1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2022 The FreeBSD Foundation 5 * 6 * This software was developed by Mark Johnston under sponsorship from 7 * the FreeBSD Foundation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions are 11 * met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #include <sys/stat.h> 32 33 #include <assert.h> 34 #include <dirent.h> 35 #include <fcntl.h> 36 #include <stdlib.h> 37 #include <string.h> 38 #include <unistd.h> 39 40 #include <util.h> 41 42 #include "makefs.h" 43 #include "zfs.h" 44 45 typedef struct { 46 const char *name; 47 unsigned int id; 48 uint16_t size; 49 sa_bswap_type_t bs; 50 } zfs_sattr_t; 51 52 typedef struct zfs_fs { 53 zfs_objset_t *os; 54 55 /* Offset table for system attributes, indexed by a zpl_attr_t. */ 56 uint16_t *saoffs; 57 size_t sacnt; 58 const zfs_sattr_t *satab; 59 } zfs_fs_t; 60 61 /* 62 * The order of the attributes doesn't matter, this is simply the one hard-coded 63 * by OpenZFS, based on a zdb dump of the SA_REGISTRY table. 64 */ 65 typedef enum zpl_attr { 66 ZPL_ATIME, 67 ZPL_MTIME, 68 ZPL_CTIME, 69 ZPL_CRTIME, 70 ZPL_GEN, 71 ZPL_MODE, 72 ZPL_SIZE, 73 ZPL_PARENT, 74 ZPL_LINKS, 75 ZPL_XATTR, 76 ZPL_RDEV, 77 ZPL_FLAGS, 78 ZPL_UID, 79 ZPL_GID, 80 ZPL_PAD, 81 ZPL_ZNODE_ACL, 82 ZPL_DACL_COUNT, 83 ZPL_SYMLINK, 84 ZPL_SCANSTAMP, 85 ZPL_DACL_ACES, 86 ZPL_DXATTR, 87 ZPL_PROJID, 88 } zpl_attr_t; 89 90 /* 91 * This table must be kept in sync with zpl_attr_layout[] and zpl_attr_t. 92 */ 93 static const zfs_sattr_t zpl_attrs[] = { 94 #define _ZPL_ATTR(n, s, b) { .name = #n, .id = n, .size = s, .bs = b } 95 _ZPL_ATTR(ZPL_ATIME, sizeof(uint64_t) * 2, SA_UINT64_ARRAY), 96 _ZPL_ATTR(ZPL_MTIME, sizeof(uint64_t) * 2, SA_UINT64_ARRAY), 97 _ZPL_ATTR(ZPL_CTIME, sizeof(uint64_t) * 2, SA_UINT64_ARRAY), 98 _ZPL_ATTR(ZPL_CRTIME, sizeof(uint64_t) * 2, SA_UINT64_ARRAY), 99 _ZPL_ATTR(ZPL_GEN, sizeof(uint64_t), SA_UINT64_ARRAY), 100 _ZPL_ATTR(ZPL_MODE, sizeof(uint64_t), SA_UINT64_ARRAY), 101 _ZPL_ATTR(ZPL_SIZE, sizeof(uint64_t), SA_UINT64_ARRAY), 102 _ZPL_ATTR(ZPL_PARENT, sizeof(uint64_t), SA_UINT64_ARRAY), 103 _ZPL_ATTR(ZPL_LINKS, sizeof(uint64_t), SA_UINT64_ARRAY), 104 _ZPL_ATTR(ZPL_XATTR, sizeof(uint64_t), SA_UINT64_ARRAY), 105 _ZPL_ATTR(ZPL_RDEV, sizeof(uint64_t), SA_UINT64_ARRAY), 106 _ZPL_ATTR(ZPL_FLAGS, sizeof(uint64_t), SA_UINT64_ARRAY), 107 _ZPL_ATTR(ZPL_UID, sizeof(uint64_t), SA_UINT64_ARRAY), 108 _ZPL_ATTR(ZPL_GID, sizeof(uint64_t), SA_UINT64_ARRAY), 109 _ZPL_ATTR(ZPL_PAD, sizeof(uint64_t), SA_UINT64_ARRAY), 110 _ZPL_ATTR(ZPL_ZNODE_ACL, 88, SA_UINT64_ARRAY), 111 _ZPL_ATTR(ZPL_DACL_COUNT, sizeof(uint64_t), SA_UINT64_ARRAY), 112 _ZPL_ATTR(ZPL_SYMLINK, 0, SA_UINT8_ARRAY), 113 _ZPL_ATTR(ZPL_SCANSTAMP, sizeof(uint64_t) * 4, SA_UINT8_ARRAY), 114 _ZPL_ATTR(ZPL_DACL_ACES, 0, SA_ACL), 115 _ZPL_ATTR(ZPL_DXATTR, 0, SA_UINT8_ARRAY), 116 _ZPL_ATTR(ZPL_PROJID, sizeof(uint64_t), SA_UINT64_ARRAY), 117 #undef ZPL_ATTR 118 }; 119 120 /* 121 * This layout matches that of a filesystem created using OpenZFS on FreeBSD. 122 * It need not match in general, but FreeBSD's loader doesn't bother parsing the 123 * layout and just hard-codes attribute offsets. 124 */ 125 static const sa_attr_type_t zpl_attr_layout[] = { 126 ZPL_MODE, 127 ZPL_SIZE, 128 ZPL_GEN, 129 ZPL_UID, 130 ZPL_GID, 131 ZPL_PARENT, 132 ZPL_FLAGS, 133 ZPL_ATIME, 134 ZPL_MTIME, 135 ZPL_CTIME, 136 ZPL_CRTIME, 137 ZPL_LINKS, 138 ZPL_DACL_COUNT, 139 ZPL_DACL_ACES, 140 ZPL_SYMLINK, 141 }; 142 143 /* 144 * Keys for the ZPL attribute tables in the SA layout ZAP. The first two 145 * indices are reserved for legacy attribute encoding. 