].size; 232 } 233 234 static void 235 fs_populate_varszattr(zfs_fs_t *fs, char *attrbuf, const void *val, 236 size_t valsz, size_t varoff, uint16_t ind, size_t *szp) 237 { 238 assert(ind < fs->sacnt); 239 assert(fs->saoffs[ind] != 0xffff); 240 assert(fs->satab[ind].size == 0); 241 242 memcpy(attrbuf + fs->saoffs[ind] + varoff, val, valsz); 243 *szp += valsz; 244 } 245 246 /* 247 * Derive the relative fd/path combo needed to access a file. Ideally we'd 248 * always be able to use relative lookups (i.e., use the *at() system calls), 249 * since they require less path translation and are more amenable to sandboxing, 250 * but the handling of multiple staging directories makes that difficult. To 251 * make matters worse, we have no choice but to use relative lookups when 252 * dealing with an mtree manifest, so both mechanisms are implemented. 253 */ 254 static void 255 fs_populate_path(const fsnode *cur, struct fs_populate_arg *arg, 256 char *path, size_t sz, int *dirfdp) 257 { 258 if (cur->contents != NULL) { 259 size_t n; 260 261 *dirfdp = AT_FDCWD; 262 n = strlcpy(path, cur->contents, sz); 263 assert(n < sz); 264 } else if (cur->root == NULL) { 265 size_t n; 266 267 *dirfdp = SLIST_FIRST(&arg->dirs)->dirfd; 268 n = strlcpy(path, cur->name, sz); 269 assert(n < sz); 270 } else { 271 int n; 272 273 *dirfdp = AT_FDCWD; 274 n = snprintf(path, sz, "%s/%s/%s", 275 cur->root, cur->path, cur->name); 276 assert(n >= 0); 277 assert((size_t)n < sz); 278 } 279 } 280 281 static int 282 fs_open(const fsnode *cur, struct fs_populate_arg *arg, int flags) 283 { 284 char path[PATH_MAX]; 285 int fd; 286 287 fs_populate_path(cur, arg, path, sizeof(path), &fd); 288 289 fd = openat(fd, path, flags); 290 if (fd < 0) 291 err(1, "openat(%s)", path); 292 return (fd); 293 } 294 295 static void 296 fs_readlink(const fsnode *cur, struct fs_populate_arg *arg, 297 char *buf, size_t bufsz) 298 { 299 char path[PATH_MAX]; 300 int fd; 301 302 if (cur->symlink != NULL) { 303 size_t n; 304 305 n = strlcpy(buf, cur->symlink, bufsz); 306 assert(n < bufsz); 307 } else { 308 ssize_t n; 309 310 fs_populate_path(cur, arg, path, sizeof(path), &fd); 311 312 n = readlinkat(fd, path, buf, bufsz - 1); 313 if (n == -1) 314 err(1, "readlinkat(%s)", cur->name); 315 buf[n] = '\0'; 316 } 317 } 318 319 static void 320 fs_populate_time(zfs_fs_t *fs, char *attrbuf, struct timespec *ts, 321 uint16_t ind, size_t *szp) 322 { 323 uint64_t timebuf[2]; 324 325 assert(ind < fs->sacnt); 326 assert(fs->saoffs[ind] != 0xffff); 327 assert(fs->satab[ind].size == sizeof(timebuf)); 328 329 timebuf[0] = ts->tv_sec; 330 timebuf[1] = ts->tv_nsec; 331 fs_populate_attr(fs, attrbuf, timebuf, ind, szp); 332 } 333 334 static void 335 fs_populate_sattrs(struct fs_populate_arg *arg, const fsnode *cur, 336 dnode_phys_t *dnode) 337 { 338 char target[PATH_MAX]; 339 zfs_fs_t *fs; 340 zfs_ace_hdr_t aces[3]; 341 struct stat *sb; 342 sa_hdr_phys_t *sahdr; 343 uint64_t daclcount, flags, gen, gid, links, mode, parent, objsize, uid; 344 char *attrbuf; 345 size_t bonussz, hdrsz; 346 int layout; 347 348 assert(dnode->dn_bonustype == DMU_OT_SA); 349 assert(dnode->dn_nblkptr == 1); 350 351 fs = arg->fs; 352 sb = &cur->inode->st; 353 354 switch (cur->type) { 355 case S_IFREG: 356 layout = SA_LAYOUT_INDEX_DEFAULT; 357 links = cur->inode->nlink; 358 objsize = sb->st_size; 359 parent = SLIST_FIRST(&arg->dirs)->objid; 360 break; 361 case S_IFDIR: 362 layout = SA_LAYOUT_INDEX_DEFAULT; 363 links = 1; /* .. */ 364 objsize = 1; /* .. */ 365 366 /* 367 * The size of a ZPL directory is the number of entries 368 * (including "." and ".."), and the link count is the number of 369 * entries which are directories (including "." and ".."). 370 */ 371 for (fsnode *c = fsnode_isroot(cur) ? cur->next : cur->child; 372 c != NULL; c = c->next) { 373 if (c->type == S_IFDIR) 374 links++; 375 objsize++; 376 } 377 378 /* The root directory is its own parent. */ 379 parent = SLIST_EMPTY(&arg->dirs) ? 380 arg->rootdirid : SLIST_FIRST(&arg->dirs)->objid; 381 break; 382 case S_IFLNK: 383 fs_readlink(cur, arg, target, sizeof(target)); 384 385 layout = SA_LAYOUT_INDEX_SYMLINK; 386 links = 1; 387 objsize = strlen(target); 388 parent = SLIST_FIRST(&arg->dirs)->objid; 389 break; 390 default: 391 assert(0); 392 } 393 394 daclcount = nitems(aces); 395 flags = ZFS_ACL_TRIVIAL | ZFS_ACL_AUTO_INHERIT | ZFS_NO_EXECS_DENIED | 396 ZFS_ARCHIVE | ZFS_AV_MODIFIED; /* XXX-MJ */ 397 gen = 1; 398 gid = sb->st_gid; 399 mode = sb->st_mode; 400 uid = sb->st_uid; 401 402 memset(aces, 0, sizeof(aces)); 403 aces[0].z_flags = ACE_OWNER; 404 aces[0].z_type = ACE_ACCESS_ALLOWED_ACE_TYPE; 405 aces[0].z_access_mask = ACE_WRITE_ATTRIBUTES | ACE_WRITE_OWNER | 406 ACE_WRITE_ACL | ACE_WRITE_NAMED_ATTRS | ACE_READ_ACL | 407 ACE_READ_ATTRIBUTES | ACE_READ_NAMED_ATTRS | ACE_SYNCHRONIZE; 408 if ((mode & S_IRUSR) != 0) 409 aces[0].z_access_mask |= ACE_READ_DATA; 410 if ((mode & S_IWUSR) != 0) 411 aces[0].z_access_mask |= ACE_WRITE_DATA | ACE_APPEND_DATA; 412 if ((mode & S_IXUSR) != 0) 413 aces[0].z_access_mask |= ACE_EXECUTE; 414 415 aces[1].z_flags = ACE_GROUP | ACE_IDENTIFIER_GROUP; 416 aces[1].z_type = ACE_ACCESS_ALLOWED_ACE_TYPE; 417 aces[1].z_access_mask = ACE_READ_ACL | ACE_READ_ATTRIBUTES | 418 ACE_READ_NAMED_ATTRS | ACE_SYNCHRONIZE; 419 if ((mode & S_IRGRP) != 0) 420 aces[1].z_access_mask |= ACE_READ_DATA; 421 if ((mode & S_IWGRP) != 0) 422 aces[1].z_access_mask |= ACE_WRITE_DATA | ACE_APPEND_DATA; 423 if ((mode & S_IXGRP) != 0) 424 aces[1].z_access_mask |= ACE_EXECUTE; 425 426 aces[2].z_flags = ACE_EVERYONE; 427 aces[2].z_type = ACE_ACCESS_ALLOWED_ACE_TYPE; 428 aces[2].z_access_mask = ACE_READ_ACL | ACE_READ_ATTRIBUTES | 429 ACE_READ_NAMED_ATTRS | ACE_SYNCHRONIZE; 430 if ((mode & S_IROTH) != 0) 431 aces[2].z_access_mask |= ACE_READ_DATA; 432 if ((mode & S_IWOTH) != 0) 433 aces[2].z_access_mask |= ACE_WRITE_DATA | ACE_APPEND_DATA; 434 if ((mode & S_IXOTH) != 0) 435 aces[2].z_access_mask |= ACE_EXECUTE; 436 437 switch (layout) { 438 case SA_LAYOUT_INDEX_DEFAULT: 439 /* At most one variable-length attribute. */ 440 hdrsz = sizeof(uint64_t); 441 break; 442 case SA_LAYOUT_INDEX_SYMLINK: 443 /* At most five variable-length attributes. */ 444 hdrsz = sizeof(uint64_t) * 2; 445 break; 446 default: 447 assert(0); 