1 /* $NetBSD: mkfs.c,v 1.22 2011/10/09 22:30:13 christos Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-3-Clause 5 * 6 * Copyright (c) 2002 Networks Associates Technology, Inc. 7 * All rights reserved. 8 * 9 * This software was developed for the FreeBSD Project by Marshall 10 * Kirk McKusick and Network Associates Laboratories, the Security 11 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 12 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 13 * research program 14 * 15 * Copyright (c) 1980, 1989, 1993 16 * The Regents of the University of California. All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 1. Redistributions of source code must retain the above copyright 22 * notice, this list of conditions and the following disclaimer. 23 * 2. Redistributions in binary form must reproduce the above copyright 24 * notice, this list of conditions and the following disclaimer in the 25 * documentation and/or other materials provided with the distribution. 26 * 3. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include <sys/param.h> 47 #include <sys/time.h> 48 #include <sys/resource.h> 49 50 #include <stdio.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <unistd.h> 54 #include <errno.h> 55 #include <util.h> 56 57 #include "makefs.h" 58 #include "ffs.h" 59 60 #include <ufs/ufs/dinode.h> 61 #include <ufs/ffs/fs.h> 62 63 #include "ffs/ufs_bswap.h" 64 #include "ffs/ufs_inode.h" 65 #include "ffs/ffs_extern.h" 66 #include "ffs/newfs_extern.h" 67 68 #ifndef BBSIZE 69 #define BBSIZE 8192 /* size of boot area, with label */ 70 #endif 71 72 static void initcg(uint32_t, time_t, const fsinfo_t *); 73 static int ilog2(int); 74 75 static int count_digits(int); 76 77 /* 78 * make file system for cylinder-group style file systems 79 */ 80 #define UMASK 0755 81 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 82 83 /* 84 * The definition of "struct cg" used to contain an extra field at the end 85 * to represent the variable-length data that followed the fixed structure. 86 * This had the effect of artificially limiting the number of blocks that 87 * newfs would put in a CG, since newfs thought that the fixed-size header 88 * was bigger than it really was. When we started validating that the CG 89 * header data actually fit into one fs block, the placeholder field caused 90 * a problem because it caused struct cg to be a different size depending on 91 * platform. The placeholder field was later removed, but this caused a 92 * backward compatibility problem with older binaries that still thought 93 * struct cg was larger, and a new file system could fail validation if 94 * viewed by the older binaries. To avoid this compatibility problem, we 95 * now artificially reduce the amount of space that the variable-length data 96 * can use such that new file systems will pass validation by older binaries. 97 */ 98 #define CGSIZEFUDGE 8 99 100 static union { 101 struct fs fs; 102 char pad[SBLOCKSIZE]; 103 } fsun; 104 #define sblock fsun.fs 105 106 static union { 107 struct cg cg; 108 char pad[FFS_MAXBSIZE]; 109 } cgun; 110 #define acg cgun.cg 111 112 static char *iobuf; 113 static int iobufsize; 114 115 static char writebuf[FFS_MAXBSIZE]; 116 117 static int Oflag; /* format as an 4.3BSD file system */ 118 static int64_t fssize; /* file system size */ 119 static int sectorsize; /* bytes/sector */ 120 static int fsize; /* fragment size */ 121 static int bsize; /* block size */ 122 static int maxbsize; /* maximum clustering */ 123 static int maxblkspercg; 124 static int minfree; /* free space threshold */ 125 static int opt; /* optimization preference (space or time) */ 126 static int density; /* number of bytes per inode */ 127 static int maxcontig; /* max contiguous blocks to allocate */ 128 static int maxbpg; /* maximum blocks per file in a cyl group */ 129 static int bbsize; /* boot block size */ 130 static int sbsize; /* superblock size */ 131 static int avgfilesize; /* expected average file size */ 132 static int avgfpdir; /* expected number of files per directory */ 133 134 struct fs * 135 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp) 136 { 137 int fragsperinode, optimalfpg, origdensity, mindensity; 138 int minfpg, lastminfpg; 139 int32_t csfrags; 140 uint32_t i, cylno; 141 long long sizepb; 142 ino_t maxinum; 143 int minfragsperinode; /* minimum ratio of frags to inodes */ 144 void *space; 145 int size; 146 int nprintcols, printcolwidth; 147 ffs_opt_t *ffs_opts = fsopts->fs_specific; 148 149 Oflag = ffs_opts->version; 150 fssize = fsopts->size / fsopts->sectorsize; 151 sectorsize = fsopts->sectorsize; 152 fsize = ffs_opts->fsize; 153 bsize = ffs_opts->bsize; 154 maxbsize = ffs_opts->maxbsize; 155 maxblkspercg = ffs_opts->maxblkspercg; 156 minfree = ffs_opts->minfree; 157 opt = ffs_opts->optimization; 158 density = ffs_opts->density; 159 maxcontig = ffs_opts->maxcontig; 160 maxbpg = ffs_opts->maxbpg; 161 avgfilesize = ffs_opts->avgfilesize; 162 avgfpdir = ffs_opts->avgfpdir; 163 bbsize = BBSIZE; 164 sbsize = SBLOCKSIZE; 165 166 strlcpy((char *)sblock.fs_volname, ffs_opts->label, 167 sizeof(sblock.fs_volname)); 168 169 if (Oflag == 0) { 170 sblock.fs_old_inodefmt = FS_42INODEFMT; 171 sblock.fs_maxsymlinklen = 0; 172 sblock.fs_old_flags = 0; 173 } else { 174 sblock.fs_old_inodefmt = FS_44INODEFMT; 175 sblock.fs_maxsymlinklen = (Oflag == 1 ? UFS1_MAXSYMLINKLEN : 176 UFS2_MAXSYMLINKLEN); 177 sblock.fs_old_flags = FS_FLAGS_UPDATED; 178 sblock.fs_flags = 0; 179 } 180 /* 181 * Validate the given file system size. 182 * Verify that its last block can actually be accessed. 183 * Convert to file system fragment sized units. 184 */ 185 if (fssize <= 0) { 186 printf("preposterous size %lld\n", (long long)fssize); 187 exit(13); 188 } 189 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts); 190 191 /* 192 * collect and verify the filesystem density info 193 */ 194 sblock.fs_avgfilesize = avgfilesize; 195 sblock.fs_avgfpdir = avgfpdir; 196 if (sblock.fs_avgfilesize <= 0) 197 printf("illegal expected average file size %d\n", 198 sblock.fs_avgfilesize), exit(14); 199 if (sblock.fs_avgfpdir <= 0) 200 printf("illegal expected number of files per directory %d\n", 201 sblock.fs_avgfpdir), exit(15); 202 /* 203 * collect and verify the block and fragment sizes 204 */ 205 sblock.fs_bsize = bsize; 206 sblock.fs_fsize = fsize; 207 if (!POWEROF2(sblock.fs_bsize)) { 208 printf("block size must be a power of 2, not %d\n", 209 sblock.fs_bsize); 210 exit(16); 211 } 212 if (!POWEROF2(sblock.fs_fsize)) { 213 printf("fragment size must be a power of 2, not %d\n", 214 sblock.fs_fsize); 215 exit(17); 216 } 217 if (sblock.fs_fsize < sectorsize) { 218 printf("fragment size %d is too small, minimum is %d\n", 219 sblock.fs_fsize, sectorsize); 220 exit(18); 221 } 222 if (sblock.fs_bsize < MINBSIZE) { 223 printf("block size %d is too small, minimum is %d\n", 224 sblock.fs_bsize, MINBSIZE); 225 exit(19); 226 } 227 if (sblock.fs_bsize > FFS_MAXBSIZE) { 228 printf("block size %d is too large, maximum is %d\n", 229 sblock.fs_bsize, FFS_MAXBSIZE); 230 exit(19); 231 } 232 if (sblock.fs_bsize < sblock.fs_fsize) { 233 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 234 sblock.fs_bsize, sblock.fs_fsize); 235 exit(20); 236 } 237 238 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 239 sblock.fs_maxbsize = sblock.fs_bsize; 240 printf("Extent size set to %d\n", sblock.fs_maxbsize); 241 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 242 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 243 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 244 } else { 245 sblock.fs_maxbsize = maxbsize; 246 } 247 sblock.fs_maxcontig = maxcontig; 248 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 249 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 250 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 251 } 252 253 if (sblock.fs_maxcontig > 1) 254 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 255 256 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 257 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 258 sblock.fs_qbmask = ~sblock.fs_bmask; 259 sblock.fs_qfmask = ~sblock.fs_fmask; 260 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 261 sblock.fs_bshift++; 262 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 263 sblock.fs_fshift++; 264 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 265 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 266 sblock.fs_fragshift++; 267 if (sblock.fs_frag > MAXFRAG) { 268 printf("fragment size %d is too small, " 269 "minimum with block size %d is %d\n", 270 sblock.fs_fsize, sblock.fs_bsize, 271 sblock.fs_bsize / MAXFRAG); 272 exit(21); 273 } 274 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 275 sblock.fs_size = sblock.fs_providersize = fssize = 276 dbtofsb(&sblock, fssize); 277 278 if (Oflag <= 1) { 279 sblock.fs_magic = FS_UFS1_MAGIC; 280 sblock.fs_sblockloc = SBLOCK_UFS1; 281 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); 282 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 283 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 284 sizeof (ufs1_daddr_t)); 285 sblock.fs_old_inodefmt = FS_44INODEFMT; 286 sblock.fs_old_cgoffset = 0; 287 sblock.fs_old_cgmask = 0xffffffff; 288 sblock.fs_old_size = sblock.fs_size; 289 sblock.fs_old_rotdelay = 0; 290 sblock.fs_old_rps = 60; 291 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 292 sblock.fs_old_cpg = 1; 293 sblock.fs_old_interleave = 1; 294 sblock.fs_old_trackskew = 0; 295 sblock.fs_old_cpc = 0; 296 sblock.fs_old_postblformat = 1; 297 sblock.fs_old_nrpos = 1; 298 } else { 299 sblock.fs_magic = FS_UFS2_MAGIC; 300 sblock.fs_sblockloc = SBLOCK_UFS2; 301 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); 302 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 303 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 304 sizeof (ufs2_daddr_t)); 305 if (ffs_opts->softupdates == 1) 306 sblock.fs_flags |= FS_DOSOFTDEP; 307 } 308 309 sblock.fs_sblkno = 310 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 311 sblock.fs_frag); 312 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 313 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag)); 314 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 315 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 316 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 317 sizepb *= NINDIR(&sblock); 318 sblock.fs_maxfilesize += sizepb; 319 } 320 321 /* 322 * Calculate the number of blocks to put into each cylinder group. 323 * 324 * This algorithm selects the number of blocks per cylinder 325 * group. The first goal is to have at least enough data blocks 326 * in each cylinder group to meet the density requirement. Once 327 * this goal is achieved we try to expand to have at least 328 * 1 cylinder group. Once this goal is achieved, we pack as 329 * many blocks into each cylinder group map as will fit. 330 * 331 * We start by calculating the smallest number of blocks that we 332 * can put into each cylinder group. If this is too big, we reduce 333 * the density until it fits. 334 */ 335 maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); 336 minfragsperinode = 1 + fssize / maxinum; 337 mindensity = minfragsperinode * fsize; 338 if (density == 0) 339 density = MAX(2, minfragsperinode) * fsize; 340 if (density < mindensity) { 341 origdensity = density; 342 density = mindensity; 343 fprintf(stderr, "density increased from %d to %d\n", 344 origdensity, density); 345 } 346 origdensity = density; 347 if (!ffs_opts->min_inodes) 348 density = MIN(density, MAX(2, minfragsperinode) * fsize); 349 for (;;) { 350 fragsperinode = MAX(numfrags(&sblock, density), 1); 351 minfpg = fragsperinode * INOPB(&sblock); 352 if (minfpg > sblock.fs_size) 353 minfpg = sblock.fs_size; 354 sblock.fs_ipg = INOPB(&sblock); 355 sblock.fs_fpg = roundup(sblock.fs_iblkno + 356 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 357 if (sblock.fs_fpg < minfpg) 358 sblock.fs_fpg = minfpg; 359 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 360 INOPB(&sblock)); 361 sblock.fs_fpg = roundup(sblock.fs_iblkno + 362 