146 */ 147 #define SA_LAYOUT_INDEX_DEFAULT 2 148 #define SA_LAYOUT_INDEX_SYMLINK 3 149 150 struct fs_populate_dir { 151 SLIST_ENTRY(fs_populate_dir) next; 152 int dirfd; 153 uint64_t objid; 154 zfs_zap_t *zap; 155 }; 156 157 struct fs_populate_arg { 158 zfs_opt_t *zfs; 159 zfs_fs_t *fs; /* owning filesystem */ 160 uint64_t rootdirid; /* root directory dnode ID */ 161 int rootdirfd; /* root directory fd */ 162 SLIST_HEAD(, fs_populate_dir) dirs; /* stack of directories */ 163 }; 164 165 static void fs_build_one(zfs_opt_t *, zfs_dsl_dir_t *, fsnode *, int); 166 167 static void 168 eclose(int fd) 169 { 170 if (close(fd) != 0) 171 err(1, "close"); 172 } 173 174 static bool 175 fsnode_isroot(const fsnode *cur) 176 { 177 return (strcmp(cur->name, ".") == 0); 178 } 179 180 /* 181 * Visit each node in a directory hierarchy, in pre-order depth-first order. 182 */ 183 static void 184 fsnode_foreach(fsnode *root, int (*cb)(fsnode *, void *), void *arg) 185 { 186 assert(root->type == S_IFDIR); 187 188 for (fsnode *cur = root; cur != NULL; cur = cur->next) { 189 assert(cur->type == S_IFREG || cur->type == S_IFDIR || 190 cur->type == S_IFLNK); 191 192 if (cb(cur, arg) == 0) 193 continue; 194 if (cur->type == S_IFDIR && cur->child != NULL) 195 fsnode_foreach(cur->child, cb, arg); 196 } 197 } 198 199 static void 200 fs_populate_dirent(struct fs_populate_arg *arg, fsnode *cur, uint64_t dnid) 201 { 202 struct fs_populate_dir *dir; 203 uint64_t type; 204 205 switch (cur->type) { 206 case S_IFREG: 207 type = DT_REG; 208 break; 209 case S_IFDIR: 210 type = DT_DIR; 211 break; 212 case S_IFLNK: 213 type = DT_LNK; 214 break; 215 default: 216 assert(0); 217 } 218 219 dir = SLIST_FIRST(&arg->dirs); 220 zap_add_uint64(dir->zap, cur->name, ZFS_DIRENT_MAKE(type, dnid)); 221 } 222 223 static void 224 fs_populate_attr(zfs_fs_t *fs, char *attrbuf, const void *val, uint16_t ind, 225 size_t *szp) 226 { 227 assert(ind < fs->sacnt); 228 assert(fs->saoffs[ind] != 0xffff); 229 230 memcpy(attrbuf + fs->saoffs[ind], val, fs->satab[ind].size); 231 *szp += fs->satab[ind].size; 232 } 233 234 static void 235 fs_populate_varszattr(zfs_fs_t *fs, char *attrbuf, const void *val, 236 size_t valsz, size_t varoff, uint16_t ind, size_t *szp) 237 { 238 assert(ind < fs->sacnt); 239 assert(fs->saoffs[ind] != 0xffff); 240 assert(fs->satab[ind].size == 0); 241 242 memcpy(attrbuf + fs->saoffs[ind] + varoff, val, valsz); 243 *szp += valsz; 244 } 245 246 /* 247 * Derive the relative fd/path combo needed to access a file. Ideally we'd 248 * always be able to use relative lookups (i.e., use the *at() system calls), 249 * since they require less path translation and are more amenable to sandboxing, 250 * but the handling of multiple staging directories makes that difficult. To 251 * make matters worse, we have no choice but to use relative lookups when 252 * dealing with an mtree manifest, so both mechanisms are implemented. 253 */ 254 static void 255 fs_populate_path(const fsnode *cur, struct fs_populate_arg *arg, 256 char *path, size_t sz, int *dirfdp) 257 { 258 if (cur->contents != NULL) { 259 size_t n; 260 261 *dirfdp = AT_FDCWD; 262 n = strlcpy(path, cur->contents, sz); 263 assert(n < sz); 264 } else if (cur->root == NULL) { 265 size_t n; 266 267 *dirfdp = SLIST_FIRST(&arg->dirs)->dirfd; 268 n = strlcpy(path, cur->name, sz); 269 assert(n < sz); 270 } else { 271 int n; 272 273 *dirfdp = AT_FDCWD; 274 n = snprintf(path, sz, "%s/%s/%s", 275 cur->root, cur->path, cur->name); 276 assert(n >= 0); 277 assert((size_t)n < sz); 278 } 279 } 280 281 static int 282 fs_open(const fsnode *cur, struct fs_populate_arg *arg, int flags) 283 { 284 char path[PATH_MAX]; 285 int fd; 286 287 fs_populate_path(cur, arg, path, sizeof(path), &fd); 288 289 fd = openat(fd, path, flags); 290 if (fd < 0) 291 err(1, "openat(%s)", path); 292 return (fd); 293 } 294 295 static int 296 fs_open_can_fail(const fsnode *cur, struct fs_populate_arg *arg, int flags) 297 { 298 int fd; 299 char path[PATH_MAX]; 300 301 fs_populate_path(cur, arg, path, sizeof(path), &fd); 302 303 return (openat(fd, path, flags)); 304 } 305 306 static void 307 fs_readlink(const fsnode *cur, struct fs_populate_arg *arg, 308 char *buf, size_t