448 } 449 450 sahdr = (sa_hdr_phys_t *)DN_BONUS(dnode); 451 sahdr->sa_magic = SA_MAGIC; 452 SA_HDR_LAYOUT_INFO_ENCODE(sahdr->sa_layout_info, layout, hdrsz); 453 454 bonussz = SA_HDR_SIZE(sahdr); 455 attrbuf = (char *)sahdr + SA_HDR_SIZE(sahdr); 456 457 fs_populate_attr(fs, attrbuf, &daclcount, ZPL_DACL_COUNT, &bonussz); 458 fs_populate_attr(fs, attrbuf, &flags, ZPL_FLAGS, &bonussz); 459 fs_populate_attr(fs, attrbuf, &gen, ZPL_GEN, &bonussz); 460 fs_populate_attr(fs, attrbuf, &gid, ZPL_GID, &bonussz); 461 fs_populate_attr(fs, attrbuf, &links, ZPL_LINKS, &bonussz); 462 fs_populate_attr(fs, attrbuf, &mode, ZPL_MODE, &bonussz); 463 fs_populate_attr(fs, attrbuf, &parent, ZPL_PARENT, &bonussz); 464 fs_populate_attr(fs, attrbuf, &objsize, ZPL_SIZE, &bonussz); 465 fs_populate_attr(fs, attrbuf, &uid, ZPL_UID, &bonussz); 466 467 /* 468 * We deliberately set atime = mtime here to ensure that images are 469 * reproducible. 470 */ 471 fs_populate_time(fs, attrbuf, &sb->st_mtim, ZPL_ATIME, &bonussz); 472 fs_populate_time(fs, attrbuf, &sb->st_ctim, ZPL_CTIME, &bonussz); 473 fs_populate_time(fs, attrbuf, &sb->st_mtim, ZPL_MTIME, &bonussz); 474 #ifdef __linux__ 475 /* Linux has no st_birthtim; approximate with st_ctim */ 476 fs_populate_time(fs, attrbuf, &sb->st_ctim, ZPL_CRTIME, &bonussz); 477 #else 478 fs_populate_time(fs, attrbuf, &sb->st_birthtim, ZPL_CRTIME, &bonussz); 479 #endif 480 481 fs_populate_varszattr(fs, attrbuf, aces, sizeof(aces), 0, 482 ZPL_DACL_ACES, &bonussz); 483 sahdr->sa_lengths[0] = sizeof(aces); 484 485 if (cur->type == S_IFLNK) { 486 assert(layout == SA_LAYOUT_INDEX_SYMLINK); 487 /* Need to use a spill block pointer if the target is long. */ 488 assert(bonussz + objsize <= DN_OLD_MAX_BONUSLEN); 489 fs_populate_varszattr(fs, attrbuf, target, objsize, 490 sahdr->sa_lengths[0], ZPL_SYMLINK, &bonussz); 491 sahdr->sa_lengths[1] = (uint16_t)objsize; 492 } 493 494 dnode->dn_bonuslen = bonussz; 495 } 496 497 static void 498 fs_populate_file(fsnode *cur, struct fs_populate_arg *arg) 499 { 500 struct dnode_cursor *c; 501 dnode_phys_t *dnode; 502 zfs_opt_t *zfs; 503 char *buf; 504 uint64_t dnid; 505 ssize_t n; 506 size_t bufsz; 507 off_t size, target; 508 int fd; 509 510 assert(cur->type == S_IFREG); 511 assert((cur->inode->flags & FI_ROOT) == 0); 512 513 zfs = arg->zfs; 514 515 assert(cur->inode->ino != 0); 516 if ((cur->inode->flags & FI_ALLOCATED) != 0) { 517 /* 518 * This is a hard link of an existing file. 519 * 520 * XXX-MJ need to check whether it crosses datasets, add a test 521 * case for that 522 */ 523 fs_populate_dirent(arg, cur, cur->inode->ino); 524 return; 525 } 526 527 dnode = objset_dnode_bonus_alloc(arg->fs->os, 528 DMU_OT_PLAIN_FILE_CONTENTS, DMU_OT_SA, 0, &dnid); 529 cur->inode->ino = dnid; 530 cur->inode->flags |= FI_ALLOCATED; 531 532 fd = fs_open(cur, arg, O_RDONLY); 533 534 buf = zfs->filebuf; 535 bufsz = sizeof(zfs->filebuf); 536 size = cur->inode->st.st_size; 537 c = dnode_cursor_init(zfs, arg->fs->os, dnode, size, 0); 538 for (off_t foff = 0; foff < size; foff += target) { 539 off_t loc, sofar; 540 541 /* 542 * Fill up our buffer, handling partial reads. 