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 363 if (sblock.fs_fpg < minfpg) 364 sblock.fs_fpg = minfpg; 365 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 366 INOPB(&sblock)); 367 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 368 CGSIZEFUDGE) 369 break; 370 density -= sblock.fs_fsize; 371 } 372 if (density != origdensity) 373 printf("density reduced from %d to %d\n", origdensity, density); 374 375 if (maxblkspercg <= 0 || maxblkspercg >= fssize) 376 maxblkspercg = fssize - 1; 377 /* 378 * Start packing more blocks into the cylinder group until 379 * it cannot grow any larger, the number of cylinder groups 380 * drops below 1, or we reach the size requested. 381 */ 382 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 383 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 384 INOPB(&sblock)); 385 if (sblock.fs_size / sblock.fs_fpg < 1) 386 break; 387 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize - 388 CGSIZEFUDGE) 389 continue; 390 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize - 391 CGSIZEFUDGE) 392 break; 393 sblock.fs_fpg -= sblock.fs_frag; 394 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 395 INOPB(&sblock)); 396 break; 397 } 398 /* 399 * Check to be sure that the last cylinder group has enough blocks 400 * to be viable. If it is too small, reduce the number of blocks 401 * per cylinder group which will have the effect of moving more 402 * blocks into the last cylinder group. 403 */ 404 optimalfpg = sblock.fs_fpg; 405 for (;;) { 406 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 407 lastminfpg = roundup(sblock.fs_iblkno + 408 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 409 if (sblock.fs_size < lastminfpg) { 410 printf("Filesystem size %lld < minimum size of %d\n", 411 (long long)sblock.fs_size, lastminfpg); 412 exit(28); 413 } 414 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 415 sblock.fs_size % sblock.fs_fpg == 0) 416 break; 417 sblock.fs_fpg -= sblock.fs_frag; 418 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 419 INOPB(&sblock)); 420 } 421 if (optimalfpg != sblock.fs_fpg) 422 printf("Reduced frags per cylinder group from %d to %d %s\n", 423 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 424 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 425 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 426 if (Oflag <= 1) { 427 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 428 sblock.fs_old_nsect = sblock.fs_old_spc; 429 sblock.fs_old_npsect = sblock.fs_old_spc; 430 sblock.fs_old_ncyl = sblock.fs_ncg; 431 } 432 433 /* 434 * fill in remaining fields of the super block 435 */ 436 sblock.fs_csaddr = cgdmin(&sblock, 0); 437 sblock.fs_cssize = 438 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 439 440 /* 441 * Setup memory for temporary in-core cylgroup summaries. 442 * Cribbed from ffs_mountfs(). 443 */ 444 size = sblock.fs_cssize; 445 if (sblock.fs_contigsumsize > 0) 446 size += sblock.fs_ncg * sizeof(int32_t); 447 space = ecalloc(1, size); 448 sblock.fs_si = ecalloc(1, sizeof(struct fs_summary_info)); 449 sblock.fs_csp = space; 450 space = (char *)space + sblock.fs_cssize; 451 if (sblock.fs_contigsumsize > 0) { 452 int32_t *lp; 453 454 sblock.fs_maxcluster = lp = space; 455 for (i = 0; i < sblock.fs_ncg; i++) 456 *lp++ = sblock.fs_contigsumsize; 457 } 458 459 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 460 if (sblock.fs_sbsize > SBLOCKSIZE) 461 sblock.fs_sbsize = SBLOCKSIZE; 462 sblock.fs_minfree = minfree; 463 sblock.fs_maxcontig = maxcontig; 464 sblock.fs_maxbpg = maxbpg; 465 sblock.fs_optim = opt; 466 sblock.fs_cgrotor = 0; 467 sblock.fs_pendingblocks = 0; 468 sblock.fs_pendinginodes = 0; 469 sblock.fs_cstotal.cs_ndir = 0; 470 sblock.fs_cstotal.cs_nbfree = 0; 471 sblock.fs_cstotal.cs_nifree = 0; 472 sblock.fs_cstotal.cs_nffree = 0; 473 sblock.fs_fmod = 0; 474 sblock.fs_ronly = 0; 475 sblock.fs_state = 0; 476 sblock.fs_clean = FS_ISCLEAN; 477 sblock.fs_ronly = 0; 478 sblock.fs_id[0] = tstamp; 479 sblock.fs_id[1] = random(); 480 sblock.fs_fsmnt[0] = '\0'; 481 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 482 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 483 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 484 sblock.fs_cstotal.cs_nbfree = 485 fragstoblks(&sblock, sblock.fs_dsize) - 486 howmany(csfrags, sblock.fs_frag); 487 sblock.fs_cstotal.cs_nffree = 488 fragnum(&sblock, sblock.fs_size) + 489 (fragnum(&sblock, csfrags) > 0 ? 