bufsz) 309 { 310 char path[PATH_MAX]; 311 int fd; 312 313 if (cur->symlink != NULL) { 314 size_t n; 315 316 n = strlcpy(buf, cur->symlink, bufsz); 317 assert(n < bufsz); 318 } else { 319 ssize_t n; 320 321 fs_populate_path(cur, arg, path, sizeof(path), &fd); 322 323 n = readlinkat(fd, path, buf, bufsz - 1); 324 if (n == -1) 325 err(1, "readlinkat(%s)", cur->name); 326 buf[n] = '\0'; 327 } 328 } 329 330 static void 331 fs_populate_time(zfs_fs_t *fs, char *attrbuf, struct timespec *ts, 332 uint16_t ind, size_t *szp) 333 { 334 uint64_t timebuf[2]; 335 336 assert(ind < fs->sacnt); 337 assert(fs->saoffs[ind] != 0xffff); 338 assert(fs->satab[ind].size == sizeof(timebuf)); 339 340 timebuf[0] = ts->tv_sec; 341 timebuf[1] = ts->tv_nsec; 342 fs_populate_attr(fs, attrbuf, timebuf, ind, szp); 343 } 344 345 static void 346 fs_populate_sattrs(struct fs_populate_arg *arg, const fsnode *cur, 347 dnode_phys_t *dnode) 348 { 349 char target[PATH_MAX]; 350 zfs_fs_t *fs; 351 zfs_ace_hdr_t aces[3]; 352 struct stat *sb; 353 sa_hdr_phys_t *sahdr; 354 uint64_t daclcount, flags, gen, gid, links, mode, parent, objsize, uid; 355 char *attrbuf; 356 size_t bonussz, hdrsz; 357 int layout; 358 359 assert(dnode->dn_bonustype == DMU_OT_SA); 360 assert(dnode->dn_nblkptr == 1); 361 362 fs = arg->fs; 363 sb = &cur->inode->st; 364 365 switch (cur->type) { 366 case S_IFREG: 367 layout = SA_LAYOUT_INDEX_DEFAULT; 368 links = cur->inode->nlink; 369 objsize = sb->st_size; 370 parent = SLIST_FIRST(&arg->dirs)->objid; 371 break; 372 case S_IFDIR: 373 layout = SA_LAYOUT_INDEX_DEFAULT; 374 links = 1; /* .. */ 375 objsize = 1; /* .. */ 376 377 /* 378 * The size of a ZPL directory is the number of entries 379 * (including "." and ".."), and the link count is the number of 380 * entries which are directories (including "." and ".."). 381 */ 382 for (fsnode *c = fsnode_isroot(cur) ? cur->next : cur->child; 383 c != NULL; c = c->next) { 384 if (c->type == S_IFDIR) 385 links++; 386 objsize++; 387 } 388 389 /* The root directory is its own parent. */ 390 parent = SLIST_EMPTY(&arg->dirs) ? 391 arg->rootdirid : SLIST_FIRST(&arg->dirs)->objid; 392 break; 393 case S_IFLNK: 394 fs_readlink(cur, arg, target, sizeof(target)); 395 396 layout = SA_LAYOUT_INDEX_SYMLINK; 397 links = 1; 398 objsize = strlen(target); 399 parent = SLIST_FIRST(&arg->dirs)->objid; 400 break; 401 default: 402 assert(0); 403 } 404 405 daclcount = nitems(aces); 406 flags = ZFS_ACL_TRIVIAL | ZFS_ACL_AUTO_INHERIT | ZFS_NO_EXECS_DENIED | 407 ZFS_ARCHIVE | ZFS_AV_MODIFIED; /* XXX-MJ */ 408 gen = 1; 409 gid = sb->st_gid; 410 mode = sb->st_mode; 411 uid = sb->st_uid; 412 413 memset(aces, 0, sizeof(aces)); 414 aces[0].z_flags = ACE_OWNER; 415 aces[0].z_type = ACE_ACCESS_ALLOWED_ACE_TYPE; 416 aces[0].z_access_mask = ACE_WRITE_ATTRIBUTES | ACE_WRITE_OWNER | 417 ACE_WRITE_ACL | ACE_WRITE_NAMED_ATTRS | ACE_READ_ACL | 418 ACE_READ_ATTRIBUTES | ACE_READ_NAMED_ATTRS | ACE_SYNCHRONIZE; 419 if ((mode & S_IRUSR) != 0) 420 aces[0].z_access_mask |= ACE_READ_DATA; 421 if ((mode & S_IWUSR) != 0) 422 aces[0].z_access_mask |= ACE_WRITE_DATA | ACE_APPEND_DATA; 423 if ((mode & S_IXUSR) != 0) 424 aces[0].z_access_mask |= ACE_EXECUTE; 425 426 aces[1].z_flags = ACE_GROUP | ACE_IDENTIFIER_GROUP; 427 aces[1].z_type = ACE_ACCESS_ALLOWED_ACE_TYPE; 428 aces[1].z_access_mask = ACE_READ_ACL | ACE_READ_ATTRIBUTES | 429 ACE_READ_NAMED_ATTRS | ACE_SYNCHRONIZE; 430 if ((mode & S_IRGRP) != 0) 431 aces[1].z_access_mask |= ACE_READ_DATA; 432 if ((mode & S_IWGRP) != 0) 433 aces[1].z_access_mask |= ACE_WRITE_DATA | ACE_APPEND_DATA; 434 if ((mode & S_IXGRP) != 0) 435 aces[1].z_access_mask |= ACE_EXECUTE; 436 437 aces[2].z_flags = ACE_EVERYONE; 438 aces[2].z_type = ACE_ACCESS_ALLOWED_ACE_TYPE; 439 aces[2].z_access_mask = ACE_READ_ACL | ACE_READ_ATTRIBUTES | 440 ACE_READ_NAMED_ATTRS | ACE_SYNCHRONIZE; 441 if ((mode & S_IROTH) != 0) 442 aces[2].z_access_mask |= ACE_READ_DATA; 443 if ((mode & S_IWOTH) != 0) 444 aces[2].z_access_mask |= ACE_WRITE_DATA | ACE_APPEND_DATA; 445 if ((mode & S_IXOTH) != 0) 446 aces[2].z_access_mask |= ACE_EXECUTE; 447 448 switch (layout) { 449 case SA_LAYOUT_INDEX_DEFAULT: 450 /* At most one variable-length attribute. */ 451 hdrsz = sizeof(uint64_t); 452 break; 453 case SA_LAYOUT_INDEX_SYMLINK: 454 /* At most five variable-length attributes. */ 455 hdrsz = sizeof(uint64_t) * 2; 456 break; 457 default: 458 assert(0); 459 } 460 461 sahdr = (sa_hdr_phys_t *)DN_BONUS(dnode); 462 sahdr->sa_magic = SA_MAGIC; 463 SA_HDR_LAYOUT_INFO_ENCODE(sahdr->sa_layout_info, layout, hdrsz); 464 465 bonussz = SA_HDR_SIZE(sahdr); 466 attrbuf = (char *)sahdr + SA_HDR_SIZE(sahdr); 467 468 fs_populate_attr(fs, attrbuf, &daclcount, ZPL_DACL_COUNT, &bonussz); 469 fs_populate_attr(fs, attrbuf, &flags, ZPL_FLAGS, &bonussz); 470 fs_populate_attr(fs, attrbuf, &gen, ZPL_GEN, &bonussz); 471 fs_populate_attr(fs, attrbuf, &gid, ZPL_GID, &bonussz); 472 fs_populate_attr(fs, attrbuf, &links, ZPL_LINKS, &bonussz); 473 fs_populate_attr(fs, attrbuf, &mode, ZPL_MODE, &bonussz); 474 fs_populate_attr(fs, attrbuf, &parent, ZPL_PARENT, &bonussz); 475 fs_populate_attr(fs, attrbuf, &objsize, ZPL_SIZE, &bonussz); 476 fs_populate_attr(fs, attrbuf, &uid, ZPL_UID, &bonussz); 477 478 /* 479 * We deliberately set atime = mtime here to ensure that images are 480 * reproducible. 481 */ 482 fs_populate_time(fs, attrbuf, &sb->st_mtim, ZPL_ATIME, &bonussz); 483 fs_populate_time(fs, attrbuf, &sb->st_ctim, ZPL_CTIME, &bonussz); 484 fs_populate_time(fs, attrbuf, &sb->st_mtim, ZPL_MTIME, &bonussz); 485 #ifdef __linux__ 486 /* Linux has no st_birthtim; approximate with st_ctim */ 487 fs_populate_time(fs, attrbuf, &sb->st_ctim, ZPL_CRTIME, &bonussz); 488 #else 489 fs_populate_time(fs, attrbuf, &sb->st_birthtim, ZPL_CRTIME, &bonussz); 490 #endif 491 492 fs_populate_varszattr(fs, attrbuf, aces, sizeof(aces), 0, 493 ZPL_DACL_ACES, &bonussz); 494 sahdr->sa_lengths[0] = sizeof(aces); 495 496 if (cur->type == S_IFLNK) { 497 assert(layout == SA_LAYOUT_INDEX_SYMLINK); 498 /* Need to use a spill block pointer if the target is long. */ 499 assert(bonussz + objsize <= DN_OLD_MAX_BONUSLEN); 500 fs_populate_varszattr(fs, attrbuf, target, objsize, 501 sahdr->sa_lengths[0], ZPL_SYMLINK, &bonussz); 502 sahdr->sa_lengths[1] = (uint16_t)objsize; 503 } 504 505 dnode->dn_bonuslen = bonussz; 506 } 507 508 static void 509 fs_populate_file(fsnode *cur, struct fs_populate_arg *arg) 510 { 511 struct dnode_cursor *c; 512 dnode_phys_t *dnode; 513 zfs_opt_t *zfs; 514 char *buf; 515 uint64_t dnid; 516 ssize_t n; 517 size_t bufsz; 518 off_t size, target; 519 int fd; 520 521 assert(cur->type == S_IFREG); 522 assert((cur->inode->flags & FI_ROOT) == 0); 523 524 zfs = arg->zfs; 525 526 assert(cur->inode->ino != 0); 527 if ((cur->inode->flags & FI_ALLOCATED) != 0) { 528 /* 529 * This is a hard link of an existing file. 530 * 531 * XXX-MJ need to check whether it crosses datasets, add a test 532 * case for that 533 */ 534 fs_populate_dirent(arg, cur, cur->inode->ino); 535 return; 536 } 537 538 dnode = objset_dnode_bonus_alloc(arg->fs->os, 539 DMU_OT_PLAIN_FILE_CONTENTS, DMU_OT_SA, 0, &dnid); 540 cur->inode->ino = dnid; 541 cur->inode->flags |= FI_ALLOCATED; 542 543 fd = fs_open(cur, arg, O_RDONLY); 544 545 buf = zfs->filebuf; 546 bufsz = sizeof(zfs->filebuf); 547 size = cur->inode->st.st_size; 548 c = dnode_cursor_init(zfs, arg->fs->os, dnode, size, 0); 549 for (off_t foff = 0; foff < size; foff += target) { 550 off_t loc, sofar; 551 552 /* 553 * Fill up our buffer, handling partial reads. 