543 * 544 * It might be profitable to use copy_file_range(2) here. 545 */ 546 sofar = 0; 547 target = MIN(size - foff, (off_t)bufsz); 548 do { 549 n = read(fd, buf + sofar, target); 550 if (n < 0) 551 err(1, "reading from '%s'", cur->name); 552 if (n == 0) 553 errx(1, "unexpected EOF reading '%s'", 554 cur->name); 555 sofar += n; 556 } while (sofar < target); 557 558 if (target < (off_t)bufsz) 559 memset(buf + target, 0, bufsz - target); 560 561 loc = objset_space_alloc(zfs, arg->fs->os, &target); 562 vdev_pwrite_dnode_indir(zfs, dnode, 0, 1, buf, target, loc, 563 dnode_cursor_next(zfs, c, foff)); 564 } 565 eclose(fd); 566 dnode_cursor_finish(zfs, c); 567 568 fs_populate_sattrs(arg, cur, dnode); 569 fs_populate_dirent(arg, cur, dnid); 570 } 571 572 static void 573 fs_populate_dir(fsnode *cur, struct fs_populate_arg *arg) 574 { 575 dnode_phys_t *dnode; 576 zfs_objset_t *os; 577 uint64_t dnid; 578 int dirfd; 579 580 assert(cur->type == S_IFDIR); 581 assert((cur->inode->flags & FI_ALLOCATED) == 0); 582 583 os = arg->fs->os; 584 585 dnode = objset_dnode_bonus_alloc(os, DMU_OT_DIRECTORY_CONTENTS, 586 DMU_OT_SA, 0, &dnid); 587 588 /* 589 * Add an entry to the parent directory and open this directory. 590 */ 591 if (!SLIST_EMPTY(&arg->dirs)) { 592 fs_populate_dirent(arg, cur, dnid); 593 dirfd = fs_open(cur, arg, O_DIRECTORY | O_RDONLY); 594 } else { 595 arg->rootdirid = dnid; 596 dirfd = arg->rootdirfd; 597 arg->rootdirfd = -1; 598 } 599 600 /* 601 * Set ZPL attributes. 602 */ 603 fs_populate_sattrs(arg, cur, dnode); 604 605 /* 606 * If this is a root directory, then its children belong to a different 607 * dataset and this directory remains empty in the current objset. 608 */ 609 if ((cur->inode->flags & FI_ROOT) == 0) { 610 struct fs_populate_dir *dir; 611 612 dir = ecalloc(1, sizeof(*dir)); 613 dir->dirfd = dirfd; 614 dir->objid = dnid; 615 dir->zap = zap_alloc(os, dnode); 616 SLIST_INSERT_HEAD(&arg->dirs, dir, next); 617 } else { 618 zap_write(arg->zfs, zap_alloc(os, dnode)); 619 fs_build_one(arg->zfs, cur->inode->param, cur->child, dirfd); 620 } 621 } 622 623 static void 624 fs_populate_symlink(fsnode *cur, struct fs_populate_arg *arg) 625 { 626 dnode_phys_t *dnode; 627 uint64_t dnid; 628 629 assert(cur->type == S_IFLNK); 630 assert((cur->inode->flags & (FI_ALLOCATED | FI_ROOT)) == 0); 631 632 dnode = objset_dnode_bonus_alloc(arg->fs->os, 633 DMU_OT_PLAIN_FILE_CONTENTS, DMU_OT_SA, 0, &dnid); 634 635 fs_populate_dirent(arg, cur, dnid); 636 637 fs_populate_sattrs(arg, cur, dnode); 638 } 639 640 static int 641 fs_foreach_populate(fsnode *cur, void *_arg) 642 { 643 struct fs_populate_arg *arg; 644 struct fs_populate_dir *dir; 645 int ret; 646 647 arg = _arg; 648 switch (cur->type) { 649 case S_IFREG: 650 fs_populate_file(cur, arg); 651 break; 652 case S_IFDIR: 653 if (fsnode_isroot(cur)) 654 break; 655 fs_populate_dir(cur, arg); 656 break; 657 case S_IFLNK: 658 fs_populate_symlink(cur, arg); 659 break; 660 default: 661 assert(0); 662 } 663 664 ret = (cur->inode->flags & FI_ROOT) != 0 ? 