490 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 491 sblock.fs_cstotal.cs_nifree = 492 sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 493 sblock.fs_cstotal.cs_ndir = 0; 494 sblock.fs_dsize -= csfrags; 495 sblock.fs_time = tstamp; 496 if (Oflag <= 1) { 497 sblock.fs_old_time = tstamp; 498 sblock.fs_old_dsize = sblock.fs_dsize; 499 sblock.fs_old_csaddr = sblock.fs_csaddr; 500 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 501 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 502 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 503 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 504 } 505 /* 506 * Dump out summary information about file system. 507 */ 508 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 509 printf("%s: %.1fMB (%lld sectors) block size %d, " 510 "fragment size %d\n", 511 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 512 (long long)fsbtodb(&sblock, sblock.fs_size), 513 sblock.fs_bsize, sblock.fs_fsize); 514 printf("\tusing %d cylinder groups of %.2fMB, %d blks, " 515 "%d inodes.\n", 516 sblock.fs_ncg, 517 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 518 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 519 #undef B2MBFACTOR 520 /* 521 * Now determine how wide each column will be, and calculate how 522 * many columns will fit in a 76 char line. 76 is the width of the 523 * subwindows in sysinst. 524 */ 525 printcolwidth = count_digits( 526 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); 527 nprintcols = 76 / (printcolwidth + 2); 528 529 /* 530 * allocate space for superblock, cylinder group map, and 531 * two sets of inode blocks. 532 */ 533 if (sblock.fs_bsize < SBLOCKSIZE) 534 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 535 else 536 iobufsize = 4 * sblock.fs_bsize; 537 iobuf = ecalloc(1, iobufsize); 538 /* 539 * Make a copy of the superblock into the buffer that we will be 540 * writing out in each cylinder group. 541 */ 542 memcpy(writebuf, &sblock, sbsize); 543 if (fsopts->needswap) 544 ffs_sb_swap(&sblock, (struct fs*)writebuf); 545 memcpy(iobuf, writebuf, SBLOCKSIZE); 546 547 printf("super-block backups (for fsck -b #) at:"); 548 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 549 initcg(cylno, tstamp, fsopts); 550 if (cylno % nprintcols == 0) 551 printf("\n"); 552 printf(" %*lld%s", printcolwidth, 553 (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)), 554 cylno == sblock.fs_ncg - 1 ? "" : ","); 555 fflush(stdout); 556 } 557 printf("\n"); 558 559 /* 560 * Now construct the initial file system, 561 * then write out the super-block. 562 */ 563 sblock.fs_time = tstamp; 564 if (Oflag <= 1) { 565 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 566 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 567 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 568 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 569 } 570 if (fsopts->needswap) 571 sblock.fs_flags |= FS_SWAPPED; 572 ffs_write_superblock(&sblock, fsopts); 573 return (&sblock); 574 } 575 576 /* 577 * Write out the superblock and its duplicates, 578 * and the cylinder group summaries 579 */ 580 void 581 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts) 582 { 583 int size, blks, i, saveflag; 584 uint32_t cylno; 585 void *space; 586 char *wrbuf; 587 588 saveflag = fs->fs_flags & FS_INTERNAL; 589 fs->fs_flags &= ~FS_INTERNAL; 590 591 memcpy(writebuf, &sblock, sbsize); 592 if (fsopts->needswap) 593 ffs_sb_swap(fs, (struct fs*)writebuf); 594 ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts); 595 596 /* Write out the duplicate super blocks */ 597 for (cylno = 0; cylno < fs->fs_ncg; cylno++) 