554 * 555 * It might be profitable to use copy_file_range(2) here. 556 */ 557 sofar = 0; 558 target = MIN(size - foff, (off_t)bufsz); 559 do { 560 n = read(fd, buf + sofar, target); 561 if (n < 0) 562 err(1, "reading from '%s'", cur->name); 563 if (n == 0) 564 errx(1, "unexpected EOF reading '%s'", 565 cur->name); 566 sofar += n; 567 } while (sofar < target); 568 569 if (target < (off_t)bufsz) 570 memset(buf + target, 0, bufsz - target); 571 572 loc = objset_space_alloc(zfs, arg->fs->os, &target); 573 vdev_pwrite_dnode_indir(zfs, dnode, 0, 1, buf, target, loc, 574 dnode_cursor_next(zfs, c, foff)); 575 } 576 eclose(fd); 577 dnode_cursor_finish(zfs, c); 578 579 fs_populate_sattrs(arg, cur, dnode); 580 fs_populate_dirent(arg, cur, dnid); 581 } 582 583 static void 584 fs_populate_dir(fsnode *cur, struct fs_populate_arg *arg) 585 { 586 dnode_phys_t *dnode; 587 zfs_objset_t *os; 588 uint64_t dnid; 589 int dirfd; 590 591 assert(cur->type == S_IFDIR); 592 assert((cur->inode->flags & FI_ALLOCATED) == 0); 593 594 os = arg->fs->os; 595 596 dnode = objset_dnode_bonus_alloc(os, DMU_OT_DIRECTORY_CONTENTS, 597 DMU_OT_SA, 0, &dnid); 598 599 /* 600 * Add an entry to the parent directory and open this directory. 601 */ 602 if (!SLIST_EMPTY(&arg->dirs)) { 603 fs_populate_dirent(arg, cur, dnid); 604 /* 605 * We only need the directory fd if we're finding files in 606 * it. If it's just there for other directories or 607 * files using contents= we don't need to succeed here. 608 */ 609 dirfd = fs_open_can_fail(cur, arg, O_DIRECTORY | O_RDONLY); 610 } else { 611 arg->rootdirid = dnid; 612 dirfd = arg->rootdirfd; 613 arg->rootdirfd = -1; 614 } 615 616 /* 617 * Set ZPL attributes. 618 */ 619 fs_populate_sattrs(arg, cur, dnode); 620 621 /* 622 * If this is a root directory, then its children belong to a different 623 * dataset and this directory remains empty in the current objset. 624 */ 625 if ((cur->inode->flags & FI_ROOT) == 0) { 626 struct fs_populate_dir *dir; 627 628 dir = ecalloc(1, sizeof(*dir)); 629 dir->dirfd = dirfd; 630 dir->objid = dnid; 631 dir->zap = zap_alloc(os, dnode); 632 SLIST_INSERT_HEAD(&arg->dirs, dir, next); 633 } else { 634 zap_write(arg->zfs, zap_alloc(os, dnode)); 635 fs_build_one(arg->zfs, cur->inode->param, cur->child, dirfd); 636 } 637 } 638 639 static void 640 fs_populate_symlink(fsnode *cur, struct fs_populate_arg *arg) 641 { 642 dnode_phys_t *dnode; 643 uint64_t dnid; 644 645 assert(cur->type == S_IFLNK); 646 assert((cur->inode->flags & (FI_ALLOCATED | FI_ROOT)) == 0); 647 648 dnode = objset_dnode_bonus_alloc(arg->fs->os, 649 DMU_OT_PLAIN_FILE_CONTENTS, DMU_OT_SA, 0, &dnid); 650 651 fs_populate_dirent(arg, cur, dnid); 652 653 fs_populate_sattrs(arg, cur, dnode); 654 } 655 656 static int 657 fs_foreach_populate(fsnode *cur, void *_arg) 658 { 659 struct fs_populate_arg *arg; 660 struct fs_populate_dir *dir; 661 int ret; 662 663 arg = _arg; 664 switch (cur->type) { 665 case S_IFREG: 666 fs_populate_file(cur, arg); 667 break; 668 case S_IFDIR: 669 if (fsnode_isroot(cur)) 670 break; 671 fs_populate_dir(cur, arg); 672 break; 673 case S_IFLNK: 674 fs_populate_symlink(cur, arg); 675 break; 676 default: 677 assert(0); 678 } 679 680 ret = (cur->inode->flags & FI_ROOT) != 0 ? 0 : 1; 681 682 if (cur->next == NULL && 683 (cur->child == NULL || (cur->inode->flags & FI_ROOT) != 0)) { 684 /* 685 * We reached a terminal node in a subtree. Walk back up and 686 * write out directories. We're done once we hit the root of a 687 * dataset or find a level where we're not on the edge of the 688 * tree. 689 */ 690 do { 691 dir = SLIST_FIRST(&arg->dirs); 692 SLIST_REMOVE_HEAD(&arg->dirs, next); 693 zap_write(arg->zfs, dir->zap); 694 if (dir->dirfd != -1) 695 eclose(dir->dirfd); 696 free(dir); 697 cur = cur->parent; 698 } while (cur != NULL && cur->next == NULL && 699 (cur->inode->flags & FI_ROOT) == 0); 700 } 701 702 return (ret); 703 } 704 705 static void 706 fs_add_zpl_attr_layout(zfs_zap_t *zap, unsigned int index, 707 const sa_attr_type_t layout[], size_t sacnt) 708 { 709 char ti[16]; 710 711 assert(sizeof(layout[0]) == 2); 712 713 snprintf(ti, sizeof(ti), "%u", index); 714 zap_add(zap, ti, sizeof(sa_attr_type_t), sacnt, 715 (const uint8_t *)layout); 716 } 717 718 /* 719 * Initialize system attribute tables. 