1 /* $NetBSD: mkfs.c,v 1.20 2004/06/24 22:30:13 lukem Exp $ */ 2 3 /* 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include <sys/param.h> 45 #include <sys/time.h> 46 #include <sys/resource.h> 47 48 #include <stdio.h> 49 #include <stdlib.h> 50 #include <string.h> 51 #include <unistd.h> 52 #include <errno.h> 53 54 #include "makefs.h" 55 56 #include <ufs/ufs/dinode.h> 57 #include <ufs/ffs/fs.h> 58 59 #include "ffs/ufs_bswap.h" 60 #include "ffs/ufs_inode.h" 61 #include "ffs/ffs_extern.h" 62 #include "ffs/newfs_extern.h" 63 64 static void initcg(int, time_t, const fsinfo_t *); 65 static int ilog2(int); 66 67 static int count_digits(int); 68 69 /* 70 * make file system for cylinder-group style file systems 71 */ 72 #define UMASK 0755 73 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 74 75 union { 76 struct fs fs; 77 char pad[SBLOCKSIZE]; 78 } fsun; 79 #define sblock fsun.fs 80 struct csum *fscs; 81 82 union { 83 struct cg cg; 84 char pad[FFS_MAXBSIZE]; 85 } cgun; 86 #define acg cgun.cg 87 88 char *iobuf; 89 int iobufsize; 90 91 char writebuf[FFS_MAXBSIZE]; 92 93 static int Oflag; /* format as an 4.3BSD file system */ 94 static int64_t fssize; /* file system size */ 95 static int sectorsize; /* bytes/sector */ 96 static int fsize; /* fragment size */ 97 static int bsize; /* block size */ 98 static int maxbsize; /* maximum clustering */ 99 static int maxblkspercg; 100 static int minfree; /* free space threshold */ 101 static int opt; /* optimization preference (space or time) */ 102 static int density; /* number of bytes per inode */ 103 static int maxcontig; /* max contiguous blocks to allocate */ 104 static int maxbpg; /* maximum blocks per file in a cyl group */ 105 static int sbsize; /* superblock size */ 106 static int avgfilesize; /* expected average file size */ 107 static int avgfpdir; /* expected number of files per directory */ 108 109 struct fs * 110 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts) 111 { 112 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 113 int32_t cylno, i, csfrags; 114 long long sizepb; 115 void *space; 116 int size, blks; 117 int nprintcols, printcolwidth; 118 119 Oflag = fsopts->version; 120 fssize = fsopts->size / fsopts->sectorsize; 121 sectorsize = fsopts->sectorsize; 122 fsize = fsopts->fsize; 123 bsize = fsopts->bsize; 124 maxbsize = fsopts->maxbsize; 125 maxblkspercg = fsopts->maxblkspercg; 126 minfree = fsopts->minfree; 127 opt = fsopts->optimization; 128 density = fsopts->density; 129 maxcontig = fsopts->maxcontig; 130 maxbpg = fsopts->maxbpg; 131 avgfilesize = fsopts->avgfilesize; 132 avgfpdir = fsopts->avgfpdir; 133 sbsize = SBLOCKSIZE; 134 135 if (Oflag == 0) { 136 sblock.fs_old_inodefmt = FS_42INODEFMT; 137 sblock.fs_maxsymlinklen = 0; 138 sblock.fs_old_flags = 0; 139 } else { 140 sblock.fs_old_inodefmt = FS_44INODEFMT; 141 sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 : 142 MAXSYMLINKLEN_UFS2); 143 sblock.fs_old_flags = FS_FLAGS_UPDATED; 144 sblock.fs_flags = 0; 145 } 146 /* 147 * Validate the given file system size. 148 * Verify that its last block can actually be accessed. 149 * Convert to file system fragment sized units. 