0 : 1; 665 666 if (cur->next == NULL && 667 (cur->child == NULL || (cur->inode->flags & FI_ROOT) != 0)) { 668 /* 669 * We reached a terminal node in a subtree. Walk back up and 670 * write out directories. We're done once we hit the root of a 671 * dataset or find a level where we're not on the edge of the 672 * tree. 673 */ 674 do { 675 dir = SLIST_FIRST(&arg->dirs); 676 SLIST_REMOVE_HEAD(&arg->dirs, next); 677 zap_write(arg->zfs, dir->zap); 678 if (dir->dirfd != -1) 679 eclose(dir->dirfd); 680 free(dir); 681 cur = cur->parent; 682 } while (cur != NULL && cur->next == NULL && 683 (cur->inode->flags & FI_ROOT) == 0); 684 } 685 686 return (ret); 687 } 688 689 static void 690 fs_add_zpl_attr_layout(zfs_zap_t *zap, unsigned int index, 691 const sa_attr_type_t layout[], size_t sacnt) 692 { 693 char ti[16]; 694 695 assert(sizeof(layout[0]) == 2); 696 697 snprintf(ti, sizeof(ti), "%u", index); 698 zap_add(zap, ti, sizeof(sa_attr_type_t), sacnt, 699 (const uint8_t *)layout); 700 } 701 702 /* 703 * Initialize system attribute tables. 704 * 705 * There are two elements to this. First, we write the zpl_attrs[] and 706 * zpl_attr_layout[] tables to disk. Then we create a lookup table which 707 * allows us to set file attributes quickly. 708 */ 709 static uint64_t 710 fs_set_zpl_attrs(zfs_opt_t *zfs, zfs_fs_t *fs) 711 { 712 zfs_zap_t *sazap, *salzap, *sarzap; 713 zfs_objset_t *os; 714 dnode_phys_t *saobj, *salobj, *sarobj; 715 uint64_t saobjid, salobjid, sarobjid; 716 uint16_t offset; 717 718 os = fs->os; 719 720 /* 721 * The on-disk tables are stored in two ZAP objects, the registry object 722 * and the layout object. Individual attributes are described by 723 * entries in the registry object; for example, the value for the 724 * "ZPL_SIZE" key gives the size and encoding of the ZPL_SIZE attribute. 725 * The attributes of a file are ordered according to one of the layouts 726 * defined in the layout object. The master node object is simply used 727 * to locate the registry and layout objects. 728 */ 729 saobj = objset_dnode_alloc(os, DMU_OT_SA_MASTER_NODE, &saobjid); 730 salobj = objset_dnode_alloc(os, DMU_OT_SA_ATTR_LAYOUTS, &salobjid); 731 sarobj = objset_dnode_alloc(os, DMU_OT_SA_ATTR_REGISTRATION, &sarobjid); 732 733 sarzap = zap_alloc(os, sarobj); 734 for (size_t i = 0; i < nitems(zpl_attrs); i++) { 735 const zfs_sattr_t *sa; 736 uint64_t attr; 737 738 attr = 0; 739 sa = &zpl_attrs[i]; 740 SA_ATTR_ENCODE(attr, (uint64_t)i, sa->size, sa->bs); 741 zap_add_uint64(sarzap, sa->name, attr); 742 } 743 zap_write(zfs, sarzap); 744 745 /* 746 * Layouts are arrays of indices into the registry. We define two 747 * layouts for use by the ZPL, one for non-symlinks and one for 748 * symlinks. They are identical except that the symlink layout includes 749 * ZPL_SYMLINK as its final attribute. 