720 * 721 * There are two elements to this. First, we write the zpl_attrs[] and 722 * zpl_attr_layout[] tables to disk. Then we create a lookup table which 723 * allows us to set file attributes quickly. 724 */ 725 static uint64_t 726 fs_set_zpl_attrs(zfs_opt_t *zfs, zfs_fs_t *fs) 727 { 728 zfs_zap_t *sazap, *salzap, *sarzap; 729 zfs_objset_t *os; 730 dnode_phys_t *saobj, *salobj, *sarobj; 731 uint64_t saobjid, salobjid, sarobjid; 732 uint16_t offset; 733 734 os = fs->os; 735 736 /* 737 * The on-disk tables are stored in two ZAP objects, the registry object 738 * and the layout object. Individual attributes are described by 739 * entries in the registry object; for example, the value for the 740 * "ZPL_SIZE" key gives the size and encoding of the ZPL_SIZE attribute. 741 * The attributes of a file are ordered according to one of the layouts 742 * defined in the layout object. The master node object is simply used 743 * to locate the registry and layout objects. 744 */ 745 saobj = objset_dnode_alloc(os, DMU_OT_SA_MASTER_NODE, &saobjid); 746 salobj = objset_dnode_alloc(os, DMU_OT_SA_ATTR_LAYOUTS, &salobjid); 747 sarobj = objset_dnode_alloc(os, DMU_OT_SA_ATTR_REGISTRATION, &sarobjid); 748 749 sarzap = zap_alloc(os, sarobj); 750 for (size_t i = 0; i < nitems(zpl_attrs); i++) { 751 const zfs_sattr_t *sa; 752 uint64_t attr; 753 754 attr = 0; 755 sa = &zpl_attrs[i]; 756 SA_ATTR_ENCODE(attr, (uint64_t)i, sa->size, sa->bs); 757 zap_add_uint64(sarzap, sa->name, attr); 758 } 759 zap_write(zfs, sarzap); 760 761 /* 762 * Layouts are arrays of indices into the registry. We define two 763 * layouts for use by the ZPL, one for non-symlinks and one for 764 * symlinks. They are identical except that the symlink layout includes 765 * ZPL_SYMLINK as its final attribute. 766 */ 767 salzap = zap_alloc(os, salobj); 768 assert(zpl_attr_layout[nitems(zpl_attr_layout) - 1] == ZPL_SYMLINK); 769 fs_add_zpl_attr_layout(salzap, SA_LAYOUT_INDEX_DEFAULT, 770 zpl_attr_layout, nitems(zpl_attr_layout) - 1); 771 fs_add_zpl_attr_layout(salzap, SA_LAYOUT_INDEX_SYMLINK, 772 zpl_attr_layout, nitems(zpl_attr_layout)); 773 zap_write(zfs, salzap); 774 775 sazap = zap_alloc(os, saobj); 776 zap_add_uint64(sazap, SA_LAYOUTS, salobjid); 777 zap_add_uint64(sazap, SA_REGISTRY, sarobjid); 778 zap_write(zfs, sazap); 779 780 /* Sanity check. */ 781 for (size_t i = 0; i < nitems(zpl_attrs); i++) 782 assert(i == zpl_attrs[i].id); 783 784 /* 785 * Build the offset table used when setting file attributes. File 786 * attributes are stored in the object's bonus buffer; this table 787 * provides the buffer offset of attributes referenced by the layout 788 * table. 789 */ 790 fs->sacnt = nitems(zpl_attrs); 791 fs->saoffs = ecalloc(fs->sacnt, sizeof(*fs->saoffs)); 792 for (size_t i = 0; i < fs->sacnt; i++) 793 fs->saoffs[i] = 0xffff; 794 offset = 0; 795 for (size_t i = 0; i < nitems(zpl_attr_layout); i++) { 796 uint16_t size; 797 798 assert(zpl_attr_layout[i] < fs->sacnt); 799 800 fs->saoffs[zpl_attr_layout[i]] = offset; 801 size = zpl_attrs[zpl_attr_layout[i]].size; 802 offset += size; 803 } 804 fs->satab = zpl_attrs; 805 806 return (saobjid); 807 } 808 809 static void 810 fs_layout_one(zfs_opt_t *zfs, zfs_dsl_dir_t *dsldir, void *arg) 811 { 812 char *mountpoint, *origmountpoint, *name, *next; 813 fsnode *cur, *root; 814 uint64_t canmount; 815 816 if (!dsl_dir_has_dataset(dsldir)) 817 return; 818 819 if (dsl_dir_get_canmount(dsldir, &canmount) == 0 && canmount == 0) 820 return; 821 mountpoint = dsl_dir_get_mountpoint(zfs, dsldir); 822 if (mountpoint == NULL) 823 return; 824 825 /* 826 * If we were asked to specify a bootfs, set it here. 827 */ 828 if (zfs->bootfs != NULL && strcmp(zfs->bootfs, 829 dsl_dir_fullname(dsldir)) == 0) { 830 zap_add_uint64(zfs->poolprops, "bootfs", 831 dsl_dir_dataset_id(dsldir)); 832 } 833 834 origmountpoint = mountpoint; 835 836 /* 837 * Figure out which fsnode corresponds to our mountpoint. 