598 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)), 599 sbsize, writebuf, fsopts); 600 601 /* Write out the cylinder group summaries */ 602 size = fs->fs_cssize; 603 blks = howmany(size, fs->fs_fsize); 604 space = (void *)fs->fs_csp; 605 wrbuf = emalloc(size); 606 for (i = 0; i < blks; i+= fs->fs_frag) { 607 size = fs->fs_bsize; 608 if (i + fs->fs_frag > blks) 609 size = (blks - i) * fs->fs_fsize; 610 if (fsopts->needswap) 611 ffs_csum_swap((struct csum *)space, 612 (struct csum *)wrbuf, size); 613 else 614 memcpy(wrbuf, space, (u_int)size); 615 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts); 616 space = (char *)space + size; 617 } 618 free(wrbuf); 619 fs->fs_flags |= saveflag; 620 } 621 622 /* 623 * Initialize a cylinder group. 624 */ 625 static void 626 initcg(uint32_t cylno, time_t utime, const fsinfo_t *fsopts) 627 { 628 daddr_t cbase, dmax; 629 int32_t blkno; 630 uint32_t i, j, d, dlower, dupper; 631 struct ufs1_dinode *dp1; 632 struct ufs2_dinode *dp2; 633 int start; 634 635 /* 636 * Determine block bounds for cylinder group. 637 * Allow space for super block summary information in first 638 * cylinder group. 639 */ 640 cbase = cgbase(&sblock, cylno); 641 dmax = cbase + sblock.fs_fpg; 642 if (dmax > sblock.fs_size) 643 dmax = sblock.fs_size; 644 dlower = cgsblock(&sblock, cylno) - cbase; 645 dupper = cgdmin(&sblock, cylno) - cbase; 646 if (cylno == 0) 647 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 648 memset(&acg, 0, sblock.fs_cgsize); 649 acg.cg_time = utime; 650 acg.cg_magic = CG_MAGIC; 651 acg.cg_cgx = cylno; 652 acg.cg_niblk = sblock.fs_ipg; 653 acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); 654 acg.cg_ndblk = dmax - cbase; 655 if (sblock.fs_contigsumsize > 0) 656 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift; 657 start = sizeof(acg); 658 if (Oflag == 2) { 659 acg.cg_iusedoff = start; 660 } else { 661 if (cylno == sblock.fs_ncg - 1) 662 acg.cg_old_ncyl = howmany(acg.cg_ndblk, 663 sblock.fs_fpg / sblock.fs_old_cpg); 664 else 665 acg.cg_old_ncyl = sblock.fs_old_cpg; 666 acg.cg_old_time = acg.cg_time; 667 acg.cg_time = 0; 668 acg.cg_old_niblk = acg.cg_niblk; 669 acg.cg_niblk = 0; 670 acg.cg_initediblk = 0; 671 acg.cg_old_btotoff = start; 672 acg.cg_old_boff = acg.cg_old_btotoff + 673 sblock.fs_old_cpg * sizeof(int32_t); 674 acg.cg_iusedoff = acg.cg_old_boff + 675 sblock.fs_old_cpg * sizeof(u_int16_t); 676 } 677 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 678 if (sblock.fs_contigsumsize <= 0) { 679 acg.cg_nextfreeoff = acg.cg_freeoff + 680 howmany(sblock.fs_fpg, CHAR_BIT); 681 } else { 682 acg.cg_clustersumoff = acg.cg_freeoff + 683 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t); 684 acg.cg_clustersumoff = 685 roundup(acg.cg_clustersumoff, sizeof(int32_t)); 686 acg.cg_clusteroff = acg.cg_clustersumoff + 687 (sblock.fs_contigsumsize + 1) * sizeof(int32_t); 688 acg.cg_nextfreeoff = acg.cg_clusteroff + 689 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 690 } 691 if (acg.cg_nextfreeoff > (uint32_t)sblock.fs_cgsize) { 692 printf("Panic: cylinder group too big\n"); 693 exit(37); 694 } 695 acg.cg_cs.cs_nifree += sblock.fs_ipg; 696 if (cylno == 0) 697 for (i = 0; i < UFS_ROOTINO; i++) { 698 setbit(cg_inosused_swap(&acg, 0), i); 699 acg.cg_cs.cs_nifree--; 700 } 701 if (cylno > 0) { 702 /* 703 * In cylno 0, beginning space is reserved 704 * for boot and super blocks. 705 */ 706 for (d = 0, blkno = 0; d < dlower;) { 707 ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno); 708 if (sblock.fs_contigsumsize > 0) 709 setbit(cg_clustersfree_swap(&acg, 0), blkno); 710 acg.cg_cs.cs_nbfree++; 711 d += sblock.fs_frag; 712 blkno++; 713 } 714 } 715 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) { 716 acg.cg_frsum[sblock.fs_frag - i]++; 717 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 718 setbit(cg_blksfree_swap(&acg, 0), dupper); 719 acg.cg_cs.cs_nffree++; 720 } 721 } 722 for (d = dupper, blkno = dupper >> sblock.fs_fragshift; 723 d + sblock.fs_frag <= acg.cg_ndblk; ) { 724 ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno); 725 if (sblock.fs_contigsumsize > 0) 726 setbit(cg_clustersfree_swap(&acg, 0), blkno); 727 acg.cg_cs.cs_nbfree++; 728 d += sblock.fs_frag; 729 blkno++; 730 } 731 if (d < acg.cg_ndblk) { 732 acg.cg_frsum[acg.cg_ndblk - d]++; 733 for (; d < acg.cg_ndblk; d++) { 734 setbit(cg_blksfree_swap(&acg, 0), d); 735 acg.cg_cs.cs_nffree++; 736 } 737 } 738 if (sblock.fs_contigsumsize > 0) { 739 int32_t *sump = cg_clustersum_swap(&acg, 0); 740 u_char *mapp = cg_clustersfree_swap(&acg, 0); 741 int map = *mapp++; 742 int bit = 1; 743 int run = 0; 744 745 for (i = 0; i < acg.cg_nclusterblks; i++) { 746 if ((map & bit) != 0) { 747 run++; 748 } else if (run != 0) { 749 if (run > sblock.fs_contigsumsize) 750 run = sblock.fs_contigsumsize; 751 sump[run]++; 752 run = 0; 753 } 754 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) { 755 bit <<= 1; 756 } else { 757 map = *mapp++; 758 bit = 1; 759 } 760 } 761 if (run != 0) { 762 if (run > sblock.fs_contigsumsize) 763 run = sblock.fs_contigsumsize; 764 sump[run]++; 765 } 766 } 767 sblock.fs_cs(&sblock, cylno) = acg.cg_cs; 768 /* 769 * Write out the duplicate super block, the cylinder group map 770 * and two blocks worth of inodes in a single write. 771 */ 772 start = MAX(sblock.fs_bsize, SBLOCKSIZE); 773 memcpy(&iobuf[start], &acg, sblock.fs_cgsize); 774 if (fsopts->needswap) 775 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock); 776 start += sblock.fs_bsize; 777 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 778 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 779 for (i = 0; i < acg.cg_initediblk; i++) { 780 if (sblock.fs_magic == FS_UFS1_MAGIC) { 781 /* No need to swap, it'll stay random */ 782 dp1->di_gen = random(); 783 dp1++; 784 } else { 785 dp2->di_gen = random(); 786 dp2++; 787 } 788 } 789 ffs_wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf, 790 fsopts); 791 /* 792 * For the old file system, we have to initialize all the inodes. 793 */ 794 if (Oflag <= 1) { 795 for (i = 2 * sblock.fs_frag; 796 i < sblock.fs_ipg / INOPF(&sblock); 797 i += sblock.fs_frag) { 798 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 799 for (j = 0; j < INOPB(&sblock); j++) { 800 dp1->di_gen = random(); 801 dp1++; 802 } 803 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 804 sblock.fs_bsize, &iobuf[start], fsopts); 805 } 806 } 807 } 808 809 /* 810 * read a block from the file system 811 */ 812 void 813 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 814 { 815 int n; 816 off_t offset; 817 818 offset = (off_t)bno * fsopts->sectorsize + fsopts->offset; 819 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 820 err(1, "%s: seek error for sector %lld", __func__, 821 (long long)bno); 822 n = read(fsopts->fd, bf, size); 823 if (n == -1) { 824 abort(); 825 err(1, "%s: read error bno %lld size %d", __func__, 826 (long long)bno, size); 827 } 828 else if (n != size) 829 errx(1, "%s: read error for sector %lld", __func__, 830 (long long)bno); 831 } 832 833 /* 834 * write a block to the file system 835 */ 836 void 837 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 838 { 839 int n; 840 off_t offset; 841 842 offset = (off_t)bno * fsopts->sectorsize + fsopts->offset; 843 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 844 err(1, "%s: seek error for sector %lld", __func__, 845 (long long)bno); 846 n = write(fsopts->fd, bf, size); 847 if (n == -1) 848 err(1, "%s: write error for sector %lld", __func__, 849 (long long)bno); 850 else if (n != size) 851 errx(1, "%s: write error for sector %lld", __func__, 852 (long long)bno); 853 } 854 855 856 /* Determine how many digits are needed to print a given integer */ 857 static int 858 count_digits(int num) 859 { 860 int ndig; 861 862 for(ndig = 1; num > 9; num /=10, ndig++); 863 864 return (ndig); 865 } 866 867 static int 868 ilog2(int val) 869 { 870 u_int n; 871 872 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 873 if (1 << n == val) 874 return (n); 875 errx(1, "%s: %d is not a power of 2", __func__, val); 876 } 877