750 */ 751 salzap = zap_alloc(os, salobj); 752 assert(zpl_attr_layout[nitems(zpl_attr_layout) - 1] == ZPL_SYMLINK); 753 fs_add_zpl_attr_layout(salzap, SA_LAYOUT_INDEX_DEFAULT, 754 zpl_attr_layout, nitems(zpl_attr_layout) - 1); 755 fs_add_zpl_attr_layout(salzap, SA_LAYOUT_INDEX_SYMLINK, 756 zpl_attr_layout, nitems(zpl_attr_layout)); 757 zap_write(zfs, salzap); 758 759 sazap = zap_alloc(os, saobj); 760 zap_add_uint64(sazap, SA_LAYOUTS, salobjid); 761 zap_add_uint64(sazap, SA_REGISTRY, sarobjid); 762 zap_write(zfs, sazap); 763 764 /* Sanity check. */ 765 for (size_t i = 0; i < nitems(zpl_attrs); i++) 766 assert(i == zpl_attrs[i].id); 767 768 /* 769 * Build the offset table used when setting file attributes. File 770 * attributes are stored in the object's bonus buffer; this table 771 * provides the buffer offset of attributes referenced by the layout 772 * table. 773 */ 774 fs->sacnt = nitems(zpl_attrs); 775 fs->saoffs = ecalloc(fs->sacnt, sizeof(*fs->saoffs)); 776 for (size_t i = 0; i < fs->sacnt; i++) 777 fs->saoffs[i] = 0xffff; 778 offset = 0; 779 for (size_t i = 0; i < nitems(zpl_attr_layout); i++) { 780 uint16_t size; 781 782 assert(zpl_attr_layout[i] < fs->sacnt); 783 784 fs->saoffs[zpl_attr_layout[i]] = offset; 785 size = zpl_attrs[zpl_attr_layout[i]].size; 786 offset += size; 787 } 788 fs->satab = zpl_attrs; 789 790 return (saobjid); 791 } 792 793 static void 794 fs_layout_one(zfs_opt_t *zfs, zfs_dsl_dir_t *dsldir, void *arg) 795 { 796 char *mountpoint, *origmountpoint, *name, *next; 797 fsnode *cur, *root; 798 uint64_t canmount; 799 800 if (!dsl_dir_has_dataset(dsldir)) 801 return; 802 803 if (dsl_dir_get_canmount(dsldir, &canmount) == 0 && canmount == 0) 804 return; 805 mountpoint = dsl_dir_get_mountpoint(zfs, dsldir); 806 if (mountpoint == NULL) 807 return; 808 809 /* 810 * If we were asked to specify a bootfs, set it here. 811 */ 812 if (zfs->bootfs != NULL && strcmp(zfs->bootfs, 813 dsl_dir_fullname(dsldir)) == 0) { 814 zap_add_uint64(zfs->poolprops, "bootfs", 815 dsl_dir_dataset_id(dsldir)); 816 } 817 818 origmountpoint = mountpoint; 819 820 /* 821 * Figure out which fsnode corresponds to our mountpoint. 822 */ 823 root = arg; 824 cur = root; 825 if (strcmp(mountpoint, zfs->rootpath) != 0) { 826 mountpoint += strlen(zfs->rootpath); 827 828 /* 829 * Look up the directory in the staged tree. For example, if 830 * the dataset's mount point is /foo/bar/baz, we'll search the 831 * root directory for "foo", search "foo" for "baz", and so on. 832 * Each intermediate name must refer to a directory; the final 833 * component need not exist. 834 */ 835 cur = root; 836 for (next = name = mountpoint; next != NULL;) { 837 for (; *next == '/'; next++) 838 ; 839 name = strsep(&next, "/"); 840 841 for (; cur != NULL && strcmp(cur->name, name) != 0; 842 cur = cur->next) 843 ; 844 if (cur == NULL) { 845 if (next == NULL) 846 break; 847 errx(1, "missing mountpoint directory for `%s'", 848 dsl_dir_fullname(dsldir)); 849 } 850 if (cur->type != S_IFDIR) { 851 errx(1, 852 "mountpoint for `%s' is not a directory", 853 dsl_dir_fullname(dsldir)); 854 } 855 if (next != NULL) 856 cur = cur->child; 857 } 858 } 859 860 if (cur != NULL) { 861 assert(cur->type == S_IFDIR); 862 863 /* 864 * Multiple datasets shouldn't share a mountpoint. It's 865 * technically allowed, but it's not clear what makefs should do 866 * in that case. 867 */ 868 assert((cur->inode->flags & FI_ROOT) == 0); 869 if (cur != root) 870 cur->inode->flags |= FI_ROOT; 871 assert(cur->inode->param == NULL); 872 cur->inode->param = dsldir; 873 } 874 875 free(origmountpoint); 876 } 877 878 static int 879 fs_foreach_mark(fsnode *cur, void *arg) 880 { 881 uint64_t *countp; 882 883 countp = arg; 884 if (cur->type == S_IFDIR && fsnode_isroot(cur)) 885 return (1); 886 887 if (cur->inode->ino == 0) { 888 cur->inode->ino = ++(*countp); 889 cur->inode->nlink = 1; 890 } else { 891 cur->inode->nlink++; 892 } 893 894 return ((cur->inode->flags & FI_ROOT) != 0 ? 