838 */ 839 root = arg; 840 cur = root; 841 if (strcmp(mountpoint, zfs->rootpath) != 0) { 842 mountpoint += strlen(zfs->rootpath); 843 844 /* 845 * Look up the directory in the staged tree. For example, if 846 * the dataset's mount point is /foo/bar/baz, we'll search the 847 * root directory for "foo", search "foo" for "baz", and so on. 848 * Each intermediate name must refer to a directory; the final 849 * component need not exist. 850 */ 851 cur = root; 852 for (next = name = mountpoint; next != NULL;) { 853 for (; *next == '/'; next++) 854 ; 855 name = strsep(&next, "/"); 856 857 for (; cur != NULL && strcmp(cur->name, name) != 0; 858 cur = cur->next) 859 ; 860 if (cur == NULL) { 861 if (next == NULL) 862 break; 863 errx(1, "missing mountpoint directory for `%s'", 864 dsl_dir_fullname(dsldir)); 865 } 866 if (cur->type != S_IFDIR) { 867 errx(1, 868 "mountpoint for `%s' is not a directory", 869 dsl_dir_fullname(dsldir)); 870 } 871 if (next != NULL) 872 cur = cur->child; 873 } 874 } 875 876 if (cur != NULL) { 877 assert(cur->type == S_IFDIR); 878 879 /* 880 * Multiple datasets shouldn't share a mountpoint. It's 881 * technically allowed, but it's not clear what makefs should do 882 * in that case. 883 */ 884 assert((cur->inode->flags & FI_ROOT) == 0); 885 if (cur != root) 886 cur->inode->flags |= FI_ROOT; 887 assert(cur->inode->param == NULL); 888 cur->inode->param = dsldir; 889 } 890 891 free(origmountpoint); 892 } 893 894 static int 895 fs_foreach_mark(fsnode *cur, void *arg) 896 { 897 uint64_t *countp; 898 899 countp = arg; 900 if (cur->type == S_IFDIR && fsnode_isroot(cur)) 901 return (1); 902 903 if (cur->inode->ino == 0) { 904 cur->inode->ino = ++(*countp); 905 cur->inode->nlink = 1; 906 } else { 907 cur->inode->nlink++; 908 } 909 910 return ((cur->inode->flags & FI_ROOT) != 0 ? 0 : 1); 911 } 912 913 /* 914 * Create a filesystem dataset. More specifically: 915 * - create an object set for the dataset, 916 * - add required metadata (SA tables, property definitions, etc.) to that 917 * object set, 918 * - optionally populate the object set with file objects, using "root" as the 919 * root directory. 920 * 921 * "dirfd" is a directory descriptor for the directory referenced by "root". It 922 * is closed before returning. 923 */ 924 static void 925 fs_build_one(zfs_opt_t *zfs, zfs_dsl_dir_t *dsldir, fsnode *root, int dirfd) 926 { 927 struct fs_populate_arg arg; 928 zfs_fs_t fs; 929 zfs_zap_t *masterzap; 930 zfs_objset_t *os; 931 dnode_phys_t *deleteq, *masterobj; 932 uint64_t deleteqid, dnodecount, moid, rootdirid, saobjid; 933 bool fakedroot; 934 935 /* 936 * This dataset's mountpoint doesn't exist in the staging tree, or the 937 * dataset doesn't have a mountpoint at all. In either case we still 938 * need a root directory. Fake up a root fsnode to handle this case. 939 */ 940 fakedroot = root == NULL; 941 if (fakedroot) { 942 struct stat *stp; 943 944 assert(dirfd == -1); 945 946 root = ecalloc(1, sizeof(*root)); 947 root->inode = ecalloc(1, sizeof(*root->inode)); 948 root->name = estrdup("."); 949 root->type = S_IFDIR; 950 951 stp = &root->inode->st; 952 stp->st_uid = 0; 953 stp->st_gid = 0; 954 stp->st_mode = S_IFDIR | 0755; 955 } 956 assert(root->type == S_IFDIR); 957 assert(fsnode_isroot(root)); 958 959 /* 960 * Initialize the object set for this dataset. 961 */ 962 os = objset_alloc(zfs, DMU_OST_ZFS); 963 masterobj = objset_dnode_alloc(os, DMU_OT_MASTER_NODE, &moid); 964 assert(moid == MASTER_NODE_OBJ); 965 966 memset(&fs, 0, sizeof(fs)); 967 fs.os = os; 968 969 /* 970 * Create the ZAP SA layout now since filesystem object dnodes will 971 * refer to those attributes. 972 */ 973 saobjid = fs_set_zpl_attrs(zfs, &fs); 974 975 /* 976 * Make a pass over the staged directory to detect hard links and assign 977 * virtual dnode numbers. 