150 */ 151 if (fssize <= 0) { 152 printf("preposterous size %lld\n", (long long)fssize); 153 exit(13); 154 } 155 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts); 156 157 /* 158 * collect and verify the filesystem density info 159 */ 160 sblock.fs_avgfilesize = avgfilesize; 161 sblock.fs_avgfpdir = avgfpdir; 162 if (sblock.fs_avgfilesize <= 0) 163 printf("illegal expected average file size %d\n", 164 sblock.fs_avgfilesize), exit(14); 165 if (sblock.fs_avgfpdir <= 0) 166 printf("illegal expected number of files per directory %d\n", 167 sblock.fs_avgfpdir), exit(15); 168 /* 169 * collect and verify the block and fragment sizes 170 */ 171 sblock.fs_bsize = bsize; 172 sblock.fs_fsize = fsize; 173 if (!POWEROF2(sblock.fs_bsize)) { 174 printf("block size must be a power of 2, not %d\n", 175 sblock.fs_bsize); 176 exit(16); 177 } 178 if (!POWEROF2(sblock.fs_fsize)) { 179 printf("fragment size must be a power of 2, not %d\n", 180 sblock.fs_fsize); 181 exit(17); 182 } 183 if (sblock.fs_fsize < sectorsize) { 184 printf("fragment size %d is too small, minimum is %d\n", 185 sblock.fs_fsize, sectorsize); 186 exit(18); 187 } 188 if (sblock.fs_bsize < MINBSIZE) { 189 printf("block size %d is too small, minimum is %d\n", 190 sblock.fs_bsize, MINBSIZE); 191 exit(19); 192 } 193 if (sblock.fs_bsize > FFS_MAXBSIZE) { 194 printf("block size %d is too large, maximum is %d\n", 195 sblock.fs_bsize, FFS_MAXBSIZE); 196 exit(19); 197 } 198 if (sblock.fs_bsize < sblock.fs_fsize) { 199 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 200 sblock.fs_bsize, sblock.fs_fsize); 201 exit(20); 202 } 203 204 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 205 sblock.fs_maxbsize = sblock.fs_bsize; 206 printf("Extent size set to %d\n", sblock.fs_maxbsize); 207 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 208 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 209 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 210 } else { 211 sblock.fs_maxbsize = maxbsize; 212 } 213 sblock.fs_maxcontig = maxcontig; 214 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 215 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 216 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 217 } 218 219 if (sblock.fs_maxcontig > 1) 220 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 221 222 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 223 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 224 sblock.fs_qbmask = ~sblock.fs_bmask; 225 sblock.fs_qfmask = ~sblock.fs_fmask; 226 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 227 sblock.fs_bshift++; 228 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 229 sblock.fs_fshift++; 230 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 231 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 232 sblock.fs_fragshift++; 233 if (sblock.fs_frag > MAXFRAG) { 234 printf("fragment size %d is too small, " 235 "minimum with block size %d is %d\n", 236 sblock.fs_fsize, sblock.fs_bsize, 237 sblock.fs_bsize / MAXFRAG); 238 exit(21); 239 } 240 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 241 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 242 243 if (Oflag <= 1) { 244 sblock.fs_magic = FS_UFS1_MAGIC; 245 sblock.fs_sblockloc = SBLOCK_UFS1; 246 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t); 247 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 248 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 249 sizeof (int32_t)); 250 sblock.fs_old_inodefmt = FS_44INODEFMT; 251 sblock.fs_old_cgoffset = 0; 252 sblock.fs_old_cgmask = 0xffffffff; 253 sblock.fs_old_size = sblock.fs_size; 254 sblock.fs_old_rotdelay = 0; 255 sblock.fs_old_rps = 60; 256 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 257 sblock.fs_old_cpg = 1; 258 sblock.fs_old_interleave = 1; 259 sblock.fs_old_trackskew = 0; 260 sblock.fs_old_cpc = 0; 261 sblock.fs_old_postblformat = 1; 262 sblock.fs_old_nrpos = 1; 263 } else { 264 sblock.fs_magic = FS_UFS2_MAGIC; 265 #if 0 /* XXX makefs is used for small filesystems. */ 266 sblock.fs_sblockloc = SBLOCK_UFS2; 267 #else 268 sblock.fs_sblockloc = SBLOCK_UFS1; 269 #endif 270 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t); 