0 : 1); 895 } 896 897 /* 898 * Create a filesystem dataset. More specifically: 899 * - create an object set for the dataset, 900 * - add required metadata (SA tables, property definitions, etc.) to that 901 * object set, 902 * - optionally populate the object set with file objects, using "root" as the 903 * root directory. 904 * 905 * "dirfd" is a directory descriptor for the directory referenced by "root". It 906 * is closed before returning. 907 */ 908 static void 909 fs_build_one(zfs_opt_t *zfs, zfs_dsl_dir_t *dsldir, fsnode *root, int dirfd) 910 { 911 struct fs_populate_arg arg; 912 zfs_fs_t fs; 913 zfs_zap_t *masterzap; 914 zfs_objset_t *os; 915 dnode_phys_t *deleteq, *masterobj; 916 uint64_t deleteqid, dnodecount, moid, rootdirid, saobjid; 917 bool fakedroot; 918 919 /* 920 * This dataset's mountpoint doesn't exist in the staging tree, or the 921 * dataset doesn't have a mountpoint at all. In either case we still 922 * need a root directory. Fake up a root fsnode to handle this case. 923 */ 924 fakedroot = root == NULL; 925 if (fakedroot) { 926 struct stat *stp; 927 928 assert(dirfd == -1); 929 930 root = ecalloc(1, sizeof(*root)); 931 root->inode = ecalloc(1, sizeof(*root->inode)); 932 root->name = estrdup("."); 933 root->type = S_IFDIR; 934 935 stp = &root->inode->st; 936 stp->st_uid = 0; 937 stp->st_gid = 0; 938 stp->st_mode = S_IFDIR | 0755; 939 } 940 assert(root->type == S_IFDIR); 941 assert(fsnode_isroot(root)); 942 943 /* 944 * Initialize the object set for this dataset. 945 */ 946 os = objset_alloc(zfs, DMU_OST_ZFS); 947 masterobj = objset_dnode_alloc(os, DMU_OT_MASTER_NODE, &moid); 948 assert(moid == MASTER_NODE_OBJ); 949 950 memset(&fs, 0, sizeof(fs)); 951 fs.os = os; 952 953 /* 954 * Create the ZAP SA layout now since filesystem object dnodes will 955 * refer to those attributes. 956 */ 957 saobjid = fs_set_zpl_attrs(zfs, &fs); 958 959 /* 960 * Make a pass over the staged directory to detect hard links and assign 961 * virtual dnode numbers. 962 */ 963 dnodecount = 1; /* root directory */ 964 fsnode_foreach(root, fs_foreach_mark, &dnodecount); 965 966 /* 967 * Make a second pass to populate the dataset with files from the 968 * staged directory. Most of our runtime is spent here. 969 */ 970 arg.rootdirfd = dirfd; 971 arg.zfs = zfs; 972 arg.fs = &fs; 973 SLIST_INIT(&arg.dirs); 974 fs_populate_dir(root, &arg); 975 assert(!SLIST_EMPTY(&arg.dirs)); 976 fsnode_foreach(root, fs_foreach_populate, &arg); 977 assert(SLIST_EMPTY(&arg.dirs)); 978 rootdirid = arg.rootdirid; 979 980 /* 981 * Create an empty delete queue. We don't do anything with it, but 982 * OpenZFS will refuse to mount filesystems that don't have one. 983 */ 984 deleteq = objset_dnode_alloc(os, DMU_OT_UNLINKED_SET, &deleteqid); 985 zap_write(zfs, zap_alloc(os, deleteq)); 986 987 /* 988 * Populate and write the master node object. This is a ZAP object 989 * containing various dataset properties and the object IDs of the root 990 * directory and delete queue. 