978 */ 979 dnodecount = 1; /* root directory */ 980 fsnode_foreach(root, fs_foreach_mark, &dnodecount); 981 982 /* 983 * Make a second pass to populate the dataset with files from the 984 * staged directory. Most of our runtime is spent here. 985 */ 986 arg.rootdirfd = dirfd; 987 arg.zfs = zfs; 988 arg.fs = &fs; 989 SLIST_INIT(&arg.dirs); 990 fs_populate_dir(root, &arg); 991 assert(!SLIST_EMPTY(&arg.dirs)); 992 fsnode_foreach(root, fs_foreach_populate, &arg); 993 assert(SLIST_EMPTY(&arg.dirs)); 994 rootdirid = arg.rootdirid; 995 996 /* 997 * Create an empty delete queue. We don't do anything with it, but 998 * OpenZFS will refuse to mount filesystems that don't have one. 999 */ 1000 deleteq = objset_dnode_alloc(os, DMU_OT_UNLINKED_SET, &deleteqid); 1001 zap_write(zfs, zap_alloc(os, deleteq)); 1002 1003 /* 1004 * Populate and write the master node object. This is a ZAP object 1005 * containing various dataset properties and the object IDs of the root 1006 * directory and delete queue. 1007 */ 1008 masterzap = zap_alloc(os, masterobj); 1009 zap_add_uint64(masterzap, ZFS_ROOT_OBJ, rootdirid); 1010 zap_add_uint64(masterzap, ZFS_UNLINKED_SET, deleteqid); 1011 zap_add_uint64(masterzap, ZFS_SA_ATTRS, saobjid); 1012 zap_add_uint64(masterzap, ZPL_VERSION_OBJ, 5 /* ZPL_VERSION_SA */); 1013 zap_add_uint64(masterzap, "normalization", 0 /* off */); 1014 zap_add_uint64(masterzap, "utf8only", 0 /* off */); 1015 zap_add_uint64(masterzap, "casesensitivity", 0 /* case sensitive */); 1016 zap_add_uint64(masterzap, "acltype", 2 /* NFSv4 */); 1017 zap_write(zfs, masterzap); 1018 1019 /* 1020 * All finished with this object set, we may as well write it now. 1021 * The DSL layer will sum up the bytes consumed by each dataset using 1022 * information stored in the object set, so it can't be freed just yet. 1023 */ 1024 dsl_dir_dataset_write(zfs, os, dsldir); 1025 1026 if (fakedroot) { 1027 free(root->inode); 1028 free(root->name); 1029 free(root); 1030 } 1031 free(fs.saoffs); 1032 } 1033 1034 /* 1035 * Create an object set for each DSL directory which has a dataset and doesn't 1036 * already have an object set. 1037 */ 1038 static void 1039 fs_build_unmounted(zfs_opt_t *zfs, zfs_dsl_dir_t *dsldir, void *arg __unused) 1040 { 1041 if (dsl_dir_has_dataset(dsldir) && !dsl_dir_dataset_has_objset(dsldir)) 1042 fs_build_one(zfs, dsldir, NULL, -1); 1043 } 1044 1045 /* 1046 * Create our datasets and populate them with files. 1047 */ 1048 void 1049 fs_build(zfs_opt_t *zfs, int dirfd, fsnode *root) 1050 { 1051 /* 1052 * Run through our datasets and find the root fsnode for each one. Each 1053 * root fsnode is flagged so that we can figure out which dataset it 1054 * belongs to. 1055 */ 1056 dsl_dir_foreach(zfs, zfs->rootdsldir, fs_layout_one, root); 1057 1058 /* 1059 * Did we find our boot filesystem? 1060 */ 1061 if (zfs->bootfs != NULL && !zap_entry_exists(zfs->poolprops, "bootfs")) 1062 errx(1, "no mounted dataset matches bootfs property `%s'", 1063 zfs->bootfs); 1064 1065 /* 1066 * Traverse the file hierarchy starting from the root fsnode. One 1067 * dataset, not necessarily the root dataset, must "own" the root 1068 * directory by having its mountpoint be equal to the root path. 1069 * 1070 * As roots of other datasets are encountered during the traversal, 1071 * fs_build_one() recursively creates the corresponding object sets and 1072 * populates them. Once this function has returned, all datasets will 1073 * have been fully populated. 1074 */ 1075 fs_build_one(zfs, root->inode->param, root, dirfd); 1076 1077 /* 1078 * Now create object sets for datasets whose mountpoints weren't found 1079 * in the staging directory, either because there is no mountpoint, or 1080 * because the mountpoint doesn't correspond to an existing directory. 1081 */ 1082 dsl_dir_foreach(zfs, zfs->rootdsldir, fs_build_unmounted, NULL); 1083 } 1084