271 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 272 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * 273 sizeof (int64_t)); 274 } 275 276 sblock.fs_sblkno = 277 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 278 sblock.fs_frag); 279 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 280 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag)); 281 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 282 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 283 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 284 sizepb *= NINDIR(&sblock); 285 sblock.fs_maxfilesize += sizepb; 286 } 287 288 /* 289 * Calculate the number of blocks to put into each cylinder group. 290 * 291 * This algorithm selects the number of blocks per cylinder 292 * group. The first goal is to have at least enough data blocks 293 * in each cylinder group to meet the density requirement. Once 294 * this goal is achieved we try to expand to have at least 295 * 1 cylinder group. Once this goal is achieved, we pack as 296 * many blocks into each cylinder group map as will fit. 297 * 298 * We start by calculating the smallest number of blocks that we 299 * can put into each cylinder group. If this is too big, we reduce 300 * the density until it fits. 301 */ 302 origdensity = density; 303 for (;;) { 304 fragsperinode = MAX(numfrags(&sblock, density), 1); 305 minfpg = fragsperinode * INOPB(&sblock); 306 if (minfpg > sblock.fs_size) 307 minfpg = sblock.fs_size; 308 sblock.fs_ipg = INOPB(&sblock); 309 sblock.fs_fpg = roundup(sblock.fs_iblkno + 310 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 311 if (sblock.fs_fpg < minfpg) 312 sblock.fs_fpg = minfpg; 313 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 314 INOPB(&sblock)); 315 sblock.fs_fpg = roundup(sblock.fs_iblkno + 316 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 317 if (sblock.fs_fpg < minfpg) 318 sblock.fs_fpg = minfpg; 319 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 320 INOPB(&sblock)); 321 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 322 break; 323 density -= sblock.fs_fsize; 324 } 325 if (density != origdensity) 326 printf("density reduced from %d to %d\n", origdensity, density); 327 328 if (maxblkspercg <= 0 || maxblkspercg >= fssize) 329 maxblkspercg = fssize - 1; 330 /* 331 * Start packing more blocks into the cylinder group until 332 * it cannot grow any larger, the number of cylinder groups 333 * drops below 1, or we reach the size requested. 334 */ 335 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 336 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 337 INOPB(&sblock)); 338 if (sblock.fs_size / sblock.fs_fpg < 1) 339 break; 340 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 341 continue; 342 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 343 break; 344 sblock.fs_fpg -= sblock.fs_frag; 345 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 346 INOPB(&sblock)); 347 break; 348 } 349 /* 350 * Check to be sure that the last cylinder group has enough blocks 351 * to be viable. If it is too small, reduce the number of blocks 352 * per cylinder group which will have the effect of moving more 353 * blocks into the last cylinder group. 