991 */ 992 masterzap = zap_alloc(os, masterobj); 993 zap_add_uint64(masterzap, ZFS_ROOT_OBJ, rootdirid); 994 zap_add_uint64(masterzap, ZFS_UNLINKED_SET, deleteqid); 995 zap_add_uint64(masterzap, ZFS_SA_ATTRS, saobjid); 996 zap_add_uint64(masterzap, ZPL_VERSION_OBJ, 5 /* ZPL_VERSION_SA */); 997 zap_add_uint64(masterzap, "normalization", 0 /* off */); 998 zap_add_uint64(masterzap, "utf8only", 0 /* off */); 999 zap_add_uint64(masterzap, "casesensitivity", 0 /* case sensitive */); 1000 zap_add_uint64(masterzap, "acltype", 2 /* NFSv4 */); 1001 zap_write(zfs, masterzap); 1002 1003 /* 1004 * All finished with this object set, we may as well write it now. 1005 * The DSL layer will sum up the bytes consumed by each dataset using 1006 * information stored in the object set, so it can't be freed just yet. 1007 */ 1008 dsl_dir_dataset_write(zfs, os, dsldir); 1009 1010 if (fakedroot) { 1011 free(root->inode); 1012 free(root->name); 1013 free(root); 1014 } 1015 free(fs.saoffs); 1016 } 1017 1018 /* 1019 * Create an object set for each DSL directory which has a dataset and doesn't 1020 * already have an object set. 1021 */ 1022 static void 1023 fs_build_unmounted(zfs_opt_t *zfs, zfs_dsl_dir_t *dsldir, void *arg __unused) 1024 { 1025 if (dsl_dir_has_dataset(dsldir) && !dsl_dir_dataset_has_objset(dsldir)) 1026 fs_build_one(zfs, dsldir, NULL, -1); 1027 } 1028 1029 /* 1030 * Create our datasets and populate them with files. 1031 */ 1032 void 1033 fs_build(zfs_opt_t *zfs, int dirfd, fsnode *root) 1034 { 1035 /* 1036 * Run through our datasets and find the root fsnode for each one. Each 1037 * root fsnode is flagged so that we can figure out which dataset it 1038 * belongs to. 1039 */ 1040 dsl_dir_foreach(zfs, zfs->rootdsldir, fs_layout_one, root); 1041 1042 /* 1043 * Did we find our boot filesystem? 1044 */ 1045 if (zfs->bootfs != NULL && !zap_entry_exists(zfs->poolprops, "bootfs")) 1046 errx(1, "no mounted dataset matches bootfs property `%s'", 1047 zfs->bootfs); 1048 1049 /* 1050 * Traverse the file hierarchy starting from the root fsnode. One 1051 * dataset, not necessarily the root dataset, must "own" the root 1052 * directory by having its mountpoint be equal to the root path. 1053 * 1054 * As roots of other datasets are encountered during the traversal, 1055 * fs_build_one() recursively creates the corresponding object sets and 1056 * populates them. Once this function has returned, all datasets will 1057 * have been fully populated. 1058 */ 1059 fs_build_one(zfs, root->inode->param, root, dirfd); 1060 1061 /* 1062 * Now create object sets for datasets whose mountpoints weren't found 1063 * in the staging directory, either because there is no mountpoint, or 1064 * because the mountpoint doesn't correspond to an existing directory. 1065 */ 1066 dsl_dir_foreach(zfs, zfs->rootdsldir, fs_build_unmounted, NULL); 1067 } 1068