354 */ 355 optimalfpg = sblock.fs_fpg; 356 for (;;) { 357 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 358 lastminfpg = roundup(sblock.fs_iblkno + 359 sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); 360 if (sblock.fs_size < lastminfpg) { 361 printf("Filesystem size %lld < minimum size of %d\n", 362 (long long)sblock.fs_size, lastminfpg); 363 exit(28); 364 } 365 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 366 sblock.fs_size % sblock.fs_fpg == 0) 367 break; 368 sblock.fs_fpg -= sblock.fs_frag; 369 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 370 INOPB(&sblock)); 371 } 372 if (optimalfpg != sblock.fs_fpg) 373 printf("Reduced frags per cylinder group from %d to %d %s\n", 374 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 375 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 376 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 377 if (Oflag <= 1) { 378 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 379 sblock.fs_old_nsect = sblock.fs_old_spc; 380 sblock.fs_old_npsect = sblock.fs_old_spc; 381 sblock.fs_old_ncyl = sblock.fs_ncg; 382 } 383 384 /* 385 * fill in remaining fields of the super block 386 */ 387 sblock.fs_csaddr = cgdmin(&sblock, 0); 388 sblock.fs_cssize = 389 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 390 391 /* 392 * Setup memory for temporary in-core cylgroup summaries. 393 * Cribbed from ffs_mountfs(). 394 */ 395 size = sblock.fs_cssize; 396 blks = howmany(size, sblock.fs_fsize); 397 if (sblock.fs_contigsumsize > 0) 398 size += sblock.fs_ncg * sizeof(int32_t); 399 if ((space = (char *)calloc(1, size)) == NULL) 400 err(1, "memory allocation error for cg summaries"); 401 sblock.fs_csp = space; 402 space = (char *)space + sblock.fs_cssize; 403 if (sblock.fs_contigsumsize > 0) { 404 int32_t *lp; 405 406 sblock.fs_maxcluster = lp = space; 407 for (i = 0; i < sblock.fs_ncg; i++) 408 *lp++ = sblock.fs_contigsumsize; 409 } 410 411 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 412 if (sblock.fs_sbsize > SBLOCKSIZE) 413 sblock.fs_sbsize = SBLOCKSIZE; 414 sblock.fs_minfree = minfree; 415 sblock.fs_maxcontig = maxcontig; 416 sblock.fs_maxbpg = maxbpg; 417 sblock.fs_optim = opt; 418 sblock.fs_cgrotor = 0; 419 sblock.fs_pendingblocks = 0; 420 sblock.fs_pendinginodes = 0; 421 sblock.fs_cstotal.cs_ndir = 0; 422 sblock.fs_cstotal.cs_nbfree = 0; 423 sblock.fs_cstotal.cs_nifree = 0; 424 sblock.fs_cstotal.cs_nffree = 0; 425 sblock.fs_fmod = 0; 426 sblock.fs_ronly = 0; 427 sblock.fs_state = 0; 428 sblock.fs_clean = FS_ISCLEAN; 429 sblock.fs_ronly = 0; 430 sblock.fs_id[0] = start_time.tv_sec; 431 sblock.fs_id[1] = random(); 432 sblock.fs_fsmnt[0] = '\0'; 433 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 434 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 435 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 436 sblock.fs_cstotal.cs_nbfree = 437 fragstoblks(&sblock, sblock.fs_dsize) - 438 howmany(csfrags, sblock.fs_frag); 439 sblock.fs_cstotal.cs_nffree = 440 fragnum(&sblock, sblock.fs_size) + 441 (fragnum(&sblock, csfrags) > 0 ? 442 sblock.fs_frag - fragnum(&sblock, csfrags) : 0); 443 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; 444 sblock.fs_cstotal.cs_ndir = 0; 445 sblock.fs_dsize -= csfrags; 446 sblock.fs_time = start_time.tv_sec; 447 if (Oflag <= 1) { 448 sblock.fs_old_time = start_time.tv_sec; 449 sblock.fs_old_dsize = sblock.fs_dsize; 450 sblock.fs_old_csaddr = sblock.fs_csaddr; 451 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 452 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 453 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 454 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 455 } 456 /* 457 * Dump out summary information about file system. 458 */ 459 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 460 printf("%s: %.1fMB (%lld sectors) block size %d, " 461 "fragment size %d\n", 462 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 463 (long long)fsbtodb(&sblock, sblock.fs_size), 464 sblock.fs_bsize, sblock.fs_fsize); 465 printf("\tusing %d cylinder groups of %.2fMB, %d blks, " 466 "%d inodes.\n", 467 sblock.fs_ncg, 468 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 469 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 470 #undef B2MBFACTOR 471 /* 472 * Now determine how wide each column will be, and calculate how 473 * many columns will fit in a 76 char line. 76 is the width of the 474 * subwindows in sysinst. 475 */ 476 printcolwidth = count_digits( 477 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); 478 nprintcols = 76 / (printcolwidth + 2); 479 480 /* 481 * allocate space for superblock, cylinder group map, and 482 * two sets of inode blocks. 483 */ 484 if (sblock.fs_bsize < SBLOCKSIZE) 485 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 486 else 487 iobufsize = 4 * sblock.fs_bsize; 488 if ((iobuf = malloc(iobufsize)) == 0) { 489 printf("Cannot allocate I/O buffer\n"); 490 exit(38); 491 } 492 memset(iobuf, 0, iobufsize); 493 /* 494 * Make a copy of the superblock into the buffer that we will be 495 * writing out in each cylinder group. 496 */ 497 memcpy(writebuf, &sblock, sbsize); 498 if (fsopts->needswap) 499 ffs_sb_swap(&sblock, (struct fs*)writebuf); 500 memcpy(iobuf, writebuf, SBLOCKSIZE); 501 502 printf("super-block backups (for fsck -b #) at:"); 503 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 504 initcg(cylno, start_time.tv_sec, fsopts); 505 if (cylno % nprintcols == 0) 506 printf("\n"); 507 printf(" %*lld,", printcolwidth, 508 (long long)fsbtodb(&sblock, cgsblock(&sblock, cylno))); 509 fflush(stdout); 510 } 511 printf("\n"); 512 513 /* 514 * Now construct the initial file system, 515 * then write out the super-block. 516 */ 517 sblock.fs_time = start_time.tv_sec; 518 if (Oflag <= 1) { 519 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 520 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 521 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 522 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 523 } 524 if (fsopts->needswap) 525 sblock.fs_flags |= FS_SWAPPED; 526 ffs_write_superblock(&sblock, fsopts); 527 return (&sblock); 528 } 529 530 /* 531 * Write out the superblock and its duplicates, 532 * and the cylinder group summaries 533 */ 534 void 535 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts) 536 { 537 int cylno, size, blks, i, saveflag; 538 void *space; 539 char *wrbuf; 540 541 saveflag = fs->fs_flags & FS_INTERNAL; 542 fs->fs_flags &= ~FS_INTERNAL; 543 544 memcpy(writebuf, &sblock, sbsize); 545 if (fsopts->needswap) 546 ffs_sb_swap(fs, (struct fs*)writebuf); 547 ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts); 548 549 /* Write out the duplicate super blocks */ 550 for (cylno = 0; cylno < fs->fs_ncg; cylno++) 551 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)), 552 sbsize, writebuf, fsopts); 553 554 /* Write out the cylinder group summaries */ 555 size = fs->fs_cssize; 556 blks = howmany(size, fs->fs_fsize); 557 space = (void *)fs->fs_csp; 558 if ((wrbuf = malloc(size)) == NULL) 559 err(1, "ffs_write_superblock: malloc %d", size); 560 for (i = 0; i < blks; i+= fs->fs_frag) { 561 size = fs->fs_bsize; 562 if (i + fs->fs_frag > blks) 563 size = (blks - i) * fs->fs_fsize; 564 if (fsopts->needswap) 565 ffs_csum_swap((struct csum *)space, 566 (struct csum *)wrbuf, size); 567 else 568 memcpy(wrbuf, space, (u_int)size); 569 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts); 570 space = (char *)space + size; 571 } 572 free(wrbuf); 573 fs->fs_flags |= saveflag; 574 } 575 576 /* 577 * Initialize a cylinder group. 578 */ 579 static void 580 initcg(int cylno, time_t utime, const fsinfo_t *fsopts) 581 { 582 daddr_t cbase, dmax; 583 int32_t i, j, d, dlower, dupper, blkno; 584 struct ufs1_dinode *dp1; 585 struct ufs2_dinode *dp2; 586 int start; 587 588 /* 589 * Determine block bounds for cylinder group. 590 * Allow space for super block summary information in first 591 * cylinder group. 592 */ 593 cbase = cgbase(&sblock, cylno); 594 dmax = cbase + sblock.fs_fpg; 595 if (dmax > sblock.fs_size) 596 dmax = sblock.fs_size; 597 dlower = cgsblock(&sblock, cylno) - cbase; 598 dupper = cgdmin(&sblock, cylno) - cbase; 599 if (cylno == 0) 600 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 601 memset(&acg, 0, sblock.fs_cgsize); 602 acg.cg_time = utime; 603 acg.cg_magic = CG_MAGIC; 604 acg.cg_cgx = cylno; 605 acg.cg_niblk = sblock.fs_ipg; 606 acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ? 607 sblock.fs_ipg : 2 * INOPB(&sblock); 608 acg.cg_ndblk = dmax - cbase; 609 if (sblock.fs_contigsumsize > 0) 610 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift; 611 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 612 if (Oflag == 2) { 613 acg.cg_iusedoff = start; 614 } else { 615 if (cylno == sblock.fs_ncg - 1) 616 acg.cg_old_ncyl = howmany(acg.cg_ndblk, 617 sblock.fs_fpg / sblock.fs_old_cpg); 618 else 619 acg.cg_old_ncyl = sblock.fs_old_cpg; 620 acg.cg_old_time = acg.cg_time; 621 acg.cg_time = 0; 622 acg.cg_old_niblk = acg.cg_niblk; 623 acg.cg_niblk = 0; 624 acg.cg_initediblk = 0; 625 acg.cg_old_btotoff = start; 626 acg.cg_old_boff = acg.cg_old_btotoff + 627 sblock.fs_old_cpg * sizeof(int32_t); 628 acg.cg_iusedoff = acg.cg_old_boff + 629 sblock.fs_old_cpg * sizeof(u_int16_t); 630 } 631 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 632 if (sblock.fs_contigsumsize <= 0) { 633 acg.cg_nextfreeoff = acg.cg_freeoff + 634 howmany(sblock.fs_fpg, CHAR_BIT); 635 } else { 636 acg.cg_clustersumoff = acg.cg_freeoff + 637 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t); 638 acg.cg_clustersumoff = 639 roundup(acg.cg_clustersumoff, sizeof(int32_t)); 640 acg.cg_clusteroff = acg.cg_clustersumoff + 641 (sblock.fs_contigsumsize + 1) * sizeof(int32_t); 642 acg.cg_nextfreeoff = acg.cg_clusteroff + 643 howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 644 } 645 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 646 printf("Panic: cylinder group too big\n"); 647 exit(37); 648 } 649 acg.cg_cs.cs_nifree += sblock.fs_ipg; 650 if (cylno == 0) 651 for (i = 0; i < ROOTINO; i++) { 652 setbit(cg_inosused_swap(&acg, 0), i); 653 acg.cg_cs.cs_nifree--; 654 } 655 if (cylno > 0) { 656 /* 657 * In cylno 0, beginning space is reserved 658 * for boot and super blocks. 659 */ 660 for (d = 0, blkno = 0; d < dlower;) { 661 ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno); 662 if (sblock.fs_contigsumsize > 0) 663 setbit(cg_clustersfree_swap(&acg, 0), blkno); 664 acg.cg_cs.cs_nbfree++; 665 d += sblock.fs_frag; 666 blkno++; 667 } 668 } 669 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) { 670 acg.cg_frsum[sblock.fs_frag - i]++; 671 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 672 setbit(cg_blksfree_swap(&acg, 0), dupper); 673 acg.cg_cs.cs_nffree++; 674 } 675 } 676 for (d = dupper, blkno = dupper >> sblock.fs_fragshift; 677 d + sblock.fs_frag <= acg.cg_ndblk; ) { 678 ffs_setblock(&sblock, cg_blksfree_swap(&acg, 0), blkno); 679 if (sblock.fs_contigsumsize > 0) 680 setbit(cg_clustersfree_swap(&acg, 0), blkno); 681 acg.cg_cs.cs_nbfree++; 682 d += sblock.fs_frag; 683 blkno++; 684 } 685 if (d < acg.cg_ndblk) { 686 acg.cg_frsum[acg.cg_ndblk - d]++; 687 for (; d < acg.cg_ndblk; d++) { 688 setbit(cg_blksfree_swap(&acg, 0), d); 689 acg.cg_cs.cs_nffree++; 690 } 691 } 692 if (sblock.fs_contigsumsize > 0) { 693 int32_t *sump = cg_clustersum_swap(&acg, 0); 694 u_char *mapp = cg_clustersfree_swap(&acg, 0); 695 int map = *mapp++; 696 int bit = 1; 697 int run = 0; 698 699 for (i = 0; i < acg.cg_nclusterblks; i++) { 700 if ((map & bit) != 0) { 701 run++; 702 } else if (run != 0) { 703 if (run > sblock.fs_contigsumsize) 704 run = sblock.fs_contigsumsize; 705 sump[run]++; 706 run = 0; 707 } 708 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) { 709 bit <<= 1; 710 } else { 711 map = *mapp++; 712 bit = 1; 713 } 714 } 715 if (run != 0) { 716 if (run > sblock.fs_contigsumsize) 717 run = sblock.fs_contigsumsize; 718 sump[run]++; 719 } 720 } 721 sblock.fs_cs(&sblock, cylno) = acg.cg_cs; 722 /* 723 * Write out the duplicate super block, the cylinder group map 724 * and two blocks worth of inodes in a single write. 725 */ 726 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 727 memcpy(&iobuf[start], &acg, sblock.fs_cgsize); 728 if (fsopts->needswap) 729 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock); 730 start += sblock.fs_bsize; 731 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 732 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 733 for (i = 0; i < acg.cg_initediblk; i++) { 734 if (sblock.fs_magic == FS_UFS1_MAGIC) { 735 /* No need to swap, it'll stay random */ 736 dp1->di_gen = random(); 737 dp1++; 738 } else { 739 dp2->di_gen = random(); 740 dp2++; 741 } 742 } 743 ffs_wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf, 744 fsopts); 745 /* 746 * For the old file system, we have to initialize all the inodes. 747 */ 748 if (Oflag <= 1) { 749 for (i = 2 * sblock.fs_frag; 750 i < sblock.fs_ipg / INOPF(&sblock); 751 i += sblock.fs_frag) { 752 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 753 for (j = 0; j < INOPB(&sblock); j++) { 754 dp1->di_gen = random(); 755 dp1++; 756 } 757 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 758 sblock.fs_bsize, &iobuf[start], fsopts); 759 } 760 } 761 } 762 763 /* 764 * read a block from the file system 765 */ 766 void 767 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 768 { 769 int n; 770 off_t offset; 771 772 offset = bno; 773 offset *= fsopts->sectorsize; 774 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 775 err(1, "ffs_rdfs: seek error for sector %lld: %s\n", 776 (long long)bno, strerror(errno)); 777 n = read(fsopts->fd, bf, size); 778 if (n == -1) { 779 abort(); 780 err(1, "ffs_rdfs: read error bno %lld size %d", (long long)bno, 781 size); 782 } 783 else if (n != size) 784 errx(1, "ffs_rdfs: read error for sector %lld: %s\n", 785 (long long)bno, strerror(errno)); 786 } 787 788 /* 789 * write a block to the file system 790 */ 791 void 792 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 793 { 794 int n; 795 off_t offset; 796 797 offset = bno; 798 offset *= fsopts->sectorsize; 799 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 800 err(1, "wtfs: seek error for sector %lld: %s\n", 801 (long long)bno, strerror(errno)); 802 n = write(fsopts->fd, bf, size); 803 if (n == -1) 804 err(1, "wtfs: write error for sector %lld: %s\n", 805 (long long)bno, strerror(errno)); 806 else if (n != size) 807 errx(1, "wtfs: write error for sector %lld: %s\n", 808 (long long)bno, strerror(errno)); 809 } 810 811 812 /* Determine how many digits are needed to print a given integer */ 813 static int 814 count_digits(int num) 815 { 816 int ndig; 817 818 for(ndig = 1; num > 9; num /=10, ndig++); 819 820 return (ndig); 821 } 822 823 static int 824 ilog2(int val) 825 { 826 u_int n; 827 828 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 829 if (1 << n == val) 830 return (n); 831 errx(1, "ilog2: %d is not a power of 2\n", val); 832 } 833